xref: /linux/drivers/gpu/drm/amd/amdgpu/sdma_v4_4_2.c (revision c4bbe83d27c2446a033cc0381c3fb6be5e8c41c7)
1 /*
2  * Copyright 2022 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28 
29 #include "amdgpu.h"
30 #include "amdgpu_xcp.h"
31 #include "amdgpu_ucode.h"
32 #include "amdgpu_trace.h"
33 
34 #include "sdma/sdma_4_4_2_offset.h"
35 #include "sdma/sdma_4_4_2_sh_mask.h"
36 
37 #include "soc15_common.h"
38 #include "soc15.h"
39 #include "vega10_sdma_pkt_open.h"
40 
41 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
42 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
43 
44 #include "amdgpu_ras.h"
45 
46 MODULE_FIRMWARE("amdgpu/sdma_4_4_2.bin");
47 
48 #define WREG32_SDMA(instance, offset, value) \
49 	WREG32(sdma_v4_4_2_get_reg_offset(adev, (instance), (offset)), value)
50 #define RREG32_SDMA(instance, offset) \
51 	RREG32(sdma_v4_4_2_get_reg_offset(adev, (instance), (offset)))
52 
53 static void sdma_v4_4_2_set_ring_funcs(struct amdgpu_device *adev);
54 static void sdma_v4_4_2_set_buffer_funcs(struct amdgpu_device *adev);
55 static void sdma_v4_4_2_set_vm_pte_funcs(struct amdgpu_device *adev);
56 static void sdma_v4_4_2_set_irq_funcs(struct amdgpu_device *adev);
57 static void sdma_v4_4_2_set_ras_funcs(struct amdgpu_device *adev);
58 
59 static u32 sdma_v4_4_2_get_reg_offset(struct amdgpu_device *adev,
60 		u32 instance, u32 offset)
61 {
62 	u32 dev_inst = GET_INST(SDMA0, instance);
63 
64 	return (adev->reg_offset[SDMA0_HWIP][dev_inst][0] + offset);
65 }
66 
67 static unsigned sdma_v4_4_2_seq_to_irq_id(int seq_num)
68 {
69 	switch (seq_num) {
70 	case 0:
71 		return SOC15_IH_CLIENTID_SDMA0;
72 	case 1:
73 		return SOC15_IH_CLIENTID_SDMA1;
74 	case 2:
75 		return SOC15_IH_CLIENTID_SDMA2;
76 	case 3:
77 		return SOC15_IH_CLIENTID_SDMA3;
78 	default:
79 		return -EINVAL;
80 	}
81 }
82 
83 static int sdma_v4_4_2_irq_id_to_seq(unsigned client_id)
84 {
85 	switch (client_id) {
86 	case SOC15_IH_CLIENTID_SDMA0:
87 		return 0;
88 	case SOC15_IH_CLIENTID_SDMA1:
89 		return 1;
90 	case SOC15_IH_CLIENTID_SDMA2:
91 		return 2;
92 	case SOC15_IH_CLIENTID_SDMA3:
93 		return 3;
94 	default:
95 		return -EINVAL;
96 	}
97 }
98 
99 static void sdma_v4_4_2_inst_init_golden_registers(struct amdgpu_device *adev,
100 						   uint32_t inst_mask)
101 {
102 	u32 val;
103 	int i;
104 
105 	for (i = 0; i < adev->sdma.num_instances; i++) {
106 		val = RREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG);
107 		val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG, NUM_BANKS, 4);
108 		val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG,
109 				    PIPE_INTERLEAVE_SIZE, 0);
110 		WREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG, val);
111 
112 		val = RREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG_READ);
113 		val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG_READ, NUM_BANKS,
114 				    4);
115 		val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG_READ,
116 				    PIPE_INTERLEAVE_SIZE, 0);
117 		WREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG_READ, val);
118 	}
119 }
120 
121 /**
122  * sdma_v4_4_2_init_microcode - load ucode images from disk
123  *
124  * @adev: amdgpu_device pointer
125  *
126  * Use the firmware interface to load the ucode images into
127  * the driver (not loaded into hw).
