1 /* 2 * Copyright 2019 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 24 #include <linux/delay.h> 25 #include <linux/firmware.h> 26 #include <linux/module.h> 27 #include <linux/pci.h> 28 29 #include "amdgpu.h" 30 #include "amdgpu_ucode.h" 31 #include "amdgpu_trace.h" 32 33 #include "gc/gc_10_3_0_offset.h" 34 #include "gc/gc_10_3_0_sh_mask.h" 35 #include "ivsrcid/sdma0/irqsrcs_sdma0_5_0.h" 36 #include "ivsrcid/sdma1/irqsrcs_sdma1_5_0.h" 37 #include "ivsrcid/sdma2/irqsrcs_sdma2_5_0.h" 38 #include "ivsrcid/sdma3/irqsrcs_sdma3_5_0.h" 39 40 #include "soc15_common.h" 41 #include "soc15.h" 42 #include "navi10_sdma_pkt_open.h" 43 #include "nbio_v2_3.h" 44 #include "sdma_common.h" 45 #include "sdma_v5_2.h" 46 47 MODULE_FIRMWARE("amdgpu/sienna_cichlid_sdma.bin"); 48 MODULE_FIRMWARE("amdgpu/navy_flounder_sdma.bin"); 49 MODULE_FIRMWARE("amdgpu/dimgrey_cavefish_sdma.bin"); 50 MODULE_FIRMWARE("amdgpu/beige_goby_sdma.bin"); 51 52 MODULE_FIRMWARE("amdgpu/vangogh_sdma.bin"); 53 MODULE_FIRMWARE("amdgpu/yellow_carp_sdma.bin"); 54 MODULE_FIRMWARE("amdgpu/sdma_5_2_6.bin"); 55 MODULE_FIRMWARE("amdgpu/sdma_5_2_7.bin"); 56 57 #define SDMA1_REG_OFFSET 0x600 58 #define SDMA3_REG_OFFSET 0x400 59 #define SDMA0_HYP_DEC_REG_START 0x5880 60 #define SDMA0_HYP_DEC_REG_END 0x5893 61 #define SDMA1_HYP_DEC_REG_OFFSET 0x20 62 63 static void sdma_v5_2_set_ring_funcs(struct amdgpu_device *adev); 64 static void sdma_v5_2_set_buffer_funcs(struct amdgpu_device *adev); 65 static void sdma_v5_2_set_vm_pte_funcs(struct amdgpu_device *adev); 66 static void sdma_v5_2_set_irq_funcs(struct amdgpu_device *adev); 67 68 static u32 sdma_v5_2_get_reg_offset(struct amdgpu_device *adev, u32 instance, u32 internal_offset) 69 { 70 u32 base; 71 72 if (internal_offset >= SDMA0_HYP_DEC_REG_START && 73 internal_offset <= SDMA0_HYP_DEC_REG_END) { 74 base = adev->reg_offset[GC_HWIP][0][1]; 75 if (instance != 0) 76 internal_offset += SDMA1_HYP_DEC_REG_OFFSET * instance; 77 } else { 78 if (instance < 2) { 79 base = adev->reg_offset[GC_HWIP][0][0]; 80 if (instance == 1) 81 internal_offset += SDMA1_REG_OFFSET; 82 } else { 83 base = adev->reg_offset[GC_HWIP][0][2]; 84 if (instance == 3) 85 internal_offset += SDMA3_REG_OFFSET; 86 } 87 } 88 89 return base + internal_offset; 90 } 91 92 static unsigned sdma_v5_2_ring_init_cond_exec(struct amdgpu_ring *ring, 93 uint64_t addr) 94 { 95 unsigned ret; 96 97 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_COND_EXE)); 98 amdgpu_ring_write(ring, lower_32_bits(addr)); 99 amdgpu_ring_write(ring, upper_32_bits(addr)); 100 amdgpu_ring_write(ring, 1); 101 /* this is the offset we need patch later */ 102 ret = ring->wptr & ring->buf_mask; 103 /* insert dummy here and patch it later */ 104 amdgpu_ring_write(ring, 0); 105 106 return ret; 107 } 108 109 /** 110 * sdma_v5_2_ring_get_rptr - get the current read pointer 111 * 112 * @ring: amdgpu ring pointer 113 * 114 * Get the current rptr from the hardware (NAVI10+). 115 */ 116 static uint64_t sdma_v5_2_ring_get_rptr(struct amdgpu_ring *ring) 117 { 118 u64 *rptr; 119 120 /* XXX check if swapping is necessary on BE */ 121 rptr = (u64 *)ring->rptr_cpu_addr; 122 123 DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr); 124 return ((*rptr) >> 2); 125 } 126 127 /** 128 * sdma_v5_2_ring_get_wptr - get the current write pointer 129 * 130 * @ring: amdgpu ring pointer 131 * 132 * Get the current wptr from the hardware (NAVI10+). 133 */ 134 static uint64_t sdma_v5_2_ring_get_wptr(struct amdgpu_ring *ring) 135 { 136 struct amdgpu_device *adev = ring->adev; 137 u64 wptr; 138 139 if (ring->use_doorbell) { 140 /* XXX check if swapping is necessary on BE */ 141 wptr = READ_ONCE(*((u64 *)ring->wptr_cpu_addr)); 142 DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr); 143 } else { 144 wptr = RREG32(sdma_v5_2_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI)); 145 wptr = wptr << 32; 146 wptr |= RREG32(sdma_v5_2_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR)); 147 DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n", ring->me, wptr); 148 } 149 150 return wptr >> 2; 151 } 152 153 /** 154 * sdma_v5_2_ring_set_wptr - commit the write pointer 155 * 156 * @ring: amdgpu ring pointer 157 * 158 * Write the wptr back to the hardware (NAVI10+). 159 */ 160 static void sdma_v5_2_ring_set_wptr(struct amdgpu_ring *ring) 161 { 162 struct amdgpu_device *adev = ring->adev; 163 164 DRM_DEBUG("Setting write pointer\n"); 165 if (ring->use_doorbell) { 166 DRM_DEBUG("Using doorbell -- " 167 "wptr_offs == 0x%08x " 168 "lower_32_bits(ring->wptr << 2) == 0x%08x " 169 "upper_32_bits(ring->wptr << 2) == 0x%08x\n", 170 ring->wptr_offs, 171 lower_32_bits(ring->wptr << 2), 172 upper_32_bits(ring->wptr << 2)); 173 /* XXX check if swapping is necessary on BE */ 174 atomic64_set((atomic64_t *)ring->wptr_cpu_addr, 175 ring->wptr << 2); 176 DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n", 177 ring->doorbell_index, ring->wptr << 2); 178 WDOORBELL64(ring->doorbell_index, ring->wptr << 2); 179 } else { 180 DRM_DEBUG("Not using doorbell -- " 181 "mmSDMA%i_GFX_RB_WPTR == 0x%08x " 182 "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n", 183 ring->me, 184 lower_32_bits(ring->wptr << 2), 185 ring->me, 186 upper_32_bits(ring->wptr << 2)); 187 WREG32(sdma_v5_2_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR), 188 lower_32_bits(ring->wptr << 2)); 189 WREG32(sdma_v5_2_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI), 190 upper_32_bits(ring->wptr << 2)); 191 } 192 } 193 194 static void sdma_v5_2_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count) 195 { 196 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); 197 int i; 198 199 for (i = 0; i < count; i++) 200 if (sdma && sdma->burst_nop && (i == 0)) 201 amdgpu_ring_write(ring, ring->funcs->nop | 202 SDMA_PKT_NOP_HEADER_COUNT(count - 1)); 203 else 204 amdgpu_ring_write(ring, ring->funcs->nop); 205 } 206 207 /** 208 * sdma_v5_2_ring_emit_ib - Schedule an IB on the DMA engine 209 * 210 * @ring: amdgpu ring pointer 211 * @job: job to retrieve vmid from 212 * @ib: IB object to schedule 213 * @flags: unused 214 * 215 * Schedule an IB in the DMA ring. 216 */ 217 static void sdma_v5_2_ring_emit_ib(struct amdgpu_ring *ring, 218 struct amdgpu_job *job, 219 struct amdgpu_ib *ib, 220 uint32_t flags) 221 { 222 unsigned vmid = AMDGPU_JOB_GET_VMID(job); 223 uint64_t csa_mc_addr = amdgpu_sdma_get_csa_mc_addr(ring, vmid); 224 225 /* An IB packet must end on a 8 DW boundary--the next dword 226 * must be on a 8-dword boundary. Our IB packet below is 6 227 * dwords long, thus add x number of NOPs, such that, in 228 * modular arithmetic, 229 * wptr + 6 + x = 8k, k >= 0, which in C is, 230 * (wptr + 6 + x) % 8 = 0. 231 * The expression below, is a solution of x. 232 */ 233 sdma_v5_2_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7); 234 235 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) | 236 SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf)); 237 /* base must be 32 byte aligned */ 238 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0); 239 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr)); 240 amdgpu_ring_write(ring, ib->length_dw); 241 amdgpu_ring_write(ring, lower_32_bits(csa_mc_addr)); 242 amdgpu_ring_write(ring, upper_32_bits(csa_mc_addr)); 243 } 244 245 /** 246 * sdma_v5_2_ring_emit_mem_sync - flush the IB by graphics cache rinse 247 * 248 * @ring: amdgpu ring pointer 249 * 250 * flush the IB by graphics cache rinse. 