xref: /linux/drivers/gpu/drm/amd/amdgpu/sdma_v5_0.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 /*
2  * Copyright 2019 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28 
29 #include "amdgpu.h"
30 #include "amdgpu_ucode.h"
31 #include "amdgpu_trace.h"
32 
33 #include "gc/gc_10_1_0_offset.h"
34 #include "gc/gc_10_1_0_sh_mask.h"
35 #include "ivsrcid/sdma0/irqsrcs_sdma0_5_0.h"
36 #include "ivsrcid/sdma1/irqsrcs_sdma1_5_0.h"
37 
38 #include "soc15_common.h"
39 #include "soc15.h"
40 #include "navi10_sdma_pkt_open.h"
41 #include "nbio_v2_3.h"
42 #include "sdma_common.h"
43 #include "sdma_v5_0.h"
44 
45 MODULE_FIRMWARE("amdgpu/navi10_sdma.bin");
46 MODULE_FIRMWARE("amdgpu/navi10_sdma1.bin");
47 
48 MODULE_FIRMWARE("amdgpu/navi14_sdma.bin");
49 MODULE_FIRMWARE("amdgpu/navi14_sdma1.bin");
50 
51 MODULE_FIRMWARE("amdgpu/navi12_sdma.bin");
52 MODULE_FIRMWARE("amdgpu/navi12_sdma1.bin");
53 
54 MODULE_FIRMWARE("amdgpu/cyan_skillfish2_sdma.bin");
55 MODULE_FIRMWARE("amdgpu/cyan_skillfish2_sdma1.bin");
56 
57 #define SDMA1_REG_OFFSET 0x600
58 #define SDMA0_HYP_DEC_REG_START 0x5880
59 #define SDMA0_HYP_DEC_REG_END 0x5893
60 #define SDMA1_HYP_DEC_REG_OFFSET 0x20
61 
62 static const struct amdgpu_hwip_reg_entry sdma_reg_list_5_0[] = {
63 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_STATUS_REG),
64 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_STATUS1_REG),
65 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_STATUS2_REG),
66 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_STATUS3_REG),
67 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_UCODE_CHECKSUM),
68 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RB_RPTR_FETCH_HI),
69 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RB_RPTR_FETCH),
70 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_UTCL1_RD_STATUS),
71 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_UTCL1_WR_STATUS),
72 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_UTCL1_RD_XNACK0),
73 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_UTCL1_RD_XNACK1),
74 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_UTCL1_WR_XNACK0),
75 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_UTCL1_WR_XNACK1),
76 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_RB_CNTL),
77 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_RB_RPTR),
78 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_RB_RPTR_HI),
79 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_RB_WPTR),
80 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_RB_WPTR_HI),
81 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_IB_OFFSET),
82 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_IB_BASE_LO),
83 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_IB_BASE_HI),
84 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_IB_CNTL),
85 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_IB_RPTR),
86 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_IB_SUB_REMAIN),
87 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_DUMMY_REG),
88 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_RB_CNTL),
89 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_RB_RPTR),
90 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_RB_RPTR_HI),
91 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_RB_WPTR),
92 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_RB_WPTR_HI),
93 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_IB_OFFSET),
94 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_IB_BASE_LO),
95 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_IB_BASE_HI),
96 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_DUMMY_REG),
97 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_RB_CNTL),
98 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_RB_RPTR),
99 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_RB_RPTR_HI),
100 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_RB_WPTR),
101 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_RB_WPTR_HI),
102 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_IB_OFFSET),
103 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_IB_BASE_LO),
104 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_IB_BASE_HI),
105 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_DUMMY_REG),
106 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_INT_STATUS),
107 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_VM_CNTL),
108 	SOC15_REG_ENTRY_STR(GC, 0, mmGRBM_STATUS2)
109 };
110 
111 static void sdma_v5_0_set_ring_funcs(struct amdgpu_device *adev);
112 static void sdma_v5_0_set_buffer_funcs(struct amdgpu_device *adev);
113 static void sdma_v5_0_set_vm_pte_funcs(struct amdgpu_device *adev);
114 static void sdma_v5_0_set_irq_funcs(struct amdgpu_device *adev);
115 
116 static const struct soc15_reg_golden golden_settings_sdma_5[] = {
117 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_CHICKEN_BITS, 0xffbf1f0f, 0x03ab0107),
118 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
119 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
120 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
121 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
122 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
123 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
124 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
125 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
126 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
127 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
128 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_UTCL1_PAGE, 0x00ffffff, 0x000c5c00),
129 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_CHICKEN_BITS, 0xffbf1f0f, 0x03ab0107),
130 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
131 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
132 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
133 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
134 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
135 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
136 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
137 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
138 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
139 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
140 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_UTCL1_PAGE, 0x00ffffff, 0x000c5c00)
141 };
142 
143 static const struct soc15_reg_golden golden_settings_sdma_5_sriov[] = {
144 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
145 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
146 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
147 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
148 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
149 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
150 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
151 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
152 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
153 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
154 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
155 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
156 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
157 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
158 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
159 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
160 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
161 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
162 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
163 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
164 };
165 
166 static const struct soc15_reg_golden golden_settings_sdma_nv10[] = {
167 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
168 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
169 };
170 
171 static const struct soc15_reg_golden golden_settings_sdma_nv14[] = {
172 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
173 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
174 };
175 
176 static const struct soc15_reg_golden golden_settings_sdma_nv12[] = {
177 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
178 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GB_ADDR_CONFIG, 0x001877ff, 0x00000044),
179 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x001877ff, 0x00000044),
180 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GB_ADDR_CONFIG, 0x001877ff, 0x00000044),
181 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x001877ff, 0x00000044),
182 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
183 };
184 
185 static const struct soc15_reg_golden golden_settings_sdma_cyan_skillfish[] = {
186 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_CHICKEN_BITS, 0xffbf1f0f, 0x03ab0107),
187 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GB_ADDR_CONFIG, 0x001877ff, 0x00000044),
188 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x001877ff, 0x00000044),
189 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
190 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
191 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
192 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
193 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
194 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
195 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
196 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
197 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
198 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
199 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_UTCL1_PAGE, 0x007fffff, 0x004c5c00),
200 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_CHICKEN_BITS, 0xffbf1f0f, 0x03ab0107),
201 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GB_ADDR_CONFIG, 0x001877ff, 0x00000044),
202 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x001877ff, 0x00000044),
203 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
204 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
205 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
206 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
207 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
208 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
209 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
210 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
211 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
212 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
213 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_UTCL1_PAGE, 0x007fffff, 0x004c5c00)
214 };
215 
216 static u32 sdma_v5_0_get_reg_offset(struct amdgpu_device *adev, u32 instance, u32 internal_offset)
217 {
218 	u32 base;
219 
220 	if (internal_offset >= SDMA0_HYP_DEC_REG_START &&
221 	    internal_offset <= SDMA0_HYP_DEC_REG_END) {
222 		base = adev->reg_offset[GC_HWIP][0][1];
223 		if (instance == 1)
224 			internal_offset += SDMA1_HYP_DEC_REG_OFFSET;
225 	} else {
226 		base = adev->reg_offset[GC_HWIP][0][0];
227 		if (instance == 1)
228 			internal_offset += SDMA1_REG_OFFSET;
229 	}
230 
231 	return base + internal_offset;
232 }
233 
234 static void sdma_v5_0_init_golden_registers(struct amdgpu_device *adev)
235 {
236 	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
237 	case IP_VERSION(5, 0, 0):
238 		soc15_program_register_sequence(adev,
239 						golden_settings_sdma_5,
240 						(const u32)ARRAY_SIZE(golden_settings_sdma_5));
241 		soc15_program_register_sequence(adev,
242 						golden_settings_sdma_nv10,
243 						(const u32)ARRAY_SIZE(golden_settings_sdma_nv10));
244 		break;
245 	case IP_VERSION(5, 0, 2):
246 		soc15_program_register_sequence(adev,
247 						golden_settings_sdma_5,
248 						(const u32)ARRAY_SIZE(golden_settings_sdma_5));
249 		soc15_program_register_sequence(adev,
250 						golden_settings_sdma_nv14,
251 						(const u32)ARRAY_SIZE(golden_settings_sdma_nv14));
252 		break;
253 	case IP_VERSION(5, 0, 5):
254 		if (amdgpu_sriov_vf(adev))
255 			soc15_program_register_sequence(adev,
256 							golden_settings_sdma_5_sriov,
257 							(const u32)ARRAY_SIZE(golden_settings_sdma_5_sriov));
258 		else
259 			soc15_program_register_sequence(adev,
260 							golden_settings_sdma_5,
261 							(const u32)ARRAY_SIZE(golden_settings_sdma_5));
262 		soc15_program_register_sequence(adev,
263 						golden_settings_sdma_nv12,
264 						(const u32)ARRAY_SIZE(golden_settings_sdma_nv12));
265 		break;
266 	case IP_VERSION(5, 0, 1):
267 		soc15_program_register_sequence(adev,
268 						golden_settings_sdma_cyan_skillfish,
269 						(const u32)ARRAY_SIZE(golden_settings_sdma_cyan_skillfish));
270 		break;
271 	default:
272 		break;
273 	}
274 }
275 
276 /**
277  * sdma_v5_0_init_microcode - load ucode images from disk
278  *
279  * @adev: amdgpu_device pointer
280  *
281  * Use the firmware interface to load the ucode images into
282  * the driver (not loaded into hw).
