xref: /linux/drivers/gpu/drm/amd/amdgpu/sdma_v4_4_2.c (revision def3f83e51590fcc9fdaef3f6ea9f75cd604a2d2)
1 /*
2  * Copyright 2022 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28 
29 #include "amdgpu.h"
30 #include "amdgpu_xcp.h"
31 #include "amdgpu_ucode.h"
32 #include "amdgpu_trace.h"
33 #include "amdgpu_reset.h"
34 
35 #include "sdma/sdma_4_4_2_offset.h"
36 #include "sdma/sdma_4_4_2_sh_mask.h"
37 
38 #include "soc15_common.h"
39 #include "soc15.h"
40 #include "vega10_sdma_pkt_open.h"
41 
42 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
43 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
44 
45 #include "amdgpu_ras.h"
46 
47 MODULE_FIRMWARE("amdgpu/sdma_4_4_2.bin");
48 MODULE_FIRMWARE("amdgpu/sdma_4_4_5.bin");
49 
50 static const struct amdgpu_hwip_reg_entry sdma_reg_list_4_4_2[] = {
51 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_STATUS_REG),
52 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_STATUS1_REG),
53 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_STATUS2_REG),
54 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_STATUS3_REG),
55 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_UCODE_CHECKSUM),
56 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RB_RPTR_FETCH_HI),
57 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RB_RPTR_FETCH),
58 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_UTCL1_RD_STATUS),
59 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_UTCL1_WR_STATUS),
60 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_UTCL1_RD_XNACK0),
61 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_UTCL1_RD_XNACK1),
62 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_UTCL1_WR_XNACK0),
63 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_UTCL1_WR_XNACK1),
64 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_RB_CNTL),
65 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_RB_RPTR),
66 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_RB_RPTR_HI),
67 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_RB_WPTR),
68 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_RB_WPTR_HI),
69 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_IB_OFFSET),
70 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_IB_BASE_LO),
71 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_IB_BASE_HI),
72 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_IB_CNTL),
73 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_IB_RPTR),
74 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_IB_SUB_REMAIN),
75 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_DUMMY_REG),
76 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_RB_CNTL),
77 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_RB_RPTR),
78 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_RB_RPTR_HI),
79 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_RB_WPTR),
80 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_RB_WPTR_HI),
81 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_IB_OFFSET),
82 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_IB_BASE_LO),
83 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_IB_BASE_HI),
84 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_DUMMY_REG),
85 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_RB_CNTL),
86 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_RB_RPTR),
87 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_RB_RPTR_HI),
88 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_RB_WPTR),
89 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_RB_WPTR_HI),
90 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_IB_OFFSET),
91 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_IB_BASE_LO),
92 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_IB_BASE_HI),
93 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_DUMMY_REG),
94 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_VM_CNTL)
95 };
96 
97 #define mmSMNAID_AID0_MCA_SMU 0x03b30400
98 
99 #define WREG32_SDMA(instance, offset, value) \
100 	WREG32(sdma_v4_4_2_get_reg_offset(adev, (instance), (offset)), value)
101 #define RREG32_SDMA(instance, offset) \
102 	RREG32(sdma_v4_4_2_get_reg_offset(adev, (instance), (offset)))
103 
104 static void sdma_v4_4_2_set_ring_funcs(struct amdgpu_device *adev);
105 static void sdma_v4_4_2_set_buffer_funcs(struct amdgpu_device *adev);
106 static void sdma_v4_4_2_set_vm_pte_funcs(struct amdgpu_device *adev);
107 static void sdma_v4_4_2_set_irq_funcs(struct amdgpu_device *adev);
108 static void sdma_v4_4_2_set_ras_funcs(struct amdgpu_device *adev);
109 static void sdma_v4_4_2_update_reset_mask(struct amdgpu_device *adev);
110 static int sdma_v4_4_2_stop_queue(struct amdgpu_ring *ring);
111 static int sdma_v4_4_2_restore_queue(struct amdgpu_ring *ring);
112 static int sdma_v4_4_2_soft_reset_engine(struct amdgpu_device *adev,
113 					 u32 instance_id);
114 
115 static u32 sdma_v4_4_2_get_reg_offset(struct amdgpu_device *adev,
116 		u32 instance, u32 offset)
117 {
118 	u32 dev_inst = GET_INST(SDMA0, instance);
119 
120 	return (adev->reg_offset[SDMA0_HWIP][dev_inst][0] + offset);
121 }
122 
123 static unsigned sdma_v4_4_2_seq_to_irq_id(int seq_num)
124 {
125 	switch (seq_num) {
126 	case 0:
127 		return SOC15_IH_CLIENTID_SDMA0;
128 	case 1:
129 		return SOC15_IH_CLIENTID_SDMA1;
130 	case 2:
131 		return SOC15_IH_CLIENTID_SDMA2;
132 	case 3:
133 		return SOC15_IH_CLIENTID_SDMA3;
134 	default:
135 		return -EINVAL;
136 	}
137 }
138 
139 static int sdma_v4_4_2_irq_id_to_seq(struct amdgpu_device *adev, unsigned client_id)
140 {
141 	switch (client_id) {
142 	case SOC15_IH_CLIENTID_SDMA0:
143 		return 0;
144 	case SOC15_IH_CLIENTID_SDMA1:
145 		return 1;
146 	case SOC15_IH_CLIENTID_SDMA2:
147 		if (amdgpu_sriov_vf(adev) && (adev->gfx.xcc_mask == 0x1))
148 			return 0;
149 		else
150 			return 2;
151 	case SOC15_IH_CLIENTID_SDMA3:
152 		if (amdgpu_sriov_vf(adev) && (adev->gfx.xcc_mask == 0x1))
153 			return 1;
154 		else
155 			return 3;
156 	default:
157 		return -EINVAL;
158 	}
159 }
160 
161 static void sdma_v4_4_2_inst_init_golden_registers(struct amdgpu_device *adev,
162 						   uint32_t inst_mask)
163 {
164 	u32 val;
165 	int i;
166 
167 	for (i = 0; i < adev->sdma.num_instances; i++) {
168 		val = RREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG);
169 		val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG, NUM_BANKS, 4);
170 		val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG,
171 				    PIPE_INTERLEAVE_SIZE, 0);
172 		WREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG, val);
173 
174 		val = RREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG_READ);
175 		val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG_READ, NUM_BANKS,
176 				    4);
177 		val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG_READ,
178 				    PIPE_INTERLEAVE_SIZE, 0);
179 		WREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG_READ, val);
180 	}
181 }
182 
183 /**
184  * sdma_v4_4_2_init_microcode - load ucode images from disk
185  *
186  * @adev: amdgpu_device pointer
187  *
188  * Use the firmware interface to load the ucode images into
189  * the driver (not loaded into hw).
190  * Returns 0 on success, error on failure.
191  */
192 static int sdma_v4_4_2_init_microcode(struct amdgpu_device *adev)
193 {
194 	int ret, i;
195 
196 	for (i = 0; i < adev->sdma.num_instances; i++) {
197 		if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 2) ||
198 		    amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 4) ||
199 		    amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 5)) {
200 			ret = amdgpu_sdma_init_microcode(adev, 0, true);
201 			break;
202 		} else {
203 			ret = amdgpu_sdma_init_microcode(adev, i, false);
204 			if (ret)
205 				return ret;
206 		}
207 	}
208 
209 	return ret;
210 }
211 
212 /**
213  * sdma_v4_4_2_ring_get_rptr - get the current read pointer
214  *
215  * @ring: amdgpu ring pointer
216  *
217  * Get the current rptr from the hardware.
218  */
219 static uint64_t sdma_v4_4_2_ring_get_rptr(struct amdgpu_ring *ring)
220 {
221 	u64 rptr;
222 
223 	/* XXX check if swapping is necessary on BE */
224 	rptr = READ_ONCE(*((u64 *)&ring->adev->wb.wb[ring->rptr_offs]));
225 
226 	DRM_DEBUG("rptr before shift == 0x%016llx\n", rptr);
227 	return rptr >> 2;
228 }
229 
230 /**
231  * sdma_v4_4_2_ring_get_wptr - get the current write pointer
232  *
233  * @ring: amdgpu ring pointer
234  *
235  * Get the current wptr from the hardware.
236  */
237 static uint64_t sdma_v4_4_2_ring_get_wptr(struct amdgpu_ring *ring)
238 {
239 	struct amdgpu_device *adev = ring->adev;
240 	u64 wptr;
241 
242 	if (ring->use_doorbell) {
243 		/* XXX check if swapping is necessary on BE */
244 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
245 		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
246 	} else {
247 		wptr = RREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR_HI);
248 		wptr = wptr << 32;
249 		wptr |= RREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR);
250 		DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
251 				ring->me, wptr);
252 	}
253 
254 	return wptr >> 2;
255 }
256 
257 /**
258  * sdma_v4_4_2_ring_set_wptr - commit the write pointer
259  *
260  * @ring: amdgpu ring pointer
261  *
262  * Write the wptr back to the hardware.
263  */
264 static void sdma_v4_4_2_ring_set_wptr(struct amdgpu_ring *ring)
265 {
266 	struct amdgpu_device *adev = ring->adev;
267 
268 	DRM_DEBUG("Setting write pointer\n");
269 	if (ring->use_doorbell) {
270 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
271 
272 		DRM_DEBUG("Using doorbell -- "
273 				"wptr_offs == 0x%08x "
274 				"lower_32_bits(ring->wptr) << 2 == 0x%08x "
275 				"upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
276 				ring->wptr_offs,
277 				lower_32_bits(ring->wptr << 2),
278 				upper_32_bits(ring->wptr << 2));
279 		/* XXX check if swapping is necessary on BE */
280 		WRITE_ONCE(*wb, (ring->wptr << 2));
281 		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
282 				ring->doorbell_index, ring->wptr << 2);
283 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
284 	} else {
285 		DRM_DEBUG("Not using doorbell -- "
286 				"regSDMA%i_GFX_RB_WPTR == 0x%08x "
287 				"regSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
288 				ring->me,
289 				lower_32_bits(ring->wptr << 2),
290 				ring->me,
291 				upper_32_bits(ring->wptr << 2));
292 		WREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR,
293 			    lower_32_bits(ring->wptr << 2));
294 		WREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR_HI,
295 			    upper_32_bits(ring->wptr << 2));
296 	}
297 }
298 
299 /**
300  * sdma_v4_4_2_page_ring_get_wptr - get the current write pointer
301  *
302  * @ring: amdgpu ring pointer
303  *
304  * Get the current wptr from the hardware.
305  */
306 static uint64_t sdma_v4_4_2_page_ring_get_wptr(struct amdgpu_ring *ring)
307 {
308 	struct amdgpu_device *adev = ring->adev;
309 	u64 wptr;
310 
311 	if (ring->use_doorbell) {
312 		/* XXX check if swapping is necessary on BE */
313 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
314 	} else {
315 		wptr = RREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR_HI);
316 		wptr = wptr << 32;
317 		wptr |= RREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR);
318 	}
319 
320 	return wptr >> 2;
321 }
322 
323 /**
324  * sdma_v4_4_2_page_ring_set_wptr - commit the write pointer
325  *
326  * @ring: amdgpu ring pointer
327  *
328  * Write the wptr back to the hardware.
329  */
330 static void sdma_v4_4_2_page_ring_set_wptr(struct amdgpu_ring *ring)
331 {
332 	struct amdgpu_device *adev = ring->adev;
333 
334 	if (ring->use_doorbell) {
335 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
336 
337 		/* XXX check if swapping is necessary on BE */
338 		WRITE_ONCE(*wb, (ring->wptr << 2));
339 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
340 	} else {
341 		uint64_t wptr = ring->wptr << 2;
342 
343 		WREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR,
344 			    lower_32_bits(wptr));
345 		WREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR_HI,
346 			    upper_32_bits(wptr));
347 	}
348 }
349 
350 static void sdma_v4_4_2_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
351 {
352 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
353 	int i;
354 
355 	for (i = 0; i < count; i++)
356 		if (sdma && sdma->burst_nop && (i == 0))
357 			amdgpu_ring_write(ring, ring->funcs->nop |
358 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
359 		else
360 			amdgpu_ring_write(ring, ring->funcs->nop);
361 }
362 
363 /**
364  * sdma_v4_4_2_ring_emit_ib - Schedule an IB on the DMA engine
365  *
366  * @ring: amdgpu ring pointer
367  * @job: job to retrieve vmid from
368  * @ib: IB object to schedule
369  * @flags: unused
370  *
371  * Schedule an IB in the DMA ring.
372  */
373 static void sdma_v4_4_2_ring_emit_ib(struct amdgpu_ring *ring,
374 				   struct amdgpu_job *job,
375 				   struct amdgpu_ib *ib,
376 				   uint32_t flags)
377 {
378 	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
379 
380 	/* IB packet must end on a 8 DW boundary */
381 	sdma_v4_4_2_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
382 
383 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
384 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
385 	/* base must be 32 byte aligned */
386 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
387 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
388 	amdgpu_ring_write(ring, ib->length_dw);
389 	amdgpu_ring_write(ring, 0);
390 	amdgpu_ring_write(ring, 0);
391 
392 }
393 
394 static void sdma_v4_4_2_wait_reg_mem(struct amdgpu_ring *ring,
395 				   int mem_space, int hdp,
396 				   uint32_t addr0, uint32_t addr1,
397 				   uint32_t ref, uint32_t mask,
398 				   uint32_t inv)
399 {
400 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
401 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
402 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
403 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
404 	if (mem_space) {
405 		/* memory */
406 		amdgpu_ring_write(ring, addr0);
407 		amdgpu_ring_write(ring, addr1);
408 	} else {
409 		/* registers */
410 		amdgpu_ring_write(ring, addr0 << 2);
411 		amdgpu_ring_write(ring, addr1 << 2);
412 	}
413 	amdgpu_ring_write(ring, ref); /* reference */
414 	amdgpu_ring_write(ring, mask); /* mask */
415 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
416 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
417 }
418 
419 /**
420  * sdma_v4_4_2_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
421  *
422  * @ring: amdgpu ring pointer
423  *
424  * Emit an hdp flush packet on the requested DMA ring.
