xref: /linux/drivers/gpu/drm/amd/amdgpu/sdma_v5_0.c (revision 8c69d0298fb56f603e694cf0188e25b58dfe8b7e)
1 /*
2  * Copyright 2019 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28 
29 #include "amdgpu.h"
30 #include "amdgpu_ucode.h"
31 #include "amdgpu_trace.h"
32 
33 #include "gc/gc_10_1_0_offset.h"
34 #include "gc/gc_10_1_0_sh_mask.h"
35 #include "ivsrcid/sdma0/irqsrcs_sdma0_5_0.h"
36 #include "ivsrcid/sdma1/irqsrcs_sdma1_5_0.h"
37 
38 #include "soc15_common.h"
39 #include "soc15.h"
40 #include "navi10_sdma_pkt_open.h"
41 #include "nbio_v2_3.h"
42 #include "sdma_common.h"
43 #include "sdma_v5_0.h"
44 
45 MODULE_FIRMWARE("amdgpu/navi10_sdma.bin");
46 MODULE_FIRMWARE("amdgpu/navi10_sdma1.bin");
47 
48 MODULE_FIRMWARE("amdgpu/navi14_sdma.bin");
49 MODULE_FIRMWARE("amdgpu/navi14_sdma1.bin");
50 
51 MODULE_FIRMWARE("amdgpu/navi12_sdma.bin");
52 MODULE_FIRMWARE("amdgpu/navi12_sdma1.bin");
53 
54 #define SDMA1_REG_OFFSET 0x600
55 #define SDMA0_HYP_DEC_REG_START 0x5880
56 #define SDMA0_HYP_DEC_REG_END 0x5893
57 #define SDMA1_HYP_DEC_REG_OFFSET 0x20
58 
59 static void sdma_v5_0_set_ring_funcs(struct amdgpu_device *adev);
60 static void sdma_v5_0_set_buffer_funcs(struct amdgpu_device *adev);
61 static void sdma_v5_0_set_vm_pte_funcs(struct amdgpu_device *adev);
62 static void sdma_v5_0_set_irq_funcs(struct amdgpu_device *adev);
63 
64 static const struct soc15_reg_golden golden_settings_sdma_5[] = {
65 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_CHICKEN_BITS, 0xffbf1f0f, 0x03ab0107),
66 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
67 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
68 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
69 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
70 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
71 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
72 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
73 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
74 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
75 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
76 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_UTCL1_PAGE, 0x00ffffff, 0x000c5c00),
77 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_CHICKEN_BITS, 0xffbf1f0f, 0x03ab0107),
78 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
79 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
80 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
81 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
82 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
83 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
84 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
85 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
86 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
87 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
88 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_UTCL1_PAGE, 0x00ffffff, 0x000c5c00)
89 };
90 
91 static const struct soc15_reg_golden golden_settings_sdma_5_sriov[] = {
92 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
93 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
94 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
95 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
96 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
97 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
98 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
99 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
100 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
101 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
102 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
103 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
104 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
105 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
106 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
107 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
108 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
109 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
110 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
111 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
112 };
113 
114 static const struct soc15_reg_golden golden_settings_sdma_nv10[] = {
115 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
116 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
117 };
118 
119 static const struct soc15_reg_golden golden_settings_sdma_nv14[] = {
120 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
121 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
122 };
123 
124 static const struct soc15_reg_golden golden_settings_sdma_nv12[] = {
125 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
126 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GB_ADDR_CONFIG, 0x001877ff, 0x00000044),
127 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x001877ff, 0x00000044),
128 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GB_ADDR_CONFIG, 0x001877ff, 0x00000044),
129 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x001877ff, 0x00000044),
130 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
131 };
132 
133 static u32 sdma_v5_0_get_reg_offset(struct amdgpu_device *adev, u32 instance, u32 internal_offset)
134 {
135 	u32 base;
136 
137 	if (internal_offset >= SDMA0_HYP_DEC_REG_START &&
138 	    internal_offset <= SDMA0_HYP_DEC_REG_END) {
139 		base = adev->reg_offset[GC_HWIP][0][1];
140 		if (instance == 1)
141 			internal_offset += SDMA1_HYP_DEC_REG_OFFSET;
142 	} else {
143 		base = adev->reg_offset[GC_HWIP][0][0];
144 		if (instance == 1)
145 			internal_offset += SDMA1_REG_OFFSET;
146 	}
147 
148 	return base + internal_offset;
149 }
150 
151 static void sdma_v5_0_init_golden_registers(struct amdgpu_device *adev)
152 {
153 	switch (adev->asic_type) {
154 	case CHIP_NAVI10:
155 		soc15_program_register_sequence(adev,
156 						golden_settings_sdma_5,
157 						(const u32)ARRAY_SIZE(golden_settings_sdma_5));
158 		soc15_program_register_sequence(adev,
159 						golden_settings_sdma_nv10,
160 						(const u32)ARRAY_SIZE(golden_settings_sdma_nv10));
161 		break;
162 	case CHIP_NAVI14:
163 		soc15_program_register_sequence(adev,
164 						golden_settings_sdma_5,
165 						(const u32)ARRAY_SIZE(golden_settings_sdma_5));
166 		soc15_program_register_sequence(adev,
167 						golden_settings_sdma_nv14,
168 						(const u32)ARRAY_SIZE(golden_settings_sdma_nv14));
169 		break;
170 	case CHIP_NAVI12:
171 		if (amdgpu_sriov_vf(adev))
172 			soc15_program_register_sequence(adev,
173 							golden_settings_sdma_5_sriov,
174 							(const u32)ARRAY_SIZE(golden_settings_sdma_5_sriov));
175 		else
176 			soc15_program_register_sequence(adev,
177 							golden_settings_sdma_5,
178 							(const u32)ARRAY_SIZE(golden_settings_sdma_5));
179 		soc15_program_register_sequence(adev,
180 						golden_settings_sdma_nv12,
181 						(const u32)ARRAY_SIZE(golden_settings_sdma_nv12));
182 		break;
183 	default:
184 		break;
185 	}
186 }
187 
188 /**
189  * sdma_v5_0_init_microcode - load ucode images from disk
190  *
191  * @adev: amdgpu_device pointer
192  *
193  * Use the firmware interface to load the ucode images into
194  * the driver (not loaded into hw).
195  * Returns 0 on success, error on failure.