128  * Returns 0 on success, error on failure.
129  */
130 static int sdma_v4_4_2_init_microcode(struct amdgpu_device *adev)
131 {
132 	int ret, i;
133 
134 	for (i = 0; i < adev->sdma.num_instances; i++) {
135 		if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) ==
136 		    IP_VERSION(4, 4, 2)) {
137 			ret = amdgpu_sdma_init_microcode(adev, 0, true);
138 			break;
139 		} else {
140 			ret = amdgpu_sdma_init_microcode(adev, i, false);
141 			if (ret)
142 				return ret;
143 		}
144 	}
145 
146 	return ret;
147 }
148 
149 /**
150  * sdma_v4_4_2_ring_get_rptr - get the current read pointer
151  *
152  * @ring: amdgpu ring pointer
153  *
154  * Get the current rptr from the hardware.
155  */
156 static uint64_t sdma_v4_4_2_ring_get_rptr(struct amdgpu_ring *ring)
157 {
158 	u64 rptr;
159 
160 	/* XXX check if swapping is necessary on BE */
161 	rptr = READ_ONCE(*((u64 *)&ring->adev->wb.wb[ring->rptr_offs]));
162 
163 	DRM_DEBUG("rptr before shift == 0x%016llx\n", rptr);
164 	return rptr >> 2;
165 }
166 
167 /**
168  * sdma_v4_4_2_ring_get_wptr - get the current write pointer
169  *
170  * @ring: amdgpu ring pointer
171  *
172  * Get the current wptr from the hardware.
173  */
174 static uint64_t sdma_v4_4_2_ring_get_wptr(struct amdgpu_ring *ring)
175 {
176 	struct amdgpu_device *adev = ring->adev;
177 	u64 wptr;
178 
179 	if (ring->use_doorbell) {
180 		/* XXX check if swapping is necessary on BE */
181 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
182 		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
183 	} else {
184 		wptr = RREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR_HI);
185 		wptr = wptr << 32;
186 		wptr |= RREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR);
187 		DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
188 				ring->me, wptr);
189 	}
190 
191 	return wptr >> 2;
192 }
193 
194 /**
195  * sdma_v4_4_2_ring_set_wptr - commit the write pointer
196  *
197  * @ring: amdgpu ring pointer
198  *
199  * Write the wptr back to the hardware.
200  */
201 static void sdma_v4_4_2_ring_set_wptr(struct amdgpu_ring *ring)
202 {
203 	struct amdgpu_device *adev = ring->adev;
204 
205 	DRM_DEBUG("Setting write pointer\n");
206 	if (ring->use_doorbell) {
207 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
208 
209 		DRM_DEBUG("Using doorbell -- "
210 				"wptr_offs == 0x%08x "
211 				"lower_32_bits(ring->wptr) << 2 == 0x%08x "
212 				"upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
213 				ring->wptr_offs,
214 				lower_32_bits(ring->wptr << 2),
215 				upper_32_bits(ring->wptr << 2));
216 		/* XXX check if swapping is necessary on BE */
217 		WRITE_ONCE(*wb, (ring->wptr << 2));
218 		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
219 				ring->doorbell_index, ring->wptr << 2);
220 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
221 	} else {
222 		DRM_DEBUG("Not using doorbell -- "
223 				"regSDMA%i_GFX_RB_WPTR == 0x%08x "
224 				"regSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
225 				ring->me,
226 				lower_32_bits(ring->wptr << 2),
227 				ring->me,
228 				upper_32_bits(ring->wptr << 2));
229 		WREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR,
230 			    lower_32_bits(ring->wptr << 2));
231 		WREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR_HI,
232 			    upper_32_bits(ring->wptr << 2));
233 	}
234 }
235 
236 /**
237  * sdma_v4_4_2_page_ring_get_wptr - get the current write pointer
238  *
239  * @ring: amdgpu ring pointer
240  *
241  * Get the current wptr from the hardware.