251 */ 252 static void sdma_v5_2_ring_emit_mem_sync(struct amdgpu_ring *ring) 253 { 254 uint32_t gcr_cntl = SDMA_GCR_GL2_INV | SDMA_GCR_GL2_WB | 255 SDMA_GCR_GLM_INV | SDMA_GCR_GL1_INV | 256 SDMA_GCR_GLV_INV | SDMA_GCR_GLK_INV | 257 SDMA_GCR_GLI_INV(1); 258 259 /* flush entire cache L0/L1/L2, this can be optimized by performance requirement */ 260 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_GCR_REQ)); 261 amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD1_BASE_VA_31_7(0)); 262 amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD2_GCR_CONTROL_15_0(gcr_cntl) | 263 SDMA_PKT_GCR_REQ_PAYLOAD2_BASE_VA_47_32(0)); 264 amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD3_LIMIT_VA_31_7(0) | 265 SDMA_PKT_GCR_REQ_PAYLOAD3_GCR_CONTROL_18_16(gcr_cntl >> 16)); 266 amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD4_LIMIT_VA_47_32(0) | 267 SDMA_PKT_GCR_REQ_PAYLOAD4_VMID(0)); 268 } 269 270 /** 271 * sdma_v5_2_ring_emit_hdp_flush - emit an hdp flush on the DMA ring 272 * 273 * @ring: amdgpu ring pointer 274 * 275 * Emit an hdp flush packet on the requested DMA ring. 276 */ 277 static void sdma_v5_2_ring_emit_hdp_flush(struct amdgpu_ring *ring) 278 { 279 struct amdgpu_device *adev = ring->adev; 280 u32 ref_and_mask = 0; 281 const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg; 282 283 if (ring->me > 1) { 284 amdgpu_asic_flush_hdp(adev, ring); 285 } else { 286 ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me; 287 288 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | 289 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) | 290 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */ 291 amdgpu_ring_write(ring, (adev->nbio.funcs->get_hdp_flush_done_offset(adev)) << 2); 292 amdgpu_ring_write(ring, (adev->nbio.funcs->get_hdp_flush_req_offset(adev)) << 2); 293 amdgpu_ring_write(ring, ref_and_mask); /* reference */ 294 amdgpu_ring_write(ring, ref_and_mask); /* mask */ 295 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 296 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */ 297 } 298 } 299 300 /** 301 * sdma_v5_2_ring_emit_fence - emit a fence on the DMA ring 302 * 303 * @ring: amdgpu ring pointer 304 * @addr: address 305 * @seq: sequence number 306 * @flags: fence related flags 307 * 308 * Add a DMA fence packet to the ring to write 309 * the fence seq number and DMA trap packet to generate 310 * an interrupt if needed. 311 */ 312 static void sdma_v5_2_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq, 313 unsigned flags) 314 { 315 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT; 316 /* write the fence */ 317 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE) | 318 SDMA_PKT_FENCE_HEADER_MTYPE(0x3)); /* Ucached(UC) */ 319 /* zero in first two bits */ 320 BUG_ON(addr & 0x3); 321 amdgpu_ring_write(ring, lower_32_bits(addr)); 322 amdgpu_ring_write(ring, upper_32_bits(addr)); 323 amdgpu_ring_write(ring, lower_32_bits(seq)); 324 325 /* optionally write high bits as well */ 326 if (write64bit) { 327 addr += 4; 328 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE) | 329 SDMA_PKT_FENCE_HEADER_MTYPE(0x3)); 330 /* zero in first two bits */ 331 BUG_ON(addr & 0x3); 332 amdgpu_ring_write(ring, lower_32_bits(addr)); 333 amdgpu_ring_write(ring, upper_32_bits(addr)); 334 amdgpu_ring_write(ring, upper_32_bits(seq)); 335 } 336 337 if ((flags & AMDGPU_FENCE_FLAG_INT)) { 338 uint32_t ctx = ring->is_mes_queue ? 339 (ring->hw_queue_id | AMDGPU_FENCE_MES_QUEUE_FLAG) : 0; 340 /* generate an interrupt */ 341 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP)); 342 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(ctx)); 343 } 344 } 345 346 347 /** 348 * sdma_v5_2_gfx_stop - stop the gfx async dma engines 349 * 350 * @adev: amdgpu_device pointer 351 * 352 * Stop the gfx async dma ring buffers. 353 */ 354 static void sdma_v5_2_gfx_stop(struct amdgpu_device *adev) 355 { 356 u32 rb_cntl, ib_cntl; 357 int i; 358 359 for (i = 0; i < adev->sdma.num_instances; i++) { 360 rb_cntl = RREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL)); 361 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0); 362 WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl); 363 ib_cntl = RREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL)); 364 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0); 365 WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl); 366 } 367 } 368 369 /** 370 * sdma_v5_2_rlc_stop - stop the compute async dma engines 371 * 372 * @adev: amdgpu_device pointer 373 * 374 * Stop the compute async dma queues. 375 */ 376 static void sdma_v5_2_rlc_stop(struct amdgpu_device *adev) 377 { 378 /* XXX todo */ 379 } 380 381 /** 382 * sdma_v5_2_ctx_switch_enable - stop the async dma engines context switch 383 * 384 * @adev: amdgpu_device pointer 385 * @enable: enable/disable the DMA MEs context switch. 386 * 387 * Halt or unhalt the async dma engines context switch. 388 */ 389 static void sdma_v5_2_ctx_switch_enable(struct amdgpu_device *adev, bool enable) 390 { 391 u32 f32_cntl, phase_quantum = 0; 392 int i; 393 394 if (amdgpu_sdma_phase_quantum) { 395 unsigned value = amdgpu_sdma_phase_quantum; 396 unsigned unit = 0; 397 398 while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >> 399 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) { 400 value = (value + 1) >> 1; 401 unit++; 402 } 403 if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >> 404 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) { 405 value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >> 406 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT); 407 unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >> 408 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT); 409 WARN_ONCE(1, 410 "clamping sdma_phase_quantum to %uK clock cycles\n", 411 value << unit); 412 } 413 phase_quantum = 414 value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT | 415 unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT; 416 } 417 418 for (i = 0; i < adev->sdma.num_instances; i++) { 419 if (enable && amdgpu_sdma_phase_quantum) { 420 WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_PHASE0_QUANTUM), 421 phase_quantum); 422 WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_PHASE1_QUANTUM), 423 phase_quantum); 424 WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_PHASE2_QUANTUM), 425 phase_quantum); 426 } 427 428 if (!amdgpu_sriov_vf(adev)) { 429 f32_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CNTL)); 430 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL, 431 AUTO_CTXSW_ENABLE, enable ? 1 : 0); 432 WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CNTL), f32_cntl); 433 } 434 } 435 436 } 437 438 /** 439 * sdma_v5_2_enable - stop the async dma engines 440 * 441 * @adev: amdgpu_device pointer 442 * @enable: enable/disable the DMA MEs. 443 * 444 * Halt or unhalt the async dma engines. 