196  */
197 
198 // emulation only, won't work on real chip
199 // navi10 real chip need to use PSP to load firmware
200 static int sdma_v5_0_init_microcode(struct amdgpu_device *adev)
201 {
202 	const char *chip_name;
203 	char fw_name[30];
204 	int err = 0, i;
205 	struct amdgpu_firmware_info *info = NULL;
206 	const struct common_firmware_header *header = NULL;
207 	const struct sdma_firmware_header_v1_0 *hdr;
208 
209 	if (amdgpu_sriov_vf(adev) && (adev->asic_type == CHIP_NAVI12))
210 		return 0;
211 
212 	DRM_DEBUG("\n");
213 
214 	switch (adev->asic_type) {
215 	case CHIP_NAVI10:
216 		chip_name = "navi10";
217 		break;
218 	case CHIP_NAVI14:
219 		chip_name = "navi14";
220 		break;
221 	case CHIP_NAVI12:
222 		chip_name = "navi12";
223 		break;
224 	default:
225 		BUG();
226 	}
227 
228 	for (i = 0; i < adev->sdma.num_instances; i++) {
229 		if (i == 0)
230 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
231 		else
232 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
233 		err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
234 		if (err)
235 			goto out;
236 		err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
237 		if (err)
238 			goto out;
239 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
240 		adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
241 		adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
242 		if (adev->sdma.instance[i].feature_version >= 20)
243 			adev->sdma.instance[i].burst_nop = true;
244 		DRM_DEBUG("psp_load == '%s'\n",
245 				adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
246 
247 		if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
248 			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
249 			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
250 			info->fw = adev->sdma.instance[i].fw;
251 			header = (const struct common_firmware_header *)info->fw->data;
252 			adev->firmware.fw_size +=
253 				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
254 		}
255 	}
256 out:
257 	if (err) {
258 		DRM_ERROR("sdma_v5_0: Failed to load firmware \"%s\"\n", fw_name);
259 		for (i = 0; i < adev->sdma.num_instances; i++) {
260 			release_firmware(adev->sdma.instance[i].fw);
261 			adev->sdma.instance[i].fw = NULL;
262 		}
263 	}
264 	return err;
265 }
266 
267 static unsigned sdma_v5_0_ring_init_cond_exec(struct amdgpu_ring *ring)
268 {
269 	unsigned ret;
270 
271 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_COND_EXE));
272 	amdgpu_ring_write(ring, lower_32_bits(ring->cond_exe_gpu_addr));
273 	amdgpu_ring_write(ring, upper_32_bits(ring->cond_exe_gpu_addr));
274 	amdgpu_ring_write(ring, 1);
275 	ret = ring->wptr & ring->buf_mask;/* this is the offset we need patch later */
276 	amdgpu_ring_write(ring, 0x55aa55aa);/* insert dummy here and patch it later */
277 
278 	return ret;
279 }
280 
281 static void sdma_v5_0_ring_patch_cond_exec(struct amdgpu_ring *ring,
282 					   unsigned offset)
283 {
284 	unsigned cur;
285 
286 	BUG_ON(offset > ring->buf_mask);
287 	BUG_ON(ring->ring[offset] != 0x55aa55aa);
288 
289 	cur = (ring->wptr - 1) & ring->buf_mask;
290 	if (cur > offset)
291 		ring->ring[offset] = cur - offset;
292 	else
293 		ring->ring[offset] = (ring->buf_mask + 1) - offset + cur;
294 }
295 
296 /**
297  * sdma_v5_0_ring_get_rptr - get the current read pointer
298  *
299  * @ring: amdgpu ring pointer
300  *
301  * Get the current rptr from the hardware (NAVI10+).
302  */
303 static uint64_t sdma_v5_0_ring_get_rptr(struct amdgpu_ring *ring)
304 {
305 	u64 *rptr;
306 
307 	/* XXX check if swapping is necessary on BE */
308 	rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
309 
310 	DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
311 	return ((*rptr) >> 2);
312 }
313 
314 /**
315  * sdma_v5_0_ring_get_wptr - get the current write pointer
316  *
317  * @ring: amdgpu ring pointer
318  *
319  * Get the current wptr from the hardware (NAVI10+).
320  */
321 static uint64_t sdma_v5_0_ring_get_wptr(struct amdgpu_ring *ring)
322 {
323 	struct amdgpu_device *adev = ring->adev;
324 	u64 wptr;
325 
326 	if (ring->use_doorbell) {
327 		/* XXX check if swapping is necessary on BE */
328 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
329 		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
330 	} else {
331 		wptr = RREG32(sdma_v5_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI));
332 		wptr = wptr << 32;
333 		wptr |= RREG32(sdma_v5_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR));
334 		DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n", ring->me, wptr);
335 	}
336 
337 	return wptr >> 2;
338 }
339 
340 /**
341  * sdma_v5_0_ring_set_wptr - commit the write pointer
342  *
343  * @ring: amdgpu ring pointer
344  *
345  * Write the wptr back to the hardware (NAVI10+).
346  */
347 static void sdma_v5_0_ring_set_wptr(struct amdgpu_ring *ring)
348 {
349 	struct amdgpu_device *adev = ring->adev;
350 
351 	DRM_DEBUG("Setting write pointer\n");
352 	if (ring->use_doorbell) {
353 		DRM_DEBUG("Using doorbell -- "
354 				"wptr_offs == 0x%08x "
355 				"lower_32_bits(ring->wptr) << 2 == 0x%08x "
356 				"upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
357 				ring->wptr_offs,
358 				lower_32_bits(ring->wptr << 2),
359 				upper_32_bits(ring->wptr << 2));
360 		/* XXX check if swapping is necessary on BE */
361 		adev->wb.wb[ring->wptr_offs] = lower_32_bits(ring->wptr << 2);
362 		adev->wb.wb[ring->wptr_offs + 1] = upper_32_bits(ring->wptr << 2);
363 		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
364 				ring->doorbell_index, ring->wptr << 2);
365 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
366 	} else {
367 		DRM_DEBUG("Not using doorbell -- "
368 				"mmSDMA%i_GFX_RB_WPTR == 0x%08x "
369 				"mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
370 				ring->me,
371 				lower_32_bits(ring->wptr << 2),
372 				ring->me,
373 				upper_32_bits(ring->wptr << 2));
374 		WREG32(sdma_v5_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR),
375 			lower_32_bits(ring->wptr << 2));
376 		WREG32(sdma_v5_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI),
377 			upper_32_bits(ring->wptr << 2));
378 	}
379 }
380 
381 static void sdma_v5_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
382 {
383 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
384 	int i;
385 
386 	for (i = 0; i < count; i++)
387 		if (sdma && sdma->burst_nop && (i == 0))
388 			amdgpu_ring_write(ring, ring->funcs->nop |
389 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
390 		else
391 			amdgpu_ring_write(ring, ring->funcs->nop);
392 }
393 
394 /**
395  * sdma_v5_0_ring_emit_ib - Schedule an IB on the DMA engine
396  *
397  * @ring: amdgpu ring pointer
398  * @job: job to retrieve vmid from
399  * @ib: IB object to schedule
400  * @flags: unused
401  *
402  * Schedule an IB in the DMA ring (NAVI10).
403  */
404 static void sdma_v5_0_ring_emit_ib(struct amdgpu_ring *ring,
405 				   struct amdgpu_job *job,
406 				   struct amdgpu_ib *ib,
407 				   uint32_t flags)
408 {
409 	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
410 	uint64_t csa_mc_addr = amdgpu_sdma_get_csa_mc_addr(ring, vmid);
411 
412 	/* An IB packet must end on a 8 DW boundary--the next dword
413 	 * must be on a 8-dword boundary. Our IB packet below is 6
414 	 * dwords long, thus add x number of NOPs, such that, in
415 	 * modular arithmetic,
416 	 * wptr + 6 + x = 8k, k >= 0, which in C is,
417 	 * (wptr + 6 + x) % 8 = 0.
418 	 * The expression below, is a solution of x.
419 	 */
420 	sdma_v5_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
421 
422 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
423 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
424 	/* base must be 32 byte aligned */
425 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
426 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
427 	amdgpu_ring_write(ring, ib->length_dw);
428 	amdgpu_ring_write(ring, lower_32_bits(csa_mc_addr));
429 	amdgpu_ring_write(ring, upper_32_bits(csa_mc_addr));
430 }
431 
432 /**
433  * sdma_v5_0_ring_emit_mem_sync - flush the IB by graphics cache rinse
434  *
435  * @ring: amdgpu ring pointer
436  * @job: job to retrieve vmid from
437  * @ib: IB object to schedule
438  *
439  * flush the IB by graphics cache rinse.
