xref: /linux/drivers/gpu/drm/amd/amdgpu/sdma_v5_0.c (revision 7c5c3a6177fa9646884114fc7f2e970b0bc50dc9)
1 /*
2  * Copyright 2019 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28 
29 #include "amdgpu.h"
30 #include "amdgpu_ucode.h"
31 #include "amdgpu_trace.h"
32 
33 #include "gc/gc_10_1_0_offset.h"
34 #include "gc/gc_10_1_0_sh_mask.h"
35 #include "ivsrcid/sdma0/irqsrcs_sdma0_5_0.h"
36 #include "ivsrcid/sdma1/irqsrcs_sdma1_5_0.h"
37 
38 #include "soc15_common.h"
39 #include "soc15.h"
40 #include "navi10_sdma_pkt_open.h"
41 #include "nbio_v2_3.h"
42 #include "sdma_common.h"
43 #include "sdma_v5_0.h"
44 
45 MODULE_FIRMWARE("amdgpu/navi10_sdma.bin");
46 MODULE_FIRMWARE("amdgpu/navi10_sdma1.bin");
47 
48 MODULE_FIRMWARE("amdgpu/navi14_sdma.bin");
49 MODULE_FIRMWARE("amdgpu/navi14_sdma1.bin");
50 
51 MODULE_FIRMWARE("amdgpu/navi12_sdma.bin");
52 MODULE_FIRMWARE("amdgpu/navi12_sdma1.bin");
53 
54 MODULE_FIRMWARE("amdgpu/cyan_skillfish2_sdma.bin");
55 MODULE_FIRMWARE("amdgpu/cyan_skillfish2_sdma1.bin");
56 
57 #define SDMA1_REG_OFFSET 0x600
58 #define SDMA0_HYP_DEC_REG_START 0x5880
59 #define SDMA0_HYP_DEC_REG_END 0x5893
60 #define SDMA1_HYP_DEC_REG_OFFSET 0x20
61 
62 static void sdma_v5_0_set_ring_funcs(struct amdgpu_device *adev);
63 static void sdma_v5_0_set_buffer_funcs(struct amdgpu_device *adev);
64 static void sdma_v5_0_set_vm_pte_funcs(struct amdgpu_device *adev);
65 static void sdma_v5_0_set_irq_funcs(struct amdgpu_device *adev);
66 
67 static const struct soc15_reg_golden golden_settings_sdma_5[] = {
68 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_CHICKEN_BITS, 0xffbf1f0f, 0x03ab0107),
69 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
70 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
71 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
72 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
73 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
74 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
75 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
76 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
77 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
78 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
79 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_UTCL1_PAGE, 0x00ffffff, 0x000c5c00),
80 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_CHICKEN_BITS, 0xffbf1f0f, 0x03ab0107),
81 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
82 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
83 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
84 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
85 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
86 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
87 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
88 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
89 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
90 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
91 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_UTCL1_PAGE, 0x00ffffff, 0x000c5c00)
92 };
93 
94 static const struct soc15_reg_golden golden_settings_sdma_5_sriov[] = {
95 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
96 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
97 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
98 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
99 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
100 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
101 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
102 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
103 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
104 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
105 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
106 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
107 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
108 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
109 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
110 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
111 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
112 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
113 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
114 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
115 };
116 
117 static const struct soc15_reg_golden golden_settings_sdma_nv10[] = {
118 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
119 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
120 };
121 
122 static const struct soc15_reg_golden golden_settings_sdma_nv14[] = {
123 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
124 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
125 };
126 
127 static const struct soc15_reg_golden golden_settings_sdma_nv12[] = {
128 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
129 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GB_ADDR_CONFIG, 0x001877ff, 0x00000044),
130 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x001877ff, 0x00000044),
131 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GB_ADDR_CONFIG, 0x001877ff, 0x00000044),
132 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x001877ff, 0x00000044),
133 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
134 };
135 
136 static const struct soc15_reg_golden golden_settings_sdma_cyan_skillfish[] = {
137 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_CHICKEN_BITS, 0xffbf1f0f, 0x03ab0107),
138 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GB_ADDR_CONFIG, 0x001877ff, 0x00000044),
139 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x001877ff, 0x00000044),
140 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
141 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
142 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
143 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
144 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
145 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
146 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
147 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
148 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
149 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
150 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_UTCL1_PAGE, 0x007fffff, 0x004c5c00),
151 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_CHICKEN_BITS, 0xffbf1f0f, 0x03ab0107),
152 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GB_ADDR_CONFIG, 0x001877ff, 0x00000044),
153 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x001877ff, 0x00000044),
154 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
155 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
156 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
157 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
158 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
159 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
160 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
161 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
162 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
163 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
164 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_UTCL1_PAGE, 0x007fffff, 0x004c5c00)
165 };
166 
167 static u32 sdma_v5_0_get_reg_offset(struct amdgpu_device *adev, u32 instance, u32 internal_offset)
168 {
169 	u32 base;
170 
171 	if (internal_offset >= SDMA0_HYP_DEC_REG_START &&
172 	    internal_offset <= SDMA0_HYP_DEC_REG_END) {
173 		base = adev->reg_offset[GC_HWIP][0][1];
174 		if (instance == 1)
175 			internal_offset += SDMA1_HYP_DEC_REG_OFFSET;
176 	} else {
177 		base = adev->reg_offset[GC_HWIP][0][0];
178 		if (instance == 1)
179 			internal_offset += SDMA1_REG_OFFSET;
180 	}
181 
182 	return base + internal_offset;
183 }
184 
185 static void sdma_v5_0_init_golden_registers(struct amdgpu_device *adev)
186 {
187 	switch (adev->ip_versions[SDMA0_HWIP][0]) {
188 	case IP_VERSION(5, 0, 0):
189 		soc15_program_register_sequence(adev,
190 						golden_settings_sdma_5,
191 						(const u32)ARRAY_SIZE(golden_settings_sdma_5));
192 		soc15_program_register_sequence(adev,
193 						golden_settings_sdma_nv10,
194 						(const u32)ARRAY_SIZE(golden_settings_sdma_nv10));
195 		break;
196 	case IP_VERSION(5, 0, 2):
197 		soc15_program_register_sequence(adev,
198 						golden_settings_sdma_5,
199 						(const u32)ARRAY_SIZE(golden_settings_sdma_5));
200 		soc15_program_register_sequence(adev,
201 						golden_settings_sdma_nv14,
202 						(const u32)ARRAY_SIZE(golden_settings_sdma_nv14));
203 		break;
204 	case IP_VERSION(5, 0, 5):
205 		if (amdgpu_sriov_vf(adev))
206 			soc15_program_register_sequence(adev,
207 							golden_settings_sdma_5_sriov,
208 							(const u32)ARRAY_SIZE(golden_settings_sdma_5_sriov));
209 		else
210 			soc15_program_register_sequence(adev,
211 							golden_settings_sdma_5,
212 							(const u32)ARRAY_SIZE(golden_settings_sdma_5));
213 		soc15_program_register_sequence(adev,
214 						golden_settings_sdma_nv12,
215 						(const u32)ARRAY_SIZE(golden_settings_sdma_nv12));
216 		break;
217 	case IP_VERSION(5, 0, 1):
218 		soc15_program_register_sequence(adev,
219 						golden_settings_sdma_cyan_skillfish,
220 						(const u32)ARRAY_SIZE(golden_settings_sdma_cyan_skillfish));
221 		break;
222 	default:
223 		break;
224 	}
225 }
226 
227 /**
228  * sdma_v5_0_init_microcode - load ucode images from disk
229  *
230  * @adev: amdgpu_device pointer
231  *
232  * Use the firmware interface to load the ucode images into
233  * the driver (not loaded into hw).
234  * Returns 0 on success, error on failure.