445 */ 446 static void sdma_v5_2_enable(struct amdgpu_device *adev, bool enable) 447 { 448 u32 f32_cntl; 449 int i; 450 451 if (!enable) { 452 sdma_v5_2_gfx_stop(adev); 453 sdma_v5_2_rlc_stop(adev); 454 } 455 456 if (!amdgpu_sriov_vf(adev)) { 457 for (i = 0; i < adev->sdma.num_instances; i++) { 458 f32_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_F32_CNTL)); 459 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1); 460 WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), f32_cntl); 461 } 462 } 463 } 464 465 /** 466 * sdma_v5_2_gfx_resume - setup and start the async dma engines 467 * 468 * @adev: amdgpu_device pointer 469 * 470 * Set up the gfx DMA ring buffers and enable them. 471 * Returns 0 for success, error for failure. 472 */ 473 static int sdma_v5_2_gfx_resume(struct amdgpu_device *adev) 474 { 475 struct amdgpu_ring *ring; 476 u32 rb_cntl, ib_cntl; 477 u32 rb_bufsz; 478 u32 doorbell; 479 u32 doorbell_offset; 480 u32 temp; 481 u32 wptr_poll_cntl; 482 u64 wptr_gpu_addr; 483 int i, r; 484 485 for (i = 0; i < adev->sdma.num_instances; i++) { 486 ring = &adev->sdma.instance[i].ring; 487 488 if (!amdgpu_sriov_vf(adev)) 489 WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL), 0); 490 491 /* Set ring buffer size in dwords */ 492 rb_bufsz = order_base_2(ring->ring_size / 4); 493 rb_cntl = RREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL)); 494 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz); 495 #ifdef __BIG_ENDIAN 496 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1); 497 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, 498 RPTR_WRITEBACK_SWAP_ENABLE, 1); 499 #endif 500 WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl); 501 502 /* Initialize the ring buffer's read and write pointers */ 503 WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR), 0); 504 WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_HI), 0); 505 WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), 0); 506 WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), 0); 507 508 /* setup the wptr shadow polling */ 509 wptr_gpu_addr = ring->wptr_gpu_addr; 510 WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO), 511 lower_32_bits(wptr_gpu_addr)); 512 WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI), 513 upper_32_bits(wptr_gpu_addr)); 514 wptr_poll_cntl = RREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, 515 mmSDMA0_GFX_RB_WPTR_POLL_CNTL)); 516 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, 517 SDMA0_GFX_RB_WPTR_POLL_CNTL, 518 F32_POLL_ENABLE, 1); 519 WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL), 520 wptr_poll_cntl); 521 522 /* set the wb address whether it's enabled or not */ 523 WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_HI), 524 upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF); 525 WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_LO), 526 lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC); 527 528 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1); 529 530 WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE), ring->gpu_addr >> 8); 531 WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE_HI), ring->gpu_addr >> 40); 532 533 ring->wptr = 0; 534 535 /* before programing wptr to a less value, need set minor_ptr_update first */ 536 WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 1); 537 538 if (!amdgpu_sriov_vf(adev)) { /* only bare-metal use register write for wptr */ 539 WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr << 2)); 540 WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr << 2)); 541 } 542 543 doorbell = RREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL)); 544 doorbell_offset = RREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET)); 545 546 if (ring->use_doorbell) { 547 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1); 548 doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_GFX_DOORBELL_OFFSET, 549 OFFSET, ring->doorbell_index); 550 } else { 551 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0); 552 } 553 WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL), doorbell); 554 WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET), doorbell_offset); 555 556 adev->nbio.funcs->sdma_doorbell_range(adev, i, ring->use_doorbell, 557 ring->doorbell_index, 558 adev->doorbell_index.sdma_doorbell_range); 559 560 if (amdgpu_sriov_vf(adev)) 561 sdma_v5_2_ring_set_wptr(ring); 562 563 /* set minor_ptr_update to 0 after wptr programed */ 564 565 WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 0); 566 567 /* SRIOV VF has no control of any of registers below */ 568 if (!amdgpu_sriov_vf(adev)) { 569 /* set utc l1 enable flag always to 1 */ 570 temp = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CNTL)); 571 temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1); 572 573 /* enable MCBP */ 574 temp = REG_SET_FIELD(temp, SDMA0_CNTL, MIDCMD_PREEMPT_ENABLE, 1); 575 WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CNTL), temp); 576 577 /* Set up RESP_MODE to non-copy addresses */ 578 temp = RREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UTCL1_CNTL)); 579 temp = REG_SET_FIELD(temp, SDMA0_UTCL1_CNTL, RESP_MODE, 3); 580 temp = REG_SET_FIELD(temp, SDMA0_UTCL1_CNTL, REDO_DELAY, 9); 581 WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UTCL1_CNTL), temp); 582 583 /* program default cache read and write policy */ 584 temp = RREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UTCL1_PAGE)); 585 /* clean read policy and write policy bits */ 586 temp &= 0xFF0FFF; 587 temp |= ((CACHE_READ_POLICY_L2__DEFAULT << 12) | 588 (CACHE_WRITE_POLICY_L2__DEFAULT << 14) | 589 SDMA0_UTCL1_PAGE__LLC_NOALLOC_MASK); 590 WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UTCL1_PAGE), temp); 591 592 /* unhalt engine */ 593 temp = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_F32_CNTL)); 594 temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0); 595 WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), temp); 596 } 597 598 /* enable DMA RB */ 599 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1); 600 WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl); 601 602 ib_cntl = RREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL)); 603 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1); 604 #ifdef __BIG_ENDIAN 605 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1); 606 #endif 607 /* enable DMA IBs */ 608 WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl); 609 610 if (amdgpu_sriov_vf(adev)) { /* bare-metal sequence doesn't need below to lines */ 611 sdma_v5_2_ctx_switch_enable(adev, true); 612 sdma_v5_2_enable(adev, true); 613 } 614 615 r = amdgpu_ring_test_helper(ring); 616 if (r) 617 return r; 618 } 619 620 return 0; 621 } 622 623 /** 624 * sdma_v5_2_rlc_resume - setup and start the async dma engines 625 * 626 * @adev: amdgpu_device pointer 627 * 628 * Set up the compute DMA queues and enable them. 629 * Returns 0 for success, error for failure. 630 */ 631 static int sdma_v5_2_rlc_resume(struct amdgpu_device *adev) 632 { 633 return 0; 634 } 635 636 /** 637 * sdma_v5_2_load_microcode - load the sDMA ME ucode 638 * 639 * @adev: amdgpu_device pointer 640 * 641 * Loads the sDMA0/1/2/3 ucode. 642 * Returns 0 for success, -EINVAL if the ucode is not available. 