440  */
441 static void sdma_v5_0_ring_emit_mem_sync(struct amdgpu_ring *ring)
442 {
443     uint32_t gcr_cntl =
444 		    SDMA_GCR_GL2_INV | SDMA_GCR_GL2_WB | SDMA_GCR_GLM_INV |
445 			SDMA_GCR_GL1_INV | SDMA_GCR_GLV_INV | SDMA_GCR_GLK_INV |
446 			SDMA_GCR_GLI_INV(1);
447 
448 	/* flush entire cache L0/L1/L2, this can be optimized by performance requirement */
449 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_GCR_REQ));
450 	amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD1_BASE_VA_31_7(0));
451 	amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD2_GCR_CONTROL_15_0(gcr_cntl) |
452 			SDMA_PKT_GCR_REQ_PAYLOAD2_BASE_VA_47_32(0));
453 	amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD3_LIMIT_VA_31_7(0) |
454 			SDMA_PKT_GCR_REQ_PAYLOAD3_GCR_CONTROL_18_16(gcr_cntl >> 16));
455 	amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD4_LIMIT_VA_47_32(0) |
456 			SDMA_PKT_GCR_REQ_PAYLOAD4_VMID(0));
457 }
458 
459 /**
460  * sdma_v5_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
461  *
462  * @ring: amdgpu ring pointer
463  *
464  * Emit an hdp flush packet on the requested DMA ring.
465  */
466 static void sdma_v5_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
467 {
468 	struct amdgpu_device *adev = ring->adev;
469 	u32 ref_and_mask = 0;
470 	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
471 
472 	if (ring->me == 0)
473 		ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0;
474 	else
475 		ref_and_mask = nbio_hf_reg->ref_and_mask_sdma1;
476 
477 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
478 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
479 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
480 	amdgpu_ring_write(ring, (adev->nbio.funcs->get_hdp_flush_done_offset(adev)) << 2);
481 	amdgpu_ring_write(ring, (adev->nbio.funcs->get_hdp_flush_req_offset(adev)) << 2);
482 	amdgpu_ring_write(ring, ref_and_mask); /* reference */
483 	amdgpu_ring_write(ring, ref_and_mask); /* mask */
484 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
485 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
486 }
487 
488 /**
489  * sdma_v5_0_ring_emit_fence - emit a fence on the DMA ring
490  *
491  * @ring: amdgpu ring pointer
492  * @addr: address
493  * @seq: sequence number
494  * @flags: fence related flags
495  *
496  * Add a DMA fence packet to the ring to write
497  * the fence seq number and DMA trap packet to generate
498  * an interrupt if needed (NAVI10).
499  */
500 static void sdma_v5_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
501 				      unsigned flags)
502 {
503 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
504 	/* write the fence */
505 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE) |
506 			  SDMA_PKT_FENCE_HEADER_MTYPE(0x3)); /* Ucached(UC) */
507 	/* zero in first two bits */
508 	BUG_ON(addr & 0x3);
509 	amdgpu_ring_write(ring, lower_32_bits(addr));
510 	amdgpu_ring_write(ring, upper_32_bits(addr));
511 	amdgpu_ring_write(ring, lower_32_bits(seq));
512 
513 	/* optionally write high bits as well */
514 	if (write64bit) {
515 		addr += 4;
516 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE) |
517 				  SDMA_PKT_FENCE_HEADER_MTYPE(0x3));
518 		/* zero in first two bits */
519 		BUG_ON(addr & 0x3);
520 		amdgpu_ring_write(ring, lower_32_bits(addr));
521 		amdgpu_ring_write(ring, upper_32_bits(addr));
522 		amdgpu_ring_write(ring, upper_32_bits(seq));
523 	}
524 
525 	if (flags & AMDGPU_FENCE_FLAG_INT) {
526 		/* generate an interrupt */
527 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
528 		amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
529 	}
530 }
531 
532 
533 /**
534  * sdma_v5_0_gfx_stop - stop the gfx async dma engines
535  *
536  * @adev: amdgpu_device pointer
537  *
538  * Stop the gfx async dma ring buffers (NAVI10).
539  */
540 static void sdma_v5_0_gfx_stop(struct amdgpu_device *adev)
541 {
542 	struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
543 	struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
544 	u32 rb_cntl, ib_cntl;
545 	int i;
546 
547 	if ((adev->mman.buffer_funcs_ring == sdma0) ||
548 	    (adev->mman.buffer_funcs_ring == sdma1))
549 		amdgpu_ttm_set_buffer_funcs_status(adev, false);
550 
551 	for (i = 0; i < adev->sdma.num_instances; i++) {
552 		rb_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
553 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
554 		WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
555 		ib_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
556 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
557 		WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
558 	}
559 }
560 
561 /**
562  * sdma_v5_0_rlc_stop - stop the compute async dma engines
563  *
564  * @adev: amdgpu_device pointer
565  *
566  * Stop the compute async dma queues (NAVI10).
567  */
568 static void sdma_v5_0_rlc_stop(struct amdgpu_device *adev)
569 {
570 	/* XXX todo */
571 }
572 
573 /**
574  * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch
575  *
576  * @adev: amdgpu_device pointer
577  * @enable: enable/disable the DMA MEs context switch.
578  *
579  * Halt or unhalt the async dma engines context switch (NAVI10).
580  */
581 static void sdma_v5_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
582 {
583 	u32 f32_cntl = 0, phase_quantum = 0;
584 	int i;
585 
586 	if (amdgpu_sdma_phase_quantum) {
587 		unsigned value = amdgpu_sdma_phase_quantum;
588 		unsigned unit = 0;
589 
590 		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
591 				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
592 			value = (value + 1) >> 1;
593 			unit++;
594 		}
595 		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
596 			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
597 			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
598 				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
599 			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
600 				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
601 			WARN_ONCE(1,
602 			"clamping sdma_phase_quantum to %uK clock cycles\n",
603 				  value << unit);
604 		}
605 		phase_quantum =
606 			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
607 			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
608 	}
609 
610 	for (i = 0; i < adev->sdma.num_instances; i++) {
611 		if (!amdgpu_sriov_vf(adev)) {
612 			f32_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CNTL));
613 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
614 						 AUTO_CTXSW_ENABLE, enable ? 1 : 0);
615 		}
616 
617 		if (enable && amdgpu_sdma_phase_quantum) {
618 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_PHASE0_QUANTUM),
619 			       phase_quantum);
620 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_PHASE1_QUANTUM),
621 			       phase_quantum);
622 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_PHASE2_QUANTUM),
623 			       phase_quantum);
624 		}
625 		if (!amdgpu_sriov_vf(adev))
626 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CNTL), f32_cntl);
627 	}
628 
629 }
630 
631 /**
632  * sdma_v5_0_enable - stop the async dma engines
633  *
634  * @adev: amdgpu_device pointer
635  * @enable: enable/disable the DMA MEs.
636  *
637  * Halt or unhalt the async dma engines (NAVI10).
638  */
639 static void sdma_v5_0_enable(struct amdgpu_device *adev, bool enable)
640 {
641 	u32 f32_cntl;
642 	int i;
643 
644 	if (!enable) {
645 		sdma_v5_0_gfx_stop(adev);
646 		sdma_v5_0_rlc_stop(adev);
647 	}
648 
649 	if (amdgpu_sriov_vf(adev))
650 		return;
651 
652 	for (i = 0; i < adev->sdma.num_instances; i++) {
653 		f32_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
654 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
655 		WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), f32_cntl);
656 	}
657 }
658 
659 /**
660  * sdma_v5_0_gfx_resume - setup and start the async dma engines
661  *
662  * @adev: amdgpu_device pointer
663  *
664  * Set up the gfx DMA ring buffers and enable them (NAVI10).
665  * Returns 0 for success, error for failure.