235  */
236 
237 // emulation only, won't work on real chip
238 // navi10 real chip need to use PSP to load firmware
239 static int sdma_v5_0_init_microcode(struct amdgpu_device *adev)
240 {
241 	const char *chip_name;
242 	char fw_name[40];
243 	int err = 0, i;
244 	struct amdgpu_firmware_info *info = NULL;
245 	const struct common_firmware_header *header = NULL;
246 	const struct sdma_firmware_header_v1_0 *hdr;
247 
248 	if (amdgpu_sriov_vf(adev) && (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(5, 0, 5)))
249 		return 0;
250 
251 	DRM_DEBUG("\n");
252 
253 	switch (adev->ip_versions[SDMA0_HWIP][0]) {
254 	case IP_VERSION(5, 0, 0):
255 		chip_name = "navi10";
256 		break;
257 	case IP_VERSION(5, 0, 2):
258 		chip_name = "navi14";
259 		break;
260 	case IP_VERSION(5, 0, 5):
261 		chip_name = "navi12";
262 		break;
263 	case IP_VERSION(5, 0, 1):
264 		chip_name = "cyan_skillfish2";
265 		break;
266 	default:
267 		BUG();
268 	}
269 
270 	for (i = 0; i < adev->sdma.num_instances; i++) {
271 		if (i == 0)
272 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
273 		else
274 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
275 		err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
276 		if (err)
277 			goto out;
278 		err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
279 		if (err)
280 			goto out;
281 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
282 		adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
283 		adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
284 		if (adev->sdma.instance[i].feature_version >= 20)
285 			adev->sdma.instance[i].burst_nop = true;
286 		DRM_DEBUG("psp_load == '%s'\n",
287 				adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
288 
289 		if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
290 			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
291 			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
292 			info->fw = adev->sdma.instance[i].fw;
293 			header = (const struct common_firmware_header *)info->fw->data;
294 			adev->firmware.fw_size +=
295 				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
296 		}
297 	}
298 out:
299 	if (err) {
300 		DRM_ERROR("sdma_v5_0: Failed to load firmware \"%s\"\n", fw_name);
301 		for (i = 0; i < adev->sdma.num_instances; i++) {
302 			release_firmware(adev->sdma.instance[i].fw);
303 			adev->sdma.instance[i].fw = NULL;
304 		}
305 	}
306 	return err;
307 }
308 
309 static unsigned sdma_v5_0_ring_init_cond_exec(struct amdgpu_ring *ring)
310 {
311 	unsigned ret;
312 
313 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_COND_EXE));
314 	amdgpu_ring_write(ring, lower_32_bits(ring->cond_exe_gpu_addr));
315 	amdgpu_ring_write(ring, upper_32_bits(ring->cond_exe_gpu_addr));
316 	amdgpu_ring_write(ring, 1);
317 	ret = ring->wptr & ring->buf_mask;/* this is the offset we need patch later */
318 	amdgpu_ring_write(ring, 0x55aa55aa);/* insert dummy here and patch it later */
319 
320 	return ret;
321 }
322 
323 static void sdma_v5_0_ring_patch_cond_exec(struct amdgpu_ring *ring,
324 					   unsigned offset)
325 {
326 	unsigned cur;
327 
328 	BUG_ON(offset > ring->buf_mask);
329 	BUG_ON(ring->ring[offset] != 0x55aa55aa);
330 
331 	cur = (ring->wptr - 1) & ring->buf_mask;
332 	if (cur > offset)
333 		ring->ring[offset] = cur - offset;
334 	else
335 		ring->ring[offset] = (ring->buf_mask + 1) - offset + cur;
336 }
337 
338 /**
339  * sdma_v5_0_ring_get_rptr - get the current read pointer
340  *
341  * @ring: amdgpu ring pointer
342  *
343  * Get the current rptr from the hardware (NAVI10+).
344  */
345 static uint64_t sdma_v5_0_ring_get_rptr(struct amdgpu_ring *ring)
346 {
347 	u64 *rptr;
348 
349 	/* XXX check if swapping is necessary on BE */
350 	rptr = (u64 *)ring->rptr_cpu_addr;
351 
352 	DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
353 	return ((*rptr) >> 2);
354 }
355 
356 /**
357  * sdma_v5_0_ring_get_wptr - get the current write pointer
358  *
359  * @ring: amdgpu ring pointer
360  *
361  * Get the current wptr from the hardware (NAVI10+).
362  */
363 static uint64_t sdma_v5_0_ring_get_wptr(struct amdgpu_ring *ring)
364 {
365 	struct amdgpu_device *adev = ring->adev;
366 	u64 wptr;
367 
368 	if (ring->use_doorbell) {
369 		/* XXX check if swapping is necessary on BE */
370 		wptr = READ_ONCE(*((u64 *)ring->wptr_cpu_addr));
371 		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
372 	} else {
373 		wptr = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI));
374 		wptr = wptr << 32;
375 		wptr |= RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR));
376 		DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n", ring->me, wptr);
377 	}
378 
379 	return wptr >> 2;
380 }
381 
382 /**
383  * sdma_v5_0_ring_set_wptr - commit the write pointer
384  *
385  * @ring: amdgpu ring pointer
386  *
387  * Write the wptr back to the hardware (NAVI10+).
388  */
389 static void sdma_v5_0_ring_set_wptr(struct amdgpu_ring *ring)
390 {
391 	struct amdgpu_device *adev = ring->adev;
392 	uint32_t *wptr_saved;
393 	uint32_t *is_queue_unmap;
394 	uint64_t aggregated_db_index;
395 	uint32_t mqd_size = adev->mqds[AMDGPU_HW_IP_DMA].mqd_size;
396 
397 	DRM_DEBUG("Setting write pointer\n");
398 	if (ring->is_mes_queue) {
399 		wptr_saved = (uint32_t *)(ring->mqd_ptr + mqd_size);
400 		is_queue_unmap = (uint32_t *)(ring->mqd_ptr + mqd_size +
401 					      sizeof(uint32_t));
402 		aggregated_db_index =
403 			amdgpu_mes_get_aggregated_doorbell_index(adev,
404 			AMDGPU_MES_PRIORITY_LEVEL_NORMAL);
405 
406 		atomic64_set((atomic64_t *)ring->wptr_cpu_addr,
407 			     ring->wptr << 2);
408 		*wptr_saved = ring->wptr << 2;
409 		if (*is_queue_unmap) {
410 			WDOORBELL64(aggregated_db_index, ring->wptr << 2);
411 			DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
412 					ring->doorbell_index, ring->wptr << 2);
413 			WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
414 		} else {
415 			DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
416 					ring->doorbell_index, ring->wptr << 2);
417 			WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
418 
419 			if (*is_queue_unmap)
420 				WDOORBELL64(aggregated_db_index,
421 					    ring->wptr << 2);
422 		}
423 	} else {
424 		if (ring->use_doorbell) {
425 			DRM_DEBUG("Using doorbell -- "
426 				  "wptr_offs == 0x%08x "
427 				  "lower_32_bits(ring->wptr) << 2 == 0x%08x "
428 				  "upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
429 				  ring->wptr_offs,
430 				  lower_32_bits(ring->wptr << 2),
431 				  upper_32_bits(ring->wptr << 2));
432 			/* XXX check if swapping is necessary on BE */
433 			atomic64_set((atomic64_t *)ring->wptr_cpu_addr,
434 				     ring->wptr << 2);
435 			DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
436 				  ring->doorbell_index, ring->wptr << 2);
437 			WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
438 		} else {
439 			DRM_DEBUG("Not using doorbell -- "
440 				  "mmSDMA%i_GFX_RB_WPTR == 0x%08x "
441 				  "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
442 				  ring->me,
443 				  lower_32_bits(ring->wptr << 2),
444 				  ring->me,
445 				  upper_32_bits(ring->wptr << 2));
446 			WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev,
447 					     ring->me, mmSDMA0_GFX_RB_WPTR),
448 					lower_32_bits(ring->wptr << 2));
449 			WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev,
450 					     ring->me, mmSDMA0_GFX_RB_WPTR_HI),
451 					upper_32_bits(ring->wptr << 2));
452 		}
453 	}
454 }
455 
456 static void sdma_v5_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
457 {
458 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
459 	int i;
460 
461 	for (i = 0; i < count; i++)
462 		if (sdma && sdma->burst_nop && (i == 0))
463 			amdgpu_ring_write(ring, ring->funcs->nop |
464 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
465 		else
466 			amdgpu_ring_write(ring, ring->funcs->nop);
467 }
468 
469 /**
470  * sdma_v5_0_ring_emit_ib - Schedule an IB on the DMA engine
471  *
472  * @ring: amdgpu ring pointer
473  * @job: job to retrieve vmid from
474  * @ib: IB object to schedule
475  * @flags: unused
476  *
477  * Schedule an IB in the DMA ring (NAVI10).
478  */
479 static void sdma_v5_0_ring_emit_ib(struct amdgpu_ring *ring,
480 				   struct amdgpu_job *job,
481 				   struct amdgpu_ib *ib,
482 				   uint32_t flags)
483 {
484 	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
485 	uint64_t csa_mc_addr = amdgpu_sdma_get_csa_mc_addr(ring, vmid);
486 
487 	/* An IB packet must end on a 8 DW boundary--the next dword
488 	 * must be on a 8-dword boundary. Our IB packet below is 6
489 	 * dwords long, thus add x number of NOPs, such that, in
490 	 * modular arithmetic,
491 	 * wptr + 6 + x = 8k, k >= 0, which in C is,
492 	 * (wptr + 6 + x) % 8 = 0.
493 	 * The expression below, is a solution of x.
494 	 */
495 	sdma_v5_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
496 
497 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
498 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
499 	/* base must be 32 byte aligned */
500 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
501 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
502 	amdgpu_ring_write(ring, ib->length_dw);
503 	amdgpu_ring_write(ring, lower_32_bits(csa_mc_addr));
504 	amdgpu_ring_write(ring, upper_32_bits(csa_mc_addr));
505 }
506 
507 /**
508  * sdma_v5_0_ring_emit_mem_sync - flush the IB by graphics cache rinse
509  *
510  * @ring: amdgpu ring pointer
511  *
512  * flush the IB by graphics cache rinse.