283  * Returns 0 on success, error on failure.
284  */
285 
286 // emulation only, won't work on real chip
287 // navi10 real chip need to use PSP to load firmware
288 static int sdma_v5_0_init_microcode(struct amdgpu_device *adev)
289 {
290 	int ret, i;
291 
292 	for (i = 0; i < adev->sdma.num_instances; i++) {
293 		ret = amdgpu_sdma_init_microcode(adev, i, false);
294 		if (ret)
295 			return ret;
296 	}
297 
298 	return ret;
299 }
300 
301 static unsigned sdma_v5_0_ring_init_cond_exec(struct amdgpu_ring *ring,
302 					      uint64_t addr)
303 {
304 	unsigned ret;
305 
306 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_COND_EXE));
307 	amdgpu_ring_write(ring, lower_32_bits(addr));
308 	amdgpu_ring_write(ring, upper_32_bits(addr));
309 	amdgpu_ring_write(ring, 1);
310 	/* this is the offset we need patch later */
311 	ret = ring->wptr & ring->buf_mask;
312 	/* insert dummy here and patch it later */
313 	amdgpu_ring_write(ring, 0);
314 
315 	return ret;
316 }
317 
318 /**
319  * sdma_v5_0_ring_get_rptr - get the current read pointer
320  *
321  * @ring: amdgpu ring pointer
322  *
323  * Get the current rptr from the hardware (NAVI10+).
324  */
325 static uint64_t sdma_v5_0_ring_get_rptr(struct amdgpu_ring *ring)
326 {
327 	u64 *rptr;
328 
329 	/* XXX check if swapping is necessary on BE */
330 	rptr = (u64 *)ring->rptr_cpu_addr;
331 
332 	DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
333 	return ((*rptr) >> 2);
334 }
335 
336 /**
337  * sdma_v5_0_ring_get_wptr - get the current write pointer
338  *
339  * @ring: amdgpu ring pointer
340  *
341  * Get the current wptr from the hardware (NAVI10+).
342  */
343 static uint64_t sdma_v5_0_ring_get_wptr(struct amdgpu_ring *ring)
344 {
345 	struct amdgpu_device *adev = ring->adev;
346 	u64 wptr;
347 
348 	if (ring->use_doorbell) {
349 		/* XXX check if swapping is necessary on BE */
350 		wptr = READ_ONCE(*((u64 *)ring->wptr_cpu_addr));
351 		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
352 	} else {
353 		wptr = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI));
354 		wptr = wptr << 32;
355 		wptr |= RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR));
356 		DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n", ring->me, wptr);
357 	}
358 
359 	return wptr >> 2;
360 }
361 
362 /**
363  * sdma_v5_0_ring_set_wptr - commit the write pointer
364  *
365  * @ring: amdgpu ring pointer
366  *
367  * Write the wptr back to the hardware (NAVI10+).
368  */
369 static void sdma_v5_0_ring_set_wptr(struct amdgpu_ring *ring)
370 {
371 	struct amdgpu_device *adev = ring->adev;
372 	uint32_t *wptr_saved;
373 	uint32_t *is_queue_unmap;
374 	uint64_t aggregated_db_index;
375 	uint32_t mqd_size = adev->mqds[AMDGPU_HW_IP_DMA].mqd_size;
376 
377 	DRM_DEBUG("Setting write pointer\n");
378 	if (ring->is_mes_queue) {
379 		wptr_saved = (uint32_t *)(ring->mqd_ptr + mqd_size);
380 		is_queue_unmap = (uint32_t *)(ring->mqd_ptr + mqd_size +
381 					      sizeof(uint32_t));
382 		aggregated_db_index =
383 			amdgpu_mes_get_aggregated_doorbell_index(adev,
384 			AMDGPU_MES_PRIORITY_LEVEL_NORMAL);
385 
386 		atomic64_set((atomic64_t *)ring->wptr_cpu_addr,
387 			     ring->wptr << 2);
388 		*wptr_saved = ring->wptr << 2;
389 		if (*is_queue_unmap) {
390 			WDOORBELL64(aggregated_db_index, ring->wptr << 2);
391 			DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
392 					ring->doorbell_index, ring->wptr << 2);
393 			WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
394 		} else {
395 			DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
396 					ring->doorbell_index, ring->wptr << 2);
397 			WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
398 
399 			if (*is_queue_unmap)
400 				WDOORBELL64(aggregated_db_index,
401 					    ring->wptr << 2);
402 		}
403 	} else {
404 		if (ring->use_doorbell) {
405 			DRM_DEBUG("Using doorbell -- "
406 				  "wptr_offs == 0x%08x "
407 				  "lower_32_bits(ring->wptr) << 2 == 0x%08x "
408 				  "upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
409 				  ring->wptr_offs,
410 				  lower_32_bits(ring->wptr << 2),
411 				  upper_32_bits(ring->wptr << 2));
412 			/* XXX check if swapping is necessary on BE */
413 			atomic64_set((atomic64_t *)ring->wptr_cpu_addr,
414 				     ring->wptr << 2);
415 			DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
416 				  ring->doorbell_index, ring->wptr << 2);
417 			WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
418 		} else {
419 			DRM_DEBUG("Not using doorbell -- "
420 				  "mmSDMA%i_GFX_RB_WPTR == 0x%08x "
421 				  "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
422 				  ring->me,
423 				  lower_32_bits(ring->wptr << 2),
424 				  ring->me,
425 				  upper_32_bits(ring->wptr << 2));
426 			WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev,
427 					     ring->me, mmSDMA0_GFX_RB_WPTR),
428 					lower_32_bits(ring->wptr << 2));
429 			WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev,
430 					     ring->me, mmSDMA0_GFX_RB_WPTR_HI),
431 					upper_32_bits(ring->wptr << 2));
432 		}
433 	}
434 }
435 
436 static void sdma_v5_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
437 {
438 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
439 	int i;
440 
441 	for (i = 0; i < count; i++)
442 		if (sdma && sdma->burst_nop && (i == 0))
443 			amdgpu_ring_write(ring, ring->funcs->nop |
444 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
445 		else
446 			amdgpu_ring_write(ring, ring->funcs->nop);
447 }
448 
449 /**
450  * sdma_v5_0_ring_emit_ib - Schedule an IB on the DMA engine
451  *
452  * @ring: amdgpu ring pointer
453  * @job: job to retrieve vmid from
454  * @ib: IB object to schedule
455  * @flags: unused
456  *
457  * Schedule an IB in the DMA ring (NAVI10).
458  */
459 static void sdma_v5_0_ring_emit_ib(struct amdgpu_ring *ring,
460 				   struct amdgpu_job *job,
461 				   struct amdgpu_ib *ib,
462 				   uint32_t flags)
463 {
464 	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
465 	uint64_t csa_mc_addr = amdgpu_sdma_get_csa_mc_addr(ring, vmid);
466 
467 	/* An IB packet must end on a 8 DW boundary--the next dword
468 	 * must be on a 8-dword boundary. Our IB packet below is 6
469 	 * dwords long, thus add x number of NOPs, such that, in
470 	 * modular arithmetic,
471 	 * wptr + 6 + x = 8k, k >= 0, which in C is,
472 	 * (wptr + 6 + x) % 8 = 0.
473 	 * The expression below, is a solution of x.
474 	 */
475 	sdma_v5_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
476 
477 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
478 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
479 	/* base must be 32 byte aligned */
480 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
481 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
482 	amdgpu_ring_write(ring, ib->length_dw);
483 	amdgpu_ring_write(ring, lower_32_bits(csa_mc_addr));
484 	amdgpu_ring_write(ring, upper_32_bits(csa_mc_addr));
485 }
486 
487 /**
488  * sdma_v5_0_ring_emit_mem_sync - flush the IB by graphics cache rinse
489  *
490  * @ring: amdgpu ring pointer
491  *
492  * flush the IB by graphics cache rinse.
493  */
494 static void sdma_v5_0_ring_emit_mem_sync(struct amdgpu_ring *ring)
495 {
496 	uint32_t gcr_cntl = SDMA_GCR_GL2_INV | SDMA_GCR_GL2_WB | SDMA_GCR_GLM_INV |
497 			    SDMA_GCR_GL1_INV | SDMA_GCR_GLV_INV | SDMA_GCR_GLK_INV |
498 			    SDMA_GCR_GLI_INV(1);
499 
500 	/* flush entire cache L0/L1/L2, this can be optimized by performance requirement */
501 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_GCR_REQ));
502 	amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD1_BASE_VA_31_7(0));
503 	amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD2_GCR_CONTROL_15_0(gcr_cntl) |
504 			  SDMA_PKT_GCR_REQ_PAYLOAD2_BASE_VA_47_32(0));
505 	amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD3_LIMIT_VA_31_7(0) |
506 			  SDMA_PKT_GCR_REQ_PAYLOAD3_GCR_CONTROL_18_16(gcr_cntl >> 16));
507 	amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD4_LIMIT_VA_47_32(0) |
508 			  SDMA_PKT_GCR_REQ_PAYLOAD4_VMID(0));
509 }
510 
511 /**
512  * sdma_v5_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
513  *
514  * @ring: amdgpu ring pointer
515  *
516  * Emit an hdp flush packet on the requested DMA ring.