666  */
667 static int sdma_v5_0_gfx_resume(struct amdgpu_device *adev)
668 {
669 	struct amdgpu_ring *ring;
670 	u32 rb_cntl, ib_cntl;
671 	u32 rb_bufsz;
672 	u32 wb_offset;
673 	u32 doorbell;
674 	u32 doorbell_offset;
675 	u32 temp;
676 	u32 wptr_poll_cntl;
677 	u64 wptr_gpu_addr;
678 	int i, r;
679 
680 	for (i = 0; i < adev->sdma.num_instances; i++) {
681 		ring = &adev->sdma.instance[i].ring;
682 		wb_offset = (ring->rptr_offs * 4);
683 
684 		if (!amdgpu_sriov_vf(adev))
685 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL), 0);
686 
687 		/* Set ring buffer size in dwords */
688 		rb_bufsz = order_base_2(ring->ring_size / 4);
689 		rb_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
690 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
691 #ifdef __BIG_ENDIAN
692 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
693 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
694 					RPTR_WRITEBACK_SWAP_ENABLE, 1);
695 #endif
696 		WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
697 
698 		/* Initialize the ring buffer's read and write pointers */
699 		WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR), 0);
700 		WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_HI), 0);
701 		WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), 0);
702 		WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), 0);
703 
704 		/* setup the wptr shadow polling */
705 		wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
706 		WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO),
707 		       lower_32_bits(wptr_gpu_addr));
708 		WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI),
709 		       upper_32_bits(wptr_gpu_addr));
710 		wptr_poll_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, i,
711 							 mmSDMA0_GFX_RB_WPTR_POLL_CNTL));
712 		wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
713 					       SDMA0_GFX_RB_WPTR_POLL_CNTL,
714 					       F32_POLL_ENABLE, 1);
715 		WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL),
716 		       wptr_poll_cntl);
717 
718 		/* set the wb address whether it's enabled or not */
719 		WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_HI),
720 		       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
721 		WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_LO),
722 		       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
723 
724 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
725 
726 		WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE), ring->gpu_addr >> 8);
727 		WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE_HI), ring->gpu_addr >> 40);
728 
729 		ring->wptr = 0;
730 
731 		/* before programing wptr to a less value, need set minor_ptr_update first */
732 		WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 1);
733 
734 		if (!amdgpu_sriov_vf(adev)) { /* only bare-metal use register write for wptr */
735 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr) << 2);
736 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr) << 2);
737 		}
738 
739 		doorbell = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL));
740 		doorbell_offset = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET));
741 
742 		if (ring->use_doorbell) {
743 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
744 			doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_GFX_DOORBELL_OFFSET,
745 					OFFSET, ring->doorbell_index);
746 		} else {
747 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
748 		}
749 		WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL), doorbell);
750 		WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET), doorbell_offset);
751 
752 		adev->nbio.funcs->sdma_doorbell_range(adev, i, ring->use_doorbell,
753 						      ring->doorbell_index, 20);
754 
755 		if (amdgpu_sriov_vf(adev))
756 			sdma_v5_0_ring_set_wptr(ring);
757 
758 		/* set minor_ptr_update to 0 after wptr programed */
759 		WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 0);
760 
761 		if (!amdgpu_sriov_vf(adev)) {
762 			/* set utc l1 enable flag always to 1 */
763 			temp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CNTL));
764 			temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
765 
766 			/* enable MCBP */
767 			temp = REG_SET_FIELD(temp, SDMA0_CNTL, MIDCMD_PREEMPT_ENABLE, 1);
768 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CNTL), temp);
769 
770 			/* Set up RESP_MODE to non-copy addresses */
771 			temp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UTCL1_CNTL));
772 			temp = REG_SET_FIELD(temp, SDMA0_UTCL1_CNTL, RESP_MODE, 3);
773 			temp = REG_SET_FIELD(temp, SDMA0_UTCL1_CNTL, REDO_DELAY, 9);
774 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UTCL1_CNTL), temp);
775 
776 			/* program default cache read and write policy */
777 			temp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UTCL1_PAGE));
778 			/* clean read policy and write policy bits */
779 			temp &= 0xFF0FFF;
780 			temp |= ((CACHE_READ_POLICY_L2__DEFAULT << 12) | (CACHE_WRITE_POLICY_L2__DEFAULT << 14));
781 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UTCL1_PAGE), temp);
782 		}
783 
784 		if (!amdgpu_sriov_vf(adev)) {
785 			/* unhalt engine */
786 			temp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
787 			temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
788 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), temp);
789 		}
790 
791 		/* enable DMA RB */
792 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
793 		WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
794 
795 		ib_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
796 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
797 #ifdef __BIG_ENDIAN
798 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
799 #endif
800 		/* enable DMA IBs */
801 		WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
802 
803 		ring->sched.ready = true;
804 
805 		if (amdgpu_sriov_vf(adev)) { /* bare-metal sequence doesn't need below to lines */
806 			sdma_v5_0_ctx_switch_enable(adev, true);
807 			sdma_v5_0_enable(adev, true);
808 		}
809 
810 		r = amdgpu_ring_test_helper(ring);
811 		if (r)
812 			return r;
813 
814 		if (adev->mman.buffer_funcs_ring == ring)
815 			amdgpu_ttm_set_buffer_funcs_status(adev, true);
816 	}
817 
818 	return 0;
819 }
820 
821 /**
822  * sdma_v5_0_rlc_resume - setup and start the async dma engines
823  *
824  * @adev: amdgpu_device pointer
825  *
826  * Set up the compute DMA queues and enable them (NAVI10).
827  * Returns 0 for success, error for failure.
828  */
829 static int sdma_v5_0_rlc_resume(struct amdgpu_device *adev)
830 {
831 	return 0;
832 }
833 
834 /**
835  * sdma_v5_0_load_microcode - load the sDMA ME ucode
836  *
837  * @adev: amdgpu_device pointer
838  *
839  * Loads the sDMA0/1 ucode.
840  * Returns 0 for success, -EINVAL if the ucode is not available.
841  */
842 static int sdma_v5_0_load_microcode(struct amdgpu_device *adev)
843 {
844 	const struct sdma_firmware_header_v1_0 *hdr;
845 	const __le32 *fw_data;
846 	u32 fw_size;
847 	int i, j;
848 
849 	/* halt the MEs */
850 	sdma_v5_0_enable(adev, false);
851 
852 	for (i = 0; i < adev->sdma.num_instances; i++) {
853 		if (!adev->sdma.instance[i].fw)
854 			return -EINVAL;
855 
856 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
857 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
858 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
859 
860 		fw_data = (const __le32 *)
861 			(adev->sdma.instance[i].fw->data +
862 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
863 
864 		WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), 0);
865 
866 		for (j = 0; j < fw_size; j++) {
867 			if (amdgpu_emu_mode == 1 && j % 500 == 0)
868 				msleep(1);
869 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UCODE_DATA), le32_to_cpup(fw_data++));
870 		}
871 
872 		WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), adev->sdma.instance[i].fw_version);
873 	}
874 
875 	return 0;
876 }
877 
878 /**
879  * sdma_v5_0_start - setup and start the async dma engines
880  *
881  * @adev: amdgpu_device pointer
882  *
883  * Set up the DMA engines and enable them (NAVI10).
884  * Returns 0 for success, error for failure.
885  */
886 static int sdma_v5_0_start(struct amdgpu_device *adev)
887 {
888 	int r = 0;
889 
890 	if (amdgpu_sriov_vf(adev)) {
891 		sdma_v5_0_ctx_switch_enable(adev, false);
892 		sdma_v5_0_enable(adev, false);
893 
894 		/* set RB registers */
895 		r = sdma_v5_0_gfx_resume(adev);
896 		return r;
897 	}
898 
899 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) {
900 		r = sdma_v5_0_load_microcode(adev);
901 		if (r)
902 			return r;
903 	}
904 
905 	/* unhalt the MEs */
906 	sdma_v5_0_enable(adev, true);
907 	/* enable sdma ring preemption */
908 	sdma_v5_0_ctx_switch_enable(adev, true);
909 
910 	/* start the gfx rings and rlc compute queues */
911 	r = sdma_v5_0_gfx_resume(adev);
912 	if (r)
913 		return r;
914 	r = sdma_v5_0_rlc_resume(adev);
915 
916 	return r;
917 }
918 
919 /**
920  * sdma_v5_0_ring_test_ring - simple async dma engine test
921  *
922  * @ring: amdgpu_ring structure holding ring information
923  *
924  * Test the DMA engine by writing using it to write an
925  * value to memory. (NAVI10).