513  */
514 static void sdma_v5_0_ring_emit_mem_sync(struct amdgpu_ring *ring)
515 {
516 	uint32_t gcr_cntl = SDMA_GCR_GL2_INV | SDMA_GCR_GL2_WB | SDMA_GCR_GLM_INV |
517 			    SDMA_GCR_GL1_INV | SDMA_GCR_GLV_INV | SDMA_GCR_GLK_INV |
518 			    SDMA_GCR_GLI_INV(1);
519 
520 	/* flush entire cache L0/L1/L2, this can be optimized by performance requirement */
521 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_GCR_REQ));
522 	amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD1_BASE_VA_31_7(0));
523 	amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD2_GCR_CONTROL_15_0(gcr_cntl) |
524 			  SDMA_PKT_GCR_REQ_PAYLOAD2_BASE_VA_47_32(0));
525 	amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD3_LIMIT_VA_31_7(0) |
526 			  SDMA_PKT_GCR_REQ_PAYLOAD3_GCR_CONTROL_18_16(gcr_cntl >> 16));
527 	amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD4_LIMIT_VA_47_32(0) |
528 			  SDMA_PKT_GCR_REQ_PAYLOAD4_VMID(0));
529 }
530 
531 /**
532  * sdma_v5_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
533  *
534  * @ring: amdgpu ring pointer
535  *
536  * Emit an hdp flush packet on the requested DMA ring.
537  */
538 static void sdma_v5_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
539 {
540 	struct amdgpu_device *adev = ring->adev;
541 	u32 ref_and_mask = 0;
542 	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
543 
544 	if (ring->me == 0)
545 		ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0;
546 	else
547 		ref_and_mask = nbio_hf_reg->ref_and_mask_sdma1;
548 
549 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
550 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
551 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
552 	amdgpu_ring_write(ring, (adev->nbio.funcs->get_hdp_flush_done_offset(adev)) << 2);
553 	amdgpu_ring_write(ring, (adev->nbio.funcs->get_hdp_flush_req_offset(adev)) << 2);
554 	amdgpu_ring_write(ring, ref_and_mask); /* reference */
555 	amdgpu_ring_write(ring, ref_and_mask); /* mask */
556 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
557 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
558 }
559 
560 /**
561  * sdma_v5_0_ring_emit_fence - emit a fence on the DMA ring
562  *
563  * @ring: amdgpu ring pointer
564  * @addr: address
565  * @seq: sequence number
566  * @flags: fence related flags
567  *
568  * Add a DMA fence packet to the ring to write
569  * the fence seq number and DMA trap packet to generate
570  * an interrupt if needed (NAVI10).
571  */
572 static void sdma_v5_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
573 				      unsigned flags)
574 {
575 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
576 	/* write the fence */
577 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE) |
578 			  SDMA_PKT_FENCE_HEADER_MTYPE(0x3)); /* Ucached(UC) */
579 	/* zero in first two bits */
580 	BUG_ON(addr & 0x3);
581 	amdgpu_ring_write(ring, lower_32_bits(addr));
582 	amdgpu_ring_write(ring, upper_32_bits(addr));
583 	amdgpu_ring_write(ring, lower_32_bits(seq));
584 
585 	/* optionally write high bits as well */
586 	if (write64bit) {
587 		addr += 4;
588 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE) |
589 				  SDMA_PKT_FENCE_HEADER_MTYPE(0x3));
590 		/* zero in first two bits */
591 		BUG_ON(addr & 0x3);
592 		amdgpu_ring_write(ring, lower_32_bits(addr));
593 		amdgpu_ring_write(ring, upper_32_bits(addr));
594 		amdgpu_ring_write(ring, upper_32_bits(seq));
595 	}
596 
597 	if (flags & AMDGPU_FENCE_FLAG_INT) {
598 		uint32_t ctx = ring->is_mes_queue ?
599 			(ring->hw_queue_id | AMDGPU_FENCE_MES_QUEUE_FLAG) : 0;
600 		/* generate an interrupt */
601 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
602 		amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(ctx));
603 	}
604 }
605 
606 
607 /**
608  * sdma_v5_0_gfx_stop - stop the gfx async dma engines
609  *
610  * @adev: amdgpu_device pointer
611  *
612  * Stop the gfx async dma ring buffers (NAVI10).
613  */
614 static void sdma_v5_0_gfx_stop(struct amdgpu_device *adev)
615 {
616 	struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
617 	struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
618 	u32 rb_cntl, ib_cntl;
619 	int i;
620 
621 	if ((adev->mman.buffer_funcs_ring == sdma0) ||
622 	    (adev->mman.buffer_funcs_ring == sdma1))
623 		amdgpu_ttm_set_buffer_funcs_status(adev, false);
624 
625 	for (i = 0; i < adev->sdma.num_instances; i++) {
626 		rb_cntl = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
627 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
628 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
629 		ib_cntl = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
630 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
631 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
632 	}
633 }
634 
635 /**
636  * sdma_v5_0_rlc_stop - stop the compute async dma engines
637  *
638  * @adev: amdgpu_device pointer
639  *
640  * Stop the compute async dma queues (NAVI10).
641  */
642 static void sdma_v5_0_rlc_stop(struct amdgpu_device *adev)
643 {
644 	/* XXX todo */
645 }
646 
647 /**
648  * sdma_v5_0_ctx_switch_enable - stop the async dma engines context switch
649  *
650  * @adev: amdgpu_device pointer
651  * @enable: enable/disable the DMA MEs context switch.
652  *
653  * Halt or unhalt the async dma engines context switch (NAVI10).
654  */
655 static void sdma_v5_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
656 {
657 	u32 f32_cntl = 0, phase_quantum = 0;
658 	int i;
659 
660 	if (amdgpu_sdma_phase_quantum) {
661 		unsigned value = amdgpu_sdma_phase_quantum;
662 		unsigned unit = 0;
663 
664 		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
665 				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
666 			value = (value + 1) >> 1;
667 			unit++;
668 		}
669 		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
670 			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
671 			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
672 				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
673 			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
674 				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
675 			WARN_ONCE(1,
676 			"clamping sdma_phase_quantum to %uK clock cycles\n",
677 				  value << unit);
678 		}
679 		phase_quantum =
680 			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
681 			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
682 	}
683 
684 	for (i = 0; i < adev->sdma.num_instances; i++) {
685 		if (!amdgpu_sriov_vf(adev)) {
686 			f32_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CNTL));
687 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
688 						 AUTO_CTXSW_ENABLE, enable ? 1 : 0);
689 		}
690 
691 		if (enable && amdgpu_sdma_phase_quantum) {
692 			WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_PHASE0_QUANTUM),
693 			       phase_quantum);
694 			WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_PHASE1_QUANTUM),
695 			       phase_quantum);
696 			WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_PHASE2_QUANTUM),
697 			       phase_quantum);
698 		}
699 		if (!amdgpu_sriov_vf(adev))
700 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CNTL), f32_cntl);
701 	}
702 
703 }
704 
705 /**
706  * sdma_v5_0_enable - stop the async dma engines
707  *
708  * @adev: amdgpu_device pointer
709  * @enable: enable/disable the DMA MEs.
710  *
711  * Halt or unhalt the async dma engines (NAVI10).
712  */
713 static void sdma_v5_0_enable(struct amdgpu_device *adev, bool enable)
714 {
715 	u32 f32_cntl;
716 	int i;
717 
718 	if (!enable) {
719 		sdma_v5_0_gfx_stop(adev);
720 		sdma_v5_0_rlc_stop(adev);
721 	}
722 
723 	if (amdgpu_sriov_vf(adev))
724 		return;
725 
726 	for (i = 0; i < adev->sdma.num_instances; i++) {
727 		f32_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
728 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
729 		WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), f32_cntl);
730 	}
731 }
732 
733 /**
734  * sdma_v5_0_gfx_resume - setup and start the async dma engines
735  *
736  * @adev: amdgpu_device pointer
737  *
738  * Set up the gfx DMA ring buffers and enable them (NAVI10).
739  * Returns 0 for success, error for failure.