517  */
518 static void sdma_v5_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
519 {
520 	struct amdgpu_device *adev = ring->adev;
521 	u32 ref_and_mask = 0;
522 	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
523 
524 	if (ring->me == 0)
525 		ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0;
526 	else
527 		ref_and_mask = nbio_hf_reg->ref_and_mask_sdma1;
528 
529 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
530 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
531 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
532 	amdgpu_ring_write(ring, (adev->nbio.funcs->get_hdp_flush_done_offset(adev)) << 2);
533 	amdgpu_ring_write(ring, (adev->nbio.funcs->get_hdp_flush_req_offset(adev)) << 2);
534 	amdgpu_ring_write(ring, ref_and_mask); /* reference */
535 	amdgpu_ring_write(ring, ref_and_mask); /* mask */
536 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
537 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
538 }
539 
540 /**
541  * sdma_v5_0_ring_emit_fence - emit a fence on the DMA ring
542  *
543  * @ring: amdgpu ring pointer
544  * @addr: address
545  * @seq: sequence number
546  * @flags: fence related flags
547  *
548  * Add a DMA fence packet to the ring to write
549  * the fence seq number and DMA trap packet to generate
550  * an interrupt if needed (NAVI10).
551  */
552 static void sdma_v5_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
553 				      unsigned flags)
554 {
555 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
556 	/* write the fence */
557 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE) |
558 			  SDMA_PKT_FENCE_HEADER_MTYPE(0x3)); /* Ucached(UC) */
559 	/* zero in first two bits */
560 	BUG_ON(addr & 0x3);
561 	amdgpu_ring_write(ring, lower_32_bits(addr));
562 	amdgpu_ring_write(ring, upper_32_bits(addr));
563 	amdgpu_ring_write(ring, lower_32_bits(seq));
564 
565 	/* optionally write high bits as well */
566 	if (write64bit) {
567 		addr += 4;
568 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE) |
569 				  SDMA_PKT_FENCE_HEADER_MTYPE(0x3));
570 		/* zero in first two bits */
571 		BUG_ON(addr & 0x3);
572 		amdgpu_ring_write(ring, lower_32_bits(addr));
573 		amdgpu_ring_write(ring, upper_32_bits(addr));
574 		amdgpu_ring_write(ring, upper_32_bits(seq));
575 	}
576 
577 	if (flags & AMDGPU_FENCE_FLAG_INT) {
578 		uint32_t ctx = ring->is_mes_queue ?
579 			(ring->hw_queue_id | AMDGPU_FENCE_MES_QUEUE_FLAG) : 0;
580 		/* generate an interrupt */
581 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
582 		amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(ctx));
583 	}
584 }
585 
586 
587 /**
588  * sdma_v5_0_gfx_stop - stop the gfx async dma engines
589  *
590  * @adev: amdgpu_device pointer
591  *
592  * Stop the gfx async dma ring buffers (NAVI10).
593  */
594 static void sdma_v5_0_gfx_stop(struct amdgpu_device *adev)
595 {
596 	u32 rb_cntl, ib_cntl;
597 	int i;
598 
599 	for (i = 0; i < adev->sdma.num_instances; i++) {
600 		rb_cntl = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
601 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
602 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
603 		ib_cntl = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
604 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
605 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
606 	}
607 }
608 
609 /**
610  * sdma_v5_0_rlc_stop - stop the compute async dma engines
611  *
612  * @adev: amdgpu_device pointer
613  *
614  * Stop the compute async dma queues (NAVI10).
615  */
616 static void sdma_v5_0_rlc_stop(struct amdgpu_device *adev)
617 {
618 	/* XXX todo */
619 }
620 
621 /**
622  * sdma_v5_0_ctx_switch_enable - stop the async dma engines context switch
623  *
624  * @adev: amdgpu_device pointer
625  * @enable: enable/disable the DMA MEs context switch.
626  *
627  * Halt or unhalt the async dma engines context switch (NAVI10).
628  */
629 static void sdma_v5_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
630 {
631 	u32 f32_cntl = 0, phase_quantum = 0;
632 	int i;
633 
634 	if (amdgpu_sdma_phase_quantum) {
635 		unsigned value = amdgpu_sdma_phase_quantum;
636 		unsigned unit = 0;
637 
638 		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
639 				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
640 			value = (value + 1) >> 1;
641 			unit++;
642 		}
643 		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
644 			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
645 			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
646 				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
647 			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
648 				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
649 			WARN_ONCE(1,
650 			"clamping sdma_phase_quantum to %uK clock cycles\n",
651 				  value << unit);
652 		}
653 		phase_quantum =
654 			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
655 			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
656 	}
657 
658 	for (i = 0; i < adev->sdma.num_instances; i++) {
659 		if (!amdgpu_sriov_vf(adev)) {
660 			f32_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CNTL));
661 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
662 						 AUTO_CTXSW_ENABLE, enable ? 1 : 0);
663 		}
664 
665 		if (enable && amdgpu_sdma_phase_quantum) {
666 			WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_PHASE0_QUANTUM),
667 			       phase_quantum);
668 			WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_PHASE1_QUANTUM),
669 			       phase_quantum);
670 			WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_PHASE2_QUANTUM),
671 			       phase_quantum);
672 		}
673 		if (!amdgpu_sriov_vf(adev))
674 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CNTL), f32_cntl);
675 	}
676 
677 }
678 
679 /**
680  * sdma_v5_0_enable - stop the async dma engines
681  *
682  * @adev: amdgpu_device pointer
683  * @enable: enable/disable the DMA MEs.
684  *
685  * Halt or unhalt the async dma engines (NAVI10).
686  */
687 static void sdma_v5_0_enable(struct amdgpu_device *adev, bool enable)
688 {
689 	u32 f32_cntl;
690 	int i;
691 
692 	if (!enable) {
693 		sdma_v5_0_gfx_stop(adev);
694 		sdma_v5_0_rlc_stop(adev);
695 	}
696 
697 	if (amdgpu_sriov_vf(adev))
698 		return;
699 
700 	for (i = 0; i < adev->sdma.num_instances; i++) {
701 		f32_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
702 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
703 		WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), f32_cntl);
704 	}
705 }
706 
707 /**
708  * sdma_v5_0_gfx_resume - setup and start the async dma engines
709  *
710  * @adev: amdgpu_device pointer
711  *
712  * Set up the gfx DMA ring buffers and enable them (NAVI10).
713  * Returns 0 for success, error for failure.