926  * Returns 0 for success, error for failure.
927  */
928 static int sdma_v5_0_ring_test_ring(struct amdgpu_ring *ring)
929 {
930 	struct amdgpu_device *adev = ring->adev;
931 	unsigned i;
932 	unsigned index;
933 	int r;
934 	u32 tmp;
935 	u64 gpu_addr;
936 
937 	r = amdgpu_device_wb_get(adev, &index);
938 	if (r) {
939 		dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
940 		return r;
941 	}
942 
943 	gpu_addr = adev->wb.gpu_addr + (index * 4);
944 	tmp = 0xCAFEDEAD;
945 	adev->wb.wb[index] = cpu_to_le32(tmp);
946 
947 	r = amdgpu_ring_alloc(ring, 5);
948 	if (r) {
949 		DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
950 		amdgpu_device_wb_free(adev, index);
951 		return r;
952 	}
953 
954 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
955 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
956 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
957 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
958 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
959 	amdgpu_ring_write(ring, 0xDEADBEEF);
960 	amdgpu_ring_commit(ring);
961 
962 	for (i = 0; i < adev->usec_timeout; i++) {
963 		tmp = le32_to_cpu(adev->wb.wb[index]);
964 		if (tmp == 0xDEADBEEF)
965 			break;
966 		if (amdgpu_emu_mode == 1)
967 			msleep(1);
968 		else
969 			udelay(1);
970 	}
971 
972 	if (i >= adev->usec_timeout)
973 		r = -ETIMEDOUT;
974 
975 	amdgpu_device_wb_free(adev, index);
976 
977 	return r;
978 }
979 
980 /**
981  * sdma_v5_0_ring_test_ib - test an IB on the DMA engine
982  *
983  * @ring: amdgpu_ring structure holding ring information
984  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
985  *
986  * Test a simple IB in the DMA ring (NAVI10).
987  * Returns 0 on success, error on failure.
988  */
989 static int sdma_v5_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
990 {
991 	struct amdgpu_device *adev = ring->adev;
992 	struct amdgpu_ib ib;
993 	struct dma_fence *f = NULL;
994 	unsigned index;
995 	long r;
996 	u32 tmp = 0;
997 	u64 gpu_addr;
998 
999 	r = amdgpu_device_wb_get(adev, &index);
1000 	if (r) {
1001 		dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
1002 		return r;
1003 	}
1004 
1005 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1006 	tmp = 0xCAFEDEAD;
1007 	adev->wb.wb[index] = cpu_to_le32(tmp);
1008 	memset(&ib, 0, sizeof(ib));
1009 	r = amdgpu_ib_get(adev, NULL, 256,
1010 					AMDGPU_IB_POOL_DIRECT, &ib);
1011 	if (r) {
1012 		DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
1013 		goto err0;
1014 	}
1015 
1016 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1017 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1018 	ib.ptr[1] = lower_32_bits(gpu_addr);
1019 	ib.ptr[2] = upper_32_bits(gpu_addr);
1020 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1021 	ib.ptr[4] = 0xDEADBEEF;
1022 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1023 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1024 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1025 	ib.length_dw = 8;
1026 
1027 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1028 	if (r)
1029 		goto err1;
1030 
1031 	r = dma_fence_wait_timeout(f, false, timeout);
1032 	if (r == 0) {
1033 		DRM_ERROR("amdgpu: IB test timed out\n");
1034 		r = -ETIMEDOUT;
1035 		goto err1;
1036 	} else if (r < 0) {
1037 		DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
1038 		goto err1;
1039 	}
1040 	tmp = le32_to_cpu(adev->wb.wb[index]);
1041 	if (tmp == 0xDEADBEEF)
1042 		r = 0;
1043 	else
1044 		r = -EINVAL;
1045 
1046 err1:
1047 	amdgpu_ib_free(adev, &ib, NULL);
1048 	dma_fence_put(f);
1049 err0:
1050 	amdgpu_device_wb_free(adev, index);
1051 	return r;
1052 }
1053 
1054 
1055 /**
1056  * sdma_v5_0_vm_copy_pte - update PTEs by copying them from the GART
1057  *
1058  * @ib: indirect buffer to fill with commands
1059  * @pe: addr of the page entry
1060  * @src: src addr to copy from
1061  * @count: number of page entries to update
1062  *
1063  * Update PTEs by copying them from the GART using sDMA (NAVI10).
1064  */
1065 static void sdma_v5_0_vm_copy_pte(struct amdgpu_ib *ib,
1066 				  uint64_t pe, uint64_t src,
1067 				  unsigned count)
1068 {
1069 	unsigned bytes = count * 8;
1070 
1071 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1072 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1073 	ib->ptr[ib->length_dw++] = bytes - 1;
1074 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1075 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1076 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1077 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1078 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1079 
1080 }
1081 
1082 /**
1083  * sdma_v5_0_vm_write_pte - update PTEs by writing them manually
1084  *
1085  * @ib: indirect buffer to fill with commands
1086  * @pe: addr of the page entry
1087  * @value: dst addr to write into pe
1088  * @count: number of page entries to update
1089  * @incr: increase next addr by incr bytes
1090  *
1091  * Update PTEs by writing them manually using sDMA (NAVI10).
1092  */
1093 static void sdma_v5_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1094 				   uint64_t value, unsigned count,
1095 				   uint32_t incr)
1096 {
1097 	unsigned ndw = count * 2;
1098 
1099 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1100 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1101 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1102 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1103 	ib->ptr[ib->length_dw++] = ndw - 1;
1104 	for (; ndw > 0; ndw -= 2) {
1105 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1106 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1107 		value += incr;
1108 	}
1109 }
1110 
1111 /**
1112  * sdma_v5_0_vm_set_pte_pde - update the page tables using sDMA
1113  *
1114  * @ib: indirect buffer to fill with commands
1115  * @pe: addr of the page entry
1116  * @addr: dst addr to write into pe
1117  * @count: number of page entries to update
1118  * @incr: increase next addr by incr bytes
1119  * @flags: access flags
1120  *
1121  * Update the page tables using sDMA (NAVI10).
1122  */
1123 static void sdma_v5_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1124 				     uint64_t pe,
1125 				     uint64_t addr, unsigned count,
1126 				     uint32_t incr, uint64_t flags)
1127 {
1128 	/* for physically contiguous pages (vram) */
1129 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1130 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1131 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1132 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1133 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1134 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1135 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1136 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1137 	ib->ptr[ib->length_dw++] = 0;
1138 	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1139 }
1140 
1141 /**
1142  * sdma_v5_0_ring_pad_ib - pad the IB
1143  * @ring: amdgpu_ring structure holding ring information
1144  * @ib: indirect buffer to fill with padding
1145  *
1146  * Pad the IB with NOPs to a boundary multiple of 8.
1147  */
1148 static void sdma_v5_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1149 {
1150 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1151 	u32 pad_count;
1152 	int i;
1153 
1154 	pad_count = (-ib->length_dw) & 0x7;
1155 	for (i = 0; i < pad_count; i++)
1156 		if (sdma && sdma->burst_nop && (i == 0))
1157 			ib->ptr[ib->length_dw++] =
1158 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1159 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1160 		else
1161 			ib->ptr[ib->length_dw++] =
1162 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1163 }
1164 
1165 
1166 /**
1167  * sdma_v5_0_ring_emit_pipeline_sync - sync the pipeline
1168  *
1169  * @ring: amdgpu_ring pointer
1170  *
1171  * Make sure all previous operations are completed (CIK).