425  */
426 static void sdma_v4_4_2_ring_emit_hdp_flush(struct amdgpu_ring *ring)
427 {
428 	struct amdgpu_device *adev = ring->adev;
429 	u32 ref_and_mask = 0;
430 	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
431 
432 	ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0
433 		       << (ring->me % adev->sdma.num_inst_per_aid);
434 
435 	sdma_v4_4_2_wait_reg_mem(ring, 0, 1,
436 			       adev->nbio.funcs->get_hdp_flush_done_offset(adev),
437 			       adev->nbio.funcs->get_hdp_flush_req_offset(adev),
438 			       ref_and_mask, ref_and_mask, 10);
439 }
440 
441 /**
442  * sdma_v4_4_2_ring_emit_fence - emit a fence on the DMA ring
443  *
444  * @ring: amdgpu ring pointer
445  * @addr: address
446  * @seq: sequence number
447  * @flags: fence related flags
448  *
449  * Add a DMA fence packet to the ring to write
450  * the fence seq number and DMA trap packet to generate
451  * an interrupt if needed.
452  */
453 static void sdma_v4_4_2_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
454 				      unsigned flags)
455 {
456 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
457 	/* write the fence */
458 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
459 	/* zero in first two bits */
460 	BUG_ON(addr & 0x3);
461 	amdgpu_ring_write(ring, lower_32_bits(addr));
462 	amdgpu_ring_write(ring, upper_32_bits(addr));
463 	amdgpu_ring_write(ring, lower_32_bits(seq));
464 
465 	/* optionally write high bits as well */
466 	if (write64bit) {
467 		addr += 4;
468 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
469 		/* zero in first two bits */
470 		BUG_ON(addr & 0x3);
471 		amdgpu_ring_write(ring, lower_32_bits(addr));
472 		amdgpu_ring_write(ring, upper_32_bits(addr));
473 		amdgpu_ring_write(ring, upper_32_bits(seq));
474 	}
475 
476 	/* generate an interrupt */
477 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
478 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
479 }
480 
481 
482 /**
483  * sdma_v4_4_2_inst_gfx_stop - stop the gfx async dma engines
484  *
485  * @adev: amdgpu_device pointer
486  * @inst_mask: mask of dma engine instances to be disabled
487  *
488  * Stop the gfx async dma ring buffers.
489  */
490 static void sdma_v4_4_2_inst_gfx_stop(struct amdgpu_device *adev,
491 				      uint32_t inst_mask)
492 {
493 	struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
494 	u32 doorbell_offset, doorbell;
495 	u32 rb_cntl, ib_cntl, sdma_cntl;
496 	int i;
497 
498 	for_each_inst(i, inst_mask) {
499 		sdma[i] = &adev->sdma.instance[i].ring;
500 
501 		rb_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_CNTL);
502 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_ENABLE, 0);
503 		WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl);
504 		ib_cntl = RREG32_SDMA(i, regSDMA_GFX_IB_CNTL);
505 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_ENABLE, 0);
506 		WREG32_SDMA(i, regSDMA_GFX_IB_CNTL, ib_cntl);
507 		sdma_cntl = RREG32_SDMA(i, regSDMA_CNTL);
508 		sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA_CNTL, UTC_L1_ENABLE, 0);
509 		WREG32_SDMA(i, regSDMA_CNTL, sdma_cntl);
510 
511 		if (sdma[i]->use_doorbell) {
512 			doorbell = RREG32_SDMA(i, regSDMA_GFX_DOORBELL);
513 			doorbell_offset = RREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET);
514 
515 			doorbell = REG_SET_FIELD(doorbell, SDMA_GFX_DOORBELL, ENABLE, 0);
516 			doorbell_offset = REG_SET_FIELD(doorbell_offset,
517 					SDMA_GFX_DOORBELL_OFFSET,
518 					OFFSET, 0);
519 			WREG32_SDMA(i, regSDMA_GFX_DOORBELL, doorbell);
520 			WREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET, doorbell_offset);
521 		}
522 	}
523 }
524 
525 /**
526  * sdma_v4_4_2_inst_rlc_stop - stop the compute async dma engines
527  *
528  * @adev: amdgpu_device pointer
529  * @inst_mask: mask of dma engine instances to be disabled
530  *
531  * Stop the compute async dma queues.
532  */
533 static void sdma_v4_4_2_inst_rlc_stop(struct amdgpu_device *adev,
534 				      uint32_t inst_mask)
535 {
536 	/* XXX todo */
537 }
538 
539 /**
540  * sdma_v4_4_2_inst_page_stop - stop the page async dma engines
541  *
542  * @adev: amdgpu_device pointer
543  * @inst_mask: mask of dma engine instances to be disabled
544  *
545  * Stop the page async dma ring buffers.
546  */
547 static void sdma_v4_4_2_inst_page_stop(struct amdgpu_device *adev,
548 				       uint32_t inst_mask)
549 {
550 	u32 rb_cntl, ib_cntl;
551 	int i;
552 
553 	for_each_inst(i, inst_mask) {
554 		rb_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_CNTL);
555 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL,
556 					RB_ENABLE, 0);
557 		WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl);
558 		ib_cntl = RREG32_SDMA(i, regSDMA_PAGE_IB_CNTL);
559 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL,
560 					IB_ENABLE, 0);
561 		WREG32_SDMA(i, regSDMA_PAGE_IB_CNTL, ib_cntl);
562 	}
563 }
564 
565 /**
566  * sdma_v4_4_2_inst_ctx_switch_enable - stop the async dma engines context switch
567  *
568  * @adev: amdgpu_device pointer
569  * @enable: enable/disable the DMA MEs context switch.
570  * @inst_mask: mask of dma engine instances to be enabled
571  *
572  * Halt or unhalt the async dma engines context switch.
573  */
574 static void sdma_v4_4_2_inst_ctx_switch_enable(struct amdgpu_device *adev,
575 					       bool enable, uint32_t inst_mask)
576 {
577 	u32 f32_cntl, phase_quantum = 0;
578 	int i;
579 
580 	if (amdgpu_sdma_phase_quantum) {
581 		unsigned value = amdgpu_sdma_phase_quantum;
582 		unsigned unit = 0;
583 
584 		while (value > (SDMA_PHASE0_QUANTUM__VALUE_MASK >>
585 				SDMA_PHASE0_QUANTUM__VALUE__SHIFT)) {
586 			value = (value + 1) >> 1;
587 			unit++;
588 		}
589 		if (unit > (SDMA_PHASE0_QUANTUM__UNIT_MASK >>
590 			    SDMA_PHASE0_QUANTUM__UNIT__SHIFT)) {
591 			value = (SDMA_PHASE0_QUANTUM__VALUE_MASK >>
592 				 SDMA_PHASE0_QUANTUM__VALUE__SHIFT);
593 			unit = (SDMA_PHASE0_QUANTUM__UNIT_MASK >>
594 				SDMA_PHASE0_QUANTUM__UNIT__SHIFT);
595 			WARN_ONCE(1,
596 			"clamping sdma_phase_quantum to %uK clock cycles\n",
597 				  value << unit);
598 		}
599 		phase_quantum =
600 			value << SDMA_PHASE0_QUANTUM__VALUE__SHIFT |
601 			unit  << SDMA_PHASE0_QUANTUM__UNIT__SHIFT;
602 	}
603 
604 	for_each_inst(i, inst_mask) {
605 		f32_cntl = RREG32_SDMA(i, regSDMA_CNTL);
606 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA_CNTL,
607 				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
608 		if (enable && amdgpu_sdma_phase_quantum) {
609 			WREG32_SDMA(i, regSDMA_PHASE0_QUANTUM, phase_quantum);
610 			WREG32_SDMA(i, regSDMA_PHASE1_QUANTUM, phase_quantum);
611 			WREG32_SDMA(i, regSDMA_PHASE2_QUANTUM, phase_quantum);
612 		}
613 		WREG32_SDMA(i, regSDMA_CNTL, f32_cntl);
614 
615 		/* Extend page fault timeout to avoid interrupt storm */
616 		WREG32_SDMA(i, regSDMA_UTCL1_TIMEOUT, 0x00800080);
617 	}
618 }
619 
620 /**
621  * sdma_v4_4_2_inst_enable - stop the async dma engines
622  *
623  * @adev: amdgpu_device pointer
624  * @enable: enable/disable the DMA MEs.
625  * @inst_mask: mask of dma engine instances to be enabled
626  *
627  * Halt or unhalt the async dma engines.
628  */
629 static void sdma_v4_4_2_inst_enable(struct amdgpu_device *adev, bool enable,
630 				    uint32_t inst_mask)
631 {
632 	u32 f32_cntl;
633 	int i;
634 
635 	if (!enable) {
636 		sdma_v4_4_2_inst_gfx_stop(adev, inst_mask);
637 		sdma_v4_4_2_inst_rlc_stop(adev, inst_mask);
638 		if (adev->sdma.has_page_queue)
639 			sdma_v4_4_2_inst_page_stop(adev, inst_mask);
640 
641 		/* SDMA FW needs to respond to FREEZE requests during reset.
642 		 * Keep it running during reset */
643 		if (!amdgpu_sriov_vf(adev) && amdgpu_in_reset(adev))
644 			return;
645 	}
646 
647 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP)
648 		return;
649 
650 	for_each_inst(i, inst_mask) {
651 		f32_cntl = RREG32_SDMA(i, regSDMA_F32_CNTL);
652 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA_F32_CNTL, HALT, enable ? 0 : 1);
653 		WREG32_SDMA(i, regSDMA_F32_CNTL, f32_cntl);
654 	}
655 }
656 
657 /*
658  * sdma_v4_4_2_rb_cntl - get parameters for rb_cntl
659  */
660 static uint32_t sdma_v4_4_2_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
661 {
662 	/* Set ring buffer size in dwords */
663 	uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
664 
665 	barrier(); /* work around https://llvm.org/pr42576 */
666 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
667 #ifdef __BIG_ENDIAN
668 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
669 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL,
670 				RPTR_WRITEBACK_SWAP_ENABLE, 1);
671 #endif
672 	return rb_cntl;
673 }
674 
675 /**
676  * sdma_v4_4_2_gfx_resume - setup and start the async dma engines
677  *
678  * @adev: amdgpu_device pointer
679  * @i: instance to resume
680  * @restore: used to restore wptr when restart
681  *
682  * Set up the gfx DMA ring buffers and enable them.
683  * Returns 0 for success, error for failure.
684  */
685 static void sdma_v4_4_2_gfx_resume(struct amdgpu_device *adev, unsigned int i, bool restore)
686 {
687 	struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
688 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
689 	u32 wb_offset;
690 	u32 doorbell;
691 	u32 doorbell_offset;
692 	u64 wptr_gpu_addr;
693 	u64 rwptr;
694 
695 	wb_offset = (ring->rptr_offs * 4);
696 
697 	rb_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_CNTL);
698 	rb_cntl = sdma_v4_4_2_rb_cntl(ring, rb_cntl);
699 	WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl);
700 
701 	/* set the wb address whether it's enabled or not */
702 	WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_ADDR_HI,
703 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
704 	WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_ADDR_LO,
705 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
706 
707 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL,
708 				RPTR_WRITEBACK_ENABLE, 1);
709 
710 	WREG32_SDMA(i, regSDMA_GFX_RB_BASE, ring->gpu_addr >> 8);
711 	WREG32_SDMA(i, regSDMA_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
712 
713 	if (!restore)
714 		ring->wptr = 0;
715 
716 	/* before programing wptr to a less value, need set minor_ptr_update first */
717 	WREG32_SDMA(i, regSDMA_GFX_MINOR_PTR_UPDATE, 1);
718 
719 	/* For the guilty queue, set RPTR to the current wptr to skip bad commands,
720 	 * It is not a guilty queue, restore cache_rptr and continue execution.