643 */ 644 static int sdma_v5_2_load_microcode(struct amdgpu_device *adev) 645 { 646 const struct sdma_firmware_header_v1_0 *hdr; 647 const __le32 *fw_data; 648 u32 fw_size; 649 int i, j; 650 651 /* halt the MEs */ 652 sdma_v5_2_enable(adev, false); 653 654 for (i = 0; i < adev->sdma.num_instances; i++) { 655 if (!adev->sdma.instance[i].fw) 656 return -EINVAL; 657 658 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data; 659 amdgpu_ucode_print_sdma_hdr(&hdr->header); 660 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4; 661 662 fw_data = (const __le32 *) 663 (adev->sdma.instance[i].fw->data + 664 le32_to_cpu(hdr->header.ucode_array_offset_bytes)); 665 666 WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), 0); 667 668 for (j = 0; j < fw_size; j++) { 669 if (amdgpu_emu_mode == 1 && j % 500 == 0) 670 msleep(1); 671 WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UCODE_DATA), le32_to_cpup(fw_data++)); 672 } 673 674 WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), adev->sdma.instance[i].fw_version); 675 } 676 677 return 0; 678 } 679 680 static int sdma_v5_2_soft_reset(void *handle) 681 { 682 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 683 u32 grbm_soft_reset; 684 u32 tmp; 685 int i; 686 687 for (i = 0; i < adev->sdma.num_instances; i++) { 688 grbm_soft_reset = REG_SET_FIELD(0, 689 GRBM_SOFT_RESET, SOFT_RESET_SDMA0, 690 1); 691 grbm_soft_reset <<= i; 692 693 tmp = RREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET); 694 tmp |= grbm_soft_reset; 695 DRM_DEBUG("GRBM_SOFT_RESET=0x%08X\n", tmp); 696 WREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET, tmp); 697 tmp = RREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET); 698 699 udelay(50); 700 701 tmp &= ~grbm_soft_reset; 702 WREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET, tmp); 703 tmp = RREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET); 704 705 udelay(50); 706 } 707 708 return 0; 709 } 710 711 /** 712 * sdma_v5_2_start - setup and start the async dma engines 713 * 714 * @adev: amdgpu_device pointer 715 * 716 * Set up the DMA engines and enable them. 717 * Returns 0 for success, error for failure. 718 */ 719 static int sdma_v5_2_start(struct amdgpu_device *adev) 720 { 721 int r = 0; 722 723 if (amdgpu_sriov_vf(adev)) { 724 sdma_v5_2_ctx_switch_enable(adev, false); 725 sdma_v5_2_enable(adev, false); 726 727 /* set RB registers */ 728 r = sdma_v5_2_gfx_resume(adev); 729 return r; 730 } 731 732 if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) { 733 r = sdma_v5_2_load_microcode(adev); 734 if (r) 735 return r; 736 737 /* The value of mmSDMA_F32_CNTL is invalid the moment after loading fw */ 738 if (amdgpu_emu_mode == 1) 739 msleep(1000); 740 } 741 742 sdma_v5_2_soft_reset(adev); 743 /* unhalt the MEs */ 744 sdma_v5_2_enable(adev, true); 745 /* enable sdma ring preemption */ 746 sdma_v5_2_ctx_switch_enable(adev, true); 747 748 /* start the gfx rings and rlc compute queues */ 749 r = sdma_v5_2_gfx_resume(adev); 750 if (r) 751 return r; 752 r = sdma_v5_2_rlc_resume(adev); 753 754 return r; 755 } 756 757 static int sdma_v5_2_mqd_init(struct amdgpu_device *adev, void *mqd, 758 struct amdgpu_mqd_prop *prop) 759 { 760 struct v10_sdma_mqd *m = mqd; 761 uint64_t wb_gpu_addr; 762 763 m->sdmax_rlcx_rb_cntl = 764 order_base_2(prop->queue_size / 4) << SDMA0_RLC0_RB_CNTL__RB_SIZE__SHIFT | 765 1 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_ENABLE__SHIFT | 766 6 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_TIMER__SHIFT | 767 1 << SDMA0_RLC0_RB_CNTL__RB_PRIV__SHIFT; 768 769 m->sdmax_rlcx_rb_base = lower_32_bits(prop->hqd_base_gpu_addr >> 8); 770 m->sdmax_rlcx_rb_base_hi = upper_32_bits(prop->hqd_base_gpu_addr >> 8); 771 772 m->sdmax_rlcx_rb_wptr_poll_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, 0, 773 mmSDMA0_GFX_RB_WPTR_POLL_CNTL)); 774 775 wb_gpu_addr = prop->wptr_gpu_addr; 776 m->sdmax_rlcx_rb_wptr_poll_addr_lo = lower_32_bits(wb_gpu_addr); 777 m->sdmax_rlcx_rb_wptr_poll_addr_hi = upper_32_bits(wb_gpu_addr); 778 779 wb_gpu_addr = prop->rptr_gpu_addr; 780 m->sdmax_rlcx_rb_rptr_addr_lo = lower_32_bits(wb_gpu_addr); 781 m->sdmax_rlcx_rb_rptr_addr_hi = upper_32_bits(wb_gpu_addr); 782 783 m->sdmax_rlcx_ib_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, 0, 784 mmSDMA0_GFX_IB_CNTL)); 785 786 m->sdmax_rlcx_doorbell_offset = 787 prop->doorbell_index << SDMA0_RLC0_DOORBELL_OFFSET__OFFSET__SHIFT; 788 789 m->sdmax_rlcx_doorbell = REG_SET_FIELD(0, SDMA0_RLC0_DOORBELL, ENABLE, 1); 790 791 return 0; 792 } 793 794 static void sdma_v5_2_set_mqd_funcs(struct amdgpu_device *adev) 795 { 796 adev->mqds[AMDGPU_HW_IP_DMA].mqd_size = sizeof(struct v10_sdma_mqd); 797 adev->mqds[AMDGPU_HW_IP_DMA].init_mqd = sdma_v5_2_mqd_init; 798 } 799 800 /** 801 * sdma_v5_2_ring_test_ring - simple async dma engine test 802 * 803 * @ring: amdgpu_ring structure holding ring information 804 * 805 * Test the DMA engine by writing using it to write an 806 * value to memory. 807 * Returns 0 for success, error for failure. 808 */ 809 static int sdma_v5_2_ring_test_ring(struct amdgpu_ring *ring) 810 { 811 struct amdgpu_device *adev = ring->adev; 812 unsigned i; 813 unsigned index; 814 int r; 815 u32 tmp; 816 u64 gpu_addr; 817 volatile uint32_t *cpu_ptr = NULL; 818 819 tmp = 0xCAFEDEAD; 820 821 if (ring->is_mes_queue) { 822 uint32_t offset = 0; 823 offset = amdgpu_mes_ctx_get_offs(ring, 824 AMDGPU_MES_CTX_PADDING_OFFS); 825 gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset); 826 cpu_ptr = amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset); 827 *cpu_ptr = tmp; 828 } else { 829 r = amdgpu_device_wb_get(adev, &index); 830 if (r) { 831 dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r); 832 return r; 833 } 834 835 gpu_addr = adev->wb.gpu_addr + (index * 4); 836 adev->wb.wb[index] = cpu_to_le32(tmp); 837 } 838 839 r = amdgpu_ring_alloc(ring, 20); 840 if (r) { 841 DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r); 842 amdgpu_device_wb_free(adev, index); 843 return r; 844 } 845 846 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 847 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR)); 848 amdgpu_ring_write(ring, lower_32_bits(gpu_addr)); 849 amdgpu_ring_write(ring, upper_32_bits(gpu_addr)); 850 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0)); 851 amdgpu_ring_write(ring, 0xDEADBEEF); 852 amdgpu_ring_commit(ring); 853 854 for (i = 0; i < adev->usec_timeout; i++) { 855 if (ring->is_mes_queue) 856 tmp = le32_to_cpu(*cpu_ptr); 857 else 858 tmp = le32_to_cpu(adev->wb.wb[index]); 859 if (tmp == 0xDEADBEEF) 860 break; 861 if (amdgpu_emu_mode == 1) 862 msleep(1); 863 else 864 udelay(1); 865 } 866 867 if (i >= adev->usec_timeout) 868 r = -ETIMEDOUT; 869 870 if (!ring->is_mes_queue) 871 amdgpu_device_wb_free(adev, index); 872 873 return r; 874 } 875 876 /** 877 * sdma_v5_2_ring_test_ib - test an IB on the DMA engine 878 * 879 * @ring: amdgpu_ring structure holding ring information 880 * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT 881 * 882 * Test a simple IB in the DMA ring. 883 * Returns 0 on success, error on failure. 