1172  */
1173 static void sdma_v5_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1174 {
1175 	uint32_t seq = ring->fence_drv.sync_seq;
1176 	uint64_t addr = ring->fence_drv.gpu_addr;
1177 
1178 	/* wait for idle */
1179 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1180 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1181 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1182 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1183 	amdgpu_ring_write(ring, addr & 0xfffffffc);
1184 	amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1185 	amdgpu_ring_write(ring, seq); /* reference */
1186 	amdgpu_ring_write(ring, 0xffffffff); /* mask */
1187 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1188 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1189 }
1190 
1191 
1192 /**
1193  * sdma_v5_0_ring_emit_vm_flush - vm flush using sDMA
1194  *
1195  * @ring: amdgpu_ring pointer
1196  * @vmid: vmid number to use
1197  * @pd_addr: address
1198  *
1199  * Update the page table base and flush the VM TLB
1200  * using sDMA (NAVI10).
1201  */
1202 static void sdma_v5_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1203 					 unsigned vmid, uint64_t pd_addr)
1204 {
1205 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1206 }
1207 
1208 static void sdma_v5_0_ring_emit_wreg(struct amdgpu_ring *ring,
1209 				     uint32_t reg, uint32_t val)
1210 {
1211 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1212 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1213 	amdgpu_ring_write(ring, reg);
1214 	amdgpu_ring_write(ring, val);
1215 }
1216 
1217 static void sdma_v5_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1218 					 uint32_t val, uint32_t mask)
1219 {
1220 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1221 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1222 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* equal */
1223 	amdgpu_ring_write(ring, reg << 2);
1224 	amdgpu_ring_write(ring, 0);
1225 	amdgpu_ring_write(ring, val); /* reference */
1226 	amdgpu_ring_write(ring, mask); /* mask */
1227 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1228 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10));
1229 }
1230 
1231 static void sdma_v5_0_ring_emit_reg_write_reg_wait(struct amdgpu_ring *ring,
1232 						   uint32_t reg0, uint32_t reg1,
1233 						   uint32_t ref, uint32_t mask)
1234 {
1235 	amdgpu_ring_emit_wreg(ring, reg0, ref);
1236 	/* wait for a cycle to reset vm_inv_eng*_ack */
1237 	amdgpu_ring_emit_reg_wait(ring, reg0, 0, 0);
1238 	amdgpu_ring_emit_reg_wait(ring, reg1, mask, mask);
1239 }
1240 
1241 static int sdma_v5_0_early_init(void *handle)
1242 {
1243 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1244 
1245 	adev->sdma.num_instances = 2;
1246 
1247 	sdma_v5_0_set_ring_funcs(adev);
1248 	sdma_v5_0_set_buffer_funcs(adev);
1249 	sdma_v5_0_set_vm_pte_funcs(adev);
1250 	sdma_v5_0_set_irq_funcs(adev);
1251 
1252 	return 0;
1253 }
1254 
1255 
1256 static int sdma_v5_0_sw_init(void *handle)
1257 {
1258 	struct amdgpu_ring *ring;
1259 	int r, i;
1260 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1261 
1262 	/* SDMA trap event */
1263 	r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA0,
1264 			      SDMA0_5_0__SRCID__SDMA_TRAP,
1265 			      &adev->sdma.trap_irq);
1266 	if (r)
1267 		return r;
1268 
1269 	/* SDMA trap event */
1270 	r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA1,
1271 			      SDMA1_5_0__SRCID__SDMA_TRAP,
1272 			      &adev->sdma.trap_irq);
1273 	if (r)
1274 		return r;
1275 
1276 	r = sdma_v5_0_init_microcode(adev);
1277 	if (r) {
1278 		DRM_ERROR("Failed to load sdma firmware!\n");
1279 		return r;
1280 	}
1281 
1282 	for (i = 0; i < adev->sdma.num_instances; i++) {
1283 		ring = &adev->sdma.instance[i].ring;
1284 		ring->ring_obj = NULL;
1285 		ring->use_doorbell = true;
1286 
1287 		DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i,
1288 				ring->use_doorbell?"true":"false");
1289 
1290 		ring->doorbell_index = (i == 0) ?
1291 			(adev->doorbell_index.sdma_engine[0] << 1) //get DWORD offset
1292 			: (adev->doorbell_index.sdma_engine[1] << 1); // get DWORD offset
1293 
1294 		sprintf(ring->name, "sdma%d", i);
1295 		r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1296 				     (i == 0) ? AMDGPU_SDMA_IRQ_INSTANCE0 :
1297 				     AMDGPU_SDMA_IRQ_INSTANCE1,
1298 				     AMDGPU_RING_PRIO_DEFAULT, NULL);
1299 		if (r)
1300 			return r;
1301 	}
1302 
1303 	return r;
1304 }
1305 
1306 static int sdma_v5_0_sw_fini(void *handle)
1307 {
1308 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1309 	int i;
1310 
1311 	for (i = 0; i < adev->sdma.num_instances; i++) {
1312 		release_firmware(adev->sdma.instance[i].fw);
1313 		adev->sdma.instance[i].fw = NULL;
1314 
1315 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1316 	}
1317 
1318 	return 0;
1319 }
1320 
1321 static int sdma_v5_0_hw_init(void *handle)
1322 {
1323 	int r;
1324 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1325 
1326 	sdma_v5_0_init_golden_registers(adev);
1327 
1328 	r = sdma_v5_0_start(adev);
1329 
1330 	return r;
1331 }
1332 
1333 static int sdma_v5_0_hw_fini(void *handle)
1334 {
1335 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1336 
1337 	if (amdgpu_sriov_vf(adev))
1338 		return 0;
1339 
1340 	sdma_v5_0_ctx_switch_enable(adev, false);
1341 	sdma_v5_0_enable(adev, false);
1342 
1343 	return 0;
1344 }
1345 
1346 static int sdma_v5_0_suspend(void *handle)
1347 {
1348 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1349 
1350 	return sdma_v5_0_hw_fini(adev);
1351 }
1352 
1353 static int sdma_v5_0_resume(void *handle)
1354 {
1355 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1356 
1357 	return sdma_v5_0_hw_init(adev);
1358 }
1359 
1360 static bool sdma_v5_0_is_idle(void *handle)
1361 {
1362 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1363 	u32 i;
1364 
1365 	for (i = 0; i < adev->sdma.num_instances; i++) {
1366 		u32 tmp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_STATUS_REG));
1367 
1368 		if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1369 			return false;
1370 	}
1371 
1372 	return true;
1373 }
1374 
1375 static int sdma_v5_0_wait_for_idle(void *handle)
1376 {
1377 	unsigned i;
1378 	u32 sdma0, sdma1;
1379 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1380 
1381 	for (i = 0; i < adev->usec_timeout; i++) {
1382 		sdma0 = RREG32(sdma_v5_0_get_reg_offset(adev, 0, mmSDMA0_STATUS_REG));
1383 		sdma1 = RREG32(sdma_v5_0_get_reg_offset(adev, 1, mmSDMA0_STATUS_REG));
1384 
1385 		if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK)
1386 			return 0;
1387 		udelay(1);
1388 	}
1389 	return -ETIMEDOUT;
1390 }
1391 
1392 static int sdma_v5_0_soft_reset(void *handle)
1393 {
1394 	/* todo */
1395 
1396 	return 0;
1397 }
1398 
1399 static int sdma_v5_0_ring_preempt_ib(struct amdgpu_ring *ring)
1400 {
1401 	int i, r = 0;
1402 	struct amdgpu_device *adev = ring->adev;
1403 	u32 index = 0;
1404 	u64 sdma_gfx_preempt;
1405 
1406 	amdgpu_sdma_get_index_from_ring(ring, &index);
1407 	if (index == 0)
1408 		sdma_gfx_preempt = mmSDMA0_GFX_PREEMPT;
1409 	else
1410 		sdma_gfx_preempt = mmSDMA1_GFX_PREEMPT;
1411 
1412 	/* assert preemption condition */
1413 	amdgpu_ring_set_preempt_cond_exec(ring, false);
1414 
1415 	/* emit the trailing fence */
1416 	ring->trail_seq += 1;
1417 	amdgpu_ring_alloc(ring, 10);
1418 	sdma_v5_0_ring_emit_fence(ring, ring->trail_fence_gpu_addr,
1419 				  ring->trail_seq, 0);
1420 	amdgpu_ring_commit(ring);
1421 
1422 	/* assert IB preemption */
1423 	WREG32(sdma_gfx_preempt, 1);
1424 
1425 	/* poll the trailing fence */
1426 	for (i = 0; i < adev->usec_timeout; i++) {
1427 		if (ring->trail_seq ==
1428 		    le32_to_cpu(*(ring->trail_fence_cpu_addr)))
1429 			break;
1430 		udelay(1);
1431 	}
1432 
1433 	if (i >= adev->usec_timeout) {
1434 		r = -EINVAL;
1435 		DRM_ERROR("ring %d failed to be preempted\n", ring->idx);
1436 	}
1437 
1438 	/* deassert IB preemption */
1439 	WREG32(sdma_gfx_preempt, 0);
1440 
1441 	/* deassert the preemption condition */
1442 	amdgpu_ring_set_preempt_cond_exec(ring, true);
1443 	return r;
1444 }
1445 
1446 static int sdma_v5_0_set_trap_irq_state(struct amdgpu_device *adev,
1447 					struct amdgpu_irq_src *source,
1448 					unsigned type,
1449 					enum amdgpu_interrupt_state state)
1450 {
1451 	u32 sdma_cntl;
1452 
1453 	if (!amdgpu_sriov_vf(adev)) {
1454 		u32 reg_offset = (type == AMDGPU_SDMA_IRQ_INSTANCE0) ?