721 	 */
722 	if (adev->sdma.instance[i].gfx_guilty)
723 		rwptr = ring->wptr;
724 	else
725 		rwptr = ring->cached_rptr;
726 
727 	/* Initialize the ring buffer's read and write pointers */
728 	if (restore) {
729 		WREG32_SDMA(i, regSDMA_GFX_RB_RPTR, lower_32_bits(rwptr << 2));
730 		WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_HI, upper_32_bits(rwptr << 2));
731 		WREG32_SDMA(i, regSDMA_GFX_RB_WPTR, lower_32_bits(rwptr << 2));
732 		WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_HI, upper_32_bits(rwptr << 2));
733 	} else {
734 		WREG32_SDMA(i, regSDMA_GFX_RB_RPTR, 0);
735 		WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_HI, 0);
736 		WREG32_SDMA(i, regSDMA_GFX_RB_WPTR, 0);
737 		WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_HI, 0);
738 	}
739 
740 	doorbell = RREG32_SDMA(i, regSDMA_GFX_DOORBELL);
741 	doorbell_offset = RREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET);
742 
743 	doorbell = REG_SET_FIELD(doorbell, SDMA_GFX_DOORBELL, ENABLE,
744 				 ring->use_doorbell);
745 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
746 					SDMA_GFX_DOORBELL_OFFSET,
747 					OFFSET, ring->doorbell_index);
748 	WREG32_SDMA(i, regSDMA_GFX_DOORBELL, doorbell);
749 	WREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET, doorbell_offset);
750 
751 	sdma_v4_4_2_ring_set_wptr(ring);
752 
753 	/* set minor_ptr_update to 0 after wptr programed */
754 	WREG32_SDMA(i, regSDMA_GFX_MINOR_PTR_UPDATE, 0);
755 
756 	/* setup the wptr shadow polling */
757 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
758 	WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_ADDR_LO,
759 		    lower_32_bits(wptr_gpu_addr));
760 	WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_ADDR_HI,
761 		    upper_32_bits(wptr_gpu_addr));
762 	wptr_poll_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_CNTL);
763 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
764 				       SDMA_GFX_RB_WPTR_POLL_CNTL,
765 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
766 	WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
767 
768 	/* enable DMA RB */
769 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_ENABLE, 1);
770 	WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl);
771 
772 	ib_cntl = RREG32_SDMA(i, regSDMA_GFX_IB_CNTL);
773 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_ENABLE, 1);
774 #ifdef __BIG_ENDIAN
775 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
776 #endif
777 	/* enable DMA IBs */
778 	WREG32_SDMA(i, regSDMA_GFX_IB_CNTL, ib_cntl);
779 }
780 
781 /**
782  * sdma_v4_4_2_page_resume - setup and start the async dma engines
783  *
784  * @adev: amdgpu_device pointer
785  * @i: instance to resume
786  * @restore: boolean to say restore needed or not
787  *
788  * Set up the page DMA ring buffers and enable them.
789  * Returns 0 for success, error for failure.
790  */
791 static void sdma_v4_4_2_page_resume(struct amdgpu_device *adev, unsigned int i, bool restore)
792 {
793 	struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
794 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
795 	u32 wb_offset;
796 	u32 doorbell;
797 	u32 doorbell_offset;
798 	u64 wptr_gpu_addr;
799 	u64 rwptr;
800 
801 	wb_offset = (ring->rptr_offs * 4);
802 
803 	rb_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_CNTL);
804 	rb_cntl = sdma_v4_4_2_rb_cntl(ring, rb_cntl);
805 	WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl);
806 
807 	/* For the guilty queue, set RPTR to the current wptr to skip bad commands,
808 	 * It is not a guilty queue, restore cache_rptr and continue execution.
809 	 */
810 	if (adev->sdma.instance[i].page_guilty)
811 		rwptr = ring->wptr;
812 	else
813 		rwptr = ring->cached_rptr;
814 
815 	/* Initialize the ring buffer's read and write pointers */
816 	if (restore) {
817 		WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR, lower_32_bits(rwptr << 2));
818 		WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_HI, upper_32_bits(rwptr << 2));
819 		WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR, lower_32_bits(rwptr << 2));
820 		WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_HI, upper_32_bits(rwptr << 2));
821 	} else {
822 		WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR, 0);
823 		WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_HI, 0);
824 		WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR, 0);
825 		WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_HI, 0);
826 	}
827 
828 	/* set the wb address whether it's enabled or not */
829 	WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_ADDR_HI,
830 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
831 	WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_ADDR_LO,
832 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
833 
834 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL,
835 				RPTR_WRITEBACK_ENABLE, 1);
836 
837 	WREG32_SDMA(i, regSDMA_PAGE_RB_BASE, ring->gpu_addr >> 8);
838 	WREG32_SDMA(i, regSDMA_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
839 
840 	if (!restore)
841 		ring->wptr = 0;
842 
843 	/* before programing wptr to a less value, need set minor_ptr_update first */
844 	WREG32_SDMA(i, regSDMA_PAGE_MINOR_PTR_UPDATE, 1);
845 
846 	doorbell = RREG32_SDMA(i, regSDMA_PAGE_DOORBELL);
847 	doorbell_offset = RREG32_SDMA(i, regSDMA_PAGE_DOORBELL_OFFSET);
848 
849 	doorbell = REG_SET_FIELD(doorbell, SDMA_PAGE_DOORBELL, ENABLE,
850 				 ring->use_doorbell);
851 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
852 					SDMA_PAGE_DOORBELL_OFFSET,
853 					OFFSET, ring->doorbell_index);
854 	WREG32_SDMA(i, regSDMA_PAGE_DOORBELL, doorbell);
855 	WREG32_SDMA(i, regSDMA_PAGE_DOORBELL_OFFSET, doorbell_offset);
856 
857 	/* paging queue doorbell range is setup at sdma_v4_4_2_gfx_resume */
858 	sdma_v4_4_2_page_ring_set_wptr(ring);
859 
860 	/* set minor_ptr_update to 0 after wptr programed */
861 	WREG32_SDMA(i, regSDMA_PAGE_MINOR_PTR_UPDATE, 0);
862 
863 	/* setup the wptr shadow polling */
864 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
865 	WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_ADDR_LO,
866 		    lower_32_bits(wptr_gpu_addr));
867 	WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_ADDR_HI,
868 		    upper_32_bits(wptr_gpu_addr));
869 	wptr_poll_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_CNTL);
870 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
871 				       SDMA_PAGE_RB_WPTR_POLL_CNTL,
872 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
873 	WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
874 
875 	/* enable DMA RB */
876 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL, RB_ENABLE, 1);
877 	WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl);
878 
879 	ib_cntl = RREG32_SDMA(i, regSDMA_PAGE_IB_CNTL);
880 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL, IB_ENABLE, 1);
881 #ifdef __BIG_ENDIAN
882 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
883 #endif
884 	/* enable DMA IBs */
885 	WREG32_SDMA(i, regSDMA_PAGE_IB_CNTL, ib_cntl);
886 }
887 
888 static void sdma_v4_4_2_init_pg(struct amdgpu_device *adev)
889 {
890 
891 }
892 
893 /**
894  * sdma_v4_4_2_inst_rlc_resume - setup and start the async dma engines
895  *
896  * @adev: amdgpu_device pointer
897  * @inst_mask: mask of dma engine instances to be enabled
898  *
899  * Set up the compute DMA queues and enable them.
900  * Returns 0 for success, error for failure.
901  */
902 static int sdma_v4_4_2_inst_rlc_resume(struct amdgpu_device *adev,
903 				       uint32_t inst_mask)
904 {
905 	sdma_v4_4_2_init_pg(adev);
906 
907 	return 0;
908 }
909 
910 /**
911  * sdma_v4_4_2_inst_load_microcode - load the sDMA ME ucode
912  *
913  * @adev: amdgpu_device pointer
914  * @inst_mask: mask of dma engine instances to be enabled
915  *
916  * Loads the sDMA0/1 ucode.
917  * Returns 0 for success, -EINVAL if the ucode is not available.
918  */
919 static int sdma_v4_4_2_inst_load_microcode(struct amdgpu_device *adev,
920 					   uint32_t inst_mask)
921 {
922 	const struct sdma_firmware_header_v1_0 *hdr;
923 	const __le32 *fw_data;
924 	u32 fw_size;
925 	int i, j;
926 
927 	/* halt the MEs */
928 	sdma_v4_4_2_inst_enable(adev, false, inst_mask);
929 
930 	for_each_inst(i, inst_mask) {
931 		if (!adev->sdma.instance[i].fw)
932 			return -EINVAL;
933 
934 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
935 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
936 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
937 
938 		fw_data = (const __le32 *)
939 			(adev->sdma.instance[i].fw->data +
940 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
941 
942 		WREG32_SDMA(i, regSDMA_UCODE_ADDR, 0);
943 
944 		for (j = 0; j < fw_size; j++)
945 			WREG32_SDMA(i, regSDMA_UCODE_DATA,
946 				    le32_to_cpup(fw_data++));
947 
948 		WREG32_SDMA(i, regSDMA_UCODE_ADDR,
949 			    adev->sdma.instance[i].fw_version);
950 	}
951 
952 	return 0;
953 }
954 
955 /**
956  * sdma_v4_4_2_inst_start - setup and start the async dma engines
957  *
958  * @adev: amdgpu_device pointer
959  * @inst_mask: mask of dma engine instances to be enabled
960  * @restore: boolean to say restore needed or not
961  *
962  * Set up the DMA engines and enable them.
963  * Returns 0 for success, error for failure.
964  */
965 static int sdma_v4_4_2_inst_start(struct amdgpu_device *adev,
966 				  uint32_t inst_mask, bool restore)
967 {
968 	struct amdgpu_ring *ring;
969 	uint32_t tmp_mask;
970 	int i, r = 0;
971 
972 	if (amdgpu_sriov_vf(adev)) {
973 		sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask);
974 		sdma_v4_4_2_inst_enable(adev, false, inst_mask);
975 	} else {
976 		/* bypass sdma microcode loading on Gopher */
977 		if (!restore && adev->firmware.load_type != AMDGPU_FW_LOAD_PSP &&
978 		    adev->sdma.instance[0].fw) {
979 			r = sdma_v4_4_2_inst_load_microcode(adev, inst_mask);
980 			if (r)
981 				return r;
982 		}
983 
984 		/* unhalt the MEs */
985 		sdma_v4_4_2_inst_enable(adev, true, inst_mask);
986 		/* enable sdma ring preemption */
987 		sdma_v4_4_2_inst_ctx_switch_enable(adev, true, inst_mask);
988 	}
989 
990 	/* start the gfx rings and rlc compute queues */
991 	tmp_mask = inst_mask;
992 	for_each_inst(i, tmp_mask) {
993 		uint32_t temp;
994 
995 		WREG32_SDMA(i, regSDMA_SEM_WAIT_FAIL_TIMER_CNTL, 0);
996 		sdma_v4_4_2_gfx_resume(adev, i, restore);
997 		if (adev->sdma.has_page_queue)
998 			sdma_v4_4_2_page_resume(adev, i, restore);
999 
1000 		/* set utc l1 enable flag always to 1 */
1001 		temp = RREG32_SDMA(i, regSDMA_CNTL);
1002 		temp = REG_SET_FIELD(temp, SDMA_CNTL, UTC_L1_ENABLE, 1);
1003 		WREG32_SDMA(i, regSDMA_CNTL, temp);
1004 
1005 		if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) < IP_VERSION(4, 4, 5)) {
1006 			/* enable context empty interrupt during initialization */
1007 			temp = REG_SET_FIELD(temp, SDMA_CNTL, CTXEMPTY_INT_ENABLE, 1);
1008 			WREG32_SDMA(i, regSDMA_CNTL, temp);
1009 		}
1010 		if (!amdgpu_sriov_vf(adev)) {
1011 			if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
1012 				/* unhalt engine */
1013 				temp = RREG32_SDMA(i, regSDMA_F32_CNTL);
1014 				temp = REG_SET_FIELD(temp, SDMA_F32_CNTL, HALT, 0);
1015 				WREG32_SDMA(i, regSDMA_F32_CNTL, temp);
1016 			}
1017 		}
1018 	}
1019 
1020 	if (amdgpu_sriov_vf(adev)) {
1021 		sdma_v4_4_2_inst_ctx_switch_enable(adev, true, inst_mask);
1022 		sdma_v4_4_2_inst_enable(adev, true, inst_mask);
1023 	} else {
1024 		r = sdma_v4_4_2_inst_rlc_resume(adev, inst_mask);
1025 		if (r)
1026 			return r;
1027 	}
1028 
1029 	tmp_mask = inst_mask;
1030 	for_each_inst(i, tmp_mask) {
1031 		ring = &adev->sdma.instance[i].ring;
1032 
1033 		r = amdgpu_ring_test_helper(ring);
1034 		if (r)
1035 			return r;
1036 
1037 		if (adev->sdma.has_page_queue) {
1038 			struct amdgpu_ring *page = &adev->sdma.instance[i].page;
1039 
1040 			r = amdgpu_ring_test_helper(page);
1041 			if (r)
1042 				return r;
1043 		}
1044 	}
1045 
1046 	return r;
1047 }
1048 
1049 /**
1050  * sdma_v4_4_2_ring_test_ring - simple async dma engine test
1051  *
1052  * @ring: amdgpu_ring structure holding ring information
1053  *
1054  * Test the DMA engine by writing using it to write an
1055  * value to memory.
1056  * Returns 0 for success, error for failure.
1057  */
1058 static int sdma_v4_4_2_ring_test_ring(struct amdgpu_ring *ring)
1059 {
1060 	struct amdgpu_device *adev = ring->adev;
1061 	unsigned i;
1062 	unsigned index;
1063 	int r;
1064 	u32 tmp;
1065 	u64 gpu_addr;
1066 
1067 	r = amdgpu_device_wb_get(adev, &index);
1068 	if (r)
1069 		return r;
1070 
1071 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1072 	tmp = 0xCAFEDEAD;
1073 	adev->wb.wb[index] = cpu_to_le32(tmp);
1074 
1075 	r = amdgpu_ring_alloc(ring, 5);
1076 	if (r)
1077 		goto error_free_wb;
1078 
1079 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1080 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1081 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1082 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1083 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1084 	amdgpu_ring_write(ring, 0xDEADBEEF);
1085 	amdgpu_ring_commit(ring);
1086 
1087 	for (i = 0; i < adev->usec_timeout; i++) {
1088 		tmp = le32_to_cpu(adev->wb.wb[index]);
1089 		if (tmp == 0xDEADBEEF)
1090 			break;
1091 		udelay(1);
1092 	}
1093 
1094 	if (i >= adev->usec_timeout)
1095 		r = -ETIMEDOUT;
1096 
1097 error_free_wb:
1098 	amdgpu_device_wb_free(adev, index);
1099 	return r;
1100 }
1101 
1102 /**
1103  * sdma_v4_4_2_ring_test_ib - test an IB on the DMA engine
1104  *
1105  * @ring: amdgpu_ring structure holding ring information
1106  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
1107  *
1108  * Test a simple IB in the DMA ring.