740  */
741 static int sdma_v5_0_gfx_resume(struct amdgpu_device *adev)
742 {
743 	struct amdgpu_ring *ring;
744 	u32 rb_cntl, ib_cntl;
745 	u32 rb_bufsz;
746 	u32 doorbell;
747 	u32 doorbell_offset;
748 	u32 temp;
749 	u32 wptr_poll_cntl;
750 	u64 wptr_gpu_addr;
751 	int i, r;
752 
753 	for (i = 0; i < adev->sdma.num_instances; i++) {
754 		ring = &adev->sdma.instance[i].ring;
755 
756 		if (!amdgpu_sriov_vf(adev))
757 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL), 0);
758 
759 		/* Set ring buffer size in dwords */
760 		rb_bufsz = order_base_2(ring->ring_size / 4);
761 		rb_cntl = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
762 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
763 #ifdef __BIG_ENDIAN
764 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
765 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
766 					RPTR_WRITEBACK_SWAP_ENABLE, 1);
767 #endif
768 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
769 
770 		/* Initialize the ring buffer's read and write pointers */
771 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR), 0);
772 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_HI), 0);
773 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), 0);
774 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), 0);
775 
776 		/* setup the wptr shadow polling */
777 		wptr_gpu_addr = ring->wptr_gpu_addr;
778 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO),
779 		       lower_32_bits(wptr_gpu_addr));
780 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI),
781 		       upper_32_bits(wptr_gpu_addr));
782 		wptr_poll_cntl = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i,
783 							 mmSDMA0_GFX_RB_WPTR_POLL_CNTL));
784 		wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
785 					       SDMA0_GFX_RB_WPTR_POLL_CNTL,
786 					       F32_POLL_ENABLE, 1);
787 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL),
788 		       wptr_poll_cntl);
789 
790 		/* set the wb address whether it's enabled or not */
791 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_HI),
792 		       upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF);
793 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_LO),
794 		       lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC);
795 
796 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
797 
798 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE),
799 		       ring->gpu_addr >> 8);
800 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE_HI),
801 		       ring->gpu_addr >> 40);
802 
803 		ring->wptr = 0;
804 
805 		/* before programing wptr to a less value, need set minor_ptr_update first */
806 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 1);
807 
808 		if (!amdgpu_sriov_vf(adev)) { /* only bare-metal use register write for wptr */
809 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR),
810 			       lower_32_bits(ring->wptr << 2));
811 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI),
812 			       upper_32_bits(ring->wptr << 2));
813 		}
814 
815 		doorbell = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL));
816 		doorbell_offset = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i,
817 						mmSDMA0_GFX_DOORBELL_OFFSET));
818 
819 		if (ring->use_doorbell) {
820 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
821 			doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_GFX_DOORBELL_OFFSET,
822 					OFFSET, ring->doorbell_index);
823 		} else {
824 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
825 		}
826 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL), doorbell);
827 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET),
828 		       doorbell_offset);
829 
830 		adev->nbio.funcs->sdma_doorbell_range(adev, i, ring->use_doorbell,
831 						      ring->doorbell_index, 20);
832 
833 		if (amdgpu_sriov_vf(adev))
834 			sdma_v5_0_ring_set_wptr(ring);
835 
836 		/* set minor_ptr_update to 0 after wptr programed */
837 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 0);
838 
839 		if (!amdgpu_sriov_vf(adev)) {
840 			/* set utc l1 enable flag always to 1 */
841 			temp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CNTL));
842 			temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
843 
844 			/* enable MCBP */
845 			temp = REG_SET_FIELD(temp, SDMA0_CNTL, MIDCMD_PREEMPT_ENABLE, 1);
846 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CNTL), temp);
847 
848 			/* Set up RESP_MODE to non-copy addresses */
849 			temp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UTCL1_CNTL));
850 			temp = REG_SET_FIELD(temp, SDMA0_UTCL1_CNTL, RESP_MODE, 3);
851 			temp = REG_SET_FIELD(temp, SDMA0_UTCL1_CNTL, REDO_DELAY, 9);
852 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UTCL1_CNTL), temp);
853 
854 			/* program default cache read and write policy */
855 			temp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UTCL1_PAGE));
856 			/* clean read policy and write policy bits */
857 			temp &= 0xFF0FFF;
858 			temp |= ((CACHE_READ_POLICY_L2__DEFAULT << 12) | (CACHE_WRITE_POLICY_L2__DEFAULT << 14));
859 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UTCL1_PAGE), temp);
860 		}
861 
862 		if (!amdgpu_sriov_vf(adev)) {
863 			/* unhalt engine */
864 			temp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
865 			temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
866 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), temp);
867 		}
868 
869 		/* enable DMA RB */
870 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
871 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
872 
873 		ib_cntl = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
874 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
875 #ifdef __BIG_ENDIAN
876 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
877 #endif
878 		/* enable DMA IBs */
879 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
880 
881 		ring->sched.ready = true;
882 
883 		if (amdgpu_sriov_vf(adev)) { /* bare-metal sequence doesn't need below to lines */
884 			sdma_v5_0_ctx_switch_enable(adev, true);
885 			sdma_v5_0_enable(adev, true);
886 		}
887 
888 		r = amdgpu_ring_test_helper(ring);
889 		if (r)
890 			return r;
891 
892 		if (adev->mman.buffer_funcs_ring == ring)
893 			amdgpu_ttm_set_buffer_funcs_status(adev, true);
894 	}
895 
896 	return 0;
897 }
898 
899 /**
900  * sdma_v5_0_rlc_resume - setup and start the async dma engines
901  *
902  * @adev: amdgpu_device pointer
903  *
904  * Set up the compute DMA queues and enable them (NAVI10).
905  * Returns 0 for success, error for failure.
906  */
907 static int sdma_v5_0_rlc_resume(struct amdgpu_device *adev)
908 {
909 	return 0;
910 }
911 
912 /**
913  * sdma_v5_0_load_microcode - load the sDMA ME ucode
914  *
915  * @adev: amdgpu_device pointer
916  *
917  * Loads the sDMA0/1 ucode.
918  * Returns 0 for success, -EINVAL if the ucode is not available.
919  */
920 static int sdma_v5_0_load_microcode(struct amdgpu_device *adev)
921 {
922 	const struct sdma_firmware_header_v1_0 *hdr;
923 	const __le32 *fw_data;
924 	u32 fw_size;
925 	int i, j;
926 
927 	/* halt the MEs */
928 	sdma_v5_0_enable(adev, false);
929 
930 	for (i = 0; i < adev->sdma.num_instances; i++) {
931 		if (!adev->sdma.instance[i].fw)
932 			return -EINVAL;
933 
934 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
935 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
936 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
937 
938 		fw_data = (const __le32 *)
939 			(adev->sdma.instance[i].fw->data +
940 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
941 
942 		WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), 0);
943 
944 		for (j = 0; j < fw_size; j++) {
945 			if (amdgpu_emu_mode == 1 && j % 500 == 0)
946 				msleep(1);
947 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UCODE_DATA), le32_to_cpup(fw_data++));
948 		}
949 
950 		WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), adev->sdma.instance[i].fw_version);
951 	}
952 
953 	return 0;
954 }
955 
956 /**
957  * sdma_v5_0_start - setup and start the async dma engines
958  *
959  * @adev: amdgpu_device pointer
960  *
961  * Set up the DMA engines and enable them (NAVI10).
962  * Returns 0 for success, error for failure.
963  */
964 static int sdma_v5_0_start(struct amdgpu_device *adev)
965 {
966 	int r = 0;
967 
968 	if (amdgpu_sriov_vf(adev)) {
969 		sdma_v5_0_ctx_switch_enable(adev, false);
970 		sdma_v5_0_enable(adev, false);
971 
972 		/* set RB registers */
973 		r = sdma_v5_0_gfx_resume(adev);
974 		return r;
975 	}
976 
977 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) {
978 		r = sdma_v5_0_load_microcode(adev);
979 		if (r)
980 			return r;
981 	}
982 
983 	/* unhalt the MEs */
984 	sdma_v5_0_enable(adev, true);
985 	/* enable sdma ring preemption */
986 	sdma_v5_0_ctx_switch_enable(adev, true);
987 
988 	/* start the gfx rings and rlc compute queues */
989 	r = sdma_v5_0_gfx_resume(adev);
990 	if (r)
991 		return r;
992 	r = sdma_v5_0_rlc_resume(adev);
993 
994 	return r;
995 }
996 
997 static int sdma_v5_0_mqd_init(struct amdgpu_device *adev, void *mqd,
998 			      struct amdgpu_mqd_prop *prop)
999 {
1000 	struct v10_sdma_mqd *m = mqd;
1001 	uint64_t wb_gpu_addr;
1002 
1003 	m->sdmax_rlcx_rb_cntl =
1004 		order_base_2(prop->queue_size / 4) << SDMA0_RLC0_RB_CNTL__RB_SIZE__SHIFT |
1005 		1 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_ENABLE__SHIFT |
1006 		6 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_TIMER__SHIFT |
1007 		1 << SDMA0_RLC0_RB_CNTL__RB_PRIV__SHIFT;
1008 
1009 	m->sdmax_rlcx_rb_base = lower_32_bits(prop->hqd_base_gpu_addr >> 8);
1010 	m->sdmax_rlcx_rb_base_hi = upper_32_bits(prop->hqd_base_gpu_addr >> 8);
1011 
1012 	m->sdmax_rlcx_rb_wptr_poll_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, 0,
1013 						  mmSDMA0_GFX_RB_WPTR_POLL_CNTL));
1014 
1015 	wb_gpu_addr = prop->wptr_gpu_addr;
1016 	m->sdmax_rlcx_rb_wptr_poll_addr_lo = lower_32_bits(wb_gpu_addr);
1017 	m->sdmax_rlcx_rb_wptr_poll_addr_hi = upper_32_bits(wb_gpu_addr);
1018 
1019 	wb_gpu_addr = prop->rptr_gpu_addr;
1020 	m->sdmax_rlcx_rb_rptr_addr_lo = lower_32_bits(wb_gpu_addr);
1021 	m->sdmax_rlcx_rb_rptr_addr_hi = upper_32_bits(wb_gpu_addr);
1022 
1023 	m->sdmax_rlcx_ib_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, 0,
1024 							mmSDMA0_GFX_IB_CNTL));
1025 
1026 	m->sdmax_rlcx_doorbell_offset =
1027 		prop->doorbell_index << SDMA0_RLC0_DOORBELL_OFFSET__OFFSET__SHIFT;
1028 
1029 	m->sdmax_rlcx_doorbell = REG_SET_FIELD(0, SDMA0_RLC0_DOORBELL, ENABLE, 1);
1030 
1031 	return 0;
1032 }
1033 
1034 static void sdma_v5_0_set_mqd_funcs(struct amdgpu_device *adev)
1035 {
1036 	adev->mqds[AMDGPU_HW_IP_DMA].mqd_size = sizeof(struct v10_sdma_mqd);
1037 	adev->mqds[AMDGPU_HW_IP_DMA].init_mqd = sdma_v5_0_mqd_init;
1038 }
1039 
1040 /**
1041  * sdma_v5_0_ring_test_ring - simple async dma engine test
1042  *
1043  * @ring: amdgpu_ring structure holding ring information
1044  *
1045  * Test the DMA engine by writing using it to write an
1046  * value to memory. (NAVI10).