884 */ 885 static int sdma_v5_2_ring_test_ib(struct amdgpu_ring *ring, long timeout) 886 { 887 struct amdgpu_device *adev = ring->adev; 888 struct amdgpu_ib ib; 889 struct dma_fence *f = NULL; 890 unsigned index; 891 long r; 892 u32 tmp = 0; 893 u64 gpu_addr; 894 volatile uint32_t *cpu_ptr = NULL; 895 896 tmp = 0xCAFEDEAD; 897 memset(&ib, 0, sizeof(ib)); 898 899 if (ring->is_mes_queue) { 900 uint32_t offset = 0; 901 offset = amdgpu_mes_ctx_get_offs(ring, AMDGPU_MES_CTX_IB_OFFS); 902 ib.gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset); 903 ib.ptr = (void *)amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset); 904 905 offset = amdgpu_mes_ctx_get_offs(ring, 906 AMDGPU_MES_CTX_PADDING_OFFS); 907 gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset); 908 cpu_ptr = amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset); 909 *cpu_ptr = tmp; 910 } else { 911 r = amdgpu_device_wb_get(adev, &index); 912 if (r) { 913 dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r); 914 return r; 915 } 916 917 gpu_addr = adev->wb.gpu_addr + (index * 4); 918 adev->wb.wb[index] = cpu_to_le32(tmp); 919 920 r = amdgpu_ib_get(adev, NULL, 256, AMDGPU_IB_POOL_DIRECT, &ib); 921 if (r) { 922 DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r); 923 goto err0; 924 } 925 } 926 927 ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 928 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); 929 ib.ptr[1] = lower_32_bits(gpu_addr); 930 ib.ptr[2] = upper_32_bits(gpu_addr); 931 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0); 932 ib.ptr[4] = 0xDEADBEEF; 933 ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 934 ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 935 ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 936 ib.length_dw = 8; 937 938 r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f); 939 if (r) 940 goto err1; 941 942 r = dma_fence_wait_timeout(f, false, timeout); 943 if (r == 0) { 944 DRM_ERROR("amdgpu: IB test timed out\n"); 945 r = -ETIMEDOUT; 946 goto err1; 947 } else if (r < 0) { 948 DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r); 949 goto err1; 950 } 951 952 if (ring->is_mes_queue) 953 tmp = le32_to_cpu(*cpu_ptr); 954 else 955 tmp = le32_to_cpu(adev->wb.wb[index]); 956 957 if (tmp == 0xDEADBEEF) 958 r = 0; 959 else 960 r = -EINVAL; 961 962 err1: 963 amdgpu_ib_free(adev, &ib, NULL); 964 dma_fence_put(f); 965 err0: 966 if (!ring->is_mes_queue) 967 amdgpu_device_wb_free(adev, index); 968 return r; 969 } 970 971 972 /** 973 * sdma_v5_2_vm_copy_pte - update PTEs by copying them from the GART 974 * 975 * @ib: indirect buffer to fill with commands 976 * @pe: addr of the page entry 977 * @src: src addr to copy from 978 * @count: number of page entries to update 979 * 980 * Update PTEs by copying them from the GART using sDMA. 981 */ 982 static void sdma_v5_2_vm_copy_pte(struct amdgpu_ib *ib, 983 uint64_t pe, uint64_t src, 984 unsigned count) 985 { 986 unsigned bytes = count * 8; 987 988 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | 989 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); 990 ib->ptr[ib->length_dw++] = bytes - 1; 991 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 992 ib->ptr[ib->length_dw++] = lower_32_bits(src); 993 ib->ptr[ib->length_dw++] = upper_32_bits(src); 994 ib->ptr[ib->length_dw++] = lower_32_bits(pe); 995 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 996 997 } 998 999 /** 1000 * sdma_v5_2_vm_write_pte - update PTEs by writing them manually 1001 * 1002 * @ib: indirect buffer to fill with commands 1003 * @pe: addr of the page entry 1004 * @value: dst addr to write into pe 1005 * @count: number of page entries to update 1006 * @incr: increase next addr by incr bytes 1007 * 1008 * Update PTEs by writing them manually using sDMA. 1009 */ 1010 static void sdma_v5_2_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe, 1011 uint64_t value, unsigned count, 1012 uint32_t incr) 1013 { 1014 unsigned ndw = count * 2; 1015 1016 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 1017 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); 1018 ib->ptr[ib->length_dw++] = lower_32_bits(pe); 1019 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1020 ib->ptr[ib->length_dw++] = ndw - 1; 1021 for (; ndw > 0; ndw -= 2) { 1022 ib->ptr[ib->length_dw++] = lower_32_bits(value); 1023 ib->ptr[ib->length_dw++] = upper_32_bits(value); 1024 value += incr; 1025 } 1026 } 1027 1028 /** 1029 * sdma_v5_2_vm_set_pte_pde - update the page tables using sDMA 1030 * 1031 * @ib: indirect buffer to fill with commands 1032 * @pe: addr of the page entry 1033 * @addr: dst addr to write into pe 1034 * @count: number of page entries to update 1035 * @incr: increase next addr by incr bytes 1036 * @flags: access flags 1037 * 1038 * Update the page tables using sDMA. 1039 */ 1040 static void sdma_v5_2_vm_set_pte_pde(struct amdgpu_ib *ib, 1041 uint64_t pe, 1042 uint64_t addr, unsigned count, 1043 uint32_t incr, uint64_t flags) 1044 { 1045 /* for physically contiguous pages (vram) */ 1046 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE); 1047 ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */ 1048 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1049 ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */ 1050 ib->ptr[ib->length_dw++] = upper_32_bits(flags); 1051 ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */ 1052 ib->ptr[ib->length_dw++] = upper_32_bits(addr); 1053 ib->ptr[ib->length_dw++] = incr; /* increment size */ 1054 ib->ptr[ib->length_dw++] = 0; 1055 ib->ptr[ib->length_dw++] = count - 1; /* number of entries */ 1056 } 1057 1058 /** 1059 * sdma_v5_2_ring_pad_ib - pad the IB 1060 * 1061 * @ib: indirect buffer to fill with padding 1062 * @ring: amdgpu_ring structure holding ring information 1063 * 1064 * Pad the IB with NOPs to a boundary multiple of 8. 1065 */ 1066 static void sdma_v5_2_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib) 1067 { 1068 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); 1069 u32 pad_count; 1070 int i; 1071 1072 pad_count = (-ib->length_dw) & 0x7; 1073 for (i = 0; i < pad_count; i++) 1074 if (sdma && sdma->burst_nop && (i == 0)) 1075 ib->ptr[ib->length_dw++] = 1076 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) | 1077 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1); 1078 else 1079 ib->ptr[ib->length_dw++] = 1080 SDMA_PKT_HEADER_OP(SDMA_OP_NOP); 1081 } 1082 1083 1084 /** 1085 * sdma_v5_2_ring_emit_pipeline_sync - sync the pipeline 1086 * 1087 * @ring: amdgpu_ring pointer 1088 * 1089 * Make sure all previous operations are completed (CIK). 1090 */ 1091 static void sdma_v5_2_ring_emit_pipeline_sync(struct amdgpu_ring *ring) 1092 { 1093 uint32_t seq = ring->fence_drv.sync_seq; 1094 uint64_t addr = ring->fence_drv.gpu_addr; 1095 1096 /* wait for idle */ 1097 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | 1098 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) | 1099 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */ 1100 SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1)); 1101 amdgpu_ring_write(ring, addr & 0xfffffffc); 1102 amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff); 1103 amdgpu_ring_write(ring, seq); /* reference */ 1104 amdgpu_ring_write(ring, 0xffffffff); /* mask */ 1105 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 1106 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */ 1107 } 1108 1109 1110 /** 1111 * sdma_v5_2_ring_emit_vm_flush - vm flush using sDMA 1112 * 1113 * @ring: amdgpu_ring pointer 1114 * @vmid: vmid number to use 1115 * @pd_addr: address 1116 * 1117 * Update the page table base and flush the VM TLB 1118 * using sDMA. 1119 */ 1120 static void sdma_v5_2_ring_emit_vm_flush(struct amdgpu_ring *ring, 1121 unsigned vmid, uint64_t pd_addr) 1122 { 1123 amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr); 1124 } 1125 1126 static void sdma_v5_2_ring_emit_wreg(struct amdgpu_ring *ring, 1127 uint32_t reg, uint32_t val) 