1109  * Returns 0 on success, error on failure.
1110  */
1111 static int sdma_v4_4_2_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1112 {
1113 	struct amdgpu_device *adev = ring->adev;
1114 	struct amdgpu_ib ib;
1115 	struct dma_fence *f = NULL;
1116 	unsigned index;
1117 	long r;
1118 	u32 tmp = 0;
1119 	u64 gpu_addr;
1120 
1121 	r = amdgpu_device_wb_get(adev, &index);
1122 	if (r)
1123 		return r;
1124 
1125 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1126 	tmp = 0xCAFEDEAD;
1127 	adev->wb.wb[index] = cpu_to_le32(tmp);
1128 	memset(&ib, 0, sizeof(ib));
1129 	r = amdgpu_ib_get(adev, NULL, 256,
1130 					AMDGPU_IB_POOL_DIRECT, &ib);
1131 	if (r)
1132 		goto err0;
1133 
1134 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1135 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1136 	ib.ptr[1] = lower_32_bits(gpu_addr);
1137 	ib.ptr[2] = upper_32_bits(gpu_addr);
1138 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1139 	ib.ptr[4] = 0xDEADBEEF;
1140 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1141 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1142 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1143 	ib.length_dw = 8;
1144 
1145 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1146 	if (r)
1147 		goto err1;
1148 
1149 	r = dma_fence_wait_timeout(f, false, timeout);
1150 	if (r == 0) {
1151 		r = -ETIMEDOUT;
1152 		goto err1;
1153 	} else if (r < 0) {
1154 		goto err1;
1155 	}
1156 	tmp = le32_to_cpu(adev->wb.wb[index]);
1157 	if (tmp == 0xDEADBEEF)
1158 		r = 0;
1159 	else
1160 		r = -EINVAL;
1161 
1162 err1:
1163 	amdgpu_ib_free(&ib, NULL);
1164 	dma_fence_put(f);
1165 err0:
1166 	amdgpu_device_wb_free(adev, index);
1167 	return r;
1168 }
1169 
1170 
1171 /**
1172  * sdma_v4_4_2_vm_copy_pte - update PTEs by copying them from the GART
1173  *
1174  * @ib: indirect buffer to fill with commands
1175  * @pe: addr of the page entry
1176  * @src: src addr to copy from
1177  * @count: number of page entries to update
1178  *
1179  * Update PTEs by copying them from the GART using sDMA.
1180  */
1181 static void sdma_v4_4_2_vm_copy_pte(struct amdgpu_ib *ib,
1182 				  uint64_t pe, uint64_t src,
1183 				  unsigned count)
1184 {
1185 	unsigned bytes = count * 8;
1186 
1187 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1188 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1189 	ib->ptr[ib->length_dw++] = bytes - 1;
1190 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1191 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1192 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1193 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1194 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1195 
1196 }
1197 
1198 /**
1199  * sdma_v4_4_2_vm_write_pte - update PTEs by writing them manually
1200  *
1201  * @ib: indirect buffer to fill with commands
1202  * @pe: addr of the page entry
1203  * @value: dst addr to write into pe
1204  * @count: number of page entries to update
1205  * @incr: increase next addr by incr bytes
1206  *
1207  * Update PTEs by writing them manually using sDMA.
1208  */
1209 static void sdma_v4_4_2_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1210 				   uint64_t value, unsigned count,
1211 				   uint32_t incr)
1212 {
1213 	unsigned ndw = count * 2;
1214 
1215 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1216 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1217 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1218 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1219 	ib->ptr[ib->length_dw++] = ndw - 1;
1220 	for (; ndw > 0; ndw -= 2) {
1221 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1222 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1223 		value += incr;
1224 	}
1225 }
1226 
1227 /**
1228  * sdma_v4_4_2_vm_set_pte_pde - update the page tables using sDMA
1229  *
1230  * @ib: indirect buffer to fill with commands
1231  * @pe: addr of the page entry
1232  * @addr: dst addr to write into pe
1233  * @count: number of page entries to update
1234  * @incr: increase next addr by incr bytes
1235  * @flags: access flags
1236  *
1237  * Update the page tables using sDMA.
1238  */
1239 static void sdma_v4_4_2_vm_set_pte_pde(struct amdgpu_ib *ib,
1240 				     uint64_t pe,
1241 				     uint64_t addr, unsigned count,
1242 				     uint32_t incr, uint64_t flags)
1243 {
1244 	/* for physically contiguous pages (vram) */
1245 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1246 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1247 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1248 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1249 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1250 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1251 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1252 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1253 	ib->ptr[ib->length_dw++] = 0;
1254 	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1255 }
1256 
1257 /**
1258  * sdma_v4_4_2_ring_pad_ib - pad the IB to the required number of dw
1259  *
1260  * @ring: amdgpu_ring structure holding ring information
1261  * @ib: indirect buffer to fill with padding
1262  */
1263 static void sdma_v4_4_2_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1264 {
1265 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1266 	u32 pad_count;
1267 	int i;
1268 
1269 	pad_count = (-ib->length_dw) & 7;
1270 	for (i = 0; i < pad_count; i++)
1271 		if (sdma && sdma->burst_nop && (i == 0))
1272 			ib->ptr[ib->length_dw++] =
1273 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1274 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1275 		else
1276 			ib->ptr[ib->length_dw++] =
1277 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1278 }
1279 
1280 
1281 /**
1282  * sdma_v4_4_2_ring_emit_pipeline_sync - sync the pipeline
1283  *
1284  * @ring: amdgpu_ring pointer
1285  *
1286  * Make sure all previous operations are completed (CIK).
1287  */
1288 static void sdma_v4_4_2_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1289 {
1290 	uint32_t seq = ring->fence_drv.sync_seq;
1291 	uint64_t addr = ring->fence_drv.gpu_addr;
1292 
1293 	/* wait for idle */
1294 	sdma_v4_4_2_wait_reg_mem(ring, 1, 0,
1295 			       addr & 0xfffffffc,
1296 			       upper_32_bits(addr) & 0xffffffff,
1297 			       seq, 0xffffffff, 4);
1298 }
1299 
1300 
1301 /**
1302  * sdma_v4_4_2_ring_emit_vm_flush - vm flush using sDMA
1303  *
1304  * @ring: amdgpu_ring pointer
1305  * @vmid: vmid number to use
1306  * @pd_addr: address
1307  *
1308  * Update the page table base and flush the VM TLB
1309  * using sDMA.
1310  */
1311 static void sdma_v4_4_2_ring_emit_vm_flush(struct amdgpu_ring *ring,
1312 					 unsigned vmid, uint64_t pd_addr)
1313 {
1314 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1315 }
1316 
1317 static void sdma_v4_4_2_ring_emit_wreg(struct amdgpu_ring *ring,
1318 				     uint32_t reg, uint32_t val)
1319 {
1320 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1321 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1322 	amdgpu_ring_write(ring, reg);
1323 	amdgpu_ring_write(ring, val);
1324 }
1325 
1326 static void sdma_v4_4_2_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1327 					 uint32_t val, uint32_t mask)
1328 {
1329 	sdma_v4_4_2_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1330 }
1331 
1332 static bool sdma_v4_4_2_fw_support_paging_queue(struct amdgpu_device *adev)
1333 {
1334 	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
1335 	case IP_VERSION(4, 4, 2):
1336 	case IP_VERSION(4, 4, 5):
1337 		return false;
1338 	default:
1339 		return false;
1340 	}
1341 }
1342 
1343 static const struct amdgpu_sdma_funcs sdma_v4_4_2_sdma_funcs = {
1344 	.stop_kernel_queue = &sdma_v4_4_2_stop_queue,
1345 	.start_kernel_queue = &sdma_v4_4_2_restore_queue,
1346 	.soft_reset_kernel_queue = &sdma_v4_4_2_soft_reset_engine,
1347 };
1348 
1349 static int sdma_v4_4_2_early_init(struct amdgpu_ip_block *ip_block)
1350 {
1351 	struct amdgpu_device *adev = ip_block->adev;
1352 	int r;
1353 
1354 	r = sdma_v4_4_2_init_microcode(adev);
1355 	if (r)
1356 		return r;
1357 
1358 	/* TODO: Page queue breaks driver reload under SRIOV */
1359 	if (sdma_v4_4_2_fw_support_paging_queue(adev))
1360 		adev->sdma.has_page_queue = true;
1361 
1362 	sdma_v4_4_2_set_ring_funcs(adev);
1363 	sdma_v4_4_2_set_buffer_funcs(adev);
1364 	sdma_v4_4_2_set_vm_pte_funcs(adev);
1365 	sdma_v4_4_2_set_irq_funcs(adev);
1366 	sdma_v4_4_2_set_ras_funcs(adev);
1367 	return 0;
1368 }
1369 
1370 #if 0
1371 static int sdma_v4_4_2_process_ras_data_cb(struct amdgpu_device *adev,
1372 		void *err_data,
1373 		struct amdgpu_iv_entry *entry);
1374 #endif
1375 
1376 static int sdma_v4_4_2_late_init(struct amdgpu_ip_block *ip_block)
1377 {
1378 	struct amdgpu_device *adev = ip_block->adev;
1379 #if 0
1380 	struct ras_ih_if ih_info = {
1381 		.cb = sdma_v4_4_2_process_ras_data_cb,
1382 	};
1383 #endif
1384 	if (!amdgpu_persistent_edc_harvesting_supported(adev))
1385 		amdgpu_ras_reset_error_count(adev, AMDGPU_RAS_BLOCK__SDMA);
1386 
1387 	/* The initialization is done in the late_init stage to ensure that the SMU
1388 	 * initialization and capability setup are completed before we check the SDMA
1389 	 * reset capability
1390 	 */
1391 	sdma_v4_4_2_update_reset_mask(adev);
1392 
1393 	return 0;
1394 }
1395 
1396 static int sdma_v4_4_2_sw_init(struct amdgpu_ip_block *ip_block)
1397 {
1398 	struct amdgpu_ring *ring;
1399 	int r, i;
1400 	struct amdgpu_device *adev = ip_block->adev;
1401 	u32 aid_id;
1402 	uint32_t reg_count = ARRAY_SIZE(sdma_reg_list_4_4_2);
1403 	uint32_t *ptr;
1404 
1405 	/* SDMA trap event */
1406 	for (i = 0; i < adev->sdma.num_inst_per_aid; i++) {
1407 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1408 				      SDMA0_4_0__SRCID__SDMA_TRAP,
1409 				      &adev->sdma.trap_irq);
1410 		if (r)
1411 			return r;
1412 	}
1413 
1414 	/* SDMA SRAM ECC event */
1415 	for (i = 0; i < adev->sdma.num_inst_per_aid; i++) {
1416 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1417 				      SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
1418 				      &adev->sdma.ecc_irq);
1419 		if (r)
1420 			return r;
1421 	}
1422 
1423 	/* SDMA VM_HOLE/DOORBELL_INV/POLL_TIMEOUT/SRBM_WRITE_PROTECTION event*/
1424 	for (i = 0; i < adev->sdma.num_inst_per_aid; i++) {
1425 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1426 				      SDMA0_4_0__SRCID__SDMA_VM_HOLE,
1427 				      &adev->sdma.vm_hole_irq);
1428 		if (r)
1429 			return r;
1430 
1431 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1432 				      SDMA0_4_0__SRCID__SDMA_DOORBELL_INVALID,
1433 				      &adev->sdma.doorbell_invalid_irq);
1434 		if (r)
1435 			return r;
1436 
1437 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1438 				      SDMA0_4_0__SRCID__SDMA_POLL_TIMEOUT,
1439 				      &adev->sdma.pool_timeout_irq);
1440 		if (r)
1441 			return r;
1442 
1443 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1444 				      SDMA0_4_0__SRCID__SDMA_SRBMWRITE,
1445 				      &adev->sdma.srbm_write_irq);
1446 		if (r)