242  */
243 static uint64_t sdma_v4_4_2_page_ring_get_wptr(struct amdgpu_ring *ring)
244 {
245 	struct amdgpu_device *adev = ring->adev;
246 	u64 wptr;
247 
248 	if (ring->use_doorbell) {
249 		/* XXX check if swapping is necessary on BE */
250 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
251 	} else {
252 		wptr = RREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR_HI);
253 		wptr = wptr << 32;
254 		wptr |= RREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR);
255 	}
256 
257 	return wptr >> 2;
258 }
259 
260 /**
261  * sdma_v4_4_2_page_ring_set_wptr - commit the write pointer
262  *
263  * @ring: amdgpu ring pointer
264  *
265  * Write the wptr back to the hardware.
266  */
267 static void sdma_v4_4_2_page_ring_set_wptr(struct amdgpu_ring *ring)
268 {
269 	struct amdgpu_device *adev = ring->adev;
270 
271 	if (ring->use_doorbell) {
272 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
273 
274 		/* XXX check if swapping is necessary on BE */
275 		WRITE_ONCE(*wb, (ring->wptr << 2));
276 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
277 	} else {
278 		uint64_t wptr = ring->wptr << 2;
279 
280 		WREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR,
281 			    lower_32_bits(wptr));
282 		WREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR_HI,
283 			    upper_32_bits(wptr));
284 	}
285 }
286 
287 static void sdma_v4_4_2_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
288 {
289 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
290 	int i;
291 
292 	for (i = 0; i < count; i++)
293 		if (sdma && sdma->burst_nop && (i == 0))
294 			amdgpu_ring_write(ring, ring->funcs->nop |
295 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
296 		else
297 			amdgpu_ring_write(ring, ring->funcs->nop);
298 }
299 
300 /**
301  * sdma_v4_4_2_ring_emit_ib - Schedule an IB on the DMA engine
302  *
303  * @ring: amdgpu ring pointer
304  * @job: job to retrieve vmid from
305  * @ib: IB object to schedule
306  * @flags: unused
307  *
308  * Schedule an IB in the DMA ring.
309  */
310 static void sdma_v4_4_2_ring_emit_ib(struct amdgpu_ring *ring,
311 				   struct amdgpu_job *job,
312 				   struct amdgpu_ib *ib,
313 				   uint32_t flags)
314 {
315 	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
316 
317 	/* IB packet must end on a 8 DW boundary */
318 	sdma_v4_4_2_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
319 
320 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
321 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
322 	/* base must be 32 byte aligned */
323 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
324 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
325 	amdgpu_ring_write(ring, ib->length_dw);
326 	amdgpu_ring_write(ring, 0);
327 	amdgpu_ring_write(ring, 0);
328 
329 }
330 
331 static void sdma_v4_4_2_wait_reg_mem(struct amdgpu_ring *ring,
332 				   int mem_space, int hdp,
333 				   uint32_t addr0, uint32_t addr1,
334 				   uint32_t ref, uint32_t mask,
335 				   uint32_t inv)
336 {
337 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
338 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
339 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
340 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
341 	if (mem_space) {
342 		/* memory */
343 		amdgpu_ring_write(ring, addr0);
344 		amdgpu_ring_write(ring, addr1);
345 	} else {
346 		/* registers */
347 		amdgpu_ring_write(ring, addr0 << 2);
348 		amdgpu_ring_write(ring, addr1 << 2);
349 	}
350 	amdgpu_ring_write(ring, ref); /* reference */
351 	amdgpu_ring_write(ring, mask); /* mask */
352 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
353 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
354 }
355 
356 /**
357  * sdma_v4_4_2_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
358  *
359  * @ring: amdgpu ring pointer
360  *
361  * Emit an hdp flush packet on the requested DMA ring.