714  */
715 static int sdma_v5_0_gfx_resume(struct amdgpu_device *adev)
716 {
717 	struct amdgpu_ring *ring;
718 	u32 rb_cntl, ib_cntl;
719 	u32 rb_bufsz;
720 	u32 doorbell;
721 	u32 doorbell_offset;
722 	u32 temp;
723 	u32 wptr_poll_cntl;
724 	u64 wptr_gpu_addr;
725 	int i, r;
726 
727 	for (i = 0; i < adev->sdma.num_instances; i++) {
728 		ring = &adev->sdma.instance[i].ring;
729 
730 		if (!amdgpu_sriov_vf(adev))
731 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL), 0);
732 
733 		/* Set ring buffer size in dwords */
734 		rb_bufsz = order_base_2(ring->ring_size / 4);
735 		rb_cntl = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
736 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
737 #ifdef __BIG_ENDIAN
738 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
739 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
740 					RPTR_WRITEBACK_SWAP_ENABLE, 1);
741 #endif
742 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
743 
744 		/* Initialize the ring buffer's read and write pointers */
745 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR), 0);
746 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_HI), 0);
747 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), 0);
748 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), 0);
749 
750 		/* setup the wptr shadow polling */
751 		wptr_gpu_addr = ring->wptr_gpu_addr;
752 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO),
753 		       lower_32_bits(wptr_gpu_addr));
754 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI),
755 		       upper_32_bits(wptr_gpu_addr));
756 		wptr_poll_cntl = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i,
757 							 mmSDMA0_GFX_RB_WPTR_POLL_CNTL));
758 		wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
759 					       SDMA0_GFX_RB_WPTR_POLL_CNTL,
760 					       F32_POLL_ENABLE, 1);
761 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL),
762 		       wptr_poll_cntl);
763 
764 		/* set the wb address whether it's enabled or not */
765 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_HI),
766 		       upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF);
767 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_LO),
768 		       lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC);
769 
770 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
771 
772 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE),
773 		       ring->gpu_addr >> 8);
774 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE_HI),
775 		       ring->gpu_addr >> 40);
776 
777 		ring->wptr = 0;
778 
779 		/* before programing wptr to a less value, need set minor_ptr_update first */
780 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 1);
781 
782 		if (!amdgpu_sriov_vf(adev)) { /* only bare-metal use register write for wptr */
783 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR),
784 			       lower_32_bits(ring->wptr << 2));
785 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI),
786 			       upper_32_bits(ring->wptr << 2));
787 		}
788 
789 		doorbell = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL));
790 		doorbell_offset = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i,
791 						mmSDMA0_GFX_DOORBELL_OFFSET));
792 
793 		if (ring->use_doorbell) {
794 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
795 			doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_GFX_DOORBELL_OFFSET,
796 					OFFSET, ring->doorbell_index);
797 		} else {
798 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
799 		}
800 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL), doorbell);
801 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET),
802 		       doorbell_offset);
803 
804 		adev->nbio.funcs->sdma_doorbell_range(adev, i, ring->use_doorbell,
805 						      ring->doorbell_index, 20);
806 
807 		if (amdgpu_sriov_vf(adev))
808 			sdma_v5_0_ring_set_wptr(ring);
809 
810 		/* set minor_ptr_update to 0 after wptr programed */
811 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 0);
812 
813 		if (!amdgpu_sriov_vf(adev)) {
814 			/* set utc l1 enable flag always to 1 */
815 			temp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CNTL));
816 			temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
817 
818 			/* enable MCBP */
819 			temp = REG_SET_FIELD(temp, SDMA0_CNTL, MIDCMD_PREEMPT_ENABLE, 1);
820 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CNTL), temp);
821 
822 			/* Set up RESP_MODE to non-copy addresses */
823 			temp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UTCL1_CNTL));
824 			temp = REG_SET_FIELD(temp, SDMA0_UTCL1_CNTL, RESP_MODE, 3);
825 			temp = REG_SET_FIELD(temp, SDMA0_UTCL1_CNTL, REDO_DELAY, 9);
826 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UTCL1_CNTL), temp);
827 
828 			/* program default cache read and write policy */
829 			temp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UTCL1_PAGE));
830 			/* clean read policy and write policy bits */
831 			temp &= 0xFF0FFF;
832 			temp |= ((CACHE_READ_POLICY_L2__DEFAULT << 12) | (CACHE_WRITE_POLICY_L2__DEFAULT << 14));
833 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UTCL1_PAGE), temp);
834 		}
835 
836 		if (!amdgpu_sriov_vf(adev)) {
837 			/* unhalt engine */
838 			temp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
839 			temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
840 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), temp);
841 		}
842 
843 		/* enable DMA RB */
844 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
845 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
846 
847 		ib_cntl = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
848 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
849 #ifdef __BIG_ENDIAN
850 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
851 #endif
852 		/* enable DMA IBs */
853 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
854 
855 		if (amdgpu_sriov_vf(adev)) { /* bare-metal sequence doesn't need below to lines */
856 			sdma_v5_0_ctx_switch_enable(adev, true);
857 			sdma_v5_0_enable(adev, true);
858 		}
859 
860 		r = amdgpu_ring_test_helper(ring);
861 		if (r)
862 			return r;
863 	}
864 
865 	return 0;
866 }
867 
868 /**
869  * sdma_v5_0_rlc_resume - setup and start the async dma engines
870  *
871  * @adev: amdgpu_device pointer
872  *
873  * Set up the compute DMA queues and enable them (NAVI10).
874  * Returns 0 for success, error for failure.
875  */
876 static int sdma_v5_0_rlc_resume(struct amdgpu_device *adev)
877 {
878 	return 0;
879 }
880 
881 /**
882  * sdma_v5_0_load_microcode - load the sDMA ME ucode
883  *
884  * @adev: amdgpu_device pointer
885  *
886  * Loads the sDMA0/1 ucode.
887  * Returns 0 for success, -EINVAL if the ucode is not available.
888  */
889 static int sdma_v5_0_load_microcode(struct amdgpu_device *adev)
890 {
891 	const struct sdma_firmware_header_v1_0 *hdr;
892 	const __le32 *fw_data;
893 	u32 fw_size;
894 	int i, j;
895 
896 	/* halt the MEs */
897 	sdma_v5_0_enable(adev, false);
898 
899 	for (i = 0; i < adev->sdma.num_instances; i++) {
900 		if (!adev->sdma.instance[i].fw)
901 			return -EINVAL;
902 
903 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
904 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
905 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
906 
907 		fw_data = (const __le32 *)
908 			(adev->sdma.instance[i].fw->data +
909 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
910 
911 		WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), 0);
912 
913 		for (j = 0; j < fw_size; j++) {
914 			if (amdgpu_emu_mode == 1 && j % 500 == 0)
915 				msleep(1);
916 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UCODE_DATA), le32_to_cpup(fw_data++));
917 		}
918 
919 		WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), adev->sdma.instance[i].fw_version);
920 	}
921 
922 	return 0;
923 }
924 
925 /**
926  * sdma_v5_0_start - setup and start the async dma engines
927  *
928  * @adev: amdgpu_device pointer
929  *
930  * Set up the DMA engines and enable them (NAVI10).
931  * Returns 0 for success, error for failure.
932  */
933 static int sdma_v5_0_start(struct amdgpu_device *adev)
934 {
935 	int r = 0;
936 
937 	if (amdgpu_sriov_vf(adev)) {
938 		sdma_v5_0_ctx_switch_enable(adev, false);
939 		sdma_v5_0_enable(adev, false);
940 
941 		/* set RB registers */
942 		r = sdma_v5_0_gfx_resume(adev);
943 		return r;
944 	}
945 
946 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) {
947 		r = sdma_v5_0_load_microcode(adev);
948 		if (r)
949 			return r;
950 	}
951 
952 	/* unhalt the MEs */
953 	sdma_v5_0_enable(adev, true);
954 	/* enable sdma ring preemption */
955 	sdma_v5_0_ctx_switch_enable(adev, true);
956 
957 	/* start the gfx rings and rlc compute queues */
958 	r = sdma_v5_0_gfx_resume(adev);
959 	if (r)
960 		return r;
961 	r = sdma_v5_0_rlc_resume(adev);
962 
963 	return r;
964 }
965 
966 static int sdma_v5_0_mqd_init(struct amdgpu_device *adev, void *mqd,
967 			      struct amdgpu_mqd_prop *prop)
968 {
969 	struct v10_sdma_mqd *m = mqd;
970 	uint64_t wb_gpu_addr;
971 
972 	m->sdmax_rlcx_rb_cntl =
973 		order_base_2(prop->queue_size / 4) << SDMA0_RLC0_RB_CNTL__RB_SIZE__SHIFT |
974 		1 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_ENABLE__SHIFT |
975 		6 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_TIMER__SHIFT |
976 		1 << SDMA0_RLC0_RB_CNTL__RB_PRIV__SHIFT;
977 
978 	m->sdmax_rlcx_rb_base = lower_32_bits(prop->hqd_base_gpu_addr >> 8);
979 	m->sdmax_rlcx_rb_base_hi = upper_32_bits(prop->hqd_base_gpu_addr >> 8);
980 
981 	m->sdmax_rlcx_rb_wptr_poll_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, 0,
982 						  mmSDMA0_GFX_RB_WPTR_POLL_CNTL));
983 
984 	wb_gpu_addr = prop->wptr_gpu_addr;
985 	m->sdmax_rlcx_rb_wptr_poll_addr_lo = lower_32_bits(wb_gpu_addr);
986 	m->sdmax_rlcx_rb_wptr_poll_addr_hi = upper_32_bits(wb_gpu_addr);
987 
988 	wb_gpu_addr = prop->rptr_gpu_addr;
989 	m->sdmax_rlcx_rb_rptr_addr_lo = lower_32_bits(wb_gpu_addr);
990 	m->sdmax_rlcx_rb_rptr_addr_hi = upper_32_bits(wb_gpu_addr);
991 
992 	m->sdmax_rlcx_ib_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, 0,
993 							mmSDMA0_GFX_IB_CNTL));
994 
995 	m->sdmax_rlcx_doorbell_offset =
996 		prop->doorbell_index << SDMA0_RLC0_DOORBELL_OFFSET__OFFSET__SHIFT;
997 
998 	m->sdmax_rlcx_doorbell = REG_SET_FIELD(0, SDMA0_RLC0_DOORBELL, ENABLE, 1);
999 
1000 	return 0;
1001 }
1002 
1003 static void sdma_v5_0_set_mqd_funcs(struct amdgpu_device *adev)
1004 {
1005 	adev->mqds[AMDGPU_HW_IP_DMA].mqd_size = sizeof(struct v10_sdma_mqd);
1006 	adev->mqds[AMDGPU_HW_IP_DMA].init_mqd = sdma_v5_0_mqd_init;
1007 }
1008 
1009 /**
1010  * sdma_v5_0_ring_test_ring - simple async dma engine test
1011  *
1012  * @ring: amdgpu_ring structure holding ring information
1013  *
1014  * Test the DMA engine by writing using it to write an
1015  * value to memory. (NAVI10).