1447 			return r;
1448 
1449 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1450 				      SDMA0_4_0__SRCID__SDMA_CTXEMPTY,
1451 				      &adev->sdma.ctxt_empty_irq);
1452 		if (r)
1453 			return r;
1454 	}
1455 
1456 	for (i = 0; i < adev->sdma.num_instances; i++) {
1457 		mutex_init(&adev->sdma.instance[i].engine_reset_mutex);
1458 		/* Initialize guilty flags for GFX and PAGE queues */
1459 		adev->sdma.instance[i].gfx_guilty = false;
1460 		adev->sdma.instance[i].page_guilty = false;
1461 		adev->sdma.instance[i].funcs = &sdma_v4_4_2_sdma_funcs;
1462 
1463 		ring = &adev->sdma.instance[i].ring;
1464 		ring->ring_obj = NULL;
1465 		ring->use_doorbell = true;
1466 		aid_id = adev->sdma.instance[i].aid_id;
1467 
1468 		DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i,
1469 				ring->use_doorbell?"true":"false");
1470 
1471 		/* doorbell size is 2 dwords, get DWORD offset */
1472 		ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1473 		ring->vm_hub = AMDGPU_MMHUB0(aid_id);
1474 
1475 		sprintf(ring->name, "sdma%d.%d", aid_id,
1476 				i % adev->sdma.num_inst_per_aid);
1477 		r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1478 				     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1479 				     AMDGPU_RING_PRIO_DEFAULT, NULL);
1480 		if (r)
1481 			return r;
1482 
1483 		if (adev->sdma.has_page_queue) {
1484 			ring = &adev->sdma.instance[i].page;
1485 			ring->ring_obj = NULL;
1486 			ring->use_doorbell = true;
1487 
1488 			/* doorbell index of page queue is assigned right after
1489 			 * gfx queue on the same instance
1490 			 */
1491 			ring->doorbell_index =
1492 				(adev->doorbell_index.sdma_engine[i] + 1) << 1;
1493 			ring->vm_hub = AMDGPU_MMHUB0(aid_id);
1494 
1495 			sprintf(ring->name, "page%d.%d", aid_id,
1496 					i % adev->sdma.num_inst_per_aid);
1497 			r = amdgpu_ring_init(adev, ring, 1024,
1498 					     &adev->sdma.trap_irq,
1499 					     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1500 					     AMDGPU_RING_PRIO_DEFAULT, NULL);
1501 			if (r)
1502 				return r;
1503 		}
1504 	}
1505 
1506 	adev->sdma.supported_reset =
1507 		amdgpu_get_soft_full_reset_mask(&adev->sdma.instance[0].ring);
1508 
1509 	if (amdgpu_sdma_ras_sw_init(adev)) {
1510 		dev_err(adev->dev, "fail to initialize sdma ras block\n");
1511 		return -EINVAL;
1512 	}
1513 
1514 	/* Allocate memory for SDMA IP Dump buffer */
1515 	ptr = kcalloc(adev->sdma.num_instances * reg_count, sizeof(uint32_t), GFP_KERNEL);
1516 	if (ptr)
1517 		adev->sdma.ip_dump = ptr;
1518 	else
1519 		DRM_ERROR("Failed to allocated memory for SDMA IP Dump\n");
1520 
1521 	r = amdgpu_sdma_sysfs_reset_mask_init(adev);
1522 	if (r)
1523 		return r;
1524 
1525 	return r;
1526 }
1527 
1528 static int sdma_v4_4_2_sw_fini(struct amdgpu_ip_block *ip_block)
1529 {
1530 	struct amdgpu_device *adev = ip_block->adev;
1531 	int i;
1532 
1533 	for (i = 0; i < adev->sdma.num_instances; i++) {
1534 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1535 		if (adev->sdma.has_page_queue)
1536 			amdgpu_ring_fini(&adev->sdma.instance[i].page);
1537 	}
1538 
1539 	amdgpu_sdma_sysfs_reset_mask_fini(adev);
1540 	if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 2) ||
1541 	    amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 4) ||
1542 	    amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 5))
1543 		amdgpu_sdma_destroy_inst_ctx(adev, true);
1544 	else
1545 		amdgpu_sdma_destroy_inst_ctx(adev, false);
1546 
1547 	kfree(adev->sdma.ip_dump);
1548 
1549 	return 0;
1550 }
1551 
1552 static int sdma_v4_4_2_hw_init(struct amdgpu_ip_block *ip_block)
1553 {
1554 	int r;
1555 	struct amdgpu_device *adev = ip_block->adev;
1556 	uint32_t inst_mask;
1557 
1558 	inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
1559 	if (!amdgpu_sriov_vf(adev))
1560 		sdma_v4_4_2_inst_init_golden_registers(adev, inst_mask);
1561 
1562 	r = sdma_v4_4_2_inst_start(adev, inst_mask, false);
1563 
1564 	return r;
1565 }
1566 
1567 static int sdma_v4_4_2_hw_fini(struct amdgpu_ip_block *ip_block)
1568 {
1569 	struct amdgpu_device *adev = ip_block->adev;
1570 	uint32_t inst_mask;
1571 	int i;
1572 
1573 	if (amdgpu_sriov_vf(adev))
1574 		return 0;
1575 
1576 	inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
1577 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
1578 		for (i = 0; i < adev->sdma.num_instances; i++) {
1579 			amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
1580 				       AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1581 		}
1582 	}
1583 
1584 	sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask);
1585 	sdma_v4_4_2_inst_enable(adev, false, inst_mask);
1586 
1587 	return 0;
1588 }
1589 
1590 static int sdma_v4_4_2_set_clockgating_state(struct amdgpu_ip_block *ip_block,
1591 					     enum amd_clockgating_state state);
1592 
1593 static int sdma_v4_4_2_suspend(struct amdgpu_ip_block *ip_block)
1594 {
1595 	struct amdgpu_device *adev = ip_block->adev;
1596 
1597 	if (amdgpu_in_reset(adev))
1598 		sdma_v4_4_2_set_clockgating_state(ip_block, AMD_CG_STATE_UNGATE);
1599 
1600 	return sdma_v4_4_2_hw_fini(ip_block);
1601 }
1602 
1603 static int sdma_v4_4_2_resume(struct amdgpu_ip_block *ip_block)
1604 {
1605 	return sdma_v4_4_2_hw_init(ip_block);
1606 }
1607 
1608 static bool sdma_v4_4_2_is_idle(struct amdgpu_ip_block *ip_block)
1609 {
1610 	struct amdgpu_device *adev = ip_block->adev;
1611 	u32 i;
1612 
1613 	for (i = 0; i < adev->sdma.num_instances; i++) {
1614 		u32 tmp = RREG32_SDMA(i, regSDMA_STATUS_REG);
1615 
1616 		if (!(tmp & SDMA_STATUS_REG__IDLE_MASK))
1617 			return false;
1618 	}
1619 
1620 	return true;
1621 }
1622 
1623 static int sdma_v4_4_2_wait_for_idle(struct amdgpu_ip_block *ip_block)
1624 {
1625 	unsigned i, j;
1626 	u32 sdma[AMDGPU_MAX_SDMA_INSTANCES];
1627 	struct amdgpu_device *adev = ip_block->adev;
1628 
1629 	for (i = 0; i < adev->usec_timeout; i++) {
1630 		for (j = 0; j < adev->sdma.num_instances; j++) {
1631 			sdma[j] = RREG32_SDMA(j, regSDMA_STATUS_REG);
1632 			if (!(sdma[j] & SDMA_STATUS_REG__IDLE_MASK))
1633 				break;
1634 		}
1635 		if (j == adev->sdma.num_instances)
1636 			return 0;
1637 		udelay(1);
1638 	}
1639 	return -ETIMEDOUT;
1640 }
1641 
1642 static int sdma_v4_4_2_soft_reset(struct amdgpu_ip_block *ip_block)
1643 {
1644 	/* todo */
1645 
1646 	return 0;
1647 }
1648 
1649 static bool sdma_v4_4_2_is_queue_selected(struct amdgpu_device *adev, uint32_t instance_id, bool is_page_queue)
1650 {
1651 	uint32_t reg_offset = is_page_queue ? regSDMA_PAGE_CONTEXT_STATUS : regSDMA_GFX_CONTEXT_STATUS;
1652 	uint32_t context_status = RREG32(sdma_v4_4_2_get_reg_offset(adev, instance_id, reg_offset));
1653 
1654 	/* Check if the SELECTED bit is set */
1655 	return (context_status & SDMA_GFX_CONTEXT_STATUS__SELECTED_MASK) != 0;
1656 }
1657 
1658 static bool sdma_v4_4_2_ring_is_guilty(struct amdgpu_ring *ring)
1659 {
1660 	struct amdgpu_device *adev = ring->adev;
1661 	uint32_t instance_id = ring->me;
1662 
1663 	return sdma_v4_4_2_is_queue_selected(adev, instance_id, false);
1664 }
1665 
1666 static bool sdma_v4_4_2_page_ring_is_guilty(struct amdgpu_ring *ring)
1667 {
1668 	struct amdgpu_device *adev = ring->adev;
1669 	uint32_t instance_id = ring->me;
1670 
1671 	if (!adev->sdma.has_page_queue)
1672 		return false;
1673 
1674 	return sdma_v4_4_2_is_queue_selected(adev, instance_id, true);
1675 }
1676 
1677 static int sdma_v4_4_2_reset_queue(struct amdgpu_ring *ring, unsigned int vmid)
1678 {
1679 	struct amdgpu_device *adev = ring->adev;
1680 	u32 id = ring->me;
1681 	int r;
1682 
1683 	if (!(adev->sdma.supported_reset & AMDGPU_RESET_TYPE_PER_QUEUE))
1684 		return -EOPNOTSUPP;
1685 
1686 	amdgpu_amdkfd_suspend(adev, true);
1687 	r = amdgpu_sdma_reset_engine(adev, id);
1688 	amdgpu_amdkfd_resume(adev, true);
1689 
1690 	return r;
1691 }
1692 
1693 static int sdma_v4_4_2_stop_queue(struct amdgpu_ring *ring)
1694 {
1695 	struct amdgpu_device *adev = ring->adev;
1696 	u32 instance_id = ring->me;
1697 	u32 inst_mask;
1698 	uint64_t rptr;
1699 
1700 	if (amdgpu_sriov_vf(adev))
1701 		return -EINVAL;
1702 
1703 	/* Check if this queue is the guilty one */
1704 	adev->sdma.instance[instance_id].gfx_guilty =
1705 		sdma_v4_4_2_is_queue_selected(adev, instance_id, false);
1706 	if (adev->sdma.has_page_queue)
1707 		adev->sdma.instance[instance_id].page_guilty =
1708 			sdma_v4_4_2_is_queue_selected(adev, instance_id, true);
1709 
1710 	/* Cache the rptr before reset, after the reset,
1711 	* all of the registers will be reset to 0
1712 	*/
1713 	rptr = amdgpu_ring_get_rptr(ring);
1714 	ring->cached_rptr = rptr;
1715 	/* Cache the rptr for the page queue if it exists */
1716 	if (adev->sdma.has_page_queue) {
1717 		struct amdgpu_ring *page_ring = &adev->sdma.instance[instance_id].page;
1718 		rptr = amdgpu_ring_get_rptr(page_ring);
1719 		page_ring->cached_rptr = rptr;
1720 	}
1721 
1722 	/* stop queue */
1723 	inst_mask = 1 << ring->me;
1724 	sdma_v4_4_2_inst_gfx_stop(adev, inst_mask);
1725 	if (adev->sdma.has_page_queue)
1726 		sdma_v4_4_2_inst_page_stop(adev, inst_mask);
1727 
1728 	return 0;
1729 }
1730 
1731 static int sdma_v4_4_2_restore_queue(struct amdgpu_ring *ring)
1732 {
1733 	struct amdgpu_device *adev = ring->adev;
1734 	u32 inst_mask;
1735 	int i;
1736 
1737 	inst_mask = 1 << ring->me;
1738 	udelay(50);
1739 
1740 	for (i = 0; i < adev->usec_timeout; i++) {
1741 		if (!REG_GET_FIELD(RREG32_SDMA(ring->me, regSDMA_F32_CNTL), SDMA_F32_CNTL, HALT))
1742 			break;
1743 		udelay(1);
1744 	}
1745 
1746 	if (i == adev->usec_timeout) {
1747 		dev_err(adev->dev, "timed out waiting for SDMA%d unhalt after reset\n",
1748 			ring->me);
1749 		return -ETIMEDOUT;
1750 	}
1751 
1752 	return sdma_v4_4_2_inst_start(adev, inst_mask, true);
1753 }
1754 
1755 static int sdma_v4_4_2_soft_reset_engine(struct amdgpu_device *adev,
1756 					 u32 instance_id)
1757 {
1758 	/* For SDMA 4.x, use the existing DPM interface for backward compatibility
1759 	 * we need to convert the logical instance ID to physical instance ID before reset.
1760 	 */
1761 	return amdgpu_dpm_reset_sdma(adev, 1 << GET_INST(SDMA0, instance_id));
1762 }
1763 
1764 static int sdma_v4_4_2_set_trap_irq_state(struct amdgpu_device *adev,
1765 					struct amdgpu_irq_src *source,
1766 					unsigned type,
1767 					enum amdgpu_interrupt_state state)
1768 {
1769 	u32 sdma_cntl;
1770 
1771 	sdma_cntl = RREG32_SDMA(type, regSDMA_CNTL);
1772 	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA_CNTL, TRAP_ENABLE,
1773 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1774 	WREG32_SDMA(type, regSDMA_CNTL, sdma_cntl);
1775 
1776 	return 0;
1777 }
1778 
1779 static int sdma_v4_4_2_process_trap_irq(struct amdgpu_device *adev,
1780 				      struct amdgpu_irq_src *source,
1781 				      struct amdgpu_iv_entry *entry)
1782 {
1783 	uint32_t instance, i;
1784 
1785 	DRM_DEBUG("IH: SDMA trap\n");
1786 	instance = sdma_v4_4_2_irq_id_to_seq(adev, entry->client_id);
1787 
1788 	/* Client id gives the SDMA instance in AID. To know the exact SDMA
1789 	 * instance, interrupt entry gives the node id which corresponds to the AID instance.