362  */
363 static void sdma_v4_4_2_ring_emit_hdp_flush(struct amdgpu_ring *ring)
364 {
365 	struct amdgpu_device *adev = ring->adev;
366 	u32 ref_and_mask = 0;
367 	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
368 
369 	ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me;
370 
371 	sdma_v4_4_2_wait_reg_mem(ring, 0, 1,
372 			       adev->nbio.funcs->get_hdp_flush_done_offset(adev),
373 			       adev->nbio.funcs->get_hdp_flush_req_offset(adev),
374 			       ref_and_mask, ref_and_mask, 10);
375 }
376 
377 /**
378  * sdma_v4_4_2_ring_emit_fence - emit a fence on the DMA ring
379  *
380  * @ring: amdgpu ring pointer
381  * @addr: address
382  * @seq: sequence number
383  * @flags: fence related flags
384  *
385  * Add a DMA fence packet to the ring to write
386  * the fence seq number and DMA trap packet to generate
387  * an interrupt if needed.
388  */
389 static void sdma_v4_4_2_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
390 				      unsigned flags)
391 {
392 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
393 	/* write the fence */
394 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
395 	/* zero in first two bits */
396 	BUG_ON(addr & 0x3);
397 	amdgpu_ring_write(ring, lower_32_bits(addr));
398 	amdgpu_ring_write(ring, upper_32_bits(addr));
399 	amdgpu_ring_write(ring, lower_32_bits(seq));
400 
401 	/* optionally write high bits as well */
402 	if (write64bit) {
403 		addr += 4;
404 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
405 		/* zero in first two bits */
406 		BUG_ON(addr & 0x3);
407 		amdgpu_ring_write(ring, lower_32_bits(addr));
408 		amdgpu_ring_write(ring, upper_32_bits(addr));
409 		amdgpu_ring_write(ring, upper_32_bits(seq));
410 	}
411 
412 	/* generate an interrupt */
413 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
414 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
415 }
416 
417 
418 /**
419  * sdma_v4_4_2_inst_gfx_stop - stop the gfx async dma engines
420  *
421  * @adev: amdgpu_device pointer
422  * @inst_mask: mask of dma engine instances to be disabled
423  *
424  * Stop the gfx async dma ring buffers.
425  */
426 static void sdma_v4_4_2_inst_gfx_stop(struct amdgpu_device *adev,
427 				      uint32_t inst_mask)
428 {
429 	struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
430 	u32 doorbell_offset, doorbell;
431 	u32 rb_cntl, ib_cntl;
432 	int i, unset = 0;
433 
434 	for_each_inst(i, inst_mask) {
435 		sdma[i] = &adev->sdma.instance[i].ring;
436 
437 		if ((adev->mman.buffer_funcs_ring == sdma[i]) && unset != 1) {
438 			amdgpu_ttm_set_buffer_funcs_status(adev, false);
439 			unset = 1;
440 		}
441 
442 		rb_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_CNTL);
443 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_ENABLE, 0);
444 		WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl);
445 		ib_cntl = RREG32_SDMA(i, regSDMA_GFX_IB_CNTL);
446 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_ENABLE, 0);
447 		WREG32_SDMA(i, regSDMA_GFX_IB_CNTL, ib_cntl);
448 
449 		if (sdma[i]->use_doorbell) {
450 			doorbell = RREG32_SDMA(i, regSDMA_GFX_DOORBELL);
451 			doorbell_offset = RREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET);
452 
453 			doorbell = REG_SET_FIELD(doorbell, SDMA_GFX_DOORBELL, ENABLE, 0);
454 			doorbell_offset = REG_SET_FIELD(doorbell_offset,
455 					SDMA_GFX_DOORBELL_OFFSET,
456 					OFFSET, 0);
457 			WREG32_SDMA(i, regSDMA_GFX_DOORBELL, doorbell);
458 			WREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET, doorbell_offset);
459 		}
460 	}
461 }
462 
463 /**
464  * sdma_v4_4_2_inst_rlc_stop - stop the compute async dma engines
465  *
466  * @adev: amdgpu_device pointer
467  * @inst_mask: mask of dma engine instances to be disabled
468  *
469  * Stop the compute async dma queues.