1047  * Returns 0 for success, error for failure.
1048  */
1049 static int sdma_v5_0_ring_test_ring(struct amdgpu_ring *ring)
1050 {
1051 	struct amdgpu_device *adev = ring->adev;
1052 	unsigned i;
1053 	unsigned index;
1054 	int r;
1055 	u32 tmp;
1056 	u64 gpu_addr;
1057 	volatile uint32_t *cpu_ptr = NULL;
1058 
1059 	tmp = 0xCAFEDEAD;
1060 
1061 	if (ring->is_mes_queue) {
1062 		uint32_t offset = 0;
1063 		offset = amdgpu_mes_ctx_get_offs(ring,
1064 					 AMDGPU_MES_CTX_PADDING_OFFS);
1065 		gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset);
1066 		cpu_ptr = amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset);
1067 		*cpu_ptr = tmp;
1068 	} else {
1069 		r = amdgpu_device_wb_get(adev, &index);
1070 		if (r) {
1071 			dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
1072 			return r;
1073 		}
1074 
1075 		gpu_addr = adev->wb.gpu_addr + (index * 4);
1076 		adev->wb.wb[index] = cpu_to_le32(tmp);
1077 	}
1078 
1079 	r = amdgpu_ring_alloc(ring, 20);
1080 	if (r) {
1081 		DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
1082 		amdgpu_device_wb_free(adev, index);
1083 		return r;
1084 	}
1085 
1086 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1087 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1088 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1089 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1090 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1091 	amdgpu_ring_write(ring, 0xDEADBEEF);
1092 	amdgpu_ring_commit(ring);
1093 
1094 	for (i = 0; i < adev->usec_timeout; i++) {
1095 		if (ring->is_mes_queue)
1096 			tmp = le32_to_cpu(*cpu_ptr);
1097 		else
1098 			tmp = le32_to_cpu(adev->wb.wb[index]);
1099 		if (tmp == 0xDEADBEEF)
1100 			break;
1101 		if (amdgpu_emu_mode == 1)
1102 			msleep(1);
1103 		else
1104 			udelay(1);
1105 	}
1106 
1107 	if (i >= adev->usec_timeout)
1108 		r = -ETIMEDOUT;
1109 
1110 	if (!ring->is_mes_queue)
1111 		amdgpu_device_wb_free(adev, index);
1112 
1113 	return r;
1114 }
1115 
1116 /**
1117  * sdma_v5_0_ring_test_ib - test an IB on the DMA engine
1118  *
1119  * @ring: amdgpu_ring structure holding ring information
1120  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
1121  *
1122  * Test a simple IB in the DMA ring (NAVI10).
1123  * Returns 0 on success, error on failure.
1124  */
1125 static int sdma_v5_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1126 {
1127 	struct amdgpu_device *adev = ring->adev;
1128 	struct amdgpu_ib ib;
1129 	struct dma_fence *f = NULL;
1130 	unsigned index;
1131 	long r;
1132 	u32 tmp = 0;
1133 	u64 gpu_addr;
1134 	volatile uint32_t *cpu_ptr = NULL;
1135 
1136 	tmp = 0xCAFEDEAD;
1137 	memset(&ib, 0, sizeof(ib));
1138 
1139 	if (ring->is_mes_queue) {
1140 		uint32_t offset = 0;
1141 		offset = amdgpu_mes_ctx_get_offs(ring, AMDGPU_MES_CTX_IB_OFFS);
1142 		ib.gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset);
1143 		ib.ptr = (void *)amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset);
1144 
1145 		offset = amdgpu_mes_ctx_get_offs(ring,
1146 					 AMDGPU_MES_CTX_PADDING_OFFS);
1147 		gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset);
1148 		cpu_ptr = amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset);
1149 		*cpu_ptr = tmp;
1150 	} else {
1151 		r = amdgpu_device_wb_get(adev, &index);
1152 		if (r) {
1153 			dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
1154 			return r;
1155 		}
1156 
1157 		gpu_addr = adev->wb.gpu_addr + (index * 4);
1158 		adev->wb.wb[index] = cpu_to_le32(tmp);
1159 
1160 		r = amdgpu_ib_get(adev, NULL, 256,
1161 					AMDGPU_IB_POOL_DIRECT, &ib);
1162 		if (r) {
1163 			DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
1164 			goto err0;
1165 		}
1166 	}
1167 
1168 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1169 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1170 	ib.ptr[1] = lower_32_bits(gpu_addr);
1171 	ib.ptr[2] = upper_32_bits(gpu_addr);
1172 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1173 	ib.ptr[4] = 0xDEADBEEF;
1174 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1175 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1176 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1177 	ib.length_dw = 8;
1178 
1179 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1180 	if (r)
1181 		goto err1;
1182 
1183 	r = dma_fence_wait_timeout(f, false, timeout);
1184 	if (r == 0) {
1185 		DRM_ERROR("amdgpu: IB test timed out\n");
1186 		r = -ETIMEDOUT;
1187 		goto err1;
1188 	} else if (r < 0) {
1189 		DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
1190 		goto err1;
1191 	}
1192 
1193 	if (ring->is_mes_queue)
1194 		tmp = le32_to_cpu(*cpu_ptr);
1195 	else
1196 		tmp = le32_to_cpu(adev->wb.wb[index]);
1197 
1198 	if (tmp == 0xDEADBEEF)
1199 		r = 0;
1200 	else
1201 		r = -EINVAL;
1202 
1203 err1:
1204 	amdgpu_ib_free(adev, &ib, NULL);
1205 	dma_fence_put(f);
1206 err0:
1207 	if (!ring->is_mes_queue)
1208 		amdgpu_device_wb_free(adev, index);
1209 	return r;
1210 }
1211 
1212 
1213 /**
1214  * sdma_v5_0_vm_copy_pte - update PTEs by copying them from the GART
1215  *
1216  * @ib: indirect buffer to fill with commands
1217  * @pe: addr of the page entry
1218  * @src: src addr to copy from
1219  * @count: number of page entries to update
1220  *
1221  * Update PTEs by copying them from the GART using sDMA (NAVI10).
1222  */
1223 static void sdma_v5_0_vm_copy_pte(struct amdgpu_ib *ib,
1224 				  uint64_t pe, uint64_t src,
1225 				  unsigned count)
1226 {
1227 	unsigned bytes = count * 8;
1228 
1229 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1230 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1231 	ib->ptr[ib->length_dw++] = bytes - 1;
1232 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1233 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1234 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1235 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1236 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1237 
1238 }
1239 
1240 /**
1241  * sdma_v5_0_vm_write_pte - update PTEs by writing them manually
1242  *
1243  * @ib: indirect buffer to fill with commands
1244  * @pe: addr of the page entry
1245  * @value: dst addr to write into pe
1246  * @count: number of page entries to update
1247  * @incr: increase next addr by incr bytes
1248  *
1249  * Update PTEs by writing them manually using sDMA (NAVI10).