1455 			sdma_v5_0_get_reg_offset(adev, 0, mmSDMA0_CNTL) :
1456 			sdma_v5_0_get_reg_offset(adev, 1, mmSDMA0_CNTL);
1457 
1458 		sdma_cntl = RREG32(reg_offset);
1459 		sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
1460 					  state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1461 		WREG32(reg_offset, sdma_cntl);
1462 	}
1463 
1464 	return 0;
1465 }
1466 
1467 static int sdma_v5_0_process_trap_irq(struct amdgpu_device *adev,
1468 				      struct amdgpu_irq_src *source,
1469 				      struct amdgpu_iv_entry *entry)
1470 {
1471 	DRM_DEBUG("IH: SDMA trap\n");
1472 	switch (entry->client_id) {
1473 	case SOC15_IH_CLIENTID_SDMA0:
1474 		switch (entry->ring_id) {
1475 		case 0:
1476 			amdgpu_fence_process(&adev->sdma.instance[0].ring);
1477 			break;
1478 		case 1:
1479 			/* XXX compute */
1480 			break;
1481 		case 2:
1482 			/* XXX compute */
1483 			break;
1484 		case 3:
1485 			/* XXX page queue*/
1486 			break;
1487 		}
1488 		break;
1489 	case SOC15_IH_CLIENTID_SDMA1:
1490 		switch (entry->ring_id) {
1491 		case 0:
1492 			amdgpu_fence_process(&adev->sdma.instance[1].ring);
1493 			break;
1494 		case 1:
1495 			/* XXX compute */
1496 			break;
1497 		case 2:
1498 			/* XXX compute */
1499 			break;
1500 		case 3:
1501 			/* XXX page queue*/
1502 			break;
1503 		}
1504 		break;
1505 	}
1506 	return 0;
1507 }
1508 
1509 static int sdma_v5_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1510 					      struct amdgpu_irq_src *source,
1511 					      struct amdgpu_iv_entry *entry)
1512 {
1513 	return 0;
1514 }
1515 
1516 static void sdma_v5_0_update_medium_grain_clock_gating(struct amdgpu_device *adev,
1517 						       bool enable)
1518 {
1519 	uint32_t data, def;
1520 	int i;
1521 
1522 	for (i = 0; i < adev->sdma.num_instances; i++) {
1523 		if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1524 			/* Enable sdma clock gating */
1525 			def = data = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL));
1526 			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1527 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1528 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1529 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1530 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1531 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1532 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1533 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1534 			if (def != data)
1535 				WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL), data);
1536 		} else {
1537 			/* Disable sdma clock gating */
1538 			def = data = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL));
1539 			data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1540 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1541 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1542 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1543 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1544 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1545 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1546 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1547 			if (def != data)
1548 				WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL), data);
1549 		}
1550 	}
1551 }
1552 
1553 static void sdma_v5_0_update_medium_grain_light_sleep(struct amdgpu_device *adev,
1554 						      bool enable)
1555 {
1556 	uint32_t data, def;
1557 	int i;
1558 
1559 	for (i = 0; i < adev->sdma.num_instances; i++) {
1560 		if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1561 			/* Enable sdma mem light sleep */
1562 			def = data = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL));
1563 			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1564 			if (def != data)
1565 				WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL), data);
1566 
1567 		} else {
1568 			/* Disable sdma mem light sleep */
1569 			def = data = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL));
1570 			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1571 			if (def != data)
1572 				WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL), data);
1573 
1574 		}
1575 	}
1576 }
1577 
1578 static int sdma_v5_0_set_clockgating_state(void *handle,
1579 					   enum amd_clockgating_state state)
1580 {
1581 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1582 
1583 	if (amdgpu_sriov_vf(adev))
1584 		return 0;
1585 
1586 	switch (adev->asic_type) {
1587 	case CHIP_NAVI10:
1588 	case CHIP_NAVI14:
1589 	case CHIP_NAVI12:
1590 		sdma_v5_0_update_medium_grain_clock_gating(adev,
1591 				state == AMD_CG_STATE_GATE);
1592 		sdma_v5_0_update_medium_grain_light_sleep(adev,
1593 				state == AMD_CG_STATE_GATE);
1594 		break;
1595 	default:
1596 		break;
1597 	}
1598 
1599 	return 0;
1600 }
1601 
1602 static int sdma_v5_0_set_powergating_state(void *handle,
1603 					  enum amd_powergating_state state)
1604 {
1605 	return 0;
1606 }
1607 
1608 static void sdma_v5_0_get_clockgating_state(void *handle, u32 *flags)
1609 {
1610 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1611 	int data;
1612 
1613 	if (amdgpu_sriov_vf(adev))
1614 		*flags = 0;
1615 
1616 	/* AMD_CG_SUPPORT_SDMA_MGCG */
1617 	data = RREG32(sdma_v5_0_get_reg_offset(adev, 0, mmSDMA0_CLK_CTRL));
1618 	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
1619 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1620 
1621 	/* AMD_CG_SUPPORT_SDMA_LS */
1622 	data = RREG32(sdma_v5_0_get_reg_offset(adev, 0, mmSDMA0_POWER_CNTL));
1623 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1624 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
1625 }
1626 
1627 const struct amd_ip_funcs sdma_v5_0_ip_funcs = {
1628 	.name = "sdma_v5_0",
1629 	.early_init = sdma_v5_0_early_init,
1630 	.late_init = NULL,
1631 	.sw_init = sdma_v5_0_sw_init,
1632 	.sw_fini = sdma_v5_0_sw_fini,
1633 	.hw_init = sdma_v5_0_hw_init,
1634 	.hw_fini = sdma_v5_0_hw_fini,
1635 	.suspend = sdma_v5_0_suspend,
1636 	.resume = sdma_v5_0_resume,
1637 	.is_idle = sdma_v5_0_is_idle,
1638 	.wait_for_idle = sdma_v5_0_wait_for_idle,
1639 	.soft_reset = sdma_v5_0_soft_reset,
1640 	.set_clockgating_state = sdma_v5_0_set_clockgating_state,
1641 	.set_powergating_state = sdma_v5_0_set_powergating_state,