470  */
471 static void sdma_v4_4_2_inst_rlc_stop(struct amdgpu_device *adev,
472 				      uint32_t inst_mask)
473 {
474 	/* XXX todo */
475 }
476 
477 /**
478  * sdma_v4_4_2_inst_page_stop - stop the page async dma engines
479  *
480  * @adev: amdgpu_device pointer
481  * @inst_mask: mask of dma engine instances to be disabled
482  *
483  * Stop the page async dma ring buffers.
484  */
485 static void sdma_v4_4_2_inst_page_stop(struct amdgpu_device *adev,
486 				       uint32_t inst_mask)
487 {
488 	struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
489 	u32 rb_cntl, ib_cntl;
490 	int i;
491 	bool unset = false;
492 
493 	for_each_inst(i, inst_mask) {
494 		sdma[i] = &adev->sdma.instance[i].page;
495 
496 		if ((adev->mman.buffer_funcs_ring == sdma[i]) &&
497 			(!unset)) {
498 			amdgpu_ttm_set_buffer_funcs_status(adev, false);
499 			unset = true;
500 		}
501 
502 		rb_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_CNTL);
503 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL,
504 					RB_ENABLE, 0);
505 		WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl);
506 		ib_cntl = RREG32_SDMA(i, regSDMA_PAGE_IB_CNTL);
507 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL,
508 					IB_ENABLE, 0);
509 		WREG32_SDMA(i, regSDMA_PAGE_IB_CNTL, ib_cntl);
510 	}
511 }
512 
513 /**
514  * sdma_v4_4_2_inst_ctx_switch_enable - stop the async dma engines context switch
515  *
516  * @adev: amdgpu_device pointer
517  * @enable: enable/disable the DMA MEs context switch.
518  * @inst_mask: mask of dma engine instances to be enabled
519  *
520  * Halt or unhalt the async dma engines context switch.
521  */
522 static void sdma_v4_4_2_inst_ctx_switch_enable(struct amdgpu_device *adev,
523 					       bool enable, uint32_t inst_mask)
524 {
525 	u32 f32_cntl, phase_quantum = 0;
526 	int i;
527 
528 	if (amdgpu_sdma_phase_quantum) {
529 		unsigned value = amdgpu_sdma_phase_quantum;
530 		unsigned unit = 0;
531 
532 		while (value > (SDMA_PHASE0_QUANTUM__VALUE_MASK >>
533 				SDMA_PHASE0_QUANTUM__VALUE__SHIFT)) {
534 			value = (value + 1) >> 1;
535 			unit++;
536 		}
537 		if (unit > (SDMA_PHASE0_QUANTUM__UNIT_MASK >>
538 			    SDMA_PHASE0_QUANTUM__UNIT__SHIFT)) {
539 			value = (SDMA_PHASE0_QUANTUM__VALUE_MASK >>
540 				 SDMA_PHASE0_QUANTUM__VALUE__SHIFT);
541 			unit = (SDMA_PHASE0_QUANTUM__UNIT_MASK >>
542 				SDMA_PHASE0_QUANTUM__UNIT__SHIFT);
543 			WARN_ONCE(1,
544 			"clamping sdma_phase_quantum to %uK clock cycles\n",
545 				  value << unit);
546 		}
547 		phase_quantum =
548 			value << SDMA_PHASE0_QUANTUM__VALUE__SHIFT |
549 			unit  << SDMA_PHASE0_QUANTUM__UNIT__SHIFT;
550 	}
551 
552 	for_each_inst(i, inst_mask) {
553 		f32_cntl = RREG32_SDMA(i, regSDMA_CNTL);
554 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA_CNTL,
555 				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
556 		if (enable && amdgpu_sdma_phase_quantum) {
557 			WREG32_SDMA(i, regSDMA_PHASE0_QUANTUM, phase_quantum);
558 			WREG32_SDMA(i, regSDMA_PHASE1_QUANTUM, phase_quantum);
559 			WREG32_SDMA(i, regSDMA_PHASE2_QUANTUM, phase_quantum);
560 		}
561 		WREG32_SDMA(i, regSDMA_CNTL, f32_cntl);
562 
563 		/* Extend page fault timeout to avoid interrupt storm */
564 		WREG32_SDMA(i, regSDMA_UTCL1_TIMEOUT, 0x00800080);
565 	}
566 }
567 
568 /**
569  * sdma_v4_4_2_inst_enable - stop the async dma engines
570  *
571  * @adev: amdgpu_device pointer
572  * @enable: enable/disable the DMA MEs.