1016  * Returns 0 for success, error for failure.
1017  */
1018 static int sdma_v5_0_ring_test_ring(struct amdgpu_ring *ring)
1019 {
1020 	struct amdgpu_device *adev = ring->adev;
1021 	unsigned i;
1022 	unsigned index;
1023 	int r;
1024 	u32 tmp;
1025 	u64 gpu_addr;
1026 	volatile uint32_t *cpu_ptr = NULL;
1027 
1028 	tmp = 0xCAFEDEAD;
1029 
1030 	if (ring->is_mes_queue) {
1031 		uint32_t offset = 0;
1032 		offset = amdgpu_mes_ctx_get_offs(ring,
1033 					 AMDGPU_MES_CTX_PADDING_OFFS);
1034 		gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset);
1035 		cpu_ptr = amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset);
1036 		*cpu_ptr = tmp;
1037 	} else {
1038 		r = amdgpu_device_wb_get(adev, &index);
1039 		if (r) {
1040 			dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
1041 			return r;
1042 		}
1043 
1044 		gpu_addr = adev->wb.gpu_addr + (index * 4);
1045 		adev->wb.wb[index] = cpu_to_le32(tmp);
1046 	}
1047 
1048 	r = amdgpu_ring_alloc(ring, 20);
1049 	if (r) {
1050 		DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
1051 		if (!ring->is_mes_queue)
1052 			amdgpu_device_wb_free(adev, index);
1053 		return r;
1054 	}
1055 
1056 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1057 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1058 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1059 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1060 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1061 	amdgpu_ring_write(ring, 0xDEADBEEF);
1062 	amdgpu_ring_commit(ring);
1063 
1064 	for (i = 0; i < adev->usec_timeout; i++) {
1065 		if (ring->is_mes_queue)
1066 			tmp = le32_to_cpu(*cpu_ptr);
1067 		else
1068 			tmp = le32_to_cpu(adev->wb.wb[index]);
1069 		if (tmp == 0xDEADBEEF)
1070 			break;
1071 		if (amdgpu_emu_mode == 1)
1072 			msleep(1);
1073 		else
1074 			udelay(1);
1075 	}
1076 
1077 	if (i >= adev->usec_timeout)
1078 		r = -ETIMEDOUT;
1079 
1080 	if (!ring->is_mes_queue)
1081 		amdgpu_device_wb_free(adev, index);
1082 
1083 	return r;
1084 }
1085 
1086 /**
1087  * sdma_v5_0_ring_test_ib - test an IB on the DMA engine
1088  *
1089  * @ring: amdgpu_ring structure holding ring information
1090  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
1091  *
1092  * Test a simple IB in the DMA ring (NAVI10).
1093  * Returns 0 on success, error on failure.
1094  */
1095 static int sdma_v5_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1096 {
1097 	struct amdgpu_device *adev = ring->adev;
1098 	struct amdgpu_ib ib;
1099 	struct dma_fence *f = NULL;
1100 	unsigned index;
1101 	long r;
1102 	u32 tmp = 0;
1103 	u64 gpu_addr;
1104 	volatile uint32_t *cpu_ptr = NULL;
1105 
1106 	tmp = 0xCAFEDEAD;
1107 	memset(&ib, 0, sizeof(ib));
1108 
1109 	if (ring->is_mes_queue) {
1110 		uint32_t offset = 0;
1111 		offset = amdgpu_mes_ctx_get_offs(ring, AMDGPU_MES_CTX_IB_OFFS);
1112 		ib.gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset);
1113 		ib.ptr = (void *)amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset);
1114 
1115 		offset = amdgpu_mes_ctx_get_offs(ring,
1116 					 AMDGPU_MES_CTX_PADDING_OFFS);
1117 		gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset);
1118 		cpu_ptr = amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset);
1119 		*cpu_ptr = tmp;
1120 	} else {
1121 		r = amdgpu_device_wb_get(adev, &index);
1122 		if (r) {
1123 			dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
1124 			return r;
1125 		}
1126 
1127 		gpu_addr = adev->wb.gpu_addr + (index * 4);
1128 		adev->wb.wb[index] = cpu_to_le32(tmp);
1129 
1130 		r = amdgpu_ib_get(adev, NULL, 256,
1131 					AMDGPU_IB_POOL_DIRECT, &ib);
1132 		if (r) {
1133 			DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
1134 			goto err0;
1135 		}
1136 	}
1137 
1138 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1139 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1140 	ib.ptr[1] = lower_32_bits(gpu_addr);
1141 	ib.ptr[2] = upper_32_bits(gpu_addr);
1142 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1143 	ib.ptr[4] = 0xDEADBEEF;
1144 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1145 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1146 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1147 	ib.length_dw = 8;
1148 
1149 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1150 	if (r)
1151 		goto err1;
1152 
1153 	r = dma_fence_wait_timeout(f, false, timeout);
1154 	if (r == 0) {
1155 		DRM_ERROR("amdgpu: IB test timed out\n");
1156 		r = -ETIMEDOUT;
1157 		goto err1;
1158 	} else if (r < 0) {
1159 		DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
1160 		goto err1;
1161 	}
1162 
1163 	if (ring->is_mes_queue)
1164 		tmp = le32_to_cpu(*cpu_ptr);
1165 	else
1166 		tmp = le32_to_cpu(adev->wb.wb[index]);
1167 
1168 	if (tmp == 0xDEADBEEF)
1169 		r = 0;
1170 	else
1171 		r = -EINVAL;
1172 
1173 err1:
1174 	amdgpu_ib_free(adev, &ib, NULL);
1175 	dma_fence_put(f);
1176 err0:
1177 	if (!ring->is_mes_queue)
1178 		amdgpu_device_wb_free(adev, index);
1179 	return r;
1180 }
1181 
1182 
1183 /**
1184  * sdma_v5_0_vm_copy_pte - update PTEs by copying them from the GART
1185  *
1186  * @ib: indirect buffer to fill with commands
1187  * @pe: addr of the page entry
1188  * @src: src addr to copy from
1189  * @count: number of page entries to update
1190  *
1191  * Update PTEs by copying them from the GART using sDMA (NAVI10).
1192  */
1193 static void sdma_v5_0_vm_copy_pte(struct amdgpu_ib *ib,
1194 				  uint64_t pe, uint64_t src,
1195 				  unsigned count)
1196 {
1197 	unsigned bytes = count * 8;
1198 
1199 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1200 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1201 	ib->ptr[ib->length_dw++] = bytes - 1;
1202 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1203 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1204 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1205 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1206 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1207 
1208 }
1209 
1210 /**
1211  * sdma_v5_0_vm_write_pte - update PTEs by writing them manually
1212  *
1213  * @ib: indirect buffer to fill with commands
1214  * @pe: addr of the page entry
1215  * @value: dst addr to write into pe
1216  * @count: number of page entries to update
1217  * @incr: increase next addr by incr bytes
1218  *
1219  * Update PTEs by writing them manually using sDMA (NAVI10).
1220  */
1221 static void sdma_v5_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1222 				   uint64_t value, unsigned count,
1223 				   uint32_t incr)
1224 {
1225 	unsigned ndw = count * 2;
1226 
1227 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1228 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1229 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1230 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1231 	ib->ptr[ib->length_dw++] = ndw - 1;
1232 	for (; ndw > 0; ndw -= 2) {
1233 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1234 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1235 		value += incr;
1236 	}
1237 }
1238 
1239 /**
1240  * sdma_v5_0_vm_set_pte_pde - update the page tables using sDMA
1241  *
1242  * @ib: indirect buffer to fill with commands
1243  * @pe: addr of the page entry
1244  * @addr: dst addr to write into pe
1245  * @count: number of page entries to update
1246  * @incr: increase next addr by incr bytes
1247  * @flags: access flags
1248  *
1249  * Update the page tables using sDMA (NAVI10).
1250  */
1251 static void sdma_v5_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1252 				     uint64_t pe,
1253 				     uint64_t addr, unsigned count,
1254 				     uint32_t incr, uint64_t flags)
1255 {
1256 	/* for physically contiguous pages (vram) */
1257 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1258 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1259 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1260 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1261 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1262 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1263 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1264 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1265 	ib->ptr[ib->length_dw++] = 0;
1266 	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1267 }
1268 
1269 /**
1270  * sdma_v5_0_ring_pad_ib - pad the IB
1271  * @ring: amdgpu_ring structure holding ring information
1272  * @ib: indirect buffer to fill with padding
1273  *
1274  * Pad the IB with NOPs to a boundary multiple of 8.
1275  */
1276 static void sdma_v5_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1277 {
1278 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1279 	u32 pad_count;
1280 	int i;
1281 
1282 	pad_count = (-ib->length_dw) & 0x7;
1283 	for (i = 0; i < pad_count; i++)
1284 		if (sdma && sdma->burst_nop && (i == 0))
1285 			ib->ptr[ib->length_dw++] =
1286 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1287 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1288 		else
1289 			ib->ptr[ib->length_dw++] =
1290 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1291 }
1292 
1293 
1294 /**
1295  * sdma_v5_0_ring_emit_pipeline_sync - sync the pipeline
1296  *
1297  * @ring: amdgpu_ring pointer
1298  *
1299  * Make sure all previous operations are completed (CIK).