1642 	.get_clockgating_state = sdma_v5_0_get_clockgating_state,
1643 };
1644 
1645 static const struct amdgpu_ring_funcs sdma_v5_0_ring_funcs = {
1646 	.type = AMDGPU_RING_TYPE_SDMA,
1647 	.align_mask = 0xf,
1648 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1649 	.support_64bit_ptrs = true,
1650 	.vmhub = AMDGPU_GFXHUB_0,
1651 	.get_rptr = sdma_v5_0_ring_get_rptr,
1652 	.get_wptr = sdma_v5_0_ring_get_wptr,
1653 	.set_wptr = sdma_v5_0_ring_set_wptr,
1654 	.emit_frame_size =
1655 		5 + /* sdma_v5_0_ring_init_cond_exec */
1656 		6 + /* sdma_v5_0_ring_emit_hdp_flush */
1657 		3 + /* hdp_invalidate */
1658 		6 + /* sdma_v5_0_ring_emit_pipeline_sync */
1659 		/* sdma_v5_0_ring_emit_vm_flush */
1660 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
1661 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 * 2 +
1662 		10 + 10 + 10, /* sdma_v5_0_ring_emit_fence x3 for user fence, vm fence */
1663 	.emit_ib_size = 5 + 7 + 6, /* sdma_v5_0_ring_emit_ib */
1664 	.emit_ib = sdma_v5_0_ring_emit_ib,
1665 	.emit_mem_sync = sdma_v5_0_ring_emit_mem_sync,
1666 	.emit_fence = sdma_v5_0_ring_emit_fence,
1667 	.emit_pipeline_sync = sdma_v5_0_ring_emit_pipeline_sync,
1668 	.emit_vm_flush = sdma_v5_0_ring_emit_vm_flush,
1669 	.emit_hdp_flush = sdma_v5_0_ring_emit_hdp_flush,
1670 	.test_ring = sdma_v5_0_ring_test_ring,
1671 	.test_ib = sdma_v5_0_ring_test_ib,
1672 	.insert_nop = sdma_v5_0_ring_insert_nop,
1673 	.pad_ib = sdma_v5_0_ring_pad_ib,
1674 	.emit_wreg = sdma_v5_0_ring_emit_wreg,
1675 	.emit_reg_wait = sdma_v5_0_ring_emit_reg_wait,
1676 	.emit_reg_write_reg_wait = sdma_v5_0_ring_emit_reg_write_reg_wait,
1677 	.init_cond_exec = sdma_v5_0_ring_init_cond_exec,
1678 	.patch_cond_exec = sdma_v5_0_ring_patch_cond_exec,
1679 	.preempt_ib = sdma_v5_0_ring_preempt_ib,
1680 };
1681 
1682 static void sdma_v5_0_set_ring_funcs(struct amdgpu_device *adev)
1683 {
1684 	int i;
1685 
1686 	for (i = 0; i < adev->sdma.num_instances; i++) {
1687 		adev->sdma.instance[i].ring.funcs = &sdma_v5_0_ring_funcs;
1688 		adev->sdma.instance[i].ring.me = i;
1689 	}
1690 }
1691 
1692 static const struct amdgpu_irq_src_funcs sdma_v5_0_trap_irq_funcs = {
1693 	.set = sdma_v5_0_set_trap_irq_state,
1694 	.process = sdma_v5_0_process_trap_irq,
1695 };
1696 
1697 static const struct amdgpu_irq_src_funcs sdma_v5_0_illegal_inst_irq_funcs = {
1698 	.process = sdma_v5_0_process_illegal_inst_irq,
1699 };
1700 
1701 static void sdma_v5_0_set_irq_funcs(struct amdgpu_device *adev)
1702 {
1703 	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE0 +
1704 					adev->sdma.num_instances;
1705 	adev->sdma.trap_irq.funcs = &sdma_v5_0_trap_irq_funcs;
1706 	adev->sdma.illegal_inst_irq.funcs = &sdma_v5_0_illegal_inst_irq_funcs;
1707 }
1708 
1709 /**
1710  * sdma_v5_0_emit_copy_buffer - copy buffer using the sDMA engine
1711  *
1712  * @ib: indirect buffer to copy to
1713  * @src_offset: src GPU address
1714  * @dst_offset: dst GPU address
1715  * @byte_count: number of bytes to xfer
1716  * @tmz: if a secure copy should be used
1717  *
1718  * Copy GPU buffers using the DMA engine (NAVI10).
1719  * Used by the amdgpu ttm implementation to move pages if
1720  * registered as the asic copy callback.
1721  */
1722 static void sdma_v5_0_emit_copy_buffer(struct amdgpu_ib *ib,
1723 				       uint64_t src_offset,
1724 				       uint64_t dst_offset,
1725 				       uint32_t byte_count,
1726 				       bool tmz)
1727 {
1728 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1729 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
1730 		SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0);
1731 	ib->ptr[ib->length_dw++] = byte_count - 1;
1732 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1733 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1734 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1735 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1736 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1737 }
1738 
1739 /**
1740  * sdma_v5_0_emit_fill_buffer - fill buffer using the sDMA engine
1741  *
1742  * @ib: indirect buffer to fill
1743  * @src_data: value to write to buffer
1744  * @dst_offset: dst GPU address
1745  * @byte_count: number of bytes to xfer
1746  *
1747  * Fill GPU buffers using the DMA engine (NAVI10).
1748  */
1749 static void sdma_v5_0_emit_fill_buffer(struct amdgpu_ib *ib,
1750 				       uint32_t src_data,
1751 				       uint64_t dst_offset,
1752 				       uint32_t byte_count)
1753 {
1754 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1755 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1756 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1757 	ib->ptr[ib->length_dw++] = src_data;
1758 	ib->ptr[ib->length_dw++] = byte_count - 1;
1759 }
1760 
1761 static const struct amdgpu_buffer_funcs sdma_v5_0_buffer_funcs = {
1762 	.copy_max_bytes = 0x400000,
1763 	.copy_num_dw = 7,
1764 	.emit_copy_buffer = sdma_v5_0_emit_copy_buffer,
1765 
1766 	.fill_max_bytes = 0x400000,
1767 	.fill_num_dw = 5,
1768 	.emit_fill_buffer = sdma_v5_0_emit_fill_buffer,
1769 };
1770 
1771 static void sdma_v5_0_set_buffer_funcs(struct amdgpu_device *adev)
1772 {
1773 	if (adev->mman.buffer_funcs == NULL) {
1774 		adev->mman.buffer_funcs = &sdma_v5_0_buffer_funcs;
1775 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1776 	}
1777 }
1778 
1779 static const struct amdgpu_vm_pte_funcs sdma_v5_0_vm_pte_funcs = {
1780 	.copy_pte_num_dw = 7,
1781 	.copy_pte = sdma_v5_0_vm_copy_pte,
1782 	.write_pte = sdma_v5_0_vm_write_pte,
1783 	.set_pte_pde = sdma_v5_0_vm_set_pte_pde,
1784 };
1785 
1786 static void sdma_v5_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1787 {
1788 	unsigned i;
1789 
1790 	if (adev->vm_manager.vm_pte_funcs == NULL) {
1791 		adev->vm_manager.vm_pte_funcs = &sdma_v5_0_vm_pte_funcs;
1792 		for (i = 0; i < adev->sdma.num_instances; i++) {
1793 			adev->vm_manager.vm_pte_scheds[i] =
1794 				&adev->sdma.instance[i].ring.sched;
1795 		}
1796 		adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
1797 	}
1798 }
1799 
1800 const struct amdgpu_ip_block_version sdma_v5_0_ip_block = {
1801 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1802 	.major = 5,
1803 	.minor = 0,
1804 	.rev = 0,
1805 	.funcs = &sdma_v5_0_ip_funcs,
1806 };
1807