573  * @inst_mask: mask of dma engine instances to be enabled
574  *
575  * Halt or unhalt the async dma engines.
576  */
577 static void sdma_v4_4_2_inst_enable(struct amdgpu_device *adev, bool enable,
578 				    uint32_t inst_mask)
579 {
580 	u32 f32_cntl;
581 	int i;
582 
583 	if (!enable) {
584 		sdma_v4_4_2_inst_gfx_stop(adev, inst_mask);
585 		sdma_v4_4_2_inst_rlc_stop(adev, inst_mask);
586 		if (adev->sdma.has_page_queue)
587 			sdma_v4_4_2_inst_page_stop(adev, inst_mask);
588 
589 		/* SDMA FW needs to respond to FREEZE requests during reset.
590 		 * Keep it running during reset */
591 		if (!amdgpu_sriov_vf(adev) && amdgpu_in_reset(adev))
592 			return;
593 	}
594 
595 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP)
596 		return;
597 
598 	for_each_inst(i, inst_mask) {
599 		f32_cntl = RREG32_SDMA(i, regSDMA_F32_CNTL);
600 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA_F32_CNTL, HALT, enable ? 0 : 1);
601 		WREG32_SDMA(i, regSDMA_F32_CNTL, f32_cntl);
602 	}
603 }
604 
605 /*
606  * sdma_v4_4_2_rb_cntl - get parameters for rb_cntl
607  */
608 static uint32_t sdma_v4_4_2_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
609 {
610 	/* Set ring buffer size in dwords */
611 	uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
612 
613 	barrier(); /* work around https://bugs.llvm.org/show_bug.cgi?id=42576 */
614 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
615 #ifdef __BIG_ENDIAN
616 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
617 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL,
618 				RPTR_WRITEBACK_SWAP_ENABLE, 1);
619 #endif
620 	return rb_cntl;
621 }
622 
623 /**
624  * sdma_v4_4_2_gfx_resume - setup and start the async dma engines
625  *
626  * @adev: amdgpu_device pointer
627  * @i: instance to resume
628  *
629  * Set up the gfx DMA ring buffers and enable them.
630  * Returns 0 for success, error for failure.