1250  */
1251 static void sdma_v5_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1252 				   uint64_t value, unsigned count,
1253 				   uint32_t incr)
1254 {
1255 	unsigned ndw = count * 2;
1256 
1257 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1258 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1259 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1260 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1261 	ib->ptr[ib->length_dw++] = ndw - 1;
1262 	for (; ndw > 0; ndw -= 2) {
1263 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1264 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1265 		value += incr;
1266 	}
1267 }
1268 
1269 /**
1270  * sdma_v5_0_vm_set_pte_pde - update the page tables using sDMA
1271  *
1272  * @ib: indirect buffer to fill with commands
1273  * @pe: addr of the page entry
1274  * @addr: dst addr to write into pe
1275  * @count: number of page entries to update
1276  * @incr: increase next addr by incr bytes
1277  * @flags: access flags
1278  *
1279  * Update the page tables using sDMA (NAVI10).
1280  */
1281 static void sdma_v5_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1282 				     uint64_t pe,
1283 				     uint64_t addr, unsigned count,
1284 				     uint32_t incr, uint64_t flags)
1285 {
1286 	/* for physically contiguous pages (vram) */
1287 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1288 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1289 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1290 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1291 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1292 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1293 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1294 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1295 	ib->ptr[ib->length_dw++] = 0;
1296 	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1297 }
1298 
1299 /**
1300  * sdma_v5_0_ring_pad_ib - pad the IB
1301  * @ring: amdgpu_ring structure holding ring information
1302  * @ib: indirect buffer to fill with padding
1303  *
1304  * Pad the IB with NOPs to a boundary multiple of 8.
1305  */
1306 static void sdma_v5_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1307 {
1308 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1309 	u32 pad_count;
1310 	int i;
1311 
1312 	pad_count = (-ib->length_dw) & 0x7;
1313 	for (i = 0; i < pad_count; i++)
1314 		if (sdma && sdma->burst_nop && (i == 0))
1315 			ib->ptr[ib->length_dw++] =
1316 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1317 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1318 		else
1319 			ib->ptr[ib->length_dw++] =
1320 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1321 }
1322 
1323 
1324 /**
1325  * sdma_v5_0_ring_emit_pipeline_sync - sync the pipeline
1326  *
1327  * @ring: amdgpu_ring pointer
1328  *
1329  * Make sure all previous operations are completed (CIK).
1330  */
1331 static void sdma_v5_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1332 {
1333 	uint32_t seq = ring->fence_drv.sync_seq;
1334 	uint64_t addr = ring->fence_drv.gpu_addr;
1335 
1336 	/* wait for idle */
1337 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1338 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1339 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1340 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1341 	amdgpu_ring_write(ring, addr & 0xfffffffc);
1342 	amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1343 	amdgpu_ring_write(ring, seq); /* reference */
1344 	amdgpu_ring_write(ring, 0xffffffff); /* mask */
1345 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1346 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1347 }
1348 
1349 
1350 /**
1351  * sdma_v5_0_ring_emit_vm_flush - vm flush using sDMA
1352  *
1353  * @ring: amdgpu_ring pointer
1354  * @vmid: vmid number to use
1355  * @pd_addr: address
1356  *
1357  * Update the page table base and flush the VM TLB
1358  * using sDMA (NAVI10).
1359  */
1360 static void sdma_v5_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1361 					 unsigned vmid, uint64_t pd_addr)
1362 {
1363 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1364 }
1365 
1366 static void sdma_v5_0_ring_emit_wreg(struct amdgpu_ring *ring,
1367 				     uint32_t reg, uint32_t val)
1368 {
1369 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1370 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1371 	amdgpu_ring_write(ring, reg);
1372 	amdgpu_ring_write(ring, val);
1373 }
1374 
1375 static void sdma_v5_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1376 					 uint32_t val, uint32_t mask)
1377 {
1378 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1379 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1380 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* equal */
1381 	amdgpu_ring_write(ring, reg << 2);
1382 	amdgpu_ring_write(ring, 0);
1383 	amdgpu_ring_write(ring, val); /* reference */
1384 	amdgpu_ring_write(ring, mask); /* mask */
1385 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1386 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10));
1387 }
1388 
1389 static void sdma_v5_0_ring_emit_reg_write_reg_wait(struct amdgpu_ring *ring,
1390 						   uint32_t reg0, uint32_t reg1,
1391 						   uint32_t ref, uint32_t mask)
1392 {
1393 	amdgpu_ring_emit_wreg(ring, reg0, ref);
1394 	/* wait for a cycle to reset vm_inv_eng*_ack */
1395 	amdgpu_ring_emit_reg_wait(ring, reg0, 0, 0);
1396 	amdgpu_ring_emit_reg_wait(ring, reg1, mask, mask);
1397 }
1398 
1399 static int sdma_v5_0_early_init(void *handle)
1400 {
1401 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1402 
1403 	sdma_v5_0_set_ring_funcs(adev);
1404 	sdma_v5_0_set_buffer_funcs(adev);
1405 	sdma_v5_0_set_vm_pte_funcs(adev);
1406 	sdma_v5_0_set_irq_funcs(adev);
1407 	sdma_v5_0_set_mqd_funcs(adev);
1408 
1409 	return 0;
1410 }
1411 
1412 
1413 static int sdma_v5_0_sw_init(void *handle)
1414 {
1415 	struct amdgpu_ring *ring;
1416 	int r, i;
1417 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1418 
1419 	/* SDMA trap event */
1420 	r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA0,
1421 			      SDMA0_5_0__SRCID__SDMA_TRAP,
1422 			      &adev->sdma.trap_irq);
1423 	if (r)
1424 		return r;
1425 
1426 	/* SDMA trap event */
1427 	r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA1,
1428 			      SDMA1_5_0__SRCID__SDMA_TRAP,
1429 			      &adev->sdma.trap_irq);
1430 	if (r)
1431 		return r;
1432 
1433 	r = sdma_v5_0_init_microcode(adev);
1434 	if (r) {
1435 		DRM_ERROR("Failed to load sdma firmware!\n");
1436 		return r;
1437 	}
1438 
1439 	for (i = 0; i < adev->sdma.num_instances; i++) {
1440 		ring = &adev->sdma.instance[i].ring;
1441 		ring->ring_obj = NULL;
1442 		ring->use_doorbell = true;
1443 
1444 		DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i,
1445 				ring->use_doorbell?"true":"false");
1446 
1447 		ring->doorbell_index = (i == 0) ?