1300  */
1301 static void sdma_v5_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1302 {
1303 	uint32_t seq = ring->fence_drv.sync_seq;
1304 	uint64_t addr = ring->fence_drv.gpu_addr;
1305 
1306 	/* wait for idle */
1307 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1308 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1309 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1310 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1311 	amdgpu_ring_write(ring, addr & 0xfffffffc);
1312 	amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1313 	amdgpu_ring_write(ring, seq); /* reference */
1314 	amdgpu_ring_write(ring, 0xffffffff); /* mask */
1315 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1316 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1317 }
1318 
1319 
1320 /**
1321  * sdma_v5_0_ring_emit_vm_flush - vm flush using sDMA
1322  *
1323  * @ring: amdgpu_ring pointer
1324  * @vmid: vmid number to use
1325  * @pd_addr: address
1326  *
1327  * Update the page table base and flush the VM TLB
1328  * using sDMA (NAVI10).
1329  */
1330 static void sdma_v5_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1331 					 unsigned vmid, uint64_t pd_addr)
1332 {
1333 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1334 }
1335 
1336 static void sdma_v5_0_ring_emit_wreg(struct amdgpu_ring *ring,
1337 				     uint32_t reg, uint32_t val)
1338 {
1339 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1340 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1341 	amdgpu_ring_write(ring, reg);
1342 	amdgpu_ring_write(ring, val);
1343 }
1344 
1345 static void sdma_v5_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1346 					 uint32_t val, uint32_t mask)
1347 {
1348 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1349 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1350 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* equal */
1351 	amdgpu_ring_write(ring, reg << 2);
1352 	amdgpu_ring_write(ring, 0);
1353 	amdgpu_ring_write(ring, val); /* reference */
1354 	amdgpu_ring_write(ring, mask); /* mask */
1355 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1356 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10));
1357 }
1358 
1359 static void sdma_v5_0_ring_emit_reg_write_reg_wait(struct amdgpu_ring *ring,
1360 						   uint32_t reg0, uint32_t reg1,
1361 						   uint32_t ref, uint32_t mask)
1362 {
1363 	amdgpu_ring_emit_wreg(ring, reg0, ref);
1364 	/* wait for a cycle to reset vm_inv_eng*_ack */
1365 	amdgpu_ring_emit_reg_wait(ring, reg0, 0, 0);
1366 	amdgpu_ring_emit_reg_wait(ring, reg1, mask, mask);
1367 }
1368 
1369 static int sdma_v5_0_early_init(void *handle)
1370 {
1371 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1372 	int r;
1373 
1374 	r = sdma_v5_0_init_microcode(adev);
1375 	if (r)
1376 		return r;
1377 
1378 	sdma_v5_0_set_ring_funcs(adev);
1379 	sdma_v5_0_set_buffer_funcs(adev);
1380 	sdma_v5_0_set_vm_pte_funcs(adev);
1381 	sdma_v5_0_set_irq_funcs(adev);
1382 	sdma_v5_0_set_mqd_funcs(adev);
1383 
1384 	return 0;
1385 }
1386 
1387 
1388 static int sdma_v5_0_sw_init(void *handle)
1389 {
1390 	struct amdgpu_ring *ring;
1391 	int r, i;
1392 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1393 	uint32_t reg_count = ARRAY_SIZE(sdma_reg_list_5_0);
1394 	uint32_t *ptr;
1395 
1396 	/* SDMA trap event */
1397 	r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA0,
1398 			      SDMA0_5_0__SRCID__SDMA_TRAP,
1399 			      &adev->sdma.trap_irq);
1400 	if (r)
1401 		return r;
1402 
1403 	/* SDMA trap event */
1404 	r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA1,
1405 			      SDMA1_5_0__SRCID__SDMA_TRAP,
1406 			      &adev->sdma.trap_irq);
1407 	if (r)
1408 		return r;
1409 
1410 	for (i = 0; i < adev->sdma.num_instances; i++) {
1411 		ring = &adev->sdma.instance[i].ring;
1412 		ring->ring_obj = NULL;
1413 		ring->use_doorbell = true;
1414 
1415 		DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i,
1416 				ring->use_doorbell?"true":"false");
1417 
1418 		ring->doorbell_index = (i == 0) ?
1419 			(adev->doorbell_index.sdma_engine[0] << 1) //get DWORD offset
1420 			: (adev->doorbell_index.sdma_engine[1] << 1); // get DWORD offset
1421 
1422 		ring->vm_hub = AMDGPU_GFXHUB(0);
1423 		sprintf(ring->name, "sdma%d", i);
1424 		r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1425 				     (i == 0) ? AMDGPU_SDMA_IRQ_INSTANCE0 :
1426 				     AMDGPU_SDMA_IRQ_INSTANCE1,
1427 				     AMDGPU_RING_PRIO_DEFAULT, NULL);
1428 		if (r)
1429 			return r;
1430 	}
1431 
1432 	/* Allocate memory for SDMA IP Dump buffer */
1433 	ptr = kcalloc(adev->sdma.num_instances * reg_count, sizeof(uint32_t), GFP_KERNEL);
1434 	if (ptr)
1435 		adev->sdma.ip_dump = ptr;
1436 	else
1437 		DRM_ERROR("Failed to allocated memory for SDMA IP Dump\n");
1438 
1439 	return r;
1440 }
1441 
1442 static int sdma_v5_0_sw_fini(void *handle)
1443 {
1444 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1445 	int i;
1446 
1447 	for (i = 0; i < adev->sdma.num_instances; i++)
1448 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1449 
1450 	amdgpu_sdma_destroy_inst_ctx(adev, false);
1451 
1452 	kfree(adev->sdma.ip_dump);
1453 
1454 	return 0;
1455 }
1456 
1457 static int sdma_v5_0_hw_init(void *handle)
1458 {
1459 	int r;
1460 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1461 
1462 	sdma_v5_0_init_golden_registers(adev);
1463 
1464 	r = sdma_v5_0_start(adev);
1465 
1466 	return r;
1467 }
1468 
1469 static int sdma_v5_0_hw_fini(void *handle)
1470 {
1471 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1472 
1473 	if (amdgpu_sriov_vf(adev))
1474 		return 0;
1475 
1476 	sdma_v5_0_ctx_switch_enable(adev, false);
1477 	sdma_v5_0_enable(adev, false);
1478 
1479 	return 0;
1480 }
1481 
1482 static int sdma_v5_0_suspend(void *handle)
1483 {
1484 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1485 
1486 	return sdma_v5_0_hw_fini(adev);
1487 }
1488 
1489 static int sdma_v5_0_resume(void *handle)
1490 {
1491 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1492 
1493 	return sdma_v5_0_hw_init(adev);
1494 }
1495 
1496 static bool sdma_v5_0_is_idle(void *handle)
1497 {
1498 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1499 	u32 i;
1500 
1501 	for (i = 0; i < adev->sdma.num_instances; i++) {
1502 		u32 tmp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_STATUS_REG));
1503 
1504 		if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1505 			return false;
1506 	}
1507 
1508 	return true;
1509 }
1510 
1511 static int sdma_v5_0_wait_for_idle(void *handle)
1512 {
1513 	unsigned i;
1514 	u32 sdma0, sdma1;
1515 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1516 
1517 	for (i = 0; i < adev->usec_timeout; i++) {
1518 		sdma0 = RREG32(sdma_v5_0_get_reg_offset(adev, 0, mmSDMA0_STATUS_REG));
1519 		sdma1 = RREG32(sdma_v5_0_get_reg_offset(adev, 1, mmSDMA0_STATUS_REG));
1520 
1521 		if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK)
1522 			return 0;
1523 		udelay(1);
1524 	}
1525 	return -ETIMEDOUT;
1526 }
1527 
1528 static int sdma_v5_0_soft_reset(void *handle)
1529 {
1530 	/* todo */
1531 
1532 	return 0;
1533 }
1534 
1535 static int sdma_v5_0_ring_preempt_ib(struct amdgpu_ring *ring)
1536 {
1537 	int i, r = 0;
1538 	struct amdgpu_device *adev = ring->adev;
1539 	u32 index = 0;
1540 	u64 sdma_gfx_preempt;
1541 
1542 	amdgpu_sdma_get_index_from_ring(ring, &index);
1543 	if (index == 0)
1544 		sdma_gfx_preempt = mmSDMA0_GFX_PREEMPT;
1545 	else
1546 		sdma_gfx_preempt = mmSDMA1_GFX_PREEMPT;
1547 
1548 	/* assert preemption condition */
1549 	amdgpu_ring_set_preempt_cond_exec(ring, false);
1550 
1551 	/* emit the trailing fence */
1552 	ring->trail_seq += 1;
1553 	amdgpu_ring_alloc(ring, 10);
1554 	sdma_v5_0_ring_emit_fence(ring, ring->trail_fence_gpu_addr,
1555 				  ring->trail_seq, 0);
1556 	amdgpu_ring_commit(ring);
1557 
1558 	/* assert IB preemption */
1559 	WREG32(sdma_gfx_preempt, 1);
1560 
1561 	/* poll the trailing fence */
1562 	for (i = 0; i < adev->usec_timeout; i++) {
1563 		if (ring->trail_seq ==
1564 		    le32_to_cpu(*(ring->trail_fence_cpu_addr)))
1565 			break;
1566 		udelay(1);
1567 	}
1568 
1569 	if (i >= adev->usec_timeout) {
1570 		r = -EINVAL;
1571 		DRM_ERROR("ring %d failed to be preempted\n", ring->idx);
1572 	}
1573 
1574 	/* deassert IB preemption */
1575 	WREG32(sdma_gfx_preempt, 0);
1576 
1577 	/* deassert the preemption condition */
1578 	amdgpu_ring_set_preempt_cond_exec(ring, true);
1579 	return r;
1580 }
1581 
1582 static int sdma_v5_0_set_trap_irq_state(struct amdgpu_device *adev,
1583 					struct amdgpu_irq_src *source,
1584 					unsigned type,
1585 					enum amdgpu_interrupt_state state)
1586 {
1587 	u32 sdma_cntl;
1588 
1589 	if (!amdgpu_sriov_vf(adev)) {
1590 		u32 reg_offset = (type == AMDGPU_SDMA_IRQ_INSTANCE0) ?