631  */
632 static void sdma_v4_4_2_gfx_resume(struct amdgpu_device *adev, unsigned int i)
633 {
634 	struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
635 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
636 	u32 wb_offset;
637 	u32 doorbell;
638 	u32 doorbell_offset;
639 	u64 wptr_gpu_addr;
640 
641 	wb_offset = (ring->rptr_offs * 4);
642 
643 	rb_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_CNTL);
644 	rb_cntl = sdma_v4_4_2_rb_cntl(ring, rb_cntl);
645 	WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl);
646 
647 	/* set the wb address whether it's enabled or not */
648 	WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_ADDR_HI,
649 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
650 	WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_ADDR_LO,
651 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
652 
653 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL,
654 				RPTR_WRITEBACK_ENABLE, 1);
655 
656 	WREG32_SDMA(i, regSDMA_GFX_RB_BASE, ring->gpu_addr >> 8);
657 	WREG32_SDMA(i, regSDMA_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
658 
659 	ring->wptr = 0;
660 
661 	/* before programing wptr to a less value, need set minor_ptr_update first */
662 	WREG32_SDMA(i, regSDMA_GFX_MINOR_PTR_UPDATE, 1);
663 
664 	/* Initialize the ring buffer's read and write pointers */
665 	WREG32_SDMA(i, regSDMA_GFX_RB_RPTR, 0);
666 	WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_HI, 0);
667 	WREG32_SDMA(i, regSDMA_GFX_RB_WPTR, 0);
668 	WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_HI, 0);
669 
670 	doorbell = RREG32_SDMA(i, regSDMA_GFX_DOORBELL);
671 	doorbell_offset = RREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET);
672 
673 	doorbell = REG_SET_FIELD(doorbell, SDMA_GFX_DOORBELL, ENABLE,
674 				 ring->use_doorbell);
675 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
676 					SDMA_GFX_DOORBELL_OFFSET,
677 					OFFSET, ring->doorbell_index);
678 	WREG32_SDMA(i, regSDMA_GFX_DOORBELL, doorbell);
679 	WREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET, doorbell_offset);
680 
681 	sdma_v4_4_2_ring_set_wptr(ring);
682 
683 	/* set minor_ptr_update to 0 after wptr programed */
684 	WREG32_SDMA(i, regSDMA_GFX_MINOR_PTR_UPDATE, 0);
685 
686 	/* setup the wptr shadow polling */
687 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
688 	WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_ADDR_LO,
689 		    lower_32_bits(wptr_gpu_addr));
690 	WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_ADDR_HI,
691 		    upper_32_bits(wptr_gpu_addr));
692 	wptr_poll_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_CNTL);
693 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
694 				       SDMA_GFX_RB_WPTR_POLL_CNTL,
695 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
696 	WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
697 
698 	/* enable DMA RB */
699 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_ENABLE, 1);
700 	WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl);
701 
702 	ib_cntl = RREG32_SDMA(i, regSDMA_GFX_IB_CNTL);
703 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_ENABLE, 1);
704 #ifdef __BIG_ENDIAN
705 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
706 #endif
707 	/* enable DMA IBs */
708 	WREG32_SDMA(i, regSDMA_GFX_IB_CNTL, ib_cntl);
709 }
710 
711 /**
712  * sdma_v4_4_2_page_resume - setup and start the async dma engines
713  *
714  * @adev: amdgpu_device pointer
715  * @i: instance to resume
716  *
717  * Set up the page DMA ring buffers and enable them.
718  * Returns 0 for success, error for failure.
719  */
720 static void sdma_v4_4_2_page_resume(struct amdgpu_device *adev, unsigned int i)
721 {
722 	struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
723 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
724 	u32 wb_offset;
725 	u32 doorbell;
726 	u32 doorbell_offset;
727 	u64 wptr_gpu_addr;
728 
729 	wb_offset = (ring->rptr_offs * 4);
730 
731 	rb_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_CNTL);
732 	rb_cntl = sdma_v4_4_2_rb_cntl(ring, rb_cntl);
733 	WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl);
734 
735 	/* Initialize the ring buffer's read and write pointers */
736 	WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR, 0);
737 	WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_HI, 0);