1448 			(adev->doorbell_index.sdma_engine[0] << 1) //get DWORD offset
1449 			: (adev->doorbell_index.sdma_engine[1] << 1); // get DWORD offset
1450 
1451 		sprintf(ring->name, "sdma%d", i);
1452 		r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1453 				     (i == 0) ? AMDGPU_SDMA_IRQ_INSTANCE0 :
1454 				     AMDGPU_SDMA_IRQ_INSTANCE1,
1455 				     AMDGPU_RING_PRIO_DEFAULT, NULL);
1456 		if (r)
1457 			return r;
1458 	}
1459 
1460 	return r;
1461 }
1462 
1463 static int sdma_v5_0_sw_fini(void *handle)
1464 {
1465 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1466 	int i;
1467 
1468 	for (i = 0; i < adev->sdma.num_instances; i++) {
1469 		release_firmware(adev->sdma.instance[i].fw);
1470 		adev->sdma.instance[i].fw = NULL;
1471 
1472 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1473 	}
1474 
1475 	return 0;
1476 }
1477 
1478 static int sdma_v5_0_hw_init(void *handle)
1479 {
1480 	int r;
1481 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1482 
1483 	sdma_v5_0_init_golden_registers(adev);
1484 
1485 	r = sdma_v5_0_start(adev);
1486 
1487 	return r;
1488 }
1489 
1490 static int sdma_v5_0_hw_fini(void *handle)
1491 {
1492 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1493 
1494 	if (amdgpu_sriov_vf(adev))
1495 		return 0;
1496 
1497 	sdma_v5_0_ctx_switch_enable(adev, false);
1498 	sdma_v5_0_enable(adev, false);
1499 
1500 	return 0;
1501 }
1502 
1503 static int sdma_v5_0_suspend(void *handle)
1504 {
1505 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1506 
1507 	return sdma_v5_0_hw_fini(adev);
1508 }
1509 
1510 static int sdma_v5_0_resume(void *handle)
1511 {
1512 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1513 
1514 	return sdma_v5_0_hw_init(adev);
1515 }
1516 
1517 static bool sdma_v5_0_is_idle(void *handle)
1518 {
1519 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1520 	u32 i;
1521 
1522 	for (i = 0; i < adev->sdma.num_instances; i++) {
1523 		u32 tmp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_STATUS_REG));
1524 
1525 		if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1526 			return false;
1527 	}
1528 
1529 	return true;
1530 }
1531 
1532 static int sdma_v5_0_wait_for_idle(void *handle)
1533 {
1534 	unsigned i;
1535 	u32 sdma0, sdma1;
1536 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1537 
1538 	for (i = 0; i < adev->usec_timeout; i++) {
1539 		sdma0 = RREG32(sdma_v5_0_get_reg_offset(adev, 0, mmSDMA0_STATUS_REG));
1540 		sdma1 = RREG32(sdma_v5_0_get_reg_offset(adev, 1, mmSDMA0_STATUS_REG));
1541 
1542 		if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK)
1543 			return 0;
1544 		udelay(1);
1545 	}
1546 	return -ETIMEDOUT;
1547 }
1548 
1549 static int sdma_v5_0_soft_reset(void *handle)
1550 {
1551 	/* todo */
1552 
1553 	return 0;
1554 }
1555 
1556 static int sdma_v5_0_ring_preempt_ib(struct amdgpu_ring *ring)
1557 {
1558 	int i, r = 0;
1559 	struct amdgpu_device *adev = ring->adev;
1560 	u32 index = 0;
1561 	u64 sdma_gfx_preempt;
1562 
1563 	amdgpu_sdma_get_index_from_ring(ring, &index);
1564 	if (index == 0)
1565 		sdma_gfx_preempt = mmSDMA0_GFX_PREEMPT;
1566 	else
1567 		sdma_gfx_preempt = mmSDMA1_GFX_PREEMPT;
1568 
1569 	/* assert preemption condition */
1570 	amdgpu_ring_set_preempt_cond_exec(ring, false);
1571 
1572 	/* emit the trailing fence */
1573 	ring->trail_seq += 1;
1574 	amdgpu_ring_alloc(ring, 10);
1575 	sdma_v5_0_ring_emit_fence(ring, ring->trail_fence_gpu_addr,
1576 				  ring->trail_seq, 0);
1577 	amdgpu_ring_commit(ring);
1578 
1579 	/* assert IB preemption */
1580 	WREG32(sdma_gfx_preempt, 1);
1581 
1582 	/* poll the trailing fence */
1583 	for (i = 0; i < adev->usec_timeout; i++) {
1584 		if (ring->trail_seq ==
1585 		    le32_to_cpu(*(ring->trail_fence_cpu_addr)))
1586 			break;
1587 		udelay(1);
1588 	}
1589 
1590 	if (i >= adev->usec_timeout) {
1591 		r = -EINVAL;
1592 		DRM_ERROR("ring %d failed to be preempted\n", ring->idx);
1593 	}
1594 
1595 	/* deassert IB preemption */
1596 	WREG32(sdma_gfx_preempt, 0);
1597 
1598 	/* deassert the preemption condition */
1599 	amdgpu_ring_set_preempt_cond_exec(ring, true);
1600 	return r;
1601 }
1602 
1603 static int sdma_v5_0_set_trap_irq_state(struct amdgpu_device *adev,
1604 					struct amdgpu_irq_src *source,
1605 					unsigned type,
1606 					enum amdgpu_interrupt_state state)
1607 {
1608 	u32 sdma_cntl;
1609 
1610 	if (!amdgpu_sriov_vf(adev)) {
1611 		u32 reg_offset = (type == AMDGPU_SDMA_IRQ_INSTANCE0) ?
1612 			sdma_v5_0_get_reg_offset(adev, 0, mmSDMA0_CNTL) :
1613 			sdma_v5_0_get_reg_offset(adev, 1, mmSDMA0_CNTL);
1614 
1615 		sdma_cntl = RREG32(reg_offset);
1616 		sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
1617 					  state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1618 		WREG32(reg_offset, sdma_cntl);
1619 	}
1620 
1621 	return 0;
1622 }
1623 
1624 static int sdma_v5_0_process_trap_irq(struct amdgpu_device *adev,
1625 				      struct amdgpu_irq_src *source,
1626 				      struct amdgpu_iv_entry *entry)
1627 {
1628 	uint32_t mes_queue_id = entry->src_data[0];
1629 
1630 	DRM_DEBUG("IH: SDMA trap\n");
1631 
1632 	if (adev->enable_mes && (mes_queue_id & AMDGPU_FENCE_MES_QUEUE_FLAG)) {
1633 		struct amdgpu_mes_queue *queue;
1634 
1635 		mes_queue_id &= AMDGPU_FENCE_MES_QUEUE_ID_MASK;
1636 
1637 		spin_lock(&adev->mes.queue_id_lock);
1638 		queue = idr_find(&adev->mes.queue_id_idr, mes_queue_id);
1639 		if (queue) {
1640 			DRM_DEBUG("process smda queue id = %d\n", mes_queue_id);
1641 			amdgpu_fence_process(queue->ring);
1642 		}
1643 		spin_unlock(&adev->mes.queue_id_lock);
1644 		return 0;
1645 	}
1646 
1647 	switch (entry->client_id) {
1648 	case SOC15_IH_CLIENTID_SDMA0:
1649 		switch (entry->ring_id) {
1650 		case 0:
1651 			amdgpu_fence_process(&adev->sdma.instance[0].ring);
1652 			break;
1653 		case 1:
1654 			/* XXX compute */
1655 			break;
1656 		case 2:
1657 			/* XXX compute */
1658 			break;
1659 		case 3:
1660 			/* XXX page queue*/
1661 			break;
1662 		}
1663 		break;
1664 	case SOC15_IH_CLIENTID_SDMA1:
1665 		switch (entry->ring_id) {
1666 		case 0:
1667 			amdgpu_fence_process(&adev->sdma.instance[1].ring);
1668 			break;
1669 		case 1:
1670 			/* XXX compute */
1671 			break;
1672 		case 2:
1673 			/* XXX compute */
1674 			break;
1675 		case 3:
1676 			/* XXX page queue*/
1677 			break;
1678 		}
1679 		break;
1680 	}
1681 	return 0;
1682 }
1683 
1684 static int sdma_v5_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1685 					      struct amdgpu_irq_src *source,
1686 					      struct amdgpu_iv_entry *entry)
1687 {
1688 	return 0;
1689 }
1690 
1691 static void sdma_v5_0_update_medium_grain_clock_gating(struct amdgpu_device *adev,
1692 						       bool enable)
1693 {
1694 	uint32_t data, def;
1695 	int i;
1696 
1697 	for (i = 0; i < adev->sdma.num_instances; i++) {
1698 		if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1699 			/* Enable sdma clock gating */
1700 			def = data = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL));
1701 			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1702 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1703 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1704 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1705 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1706 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1707 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1708 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1709 			if (def != data)
1710 				WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL), data);
1711 		} else {
1712 			/* Disable sdma clock gating */
1713 			def = data = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL));
1714 			data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1715 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1716 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1717 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1718 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1719 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1720 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1721 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1722 			if (def != data)
1723 				WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL), data);
1724 		}
1725 	}
1726 }
1727 
1728 static void sdma_v5_0_update_medium_grain_light_sleep(struct amdgpu_device *adev,
1729 						      bool enable)
1730 {
1731 	uint32_t data, def;
1732 	int i;
1733 
1734 	for (i = 0; i < adev->sdma.num_instances; i++) {
1735 		if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1736 			/* Enable sdma mem light sleep */
1737 			def = data = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL));
1738 			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1739 			if (def != data)