1790 	 * Match node id with the AID id associated with the SDMA instance. */
1791 	for (i = instance; i < adev->sdma.num_instances;
1792 	     i += adev->sdma.num_inst_per_aid) {
1793 		if (adev->sdma.instance[i].aid_id ==
1794 		    node_id_to_phys_map[entry->node_id])
1795 			break;
1796 	}
1797 
1798 	if (i >= adev->sdma.num_instances) {
1799 		dev_WARN_ONCE(
1800 			adev->dev, 1,
1801 			"Couldn't find the right sdma instance in trap handler");
1802 		return 0;
1803 	}
1804 
1805 	switch (entry->ring_id) {
1806 	case 0:
1807 		amdgpu_fence_process(&adev->sdma.instance[i].ring);
1808 		break;
1809 	case 1:
1810 		amdgpu_fence_process(&adev->sdma.instance[i].page);
1811 		break;
1812 	default:
1813 		break;
1814 	}
1815 	return 0;
1816 }
1817 
1818 #if 0
1819 static int sdma_v4_4_2_process_ras_data_cb(struct amdgpu_device *adev,
1820 		void *err_data,
1821 		struct amdgpu_iv_entry *entry)
1822 {
1823 	int instance;
1824 
1825 	/* When “Full RAS” is enabled, the per-IP interrupt sources should
1826 	 * be disabled and the driver should only look for the aggregated
1827 	 * interrupt via sync flood
1828 	 */
1829 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA))
1830 		goto out;
1831 
1832 	instance = sdma_v4_4_2_irq_id_to_seq(adev, entry->client_id);
1833 	if (instance < 0)
1834 		goto out;
1835 
1836 	amdgpu_sdma_process_ras_data_cb(adev, err_data, entry);
1837 
1838 out:
1839 	return AMDGPU_RAS_SUCCESS;
1840 }
1841 #endif
1842 
1843 static int sdma_v4_4_2_process_illegal_inst_irq(struct amdgpu_device *adev,
1844 					      struct amdgpu_irq_src *source,
1845 					      struct amdgpu_iv_entry *entry)
1846 {
1847 	int instance;
1848 
1849 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
1850 
1851 	instance = sdma_v4_4_2_irq_id_to_seq(adev, entry->client_id);
1852 	if (instance < 0)
1853 		return 0;
1854 
1855 	switch (entry->ring_id) {
1856 	case 0:
1857 		drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
1858 		break;
1859 	}
1860 	return 0;
1861 }
1862 
1863 static int sdma_v4_4_2_set_ecc_irq_state(struct amdgpu_device *adev,
1864 					struct amdgpu_irq_src *source,
1865 					unsigned type,
1866 					enum amdgpu_interrupt_state state)
1867 {
1868 	u32 sdma_cntl;
1869 
1870 	sdma_cntl = RREG32_SDMA(type, regSDMA_CNTL);
1871 	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA_CNTL, DRAM_ECC_INT_ENABLE,
1872 					state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1873 	WREG32_SDMA(type, regSDMA_CNTL, sdma_cntl);
1874 
1875 	return 0;
1876 }
1877 
1878 static int sdma_v4_4_2_print_iv_entry(struct amdgpu_device *adev,
1879 					      struct amdgpu_iv_entry *entry)
1880 {
1881 	int instance;
1882 	struct amdgpu_task_info *task_info;
1883 	u64 addr;
1884 
1885 	instance = sdma_v4_4_2_irq_id_to_seq(adev, entry->client_id);
1886 	if (instance < 0 || instance >= adev->sdma.num_instances) {
1887 		dev_err(adev->dev, "sdma instance invalid %d\n", instance);
1888 		return -EINVAL;
1889 	}
1890 
1891 	addr = (u64)entry->src_data[0] << 12;
1892 	addr |= ((u64)entry->src_data[1] & 0xf) << 44;
1893 
1894 	dev_dbg_ratelimited(adev->dev,
1895 			    "[sdma%d] address:0x%016llx src_id:%u ring:%u vmid:%u pasid:%u\n",
1896 			    instance, addr, entry->src_id, entry->ring_id, entry->vmid,
1897 			    entry->pasid);
1898 
1899 	task_info = amdgpu_vm_get_task_info_pasid(adev, entry->pasid);
1900 	if (task_info) {
1901 		dev_dbg_ratelimited(adev->dev, " for process %s pid %d thread %s pid %d\n",
1902 				    task_info->process_name, task_info->tgid,
1903 				    task_info->task_name, task_info->pid);
1904 		amdgpu_vm_put_task_info(task_info);
1905 	}
1906 
1907 	return 0;
1908 }
1909 
1910 static int sdma_v4_4_2_process_vm_hole_irq(struct amdgpu_device *adev,
1911 					      struct amdgpu_irq_src *source,
1912 					      struct amdgpu_iv_entry *entry)
1913 {
1914 	dev_dbg_ratelimited(adev->dev, "MC or SEM address in VM hole\n");
1915 	sdma_v4_4_2_print_iv_entry(adev, entry);
1916 	return 0;
1917 }
1918 
1919 static int sdma_v4_4_2_process_doorbell_invalid_irq(struct amdgpu_device *adev,
1920 					      struct amdgpu_irq_src *source,
1921 					      struct amdgpu_iv_entry *entry)
1922 {
1923 
1924 	dev_dbg_ratelimited(adev->dev, "SDMA received a doorbell from BIF with byte_enable !=0xff\n");
1925 	sdma_v4_4_2_print_iv_entry(adev, entry);
1926 	return 0;
1927 }
1928 
1929 static int sdma_v4_4_2_process_pool_timeout_irq(struct amdgpu_device *adev,
1930 					      struct amdgpu_irq_src *source,
1931 					      struct amdgpu_iv_entry *entry)
1932 {
1933 	dev_dbg_ratelimited(adev->dev,
1934 		"Polling register/memory timeout executing POLL_REG/MEM with finite timer\n");
1935 	sdma_v4_4_2_print_iv_entry(adev, entry);
1936 	return 0;
1937 }
1938 
1939 static int sdma_v4_4_2_process_srbm_write_irq(struct amdgpu_device *adev,
1940 					      struct amdgpu_irq_src *source,
1941 					      struct amdgpu_iv_entry *entry)
1942 {
1943 	dev_dbg_ratelimited(adev->dev,
1944 		"SDMA gets an Register Write SRBM_WRITE command in non-privilege command buffer\n");
1945 	sdma_v4_4_2_print_iv_entry(adev, entry);
1946 	return 0;
1947 }
1948 
1949 static int sdma_v4_4_2_process_ctxt_empty_irq(struct amdgpu_device *adev,
1950 					      struct amdgpu_irq_src *source,
1951 					      struct amdgpu_iv_entry *entry)
1952 {
1953 	/* There is nothing useful to be done here, only kept for debug */
1954 	dev_dbg_ratelimited(adev->dev, "SDMA context empty interrupt");
1955 	sdma_v4_4_2_print_iv_entry(adev, entry);
1956 	return 0;
1957 }
1958 
1959 static void sdma_v4_4_2_inst_update_medium_grain_light_sleep(
1960 	struct amdgpu_device *adev, bool enable, uint32_t inst_mask)
1961 {
1962 	uint32_t data, def;
1963 	int i;
1964 
1965 	/* leave as default if it is not driver controlled */
1966 	if (!(adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS))
1967 		return;
1968 
1969 	if (enable) {
1970 		for_each_inst(i, inst_mask) {
1971 			/* 1-not override: enable sdma mem light sleep */
1972 			def = data = RREG32_SDMA(i, regSDMA_POWER_CNTL);
1973 			data |= SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1974 			if (def != data)
1975 				WREG32_SDMA(i, regSDMA_POWER_CNTL, data);
1976 		}
1977 	} else {
1978 		for_each_inst(i, inst_mask) {
1979 			/* 0-override:disable sdma mem light sleep */
1980 			def = data = RREG32_SDMA(i, regSDMA_POWER_CNTL);
1981 			data &= ~SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1982 			if (def != data)
1983 				WREG32_SDMA(i, regSDMA_POWER_CNTL, data);
1984 		}
1985 	}
1986 }
1987 
1988 static void sdma_v4_4_2_inst_update_medium_grain_clock_gating(
1989 	struct amdgpu_device *adev, bool enable, uint32_t inst_mask)
1990 {
1991 	uint32_t data, def;
1992 	int i;
1993 
1994 	/* leave as default if it is not driver controlled */
1995 	if (!(adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG))
1996 		return;
1997 
1998 	if (enable) {
1999 		for_each_inst(i, inst_mask) {
2000 			def = data = RREG32_SDMA(i, regSDMA_CLK_CTRL);
2001 			data &= ~(SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2002 				  SDMA_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2003 				  SDMA_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2004 				  SDMA_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2005 				  SDMA_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2006 				  SDMA_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2007 			if (def != data)
2008 				WREG32_SDMA(i, regSDMA_CLK_CTRL, data);
2009 		}
2010 	} else {
2011 		for_each_inst(i, inst_mask) {
2012 			def = data = RREG32_SDMA(i, regSDMA_CLK_CTRL);
2013 			data |= (SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2014 				 SDMA_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2015 				 SDMA_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2016 				 SDMA_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2017 				 SDMA_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2018 				 SDMA_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2019 			if (def != data)
2020 				WREG32_SDMA(i, regSDMA_CLK_CTRL, data);
2021 		}
2022 	}
2023 }
2024 
2025 static int sdma_v4_4_2_set_clockgating_state(struct amdgpu_ip_block *ip_block,
2026 					  enum amd_clockgating_state state)
2027 {
2028 	struct amdgpu_device *adev = ip_block->adev;
2029 	uint32_t inst_mask;
2030 
2031 	if (amdgpu_sriov_vf(adev))
2032 		return 0;
2033 
2034 	inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
2035 
2036 	sdma_v4_4_2_inst_update_medium_grain_clock_gating(
2037 		adev, state == AMD_CG_STATE_GATE, inst_mask);
2038 	sdma_v4_4_2_inst_update_medium_grain_light_sleep(
2039 		adev, state == AMD_CG_STATE_GATE, inst_mask);
2040 	return 0;
2041 }
2042 
2043 static int sdma_v4_4_2_set_powergating_state(struct amdgpu_ip_block *ip_block,
2044 					  enum amd_powergating_state state)
2045 {
2046 	return 0;
2047 }
2048 
2049 static void sdma_v4_4_2_get_clockgating_state(struct amdgpu_ip_block *ip_block, u64 *flags)
2050 {
2051 	struct amdgpu_device *adev = ip_block->adev;
2052 	int data;
2053 
2054 	if (amdgpu_sriov_vf(adev))
2055 		*flags = 0;
2056 
2057 	/* AMD_CG_SUPPORT_SDMA_MGCG */
2058 	data = RREG32(SOC15_REG_OFFSET(SDMA0, GET_INST(SDMA0, 0), regSDMA_CLK_CTRL));
2059 	if (!(data & SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK))
2060 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
2061 
2062 	/* AMD_CG_SUPPORT_SDMA_LS */
2063 	data = RREG32(SOC15_REG_OFFSET(SDMA0, GET_INST(SDMA0, 0), regSDMA_POWER_CNTL));
2064 	if (data & SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
2065 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
2066 }
2067 
2068 static void sdma_v4_4_2_print_ip_state(struct amdgpu_ip_block *ip_block, struct drm_printer *p)
2069 {
2070 	struct amdgpu_device *adev = ip_block->adev;
2071 	int i, j;
2072 	uint32_t reg_count = ARRAY_SIZE(sdma_reg_list_4_4_2);
2073 	uint32_t instance_offset;
2074 
2075 	if (!adev->sdma.ip_dump)
2076 		return;
2077 
2078 	drm_printf(p, "num_instances:%d\n", adev->sdma.num_instances);
2079 	for (i = 0; i < adev->sdma.num_instances; i++) {
2080 		instance_offset = i * reg_count;
2081 		drm_printf(p, "\nInstance:%d\n", i);
2082 
2083 		for (j = 0; j < reg_count; j++)
2084 			drm_printf(p, "%-50s \t 0x%08x\n", sdma_reg_list_4_4_2[j].reg_name,
2085 				   adev->sdma.ip_dump[instance_offset + j]);
2086 	}
2087 }
2088 
2089 static void sdma_v4_4_2_dump_ip_state(struct amdgpu_ip_block *ip_block)
2090 {
2091 	struct amdgpu_device *adev = ip_block->adev;
2092 	int i, j;
2093 	uint32_t instance_offset;
2094 	uint32_t reg_count = ARRAY_SIZE(sdma_reg_list_4_4_2);
2095 
2096 	if (!adev->sdma.ip_dump)
2097 		return;
2098 
2099 	for (i = 0; i < adev->sdma.num_instances; i++) {
2100 		instance_offset = i * reg_count;
2101 		for (j = 0; j < reg_count; j++)
2102 			adev->sdma.ip_dump[instance_offset + j] =
2103 				RREG32(sdma_v4_4_2_get_reg_offset(adev, i,