1128 { 1129 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) | 1130 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf)); 1131 amdgpu_ring_write(ring, reg); 1132 amdgpu_ring_write(ring, val); 1133 } 1134 1135 static void sdma_v5_2_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg, 1136 uint32_t val, uint32_t mask) 1137 { 1138 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | 1139 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) | 1140 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* equal */ 1141 amdgpu_ring_write(ring, reg << 2); 1142 amdgpu_ring_write(ring, 0); 1143 amdgpu_ring_write(ring, val); /* reference */ 1144 amdgpu_ring_write(ring, mask); /* mask */ 1145 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 1146 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); 1147 } 1148 1149 static void sdma_v5_2_ring_emit_reg_write_reg_wait(struct amdgpu_ring *ring, 1150 uint32_t reg0, uint32_t reg1, 1151 uint32_t ref, uint32_t mask) 1152 { 1153 amdgpu_ring_emit_wreg(ring, reg0, ref); 1154 /* wait for a cycle to reset vm_inv_eng*_ack */ 1155 amdgpu_ring_emit_reg_wait(ring, reg0, 0, 0); 1156 amdgpu_ring_emit_reg_wait(ring, reg1, mask, mask); 1157 } 1158 1159 static int sdma_v5_2_early_init(void *handle) 1160 { 1161 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1162 int r; 1163 1164 r = amdgpu_sdma_init_microcode(adev, 0, true); 1165 if (r) 1166 return r; 1167 1168 sdma_v5_2_set_ring_funcs(adev); 1169 sdma_v5_2_set_buffer_funcs(adev); 1170 sdma_v5_2_set_vm_pte_funcs(adev); 1171 sdma_v5_2_set_irq_funcs(adev); 1172 sdma_v5_2_set_mqd_funcs(adev); 1173 1174 return 0; 1175 } 1176 1177 static unsigned sdma_v5_2_seq_to_irq_id(int seq_num) 1178 { 1179 switch (seq_num) { 1180 case 0: 1181 return SOC15_IH_CLIENTID_SDMA0; 1182 case 1: 1183 return SOC15_IH_CLIENTID_SDMA1; 1184 case 2: 1185 return SOC15_IH_CLIENTID_SDMA2; 1186 case 3: 1187 return SOC15_IH_CLIENTID_SDMA3_Sienna_Cichlid; 1188 default: 1189 break; 1190 } 1191 return -EINVAL; 1192 } 1193 1194 static unsigned sdma_v5_2_seq_to_trap_id(int seq_num) 1195 { 1196 switch (seq_num) { 1197 case 0: 1198 return SDMA0_5_0__SRCID__SDMA_TRAP; 1199 case 1: 1200 return SDMA1_5_0__SRCID__SDMA_TRAP; 1201 case 2: 1202 return SDMA2_5_0__SRCID__SDMA_TRAP; 1203 case 3: 1204 return SDMA3_5_0__SRCID__SDMA_TRAP; 1205 default: 1206 break; 1207 } 1208 return -EINVAL; 1209 } 1210 1211 static int sdma_v5_2_sw_init(void *handle) 1212 { 1213 struct amdgpu_ring *ring; 1214 int r, i; 1215 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1216 1217 /* SDMA trap event */ 1218 for (i = 0; i < adev->sdma.num_instances; i++) { 1219 r = amdgpu_irq_add_id(adev, sdma_v5_2_seq_to_irq_id(i), 1220 sdma_v5_2_seq_to_trap_id(i), 1221 &adev->sdma.trap_irq); 1222 if (r) 1223 return r; 1224 } 1225 1226 for (i = 0; i < adev->sdma.num_instances; i++) { 1227 ring = &adev->sdma.instance[i].ring; 1228 ring->ring_obj = NULL; 1229 ring->use_doorbell = true; 1230 ring->me = i; 1231 1232 DRM_INFO("use_doorbell being set to: [%s]\n", 1233 ring->use_doorbell?"true":"false"); 1234 1235 ring->doorbell_index = 1236 (adev->doorbell_index.sdma_engine[i] << 1); //get DWORD offset 1237 1238 ring->vm_hub = AMDGPU_GFXHUB(0); 1239 sprintf(ring->name, "sdma%d", i); 1240 r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq, 1241 AMDGPU_SDMA_IRQ_INSTANCE0 + i, 1242 AMDGPU_RING_PRIO_DEFAULT, NULL); 1243 if (r) 1244 return r; 1245 } 1246 1247 return r; 1248 } 1249 1250 static int sdma_v5_2_sw_fini(void *handle) 1251 { 1252 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1253 int i; 1254 1255 for (i = 0; i < adev->sdma.num_instances; i++) 1256 amdgpu_ring_fini(&adev->sdma.instance[i].ring); 1257 1258 amdgpu_sdma_destroy_inst_ctx(adev, true); 1259 1260 return 0; 1261 } 1262 1263 static int sdma_v5_2_hw_init(void *handle) 1264 { 1265 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1266 1267 return sdma_v5_2_start(adev); 1268 } 1269 1270 static int sdma_v5_2_hw_fini(void *handle) 1271 { 1272 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1273 1274 if (amdgpu_sriov_vf(adev)) 1275 return 0; 1276 1277 sdma_v5_2_ctx_switch_enable(adev, false); 1278 sdma_v5_2_enable(adev, false); 1279 1280 return 0; 1281 } 1282 1283 static int sdma_v5_2_suspend(void *handle) 1284 { 1285 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1286 1287 return sdma_v5_2_hw_fini(adev); 1288 } 1289 1290 static int sdma_v5_2_resume(void *handle) 1291 { 1292 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1293 1294 return sdma_v5_2_hw_init(adev); 1295 } 1296 1297 static bool sdma_v5_2_is_idle(void *handle) 1298 { 1299 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1300 u32 i; 1301 1302 for (i = 0; i < adev->sdma.num_instances; i++) { 1303 u32 tmp = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_STATUS_REG)); 1304 1305 if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK)) 1306 return false; 1307 } 1308 1309 return true; 1310 } 1311 1312 static int sdma_v5_2_wait_for_idle(void *handle) 1313 { 1314 unsigned i; 1315 u32 sdma0, sdma1, sdma2, sdma3; 1316 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1317 1318 for (i = 0; i < adev->usec_timeout; i++) { 1319 sdma0 = RREG32(sdma_v5_2_get_reg_offset(adev, 0, mmSDMA0_STATUS_REG)); 1320 sdma1 = RREG32(sdma_v5_2_get_reg_offset(adev, 1, mmSDMA0_STATUS_REG)); 1321 sdma2 = RREG32(sdma_v5_2_get_reg_offset(adev, 2, mmSDMA0_STATUS_REG)); 1322 sdma3 = RREG32(sdma_v5_2_get_reg_offset(adev, 3, mmSDMA0_STATUS_REG)); 1323 1324 if (sdma0 & sdma1 & sdma2 & sdma3 & SDMA0_STATUS_REG__IDLE_MASK) 1325 return 0; 1326 udelay(1); 1327 } 1328 return -ETIMEDOUT; 1329 } 1330 1331 static int sdma_v5_2_ring_preempt_ib(struct amdgpu_ring *ring) 1332 { 1333 int i, r = 0; 1334 struct amdgpu_device *adev = ring->adev; 1335 u32 index = 0; 1336 u64 sdma_gfx_preempt; 1337 1338 amdgpu_sdma_get_index_from_ring(ring, &index); 1339 sdma_gfx_preempt = 1340 sdma_v5_2_get_reg_offset(adev, index, mmSDMA0_GFX_PREEMPT); 1341 1342 /* assert preemption condition */ 1343 amdgpu_ring_set_preempt_cond_exec(ring, false); 1344 1345 /* emit the trailing fence */ 1346 ring->trail_seq += 1; 1347 amdgpu_ring_alloc(ring, 10); 1348 sdma_v5_2_ring_emit_fence(ring, ring->trail_fence_gpu_addr, 1349 ring->trail_seq, 0); 1350 amdgpu_ring_commit(ring); 1351 1352 /* assert IB preemption */ 1353 WREG32(sdma_gfx_preempt, 1); 1354 1355 /* poll the trailing fence */ 1356 for (i = 0; i < adev->usec_timeout; i++) { 1357 if (ring->trail_seq == 1358 le32_to_cpu(*(ring->trail_fence_cpu_addr))) 1359 break; 1360 udelay(1); 1361 } 1362 1363 if (i >= adev->usec_timeout) { 1364 r = -EINVAL; 1365 DRM_ERROR("ring %d failed to be preempted\n", ring->idx); 1366 } 1367 1368 /* deassert IB preemption */ 1369 WREG32(sdma_gfx_preempt, 0); 1370 1371 /* deassert the preemption condition */ 1372 amdgpu_ring_set_preempt_cond_exec(ring, true); 1373 return r; 1374 } 1375 1376 static int sdma_v5_2_set_trap_irq_state(struct amdgpu_device *adev, 1377 struct amdgpu_irq_src *source, 1378 unsigned type, 1379 enum amdgpu_interrupt_state state) 1380 { 1381 u32 sdma_cntl; 1382 u32 reg_offset = sdma_v5_2_get_reg_offset(adev, type, mmSDMA0_CNTL); 1383 1384 if (!amdgpu_sriov_vf(adev)) { 1385 sdma_cntl = RREG32(reg_offset); 1386 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1387 state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0); 