1740 				WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL), data);
1741 
1742 		} else {
1743 			/* Disable sdma mem light sleep */
1744 			def = data = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL));
1745 			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1746 			if (def != data)
1747 				WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL), data);
1748 
1749 		}
1750 	}
1751 }
1752 
1753 static int sdma_v5_0_set_clockgating_state(void *handle,
1754 					   enum amd_clockgating_state state)
1755 {
1756 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1757 
1758 	if (amdgpu_sriov_vf(adev))
1759 		return 0;
1760 
1761 	switch (adev->ip_versions[SDMA0_HWIP][0]) {
1762 	case IP_VERSION(5, 0, 0):
1763 	case IP_VERSION(5, 0, 2):
1764 	case IP_VERSION(5, 0, 5):
1765 		sdma_v5_0_update_medium_grain_clock_gating(adev,
1766 				state == AMD_CG_STATE_GATE);
1767 		sdma_v5_0_update_medium_grain_light_sleep(adev,
1768 				state == AMD_CG_STATE_GATE);
1769 		break;
1770 	default:
1771 		break;
1772 	}
1773 
1774 	return 0;
1775 }
1776 
1777 static int sdma_v5_0_set_powergating_state(void *handle,
1778 					  enum amd_powergating_state state)
1779 {
1780 	return 0;
1781 }
1782 
1783 static void sdma_v5_0_get_clockgating_state(void *handle, u64 *flags)
1784 {
1785 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1786 	int data;
1787 
1788 	if (amdgpu_sriov_vf(adev))
1789 		*flags = 0;
1790 
1791 	/* AMD_CG_SUPPORT_SDMA_MGCG */
1792 	data = RREG32(sdma_v5_0_get_reg_offset(adev, 0, mmSDMA0_CLK_CTRL));
1793 	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
1794 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1795 
1796 	/* AMD_CG_SUPPORT_SDMA_LS */
1797 	data = RREG32(sdma_v5_0_get_reg_offset(adev, 0, mmSDMA0_POWER_CNTL));
1798 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1799 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
1800 }
1801 
1802 const struct amd_ip_funcs sdma_v5_0_ip_funcs = {
1803 	.name = "sdma_v5_0",
1804 	.early_init = sdma_v5_0_early_init,
1805 	.late_init = NULL,
1806 	.sw_init = sdma_v5_0_sw_init,
1807 	.sw_fini = sdma_v5_0_sw_fini,
1808 	.hw_init = sdma_v5_0_hw_init,
1809 	.hw_fini = sdma_v5_0_hw_fini,
1810 	.suspend = sdma_v5_0_suspend,
1811 	.resume = sdma_v5_0_resume,
1812 	.is_idle = sdma_v5_0_is_idle,
1813 	.wait_for_idle = sdma_v5_0_wait_for_idle,
1814 	.soft_reset = sdma_v5_0_soft_reset,
1815 	.set_clockgating_state = sdma_v5_0_set_clockgating_state,
1816 	.set_powergating_state = sdma_v5_0_set_powergating_state,
1817 	.get_clockgating_state = sdma_v5_0_get_clockgating_state,
1818 };
1819 
1820 static const struct amdgpu_ring_funcs sdma_v5_0_ring_funcs = {
1821 	.type = AMDGPU_RING_TYPE_SDMA,
1822 	.align_mask = 0xf,
1823 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1824 	.support_64bit_ptrs = true,
1825 	.secure_submission_supported = true,
1826 	.vmhub = AMDGPU_GFXHUB_0,
1827 	.get_rptr = sdma_v5_0_ring_get_rptr,
1828 	.get_wptr = sdma_v5_0_ring_get_wptr,
1829 	.set_wptr = sdma_v5_0_ring_set_wptr,
1830 	.emit_frame_size =
1831 		5 + /* sdma_v5_0_ring_init_cond_exec */
1832 		6 + /* sdma_v5_0_ring_emit_hdp_flush */
1833 		3 + /* hdp_invalidate */
1834 		6 + /* sdma_v5_0_ring_emit_pipeline_sync */
1835 		/* sdma_v5_0_ring_emit_vm_flush */
1836 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
1837 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 * 2 +
1838 		10 + 10 + 10, /* sdma_v5_0_ring_emit_fence x3 for user fence, vm fence */
1839 	.emit_ib_size = 5 + 7 + 6, /* sdma_v5_0_ring_emit_ib */
1840 	.emit_ib = sdma_v5_0_ring_emit_ib,
1841 	.emit_mem_sync = sdma_v5_0_ring_emit_mem_sync,
1842 	.emit_fence = sdma_v5_0_ring_emit_fence,
1843 	.emit_pipeline_sync = sdma_v5_0_ring_emit_pipeline_sync,
1844 	.emit_vm_flush = sdma_v5_0_ring_emit_vm_flush,
1845 	.emit_hdp_flush = sdma_v5_0_ring_emit_hdp_flush,
1846 	.test_ring = sdma_v5_0_ring_test_ring,
1847 	.test_ib = sdma_v5_0_ring_test_ib,
1848 	.insert_nop = sdma_v5_0_ring_insert_nop,
1849 	.pad_ib = sdma_v5_0_ring_pad_ib,
1850 	.emit_wreg = sdma_v5_0_ring_emit_wreg,
1851 	.emit_reg_wait = sdma_v5_0_ring_emit_reg_wait,
1852 	.emit_reg_write_reg_wait = sdma_v5_0_ring_emit_reg_write_reg_wait,
1853 	.init_cond_exec = sdma_v5_0_ring_init_cond_exec,
1854 	.patch_cond_exec = sdma_v5_0_ring_patch_cond_exec,
1855 	.preempt_ib = sdma_v5_0_ring_preempt_ib,
1856 };
1857 
1858 static void sdma_v5_0_set_ring_funcs(struct amdgpu_device *adev)
1859 {
1860 	int i;
1861 
1862 	for (i = 0; i < adev->sdma.num_instances; i++) {
1863 		adev->sdma.instance[i].ring.funcs = &sdma_v5_0_ring_funcs;
1864 		adev->sdma.instance[i].ring.me = i;
1865 	}
1866 }
1867 
1868 static const struct amdgpu_irq_src_funcs sdma_v5_0_trap_irq_funcs = {
1869 	.set = sdma_v5_0_set_trap_irq_state,
1870 	.process = sdma_v5_0_process_trap_irq,
1871 };
1872 
1873 static const struct amdgpu_irq_src_funcs sdma_v5_0_illegal_inst_irq_funcs = {
1874 	.process = sdma_v5_0_process_illegal_inst_irq,
1875 };
1876 
1877 static void sdma_v5_0_set_irq_funcs(struct amdgpu_device *adev)
1878 {
1879 	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE0 +
1880 					adev->sdma.num_instances;
1881 	adev->sdma.trap_irq.funcs = &sdma_v5_0_trap_irq_funcs;
1882 	adev->sdma.illegal_inst_irq.funcs = &sdma_v5_0_illegal_inst_irq_funcs;
1883 }
1884 
1885 /**
1886  * sdma_v5_0_emit_copy_buffer - copy buffer using the sDMA engine
1887  *
1888  * @ib: indirect buffer to copy to
1889  * @src_offset: src GPU address
1890  * @dst_offset: dst GPU address
1891  * @byte_count: number of bytes to xfer
1892  * @tmz: if a secure copy should be used
1893  *
1894  * Copy GPU buffers using the DMA engine (NAVI10).
1895  * Used by the amdgpu ttm implementation to move pages if
1896  * registered as the asic copy callback.
1897  */
1898 static void sdma_v5_0_emit_copy_buffer(struct amdgpu_ib *ib,
1899 				       uint64_t src_offset,
1900 				       uint64_t dst_offset,
1901 				       uint32_t byte_count,
1902 				       bool tmz)
1903 {
1904 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1905 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
1906 		SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0);
1907 	ib->ptr[ib->length_dw++] = byte_count - 1;
1908 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1909 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1910 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1911 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1912 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1913 }
1914 
1915 /**
1916  * sdma_v5_0_emit_fill_buffer - fill buffer using the sDMA engine
1917  *
1918  * @ib: indirect buffer to fill
1919  * @src_data: value to write to buffer
1920  * @dst_offset: dst GPU address
1921  * @byte_count: number of bytes to xfer
1922  *
1923  * Fill GPU buffers using the DMA engine (NAVI10).
1924  */
1925 static void sdma_v5_0_emit_fill_buffer(struct amdgpu_ib *ib,
1926 				       uint32_t src_data,
1927 				       uint64_t dst_offset,
1928 				       uint32_t byte_count)
1929 {
1930 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1931 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1932 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1933 	ib->ptr[ib->length_dw++] = src_data;
1934 	ib->ptr[ib->length_dw++] = byte_count - 1;
1935 }
1936 
1937 static const struct amdgpu_buffer_funcs sdma_v5_0_buffer_funcs = {
1938 	.copy_max_bytes = 0x400000,
1939 	.copy_num_dw = 7,
1940 	.emit_copy_buffer = sdma_v5_0_emit_copy_buffer,
1941 
1942 	.fill_max_bytes = 0x400000,
1943 	.fill_num_dw = 5,
1944 	.emit_fill_buffer = sdma_v5_0_emit_fill_buffer,
1945 };
1946 
1947 static void sdma_v5_0_set_buffer_funcs(struct amdgpu_device *adev)
1948 {
1949 	if (adev->mman.buffer_funcs == NULL) {
1950 		adev->mman.buffer_funcs = &sdma_v5_0_buffer_funcs;
1951 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1952 	}
1953 }
1954 
1955 static const struct amdgpu_vm_pte_funcs sdma_v5_0_vm_pte_funcs = {
1956 	.copy_pte_num_dw = 7,
1957 	.copy_pte = sdma_v5_0_vm_copy_pte,
1958 	.write_pte = sdma_v5_0_vm_write_pte,
1959 	.set_pte_pde = sdma_v5_0_vm_set_pte_pde,
1960 };
1961 
1962 static void sdma_v5_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1963 {
1964 	unsigned i;
1965 
1966 	if (adev->vm_manager.vm_pte_funcs == NULL) {
1967 		adev->vm_manager.vm_pte_funcs = &sdma_v5_0_vm_pte_funcs;
1968 		for (i = 0; i < adev->sdma.num_instances; i++) {
1969 			adev->vm_manager.vm_pte_scheds[i] =
1970 				&adev->sdma.instance[i].ring.sched;
1971 		}
1972 		adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
1973 	}
1974 }
1975 
1976 const struct amdgpu_ip_block_version sdma_v5_0_ip_block = {
1977 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1978 	.major = 5,
1979 	.minor = 0,
1980 	.rev = 0,
1981 	.funcs = &sdma_v5_0_ip_funcs,
1982 };
1983