1591 			sdma_v5_0_get_reg_offset(adev, 0, mmSDMA0_CNTL) :
1592 			sdma_v5_0_get_reg_offset(adev, 1, mmSDMA0_CNTL);
1593 
1594 		sdma_cntl = RREG32(reg_offset);
1595 		sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
1596 					  state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1597 		WREG32(reg_offset, sdma_cntl);
1598 	}
1599 
1600 	return 0;
1601 }
1602 
1603 static int sdma_v5_0_process_trap_irq(struct amdgpu_device *adev,
1604 				      struct amdgpu_irq_src *source,
1605 				      struct amdgpu_iv_entry *entry)
1606 {
1607 	uint32_t mes_queue_id = entry->src_data[0];
1608 
1609 	DRM_DEBUG("IH: SDMA trap\n");
1610 
1611 	if (adev->enable_mes && (mes_queue_id & AMDGPU_FENCE_MES_QUEUE_FLAG)) {
1612 		struct amdgpu_mes_queue *queue;
1613 
1614 		mes_queue_id &= AMDGPU_FENCE_MES_QUEUE_ID_MASK;
1615 
1616 		spin_lock(&adev->mes.queue_id_lock);
1617 		queue = idr_find(&adev->mes.queue_id_idr, mes_queue_id);
1618 		if (queue) {
1619 			DRM_DEBUG("process smda queue id = %d\n", mes_queue_id);
1620 			amdgpu_fence_process(queue->ring);
1621 		}
1622 		spin_unlock(&adev->mes.queue_id_lock);
1623 		return 0;
1624 	}
1625 
1626 	switch (entry->client_id) {
1627 	case SOC15_IH_CLIENTID_SDMA0:
1628 		switch (entry->ring_id) {
1629 		case 0:
1630 			amdgpu_fence_process(&adev->sdma.instance[0].ring);
1631 			break;
1632 		case 1:
1633 			/* XXX compute */
1634 			break;
1635 		case 2:
1636 			/* XXX compute */
1637 			break;
1638 		case 3:
1639 			/* XXX page queue*/
1640 			break;
1641 		}
1642 		break;
1643 	case SOC15_IH_CLIENTID_SDMA1:
1644 		switch (entry->ring_id) {
1645 		case 0:
1646 			amdgpu_fence_process(&adev->sdma.instance[1].ring);
1647 			break;
1648 		case 1:
1649 			/* XXX compute */
1650 			break;
1651 		case 2:
1652 			/* XXX compute */
1653 			break;
1654 		case 3:
1655 			/* XXX page queue*/
1656 			break;
1657 		}
1658 		break;
1659 	}
1660 	return 0;
1661 }
1662 
1663 static int sdma_v5_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1664 					      struct amdgpu_irq_src *source,
1665 					      struct amdgpu_iv_entry *entry)
1666 {
1667 	return 0;
1668 }
1669 
1670 static void sdma_v5_0_update_medium_grain_clock_gating(struct amdgpu_device *adev,
1671 						       bool enable)
1672 {
1673 	uint32_t data, def;
1674 	int i;
1675 
1676 	for (i = 0; i < adev->sdma.num_instances; i++) {
1677 		if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1678 			/* Enable sdma clock gating */
1679 			def = data = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL));
1680 			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1681 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1682 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1683 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1684 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1685 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1686 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1687 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1688 			if (def != data)
1689 				WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL), data);
1690 		} else {
1691 			/* Disable sdma clock gating */
1692 			def = data = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL));
1693 			data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1694 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1695 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1696 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1697 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1698 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1699 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1700 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1701 			if (def != data)
1702 				WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL), data);
1703 		}
1704 	}
1705 }
1706 
1707 static void sdma_v5_0_update_medium_grain_light_sleep(struct amdgpu_device *adev,
1708 						      bool enable)
1709 {
1710 	uint32_t data, def;
1711 	int i;
1712 
1713 	for (i = 0; i < adev->sdma.num_instances; i++) {
1714 		if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1715 			/* Enable sdma mem light sleep */
1716 			def = data = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL));
1717 			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1718 			if (def != data)
1719 				WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL), data);
1720 
1721 		} else {
1722 			/* Disable sdma mem light sleep */
1723 			def = data = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL));
1724 			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1725 			if (def != data)
1726 				WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL), data);
1727 
1728 		}
1729 	}
1730 }
1731 
1732 static int sdma_v5_0_set_clockgating_state(void *handle,
1733 					   enum amd_clockgating_state state)
1734 {
1735 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1736 
1737 	if (amdgpu_sriov_vf(adev))
1738 		return 0;
1739 
1740 	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
1741 	case IP_VERSION(5, 0, 0):
1742 	case IP_VERSION(5, 0, 2):
1743 	case IP_VERSION(5, 0, 5):
1744 		sdma_v5_0_update_medium_grain_clock_gating(adev,
1745 				state == AMD_CG_STATE_GATE);
1746 		sdma_v5_0_update_medium_grain_light_sleep(adev,
1747 				state == AMD_CG_STATE_GATE);
1748 		break;
1749 	default:
1750 		break;
1751 	}
1752 
1753 	return 0;
1754 }
1755 
1756 static int sdma_v5_0_set_powergating_state(void *handle,
1757 					  enum amd_powergating_state state)
1758 {
1759 	return 0;
1760 }
1761 
1762 static void sdma_v5_0_get_clockgating_state(void *handle, u64 *flags)
1763 {
1764 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1765 	int data;
1766 
1767 	if (amdgpu_sriov_vf(adev))
1768 		*flags = 0;
1769 
1770 	/* AMD_CG_SUPPORT_SDMA_MGCG */
1771 	data = RREG32(sdma_v5_0_get_reg_offset(adev, 0, mmSDMA0_CLK_CTRL));
1772 	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
1773 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1774 
1775 	/* AMD_CG_SUPPORT_SDMA_LS */
1776 	data = RREG32(sdma_v5_0_get_reg_offset(adev, 0, mmSDMA0_POWER_CNTL));
1777 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1778 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
1779 }
1780 
1781 static void sdma_v5_0_print_ip_state(void *handle, struct drm_printer *p)
1782 {
1783 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1784 	int i, j;
1785 	uint32_t reg_count = ARRAY_SIZE(sdma_reg_list_5_0);
1786 	uint32_t instance_offset;
1787 
1788 	if (!adev->sdma.ip_dump)
1789 		return;
1790 
1791 	drm_printf(p, "num_instances:%d\n", adev->sdma.num_instances);
1792 	for (i = 0; i < adev->sdma.num_instances; i++) {
1793 		instance_offset = i * reg_count;
1794 		drm_printf(p, "\nInstance:%d\n", i);
1795 
1796 		for (j = 0; j < reg_count; j++)
1797 			drm_printf(p, "%-50s \t 0x%08x\n", sdma_reg_list_5_0[j].reg_name,
1798 				   adev->sdma.ip_dump[instance_offset + j]);
1799 	}
1800 }
1801 
1802 static void sdma_v5_0_dump_ip_state(void *handle)
1803 {
1804 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1805 	int i, j;
1806 	uint32_t instance_offset;
1807 	uint32_t reg_count = ARRAY_SIZE(sdma_reg_list_5_0);
1808 
1809 	if (!adev->sdma.ip_dump)
1810 		return;
1811 
1812 	amdgpu_gfx_off_ctrl(adev, false);