2104 				       sdma_reg_list_4_4_2[j].reg_offset));
2105 	}
2106 }
2107 
2108 const struct amd_ip_funcs sdma_v4_4_2_ip_funcs = {
2109 	.name = "sdma_v4_4_2",
2110 	.early_init = sdma_v4_4_2_early_init,
2111 	.late_init = sdma_v4_4_2_late_init,
2112 	.sw_init = sdma_v4_4_2_sw_init,
2113 	.sw_fini = sdma_v4_4_2_sw_fini,
2114 	.hw_init = sdma_v4_4_2_hw_init,
2115 	.hw_fini = sdma_v4_4_2_hw_fini,
2116 	.suspend = sdma_v4_4_2_suspend,
2117 	.resume = sdma_v4_4_2_resume,
2118 	.is_idle = sdma_v4_4_2_is_idle,
2119 	.wait_for_idle = sdma_v4_4_2_wait_for_idle,
2120 	.soft_reset = sdma_v4_4_2_soft_reset,
2121 	.set_clockgating_state = sdma_v4_4_2_set_clockgating_state,
2122 	.set_powergating_state = sdma_v4_4_2_set_powergating_state,
2123 	.get_clockgating_state = sdma_v4_4_2_get_clockgating_state,
2124 	.dump_ip_state = sdma_v4_4_2_dump_ip_state,
2125 	.print_ip_state = sdma_v4_4_2_print_ip_state,
2126 };
2127 
2128 static const struct amdgpu_ring_funcs sdma_v4_4_2_ring_funcs = {
2129 	.type = AMDGPU_RING_TYPE_SDMA,
2130 	.align_mask = 0xff,
2131 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2132 	.support_64bit_ptrs = true,
2133 	.get_rptr = sdma_v4_4_2_ring_get_rptr,
2134 	.get_wptr = sdma_v4_4_2_ring_get_wptr,
2135 	.set_wptr = sdma_v4_4_2_ring_set_wptr,
2136 	.emit_frame_size =
2137 		6 + /* sdma_v4_4_2_ring_emit_hdp_flush */
2138 		3 + /* hdp invalidate */
2139 		6 + /* sdma_v4_4_2_ring_emit_pipeline_sync */
2140 		/* sdma_v4_4_2_ring_emit_vm_flush */
2141 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2142 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2143 		10 + 10 + 10, /* sdma_v4_4_2_ring_emit_fence x3 for user fence, vm fence */
2144 	.emit_ib_size = 7 + 6, /* sdma_v4_4_2_ring_emit_ib */
2145 	.emit_ib = sdma_v4_4_2_ring_emit_ib,
2146 	.emit_fence = sdma_v4_4_2_ring_emit_fence,
2147 	.emit_pipeline_sync = sdma_v4_4_2_ring_emit_pipeline_sync,
2148 	.emit_vm_flush = sdma_v4_4_2_ring_emit_vm_flush,
2149 	.emit_hdp_flush = sdma_v4_4_2_ring_emit_hdp_flush,
2150 	.test_ring = sdma_v4_4_2_ring_test_ring,
2151 	.test_ib = sdma_v4_4_2_ring_test_ib,
2152 	.insert_nop = sdma_v4_4_2_ring_insert_nop,
2153 	.pad_ib = sdma_v4_4_2_ring_pad_ib,
2154 	.emit_wreg = sdma_v4_4_2_ring_emit_wreg,
2155 	.emit_reg_wait = sdma_v4_4_2_ring_emit_reg_wait,
2156 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2157 	.reset = sdma_v4_4_2_reset_queue,
2158 	.is_guilty = sdma_v4_4_2_ring_is_guilty,
2159 };
2160 
2161 static const struct amdgpu_ring_funcs sdma_v4_4_2_page_ring_funcs = {
2162 	.type = AMDGPU_RING_TYPE_SDMA,
2163 	.align_mask = 0xff,
2164 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2165 	.support_64bit_ptrs = true,
2166 	.get_rptr = sdma_v4_4_2_ring_get_rptr,
2167 	.get_wptr = sdma_v4_4_2_page_ring_get_wptr,
2168 	.set_wptr = sdma_v4_4_2_page_ring_set_wptr,
2169 	.emit_frame_size =
2170 		6 + /* sdma_v4_4_2_ring_emit_hdp_flush */
2171 		3 + /* hdp invalidate */
2172 		6 + /* sdma_v4_4_2_ring_emit_pipeline_sync */
2173 		/* sdma_v4_4_2_ring_emit_vm_flush */
2174 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2175 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2176 		10 + 10 + 10, /* sdma_v4_4_2_ring_emit_fence x3 for user fence, vm fence */
2177 	.emit_ib_size = 7 + 6, /* sdma_v4_4_2_ring_emit_ib */
2178 	.emit_ib = sdma_v4_4_2_ring_emit_ib,
2179 	.emit_fence = sdma_v4_4_2_ring_emit_fence,
2180 	.emit_pipeline_sync = sdma_v4_4_2_ring_emit_pipeline_sync,
2181 	.emit_vm_flush = sdma_v4_4_2_ring_emit_vm_flush,
2182 	.emit_hdp_flush = sdma_v4_4_2_ring_emit_hdp_flush,
2183 	.test_ring = sdma_v4_4_2_ring_test_ring,
2184 	.test_ib = sdma_v4_4_2_ring_test_ib,
2185 	.insert_nop = sdma_v4_4_2_ring_insert_nop,
2186 	.pad_ib = sdma_v4_4_2_ring_pad_ib,
2187 	.emit_wreg = sdma_v4_4_2_ring_emit_wreg,
2188 	.emit_reg_wait = sdma_v4_4_2_ring_emit_reg_wait,
2189 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2190 	.reset = sdma_v4_4_2_reset_queue,
2191 	.is_guilty = sdma_v4_4_2_page_ring_is_guilty,
2192 };
2193 
2194 static void sdma_v4_4_2_set_ring_funcs(struct amdgpu_device *adev)
2195 {
2196 	int i, dev_inst;
2197 
2198 	for (i = 0; i < adev->sdma.num_instances; i++) {
2199 		adev->sdma.instance[i].ring.funcs = &sdma_v4_4_2_ring_funcs;
2200 		adev->sdma.instance[i].ring.me = i;
2201 		if (adev->sdma.has_page_queue) {
2202 			adev->sdma.instance[i].page.funcs =
2203 				&sdma_v4_4_2_page_ring_funcs;
2204 			adev->sdma.instance[i].page.me = i;
2205 		}
2206 
2207 		dev_inst = GET_INST(SDMA0, i);
2208 		/* AID to which SDMA belongs depends on physical instance */
2209 		adev->sdma.instance[i].aid_id =
2210 			dev_inst / adev->sdma.num_inst_per_aid;
2211 	}
2212 }
2213 
2214 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_trap_irq_funcs = {
2215 	.set = sdma_v4_4_2_set_trap_irq_state,
2216 	.process = sdma_v4_4_2_process_trap_irq,
2217 };
2218 
2219 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_illegal_inst_irq_funcs = {
2220 	.process = sdma_v4_4_2_process_illegal_inst_irq,
2221 };
2222 
2223 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_ecc_irq_funcs = {
2224 	.set = sdma_v4_4_2_set_ecc_irq_state,
2225 	.process = amdgpu_sdma_process_ecc_irq,
2226 };
2227 
2228 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_vm_hole_irq_funcs = {
2229 	.process = sdma_v4_4_2_process_vm_hole_irq,
2230 };
2231 
2232 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_doorbell_invalid_irq_funcs = {
2233 	.process = sdma_v4_4_2_process_doorbell_invalid_irq,
2234 };
2235 
2236 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_pool_timeout_irq_funcs = {
2237 	.process = sdma_v4_4_2_process_pool_timeout_irq,
2238 };
2239 
2240 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_srbm_write_irq_funcs = {
2241 	.process = sdma_v4_4_2_process_srbm_write_irq,
2242 };
2243 
2244 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_ctxt_empty_irq_funcs = {
2245 	.process = sdma_v4_4_2_process_ctxt_empty_irq,
2246 };
2247 
2248 static void sdma_v4_4_2_set_irq_funcs(struct amdgpu_device *adev)
2249 {
2250 	adev->sdma.trap_irq.num_types = adev->sdma.num_instances;
2251 	adev->sdma.ecc_irq.num_types = adev->sdma.num_instances;
2252 	adev->sdma.vm_hole_irq.num_types = adev->sdma.num_instances;
2253 	adev->sdma.doorbell_invalid_irq.num_types = adev->sdma.num_instances;
2254 	adev->sdma.pool_timeout_irq.num_types = adev->sdma.num_instances;
2255 	adev->sdma.srbm_write_irq.num_types = adev->sdma.num_instances;
2256 	adev->sdma.ctxt_empty_irq.num_types = adev->sdma.num_instances;
2257 
2258 	adev->sdma.trap_irq.funcs = &sdma_v4_4_2_trap_irq_funcs;
2259 	adev->sdma.illegal_inst_irq.funcs = &sdma_v4_4_2_illegal_inst_irq_funcs;
2260 	adev->sdma.ecc_irq.funcs = &sdma_v4_4_2_ecc_irq_funcs;
2261 	adev->sdma.vm_hole_irq.funcs = &sdma_v4_4_2_vm_hole_irq_funcs;
2262 	adev->sdma.doorbell_invalid_irq.funcs = &sdma_v4_4_2_doorbell_invalid_irq_funcs;
2263 	adev->sdma.pool_timeout_irq.funcs = &sdma_v4_4_2_pool_timeout_irq_funcs;
2264 	adev->sdma.srbm_write_irq.funcs = &sdma_v4_4_2_srbm_write_irq_funcs;
2265 	adev->sdma.ctxt_empty_irq.funcs = &sdma_v4_4_2_ctxt_empty_irq_funcs;
2266 }
2267 
2268 /**
2269  * sdma_v4_4_2_emit_copy_buffer - copy buffer using the sDMA engine
2270  *
2271  * @ib: indirect buffer to copy to
2272  * @src_offset: src GPU address
2273  * @dst_offset: dst GPU address
2274  * @byte_count: number of bytes to xfer
2275  * @copy_flags: copy flags for the buffers
2276  *
2277  * Copy GPU buffers using the DMA engine.
2278  * Used by the amdgpu ttm implementation to move pages if
2279  * registered as the asic copy callback.
2280  */
2281 static void sdma_v4_4_2_emit_copy_buffer(struct amdgpu_ib *ib,
2282 				       uint64_t src_offset,
2283 				       uint64_t dst_offset,
2284 				       uint32_t byte_count,
2285 				       uint32_t copy_flags)
2286 {
2287 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
2288 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
2289 		SDMA_PKT_COPY_LINEAR_HEADER_TMZ((copy_flags & AMDGPU_COPY_FLAGS_TMZ) ? 1 : 0);
2290 	ib->ptr[ib->length_dw++] = byte_count - 1;
2291 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
2292 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
2293 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
2294 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2295 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2296 }
2297 
2298 /**
2299  * sdma_v4_4_2_emit_fill_buffer - fill buffer using the sDMA engine
2300  *
2301  * @ib: indirect buffer to copy to
2302  * @src_data: value to write to buffer
2303  * @dst_offset: dst GPU address
2304  * @byte_count: number of bytes to xfer
2305  *
2306  * Fill GPU buffers using the DMA engine.
2307  */
2308 static void sdma_v4_4_2_emit_fill_buffer(struct amdgpu_ib *ib,
2309 				       uint32_t src_data,
2310 				       uint64_t dst_offset,
2311 				       uint32_t byte_count)
2312 {
2313 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2314 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2315 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2316 	ib->ptr[ib->length_dw++] = src_data;
2317 	ib->ptr[ib->length_dw++] = byte_count - 1;
2318 }
2319 
2320 static const struct amdgpu_buffer_funcs sdma_v4_4_2_buffer_funcs = {
2321 	.copy_max_bytes = 0x400000,
2322 	.copy_num_dw = 7,
2323 	.emit_copy_buffer = sdma_v4_4_2_emit_copy_buffer,
2324 
2325 	.fill_max_bytes = 0x400000,
2326 	.fill_num_dw = 5,
2327 	.emit_fill_buffer = sdma_v4_4_2_emit_fill_buffer,
2328 };
2329 
2330 static void sdma_v4_4_2_set_buffer_funcs(struct amdgpu_device *adev)
2331 {
2332 	adev->mman.buffer_funcs = &sdma_v4_4_2_buffer_funcs;
2333 	if (adev->sdma.has_page_queue)
2334 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
2335 	else
2336 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2337 }
2338 
2339 static const struct amdgpu_vm_pte_funcs sdma_v4_4_2_vm_pte_funcs = {
2340 	.copy_pte_num_dw = 7,
2341 	.copy_pte = sdma_v4_4_2_vm_copy_pte,
2342 
2343 	.write_pte = sdma_v4_4_2_vm_write_pte,
2344 	.set_pte_pde = sdma_v4_4_2_vm_set_pte_pde,
2345 };
2346 
2347 static void sdma_v4_4_2_set_vm_pte_funcs(struct amdgpu_device *adev)
2348 {
2349 	struct drm_gpu_scheduler *sched;
2350 	unsigned i;
2351 
2352 	adev->vm_manager.vm_pte_funcs = &sdma_v4_4_2_vm_pte_funcs;
2353 	for (i = 0; i < adev->sdma.num_instances; i++) {
2354 		if (adev->sdma.has_page_queue)
2355 			sched = &adev->sdma.instance[i].page.sched;
2356 		else
2357 			sched = &adev->sdma.instance[i].ring.sched;
2358 		adev->vm_manager.vm_pte_scheds[i] = sched;
2359 	}
2360 	adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
2361 }
2362 
2363 /**
2364  * sdma_v4_4_2_update_reset_mask - update  reset mask for SDMA
2365  * @adev: Pointer to the AMDGPU device structure
2366  *
2367  * This function update reset mask for SDMA and sets the supported
2368  * reset types based on the IP version and firmware versions.