1388 WREG32(reg_offset, sdma_cntl); 1389 } 1390 1391 return 0; 1392 } 1393 1394 static int sdma_v5_2_process_trap_irq(struct amdgpu_device *adev, 1395 struct amdgpu_irq_src *source, 1396 struct amdgpu_iv_entry *entry) 1397 { 1398 uint32_t mes_queue_id = entry->src_data[0]; 1399 1400 DRM_DEBUG("IH: SDMA trap\n"); 1401 1402 if (adev->enable_mes && (mes_queue_id & AMDGPU_FENCE_MES_QUEUE_FLAG)) { 1403 struct amdgpu_mes_queue *queue; 1404 1405 mes_queue_id &= AMDGPU_FENCE_MES_QUEUE_ID_MASK; 1406 1407 spin_lock(&adev->mes.queue_id_lock); 1408 queue = idr_find(&adev->mes.queue_id_idr, mes_queue_id); 1409 if (queue) { 1410 DRM_DEBUG("process smda queue id = %d\n", mes_queue_id); 1411 amdgpu_fence_process(queue->ring); 1412 } 1413 spin_unlock(&adev->mes.queue_id_lock); 1414 return 0; 1415 } 1416 1417 switch (entry->client_id) { 1418 case SOC15_IH_CLIENTID_SDMA0: 1419 switch (entry->ring_id) { 1420 case 0: 1421 amdgpu_fence_process(&adev->sdma.instance[0].ring); 1422 break; 1423 case 1: 1424 /* XXX compute */ 1425 break; 1426 case 2: 1427 /* XXX compute */ 1428 break; 1429 case 3: 1430 /* XXX page queue*/ 1431 break; 1432 } 1433 break; 1434 case SOC15_IH_CLIENTID_SDMA1: 1435 switch (entry->ring_id) { 1436 case 0: 1437 amdgpu_fence_process(&adev->sdma.instance[1].ring); 1438 break; 1439 case 1: 1440 /* XXX compute */ 1441 break; 1442 case 2: 1443 /* XXX compute */ 1444 break; 1445 case 3: 1446 /* XXX page queue*/ 1447 break; 1448 } 1449 break; 1450 case SOC15_IH_CLIENTID_SDMA2: 1451 switch (entry->ring_id) { 1452 case 0: 1453 amdgpu_fence_process(&adev->sdma.instance[2].ring); 1454 break; 1455 case 1: 1456 /* XXX compute */ 1457 break; 1458 case 2: 1459 /* XXX compute */ 1460 break; 1461 case 3: 1462 /* XXX page queue*/ 1463 break; 1464 } 1465 break; 1466 case SOC15_IH_CLIENTID_SDMA3_Sienna_Cichlid: 1467 switch (entry->ring_id) { 1468 case 0: 1469 amdgpu_fence_process(&adev->sdma.instance[3].ring); 1470 break; 1471 case 1: 1472 /* XXX compute */ 1473 break; 1474 case 2: 1475 /* XXX compute */ 1476 break; 1477 case 3: 1478 /* XXX page queue*/ 1479 break; 1480 } 1481 break; 1482 } 1483 return 0; 1484 } 1485 1486 static int sdma_v5_2_process_illegal_inst_irq(struct amdgpu_device *adev, 1487 struct amdgpu_irq_src *source, 1488 struct amdgpu_iv_entry *entry) 1489 { 1490 return 0; 1491 } 1492 1493 static bool sdma_v5_2_firmware_mgcg_support(struct amdgpu_device *adev, 1494 int i) 1495 { 1496 switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) { 1497 case IP_VERSION(5, 2, 1): 1498 if (adev->sdma.instance[i].fw_version < 70) 1499 return false; 1500 break; 1501 case IP_VERSION(5, 2, 3): 1502 if (adev->sdma.instance[i].fw_version < 47) 1503 return false; 1504 break; 1505 case IP_VERSION(5, 2, 7): 1506 if (adev->sdma.instance[i].fw_version < 9) 1507 return false; 1508 break; 1509 default: 1510 return true; 1511 } 1512 1513 return true; 1514 1515 } 1516 1517 static void sdma_v5_2_update_medium_grain_clock_gating(struct amdgpu_device *adev, 1518 bool enable) 1519 { 1520 uint32_t data, def; 1521 int i; 1522 1523 for (i = 0; i < adev->sdma.num_instances; i++) { 1524 1525 if (!sdma_v5_2_firmware_mgcg_support(adev, i)) 1526 adev->cg_flags &= ~AMD_CG_SUPPORT_SDMA_MGCG; 1527 1528 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) { 1529 /* Enable sdma clock gating */ 1530 def = data = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL)); 1531 data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK | 1532 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK | 1533 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK | 1534 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK | 1535 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK | 1536 SDMA0_CLK_CTRL__SOFT_OVERRIDER_REG_MASK); 1537 if (def != data) 1538 WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL), data); 1539 } else { 1540 /* Disable sdma clock gating */ 1541 def = data = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL)); 1542 data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK | 1543 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK | 1544 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK | 1545 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK | 1546 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK | 1547 SDMA0_CLK_CTRL__SOFT_OVERRIDER_REG_MASK); 1548 if (def != data) 1549 WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL), data); 1550 } 1551 } 1552 } 1553 1554 static void sdma_v5_2_update_medium_grain_light_sleep(struct amdgpu_device *adev, 1555 bool enable) 1556 { 1557 uint32_t data, def; 1558 int i; 1559 1560 for (i = 0; i < adev->sdma.num_instances; i++) { 1561 if (adev->sdma.instance[i].fw_version < 70 && 1562 amdgpu_ip_version(adev, SDMA0_HWIP, 0) == 1563 IP_VERSION(5, 2, 1)) 1564 adev->cg_flags &= ~AMD_CG_SUPPORT_SDMA_LS; 1565 1566 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) { 1567 /* Enable sdma mem light sleep */ 1568 def = data = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL)); 1569 data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; 1570 if (def != data) 1571 WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL), data); 1572 1573 } else { 1574 /* Disable sdma mem light sleep */ 1575 def = data = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL)); 1576 data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; 1577 if (def != data) 1578 WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL), data); 1579 1580 } 1581 } 1582 } 1583 1584 static int sdma_v5_2_set_clockgating_state(void *handle, 1585 enum amd_clockgating_state state) 1586 { 1587 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1588 1589 if (amdgpu_sriov_vf(adev)) 1590 return 0; 1591 1592 switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) { 1593 case IP_VERSION(5, 2, 0): 1594 case IP_VERSION(5, 2, 2): 1595 case IP_VERSION(5, 2, 1): 1596 case IP_VERSION(5, 2, 4): 1597 case IP_VERSION(5, 2, 5): 1598 case IP_VERSION(5, 2, 6): 1599 case IP_VERSION(5, 2, 3): 1600 case IP_VERSION(5, 2, 7): 1601 sdma_v5_2_update_medium_grain_clock_gating(adev, 1602 state == AMD_CG_STATE_GATE); 1603 sdma_v5_2_update_medium_grain_light_sleep(adev, 1604 state == AMD_CG_STATE_GATE); 1605 break; 1606 default: 1607 break; 1608 } 1609 1610 return 0; 1611 } 1612 1613 static int sdma_v5_2_set_powergating_state(void *handle, 1614 enum amd_powergating_state state) 1615 { 1616 return 0; 1617 } 1618 1619 static void sdma_v5_2_get_clockgating_state(void *handle, u64 *flags) 1620 { 1621 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1622 int data; 1623 1624 if (amdgpu_sriov_vf(adev)) 1625 *flags = 0; 1626 1627 /* AMD_CG_SUPPORT_SDMA_MGCG */ 1628 data = RREG32(sdma_v5_2_get_reg_offset(adev, 0, mmSDMA0_CLK_CTRL)); 1629 if (!(data & SDMA0_CLK_CTRL__CGCG_EN_OVERRIDE_MASK)) 1630 *flags |= AMD_CG_SUPPORT_SDMA_MGCG; 1631 1632 /* AMD_CG_SUPPORT_SDMA_LS */ 1633 data = RREG32_KIQ(sdma_v5_2_get_reg_offset(adev, 0, mmSDMA0_POWER_CNTL)); 1634 if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK) 1635 *flags |= AMD_CG_SUPPORT_SDMA_LS; 1636 } 1637 1638 static void sdma_v5_2_ring_begin_use(struct amdgpu_ring *ring) 1639 { 1640 struct amdgpu_device *adev = ring->adev; 1641 1642 /* SDMA 5.2.3 (RMB) FW doesn't seem to properly 1643 * disallow GFXOFF in some cases leading to 1644 * hangs in SDMA. Disallow GFXOFF while SDMA is active. 