1813 	for (i = 0; i < adev->sdma.num_instances; i++) {
1814 		instance_offset = i * reg_count;
1815 		for (j = 0; j < reg_count; j++)
1816 			adev->sdma.ip_dump[instance_offset + j] =
1817 				RREG32(sdma_v5_0_get_reg_offset(adev, i,
1818 				       sdma_reg_list_5_0[j].reg_offset));
1819 	}
1820 	amdgpu_gfx_off_ctrl(adev, true);
1821 }
1822 
1823 static const struct amd_ip_funcs sdma_v5_0_ip_funcs = {
1824 	.name = "sdma_v5_0",
1825 	.early_init = sdma_v5_0_early_init,
1826 	.late_init = NULL,
1827 	.sw_init = sdma_v5_0_sw_init,
1828 	.sw_fini = sdma_v5_0_sw_fini,
1829 	.hw_init = sdma_v5_0_hw_init,
1830 	.hw_fini = sdma_v5_0_hw_fini,
1831 	.suspend = sdma_v5_0_suspend,
1832 	.resume = sdma_v5_0_resume,
1833 	.is_idle = sdma_v5_0_is_idle,
1834 	.wait_for_idle = sdma_v5_0_wait_for_idle,
1835 	.soft_reset = sdma_v5_0_soft_reset,
1836 	.set_clockgating_state = sdma_v5_0_set_clockgating_state,
1837 	.set_powergating_state = sdma_v5_0_set_powergating_state,
1838 	.get_clockgating_state = sdma_v5_0_get_clockgating_state,
1839 	.dump_ip_state = sdma_v5_0_dump_ip_state,
1840 	.print_ip_state = sdma_v5_0_print_ip_state,
1841 };
1842 
1843 static const struct amdgpu_ring_funcs sdma_v5_0_ring_funcs = {
1844 	.type = AMDGPU_RING_TYPE_SDMA,
1845 	.align_mask = 0xf,
1846 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1847 	.support_64bit_ptrs = true,
1848 	.secure_submission_supported = true,
1849 	.get_rptr = sdma_v5_0_ring_get_rptr,
1850 	.get_wptr = sdma_v5_0_ring_get_wptr,
1851 	.set_wptr = sdma_v5_0_ring_set_wptr,
1852 	.emit_frame_size =
1853 		5 + /* sdma_v5_0_ring_init_cond_exec */
1854 		6 + /* sdma_v5_0_ring_emit_hdp_flush */
1855 		3 + /* hdp_invalidate */
1856 		6 + /* sdma_v5_0_ring_emit_pipeline_sync */
1857 		/* sdma_v5_0_ring_emit_vm_flush */
1858 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
1859 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 * 2 +
1860 		10 + 10 + 10, /* sdma_v5_0_ring_emit_fence x3 for user fence, vm fence */
1861 	.emit_ib_size = 5 + 7 + 6, /* sdma_v5_0_ring_emit_ib */
1862 	.emit_ib = sdma_v5_0_ring_emit_ib,
1863 	.emit_mem_sync = sdma_v5_0_ring_emit_mem_sync,
1864 	.emit_fence = sdma_v5_0_ring_emit_fence,
1865 	.emit_pipeline_sync = sdma_v5_0_ring_emit_pipeline_sync,
1866 	.emit_vm_flush = sdma_v5_0_ring_emit_vm_flush,
1867 	.emit_hdp_flush = sdma_v5_0_ring_emit_hdp_flush,
1868 	.test_ring = sdma_v5_0_ring_test_ring,
1869 	.test_ib = sdma_v5_0_ring_test_ib,
1870 	.insert_nop = sdma_v5_0_ring_insert_nop,
1871 	.pad_ib = sdma_v5_0_ring_pad_ib,
1872 	.emit_wreg = sdma_v5_0_ring_emit_wreg,
1873 	.emit_reg_wait = sdma_v5_0_ring_emit_reg_wait,
1874 	.emit_reg_write_reg_wait = sdma_v5_0_ring_emit_reg_write_reg_wait,
1875 	.init_cond_exec = sdma_v5_0_ring_init_cond_exec,
1876 	.preempt_ib = sdma_v5_0_ring_preempt_ib,
1877 };
1878 
1879 static void sdma_v5_0_set_ring_funcs(struct amdgpu_device *adev)
1880 {
1881 	int i;
1882 
1883 	for (i = 0; i < adev->sdma.num_instances; i++) {
1884 		adev->sdma.instance[i].ring.funcs = &sdma_v5_0_ring_funcs;
1885 		adev->sdma.instance[i].ring.me = i;
1886 	}
1887 }
1888 
1889 static const struct amdgpu_irq_src_funcs sdma_v5_0_trap_irq_funcs = {
1890 	.set = sdma_v5_0_set_trap_irq_state,
1891 	.process = sdma_v5_0_process_trap_irq,
1892 };
1893 
1894 static const struct amdgpu_irq_src_funcs sdma_v5_0_illegal_inst_irq_funcs = {
1895 	.process = sdma_v5_0_process_illegal_inst_irq,
1896 };
1897 
1898 static void sdma_v5_0_set_irq_funcs(struct amdgpu_device *adev)
1899 {
1900 	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE0 +
1901 					adev->sdma.num_instances;
1902 	adev->sdma.trap_irq.funcs = &sdma_v5_0_trap_irq_funcs;
1903 	adev->sdma.illegal_inst_irq.funcs = &sdma_v5_0_illegal_inst_irq_funcs;
1904 }
1905 
1906 /**
1907  * sdma_v5_0_emit_copy_buffer - copy buffer using the sDMA engine
1908  *
1909  * @ib: indirect buffer to copy to
1910  * @src_offset: src GPU address
1911  * @dst_offset: dst GPU address
1912  * @byte_count: number of bytes to xfer
1913  * @copy_flags: copy flags for the buffers
1914  *
1915  * Copy GPU buffers using the DMA engine (NAVI10).
1916  * Used by the amdgpu ttm implementation to move pages if
1917  * registered as the asic copy callback.
1918  */
1919 static void sdma_v5_0_emit_copy_buffer(struct amdgpu_ib *ib,
1920 				       uint64_t src_offset,
1921 				       uint64_t dst_offset,
1922 				       uint32_t byte_count,
1923 				       uint32_t copy_flags)
1924 {
1925 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1926 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
1927 		SDMA_PKT_COPY_LINEAR_HEADER_TMZ((copy_flags & AMDGPU_COPY_FLAGS_TMZ) ? 1 : 0);
1928 	ib->ptr[ib->length_dw++] = byte_count - 1;
1929 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1930 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1931 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1932 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1933 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1934 }
1935 
1936 /**
1937  * sdma_v5_0_emit_fill_buffer - fill buffer using the sDMA engine
1938  *
1939  * @ib: indirect buffer to fill
1940  * @src_data: value to write to buffer
1941  * @dst_offset: dst GPU address
1942  * @byte_count: number of bytes to xfer
1943  *
1944  * Fill GPU buffers using the DMA engine (NAVI10).
1945  */
1946 static void sdma_v5_0_emit_fill_buffer(struct amdgpu_ib *ib,
1947 				       uint32_t src_data,
1948 				       uint64_t dst_offset,
1949 				       uint32_t byte_count)
1950 {
1951 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1952 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1953 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1954 	ib->ptr[ib->length_dw++] = src_data;
1955 	ib->ptr[ib->length_dw++] = byte_count - 1;
1956 }
1957 
1958 static const struct amdgpu_buffer_funcs sdma_v5_0_buffer_funcs = {
1959 	.copy_max_bytes = 0x400000,
1960 	.copy_num_dw = 7,
1961 	.emit_copy_buffer = sdma_v5_0_emit_copy_buffer,
1962 
1963 	.fill_max_bytes = 0x400000,
1964 	.fill_num_dw = 5,
1965 	.emit_fill_buffer = sdma_v5_0_emit_fill_buffer,
1966 };
1967 
1968 static void sdma_v5_0_set_buffer_funcs(struct amdgpu_device *adev)
1969 {
1970 	if (adev->mman.buffer_funcs == NULL) {
1971 		adev->mman.buffer_funcs = &sdma_v5_0_buffer_funcs;
1972 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1973 	}
1974 }
1975 
1976 static const struct amdgpu_vm_pte_funcs sdma_v5_0_vm_pte_funcs = {
1977 	.copy_pte_num_dw = 7,
1978 	.copy_pte = sdma_v5_0_vm_copy_pte,
1979 	.write_pte = sdma_v5_0_vm_write_pte,
1980 	.set_pte_pde = sdma_v5_0_vm_set_pte_pde,
1981 };
1982 
1983 static void sdma_v5_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1984 {
1985 	unsigned i;
1986 
1987 	if (adev->vm_manager.vm_pte_funcs == NULL) {
1988 		adev->vm_manager.vm_pte_funcs = &sdma_v5_0_vm_pte_funcs;
1989 		for (i = 0; i < adev->sdma.num_instances; i++) {
1990 			adev->vm_manager.vm_pte_scheds[i] =
1991 				&adev->sdma.instance[i].ring.sched;
1992 		}
1993 		adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
1994 	}
1995 }
1996 
1997 const struct amdgpu_ip_block_version sdma_v5_0_ip_block = {
1998 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1999 	.major = 5,
2000 	.minor = 0,
2001 	.rev = 0,
2002 	.funcs = &sdma_v5_0_ip_funcs,
2003 };
2004