2369  *
2370  */
2371 static void sdma_v4_4_2_update_reset_mask(struct amdgpu_device *adev)
2372 {
2373 	/* per queue reset not supported for SRIOV */
2374 	if (amdgpu_sriov_vf(adev))
2375 		return;
2376 
2377 	/*
2378 	 * the user queue relies on MEC fw and pmfw when the sdma queue do reset.
2379 	 * it needs to check both of them at here to skip old mec and pmfw.
2380 	 */
2381 	switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
2382 	case IP_VERSION(9, 4, 3):
2383 	case IP_VERSION(9, 4, 4):
2384 		if ((adev->gfx.mec_fw_version >= 0xb0) && amdgpu_dpm_reset_sdma_is_supported(adev))
2385 			adev->sdma.supported_reset |= AMDGPU_RESET_TYPE_PER_QUEUE;
2386 		break;
2387 	case IP_VERSION(9, 5, 0):
2388 		if ((adev->gfx.mec_fw_version >= 0xf) && amdgpu_dpm_reset_sdma_is_supported(adev))
2389 			adev->sdma.supported_reset |= AMDGPU_RESET_TYPE_PER_QUEUE;
2390 		break;
2391 	default:
2392 		break;
2393 	}
2394 
2395 }
2396 
2397 const struct amdgpu_ip_block_version sdma_v4_4_2_ip_block = {
2398 	.type = AMD_IP_BLOCK_TYPE_SDMA,
2399 	.major = 4,
2400 	.minor = 4,
2401 	.rev = 2,
2402 	.funcs = &sdma_v4_4_2_ip_funcs,
2403 };
2404 
2405 static int sdma_v4_4_2_xcp_resume(void *handle, uint32_t inst_mask)
2406 {
2407 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2408 	int r;
2409 
2410 	if (!amdgpu_sriov_vf(adev))
2411 		sdma_v4_4_2_inst_init_golden_registers(adev, inst_mask);
2412 
2413 	r = sdma_v4_4_2_inst_start(adev, inst_mask, false);
2414 
2415 	return r;
2416 }
2417 
2418 static int sdma_v4_4_2_xcp_suspend(void *handle, uint32_t inst_mask)
2419 {
2420 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2421 	uint32_t tmp_mask = inst_mask;
2422 	int i;
2423 
2424 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2425 		for_each_inst(i, tmp_mask) {
2426 			amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
2427 				       AMDGPU_SDMA_IRQ_INSTANCE0 + i);
2428 		}
2429 	}
2430 
2431 	sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask);
2432 	sdma_v4_4_2_inst_enable(adev, false, inst_mask);
2433 
2434 	return 0;
2435 }
2436 
2437 struct amdgpu_xcp_ip_funcs sdma_v4_4_2_xcp_funcs = {
2438 	.suspend = &sdma_v4_4_2_xcp_suspend,
2439 	.resume = &sdma_v4_4_2_xcp_resume
2440 };
2441 
2442 static const struct amdgpu_ras_err_status_reg_entry sdma_v4_2_2_ue_reg_list[] = {
2443 	{AMDGPU_RAS_REG_ENTRY(SDMA0, 0, regSDMA_UE_ERR_STATUS_LO, regSDMA_UE_ERR_STATUS_HI),
2444 	1, (AMDGPU_RAS_ERR_INFO_VALID | AMDGPU_RAS_ERR_STATUS_VALID), "SDMA"},
2445 };
2446 
2447 static const struct amdgpu_ras_memory_id_entry sdma_v4_4_2_ras_memory_list[] = {
2448 	{AMDGPU_SDMA_MBANK_DATA_BUF0, "SDMA_MBANK_DATA_BUF0"},
2449 	{AMDGPU_SDMA_MBANK_DATA_BUF1, "SDMA_MBANK_DATA_BUF1"},
2450 	{AMDGPU_SDMA_MBANK_DATA_BUF2, "SDMA_MBANK_DATA_BUF2"},
2451 	{AMDGPU_SDMA_MBANK_DATA_BUF3, "SDMA_MBANK_DATA_BUF3"},
2452 	{AMDGPU_SDMA_MBANK_DATA_BUF4, "SDMA_MBANK_DATA_BUF4"},
2453 	{AMDGPU_SDMA_MBANK_DATA_BUF5, "SDMA_MBANK_DATA_BUF5"},
2454 	{AMDGPU_SDMA_MBANK_DATA_BUF6, "SDMA_MBANK_DATA_BUF6"},
2455 	{AMDGPU_SDMA_MBANK_DATA_BUF7, "SDMA_MBANK_DATA_BUF7"},
2456 	{AMDGPU_SDMA_MBANK_DATA_BUF8, "SDMA_MBANK_DATA_BUF8"},
2457 	{AMDGPU_SDMA_MBANK_DATA_BUF9, "SDMA_MBANK_DATA_BUF9"},
2458 	{AMDGPU_SDMA_MBANK_DATA_BUF10, "SDMA_MBANK_DATA_BUF10"},
2459 	{AMDGPU_SDMA_MBANK_DATA_BUF11, "SDMA_MBANK_DATA_BUF11"},
2460 	{AMDGPU_SDMA_MBANK_DATA_BUF12, "SDMA_MBANK_DATA_BUF12"},
2461 	{AMDGPU_SDMA_MBANK_DATA_BUF13, "SDMA_MBANK_DATA_BUF13"},
2462 	{AMDGPU_SDMA_MBANK_DATA_BUF14, "SDMA_MBANK_DATA_BUF14"},
2463 	{AMDGPU_SDMA_MBANK_DATA_BUF15, "SDMA_MBANK_DATA_BUF15"},
2464 	{AMDGPU_SDMA_UCODE_BUF, "SDMA_UCODE_BUF"},
2465 	{AMDGPU_SDMA_RB_CMD_BUF, "SDMA_RB_CMD_BUF"},
2466 	{AMDGPU_SDMA_IB_CMD_BUF, "SDMA_IB_CMD_BUF"},
2467 	{AMDGPU_SDMA_UTCL1_RD_FIFO, "SDMA_UTCL1_RD_FIFO"},
2468 	{AMDGPU_SDMA_UTCL1_RDBST_FIFO, "SDMA_UTCL1_RDBST_FIFO"},
2469 	{AMDGPU_SDMA_UTCL1_WR_FIFO, "SDMA_UTCL1_WR_FIFO"},
2470 	{AMDGPU_SDMA_DATA_LUT_FIFO, "SDMA_DATA_LUT_FIFO"},
2471 	{AMDGPU_SDMA_SPLIT_DAT_BUF, "SDMA_SPLIT_DAT_BUF"},
2472 };
2473 
2474 static void sdma_v4_4_2_inst_query_ras_error_count(struct amdgpu_device *adev,
2475 						   uint32_t sdma_inst,
2476 						   void *ras_err_status)
2477 {
2478 	struct ras_err_data *err_data = (struct ras_err_data *)ras_err_status;
2479 	uint32_t sdma_dev_inst = GET_INST(SDMA0, sdma_inst);
2480 	unsigned long ue_count = 0;
2481 	struct amdgpu_smuio_mcm_config_info mcm_info = {
2482 		.socket_id = adev->smuio.funcs->get_socket_id(adev),
2483 		.die_id = adev->sdma.instance[sdma_inst].aid_id,
2484 	};
2485 
2486 	/* sdma v4_4_2 doesn't support query ce counts */
2487 	amdgpu_ras_inst_query_ras_error_count(adev,
2488 					sdma_v4_2_2_ue_reg_list,
2489 					ARRAY_SIZE(sdma_v4_2_2_ue_reg_list),
2490 					sdma_v4_4_2_ras_memory_list,
2491 					ARRAY_SIZE(sdma_v4_4_2_ras_memory_list),
2492 					sdma_dev_inst,
2493 					AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE,
2494 					&ue_count);
2495 
2496 	amdgpu_ras_error_statistic_ue_count(err_data, &mcm_info, ue_count);
2497 }
2498 
2499 static void sdma_v4_4_2_query_ras_error_count(struct amdgpu_device *adev,
2500 					      void *ras_err_status)
2501 {
2502 	uint32_t inst_mask;
2503 	int i = 0;
2504 
2505 	inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
2506 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2507 		for_each_inst(i, inst_mask)
2508 			sdma_v4_4_2_inst_query_ras_error_count(adev, i, ras_err_status);
2509 	} else {
2510 		dev_warn(adev->dev, "SDMA RAS is not supported\n");
2511 	}
2512 }
2513 
2514 static void sdma_v4_4_2_inst_reset_ras_error_count(struct amdgpu_device *adev,
2515 						   uint32_t sdma_inst)
2516 {
2517 	uint32_t sdma_dev_inst = GET_INST(SDMA0, sdma_inst);
2518 
2519 	amdgpu_ras_inst_reset_ras_error_count(adev,
2520 					sdma_v4_2_2_ue_reg_list,
2521 					ARRAY_SIZE(sdma_v4_2_2_ue_reg_list),
2522 					sdma_dev_inst);
2523 }
2524 
2525 static void sdma_v4_4_2_reset_ras_error_count(struct amdgpu_device *adev)
2526 {
2527 	uint32_t inst_mask;
2528 	int i = 0;
2529 
2530 	inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
2531 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2532 		for_each_inst(i, inst_mask)
2533 			sdma_v4_4_2_inst_reset_ras_error_count(adev, i);
2534 	} else {
2535 		dev_warn(adev->dev, "SDMA RAS is not supported\n");
2536 	}
2537 }
2538 
2539 static const struct amdgpu_ras_block_hw_ops sdma_v4_4_2_ras_hw_ops = {
2540 	.query_ras_error_count = sdma_v4_4_2_query_ras_error_count,
2541 	.reset_ras_error_count = sdma_v4_4_2_reset_ras_error_count,
2542 };
2543 
2544 static int sdma_v4_4_2_aca_bank_parser(struct aca_handle *handle, struct aca_bank *bank,
2545 				       enum aca_smu_type type, void *data)
2546 {
2547 	struct aca_bank_info info;
2548 	u64 misc0;
2549 	int ret;
2550 
2551 	ret = aca_bank_info_decode(bank, &info);
2552 	if (ret)
2553 		return ret;
2554 
2555 	misc0 = bank->regs[ACA_REG_IDX_MISC0];
2556 	switch (type) {
2557 	case ACA_SMU_TYPE_UE:
2558 		bank->aca_err_type = ACA_ERROR_TYPE_UE;
2559 		ret = aca_error_cache_log_bank_error(handle, &info, ACA_ERROR_TYPE_UE,
2560 						     1ULL);
2561 		break;
2562 	case ACA_SMU_TYPE_CE:
2563 		bank->aca_err_type = ACA_ERROR_TYPE_CE;
2564 		ret = aca_error_cache_log_bank_error(handle, &info, bank->aca_err_type,
2565 						     ACA_REG__MISC0__ERRCNT(misc0));
2566 		break;
2567 	default:
2568 		return -EINVAL;
2569 	}
2570 
2571 	return ret;
2572 }
2573 
2574 /* CODE_SDMA0 - CODE_SDMA4, reference to smu driver if header file */
2575 static int sdma_v4_4_2_err_codes[] = { 33, 34, 35, 36 };
2576 
2577 static bool sdma_v4_4_2_aca_bank_is_valid(struct aca_handle *handle, struct aca_bank *bank,
2578 					  enum aca_smu_type type, void *data)
2579 {
2580 	u32 instlo;
2581 
2582 	instlo = ACA_REG__IPID__INSTANCEIDLO(bank->regs[ACA_REG_IDX_IPID]);
2583 	instlo &= GENMASK(31, 1);
2584 
2585 	if (instlo != mmSMNAID_AID0_MCA_SMU)
2586 		return false;
2587 
2588 	if (aca_bank_check_error_codes(handle->adev, bank,
2589 				       sdma_v4_4_2_err_codes,
2590 				       ARRAY_SIZE(sdma_v4_4_2_err_codes)))
2591 		return false;
2592 
2593 	return true;
2594 }
2595 
2596 static const struct aca_bank_ops sdma_v4_4_2_aca_bank_ops = {
2597 	.aca_bank_parser = sdma_v4_4_2_aca_bank_parser,
2598 	.aca_bank_is_valid = sdma_v4_4_2_aca_bank_is_valid,
2599 };
2600 
2601 static const struct aca_info sdma_v4_4_2_aca_info = {
2602 	.hwip = ACA_HWIP_TYPE_SMU,
2603 	.mask = ACA_ERROR_UE_MASK,
2604 	.bank_ops = &sdma_v4_4_2_aca_bank_ops,
2605 };
2606 
2607 static int sdma_v4_4_2_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block)
2608 {
2609 	int r;
2610 
2611 	r = amdgpu_sdma_ras_late_init(adev, ras_block);
2612 	if (r)
2613 		return r;
2614 
2615 	return amdgpu_ras_bind_aca(adev, AMDGPU_RAS_BLOCK__SDMA,
2616 				   &sdma_v4_4_2_aca_info, NULL);
2617 }
2618 
2619 static struct amdgpu_sdma_ras sdma_v4_4_2_ras = {
2620 	.ras_block = {
2621 		.hw_ops = &sdma_v4_4_2_ras_hw_ops,
2622 		.ras_late_init = sdma_v4_4_2_ras_late_init,
2623 	},
2624 };
2625 
2626 static void sdma_v4_4_2_set_ras_funcs(struct amdgpu_device *adev)
2627 {
2628 	adev->sdma.ras = &sdma_v4_4_2_ras;
2629 }
2630