1645 * We can probably just limit this to 5.2.3, 1646 * but it shouldn't hurt for other parts since 1647 * this GFXOFF will be disallowed anyway when SDMA is 1648 * active, this just makes it explicit. 1649 */ 1650 amdgpu_gfx_off_ctrl(adev, false); 1651 } 1652 1653 static void sdma_v5_2_ring_end_use(struct amdgpu_ring *ring) 1654 { 1655 struct amdgpu_device *adev = ring->adev; 1656 1657 /* SDMA 5.2.3 (RMB) FW doesn't seem to properly 1658 * disallow GFXOFF in some cases leading to 1659 * hangs in SDMA. Allow GFXOFF when SDMA is complete. 1660 */ 1661 amdgpu_gfx_off_ctrl(adev, true); 1662 } 1663 1664 const struct amd_ip_funcs sdma_v5_2_ip_funcs = { 1665 .name = "sdma_v5_2", 1666 .early_init = sdma_v5_2_early_init, 1667 .late_init = NULL, 1668 .sw_init = sdma_v5_2_sw_init, 1669 .sw_fini = sdma_v5_2_sw_fini, 1670 .hw_init = sdma_v5_2_hw_init, 1671 .hw_fini = sdma_v5_2_hw_fini, 1672 .suspend = sdma_v5_2_suspend, 1673 .resume = sdma_v5_2_resume, 1674 .is_idle = sdma_v5_2_is_idle, 1675 .wait_for_idle = sdma_v5_2_wait_for_idle, 1676 .soft_reset = sdma_v5_2_soft_reset, 1677 .set_clockgating_state = sdma_v5_2_set_clockgating_state, 1678 .set_powergating_state = sdma_v5_2_set_powergating_state, 1679 .get_clockgating_state = sdma_v5_2_get_clockgating_state, 1680 }; 1681 1682 static const struct amdgpu_ring_funcs sdma_v5_2_ring_funcs = { 1683 .type = AMDGPU_RING_TYPE_SDMA, 1684 .align_mask = 0xf, 1685 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 1686 .support_64bit_ptrs = true, 1687 .secure_submission_supported = true, 1688 .get_rptr = sdma_v5_2_ring_get_rptr, 1689 .get_wptr = sdma_v5_2_ring_get_wptr, 1690 .set_wptr = sdma_v5_2_ring_set_wptr, 1691 .emit_frame_size = 1692 5 + /* sdma_v5_2_ring_init_cond_exec */ 1693 6 + /* sdma_v5_2_ring_emit_hdp_flush */ 1694 3 + /* hdp_invalidate */ 1695 6 + /* sdma_v5_2_ring_emit_pipeline_sync */ 1696 /* sdma_v5_2_ring_emit_vm_flush */ 1697 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + 1698 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 + 1699 10 + 10 + 10, /* sdma_v5_2_ring_emit_fence x3 for user fence, vm fence */ 1700 .emit_ib_size = 7 + 6, /* sdma_v5_2_ring_emit_ib */ 1701 .emit_ib = sdma_v5_2_ring_emit_ib, 1702 .emit_mem_sync = sdma_v5_2_ring_emit_mem_sync, 1703 .emit_fence = sdma_v5_2_ring_emit_fence, 1704 .emit_pipeline_sync = sdma_v5_2_ring_emit_pipeline_sync, 1705 .emit_vm_flush = sdma_v5_2_ring_emit_vm_flush, 1706 .emit_hdp_flush = sdma_v5_2_ring_emit_hdp_flush, 1707 .test_ring = sdma_v5_2_ring_test_ring, 1708 .test_ib = sdma_v5_2_ring_test_ib, 1709 .insert_nop = sdma_v5_2_ring_insert_nop, 1710 .pad_ib = sdma_v5_2_ring_pad_ib, 1711 .begin_use = sdma_v5_2_ring_begin_use, 1712 .end_use = sdma_v5_2_ring_end_use, 1713 .emit_wreg = sdma_v5_2_ring_emit_wreg, 1714 .emit_reg_wait = sdma_v5_2_ring_emit_reg_wait, 1715 .emit_reg_write_reg_wait = sdma_v5_2_ring_emit_reg_write_reg_wait, 1716 .init_cond_exec = sdma_v5_2_ring_init_cond_exec, 1717 .preempt_ib = sdma_v5_2_ring_preempt_ib, 1718 }; 1719 1720 static void sdma_v5_2_set_ring_funcs(struct amdgpu_device *adev) 1721 { 1722 int i; 1723 1724 for (i = 0; i < adev->sdma.num_instances; i++) { 1725 adev->sdma.instance[i].ring.funcs = &sdma_v5_2_ring_funcs; 1726 adev->sdma.instance[i].ring.me = i; 1727 } 1728 } 1729 1730 static const struct amdgpu_irq_src_funcs sdma_v5_2_trap_irq_funcs = { 1731 .set = sdma_v5_2_set_trap_irq_state, 1732 .process = sdma_v5_2_process_trap_irq, 1733 }; 1734 1735 static const struct amdgpu_irq_src_funcs sdma_v5_2_illegal_inst_irq_funcs = { 1736 .process = sdma_v5_2_process_illegal_inst_irq, 1737 }; 1738 1739 static void sdma_v5_2_set_irq_funcs(struct amdgpu_device *adev) 1740 { 1741 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE0 + 1742 adev->sdma.num_instances; 1743 adev->sdma.trap_irq.funcs = &sdma_v5_2_trap_irq_funcs; 1744 adev->sdma.illegal_inst_irq.funcs = &sdma_v5_2_illegal_inst_irq_funcs; 1745 } 1746 1747 /** 1748 * sdma_v5_2_emit_copy_buffer - copy buffer using the sDMA engine 1749 * 1750 * @ib: indirect buffer to copy to 1751 * @src_offset: src GPU address 1752 * @dst_offset: dst GPU address 1753 * @byte_count: number of bytes to xfer 1754 * @copy_flags: copy flags for the buffers 1755 * 1756 * Copy GPU buffers using the DMA engine. 1757 * Used by the amdgpu ttm implementation to move pages if 1758 * registered as the asic copy callback. 1759 */ 1760 static void sdma_v5_2_emit_copy_buffer(struct amdgpu_ib *ib, 1761 uint64_t src_offset, 1762 uint64_t dst_offset, 1763 uint32_t byte_count, 1764 uint32_t copy_flags) 1765 { 1766 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | 1767 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) | 1768 SDMA_PKT_COPY_LINEAR_HEADER_TMZ((copy_flags & AMDGPU_COPY_FLAGS_TMZ) ? 1 : 0); 1769 ib->ptr[ib->length_dw++] = byte_count - 1; 1770 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 1771 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset); 1772 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset); 1773 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 1774 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 1775 } 1776 1777 /** 1778 * sdma_v5_2_emit_fill_buffer - fill buffer using the sDMA engine 1779 * 1780 * @ib: indirect buffer to fill 1781 * @src_data: value to write to buffer 1782 * @dst_offset: dst GPU address 1783 * @byte_count: number of bytes to xfer 1784 * 1785 * Fill GPU buffers using the DMA engine. 1786 */ 1787 static void sdma_v5_2_emit_fill_buffer(struct amdgpu_ib *ib, 1788 uint32_t src_data, 1789 uint64_t dst_offset, 1790 uint32_t byte_count) 1791 { 1792 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL); 1793 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 1794 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 1795 ib->ptr[ib->length_dw++] = src_data; 1796 ib->ptr[ib->length_dw++] = byte_count - 1; 1797 } 1798 1799 static const struct amdgpu_buffer_funcs sdma_v5_2_buffer_funcs = { 1800 .copy_max_bytes = 0x400000, 1801 .copy_num_dw = 7, 1802 .emit_copy_buffer = sdma_v5_2_emit_copy_buffer, 1803 1804 .fill_max_bytes = 0x400000, 1805 .fill_num_dw = 5, 1806 .emit_fill_buffer = sdma_v5_2_emit_fill_buffer, 1807 }; 1808 1809 static void sdma_v5_2_set_buffer_funcs(struct amdgpu_device *adev) 1810 { 1811 if (adev->mman.buffer_funcs == NULL) { 1812 adev->mman.buffer_funcs = &sdma_v5_2_buffer_funcs; 1813 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring; 1814 } 1815 } 1816 1817 static const struct amdgpu_vm_pte_funcs sdma_v5_2_vm_pte_funcs = { 1818 .copy_pte_num_dw = 7, 1819 .copy_pte = sdma_v5_2_vm_copy_pte, 1820 .write_pte = sdma_v5_2_vm_write_pte, 1821 .set_pte_pde = sdma_v5_2_vm_set_pte_pde, 1822 }; 1823 1824 static void sdma_v5_2_set_vm_pte_funcs(struct amdgpu_device *adev) 1825 { 1826 unsigned i; 1827 1828 if (adev->vm_manager.vm_pte_funcs == NULL) { 1829 adev->vm_manager.vm_pte_funcs = &sdma_v5_2_vm_pte_funcs; 1830 for (i = 0; i < adev->sdma.num_instances; i++) { 1831 adev->vm_manager.vm_pte_scheds[i] = 1832 &adev->sdma.instance[i].ring.sched; 1833 } 1834 adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances; 1835 } 1836 } 1837 1838 const struct amdgpu_ip_block_version sdma_v5_2_ip_block = { 1839 .type = AMD_IP_BLOCK_TYPE_SDMA, 1840 .major = 5, 1841 .minor = 2, 1842 .rev = 0, 1843 .funcs = &sdma_v5_2_ip_funcs, 1844 }; 1845