738 	WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR, 0);
739 	WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_HI, 0);
740 
741 	/* set the wb address whether it's enabled or not */
742 	WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_ADDR_HI,
743 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
744 	WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_ADDR_LO,
745 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
746 
747 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL,
748 				RPTR_WRITEBACK_ENABLE, 1);
749 
750 	WREG32_SDMA(i, regSDMA_PAGE_RB_BASE, ring->gpu_addr >> 8);
751 	WREG32_SDMA(i, regSDMA_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
752 
753 	ring->wptr = 0;
754 
755 	/* before programing wptr to a less value, need set minor_ptr_update first */
756 	WREG32_SDMA(i, regSDMA_PAGE_MINOR_PTR_UPDATE, 1);
757 
758 	doorbell = RREG32_SDMA(i, regSDMA_PAGE_DOORBELL);
759 	doorbell_offset = RREG32_SDMA(i, regSDMA_PAGE_DOORBELL_OFFSET);
760 
761 	doorbell = REG_SET_FIELD(doorbell, SDMA_PAGE_DOORBELL, ENABLE,
762 				 ring->use_doorbell);
763 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
764 					SDMA_PAGE_DOORBELL_OFFSET,
765 					OFFSET, ring->doorbell_index);
766 	WREG32_SDMA(i, regSDMA_PAGE_DOORBELL, doorbell);
767 	WREG32_SDMA(i, regSDMA_PAGE_DOORBELL_OFFSET, doorbell_offset);
768 
769 	/* paging queue doorbell range is setup at sdma_v4_4_2_gfx_resume */
770 	sdma_v4_4_2_page_ring_set_wptr(ring);
771 
772 	/* set minor_ptr_update to 0 after wptr programed */
773 	WREG32_SDMA(i, regSDMA_PAGE_MINOR_PTR_UPDATE, 0);
774 
775 	/* setup the wptr shadow polling */
776 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
777 	WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_ADDR_LO,
778 		    lower_32_bits(wptr_gpu_addr));
779 	WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_ADDR_HI,
780 		    upper_32_bits(wptr_gpu_addr));
781 	wptr_poll_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_CNTL);
782 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
783 				       SDMA_PAGE_RB_WPTR_POLL_CNTL,
784 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
785 	WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
786 
787 	/* enable DMA RB */
788 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL, RB_ENABLE, 1);
789 	WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl);
790 
791 	ib_cntl = RREG32_SDMA(i, regSDMA_PAGE_IB_CNTL);
792 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL, IB_ENABLE, 1);
793 #ifdef __BIG_ENDIAN
794 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
795 #endif
796 	/* enable DMA IBs */
797 	WREG32_SDMA(i, regSDMA_PAGE_IB_CNTL, ib_cntl);
798 }
799 
800 static void sdma_v4_4_2_init_pg(struct amdgpu_device *adev)
801 {
802 
803 }
804 
805 /**
806  * sdma_v4_4_2_inst_rlc_resume - setup and start the async dma engines
807  *
808  * @adev: amdgpu_device pointer
809  * @inst_mask: mask of dma engine instances to be enabled
810  *
811  * Set up the compute DMA queues and enable them.
812  * Returns 0 for success, error for failure.
813  */
814 static int sdma_v4_4_2_inst_rlc_resume(struct amdgpu_device *adev,
815 				       uint32_t inst_mask)
816 {
817 	sdma_v4_4_2_init_pg(adev);
818 
819 	return 0;
820 }
821 
822 /**
823  * sdma_v4_4_2_inst_load_microcode - load the sDMA ME ucode
824  *
825  * @adev: amdgpu_device pointer
826  * @inst_mask: mask of dma engine instances to be enabled
827  *
828  * Loads the sDMA0/1 ucode.
829  * Returns 0 for success, -EINVAL if the ucode is not available.
830  */
831 static int sdma_v4_4_2_inst_load_microcode(struct amdgpu_device *adev,
832 					   uint32_t inst_mask)
833 {
834 	const struct sdma_firmware_header_v1_0 *hdr;
835 	const __le32 *fw_data;
836 	u32 fw_size;
837 	int i, j;
838 
839 	/* halt the MEs */
840 	sdma_v4_4_2_inst_enable(adev, false, inst_mask);
841 
842 	for_each_inst(i, inst_mask) {
843 		if (!adev->sdma.instance[i].fw)
844 			return -EINVAL;
845 
846 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
847 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
848 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
849 
850 		fw_data = (const __le32 *)
851 			(adev->sdma.instance[i].fw->data +
852 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
853 
854 		WREG32_SDMA(i, regSDMA_UCODE_ADDR, 0);
855 
856 		for (j = 0; j < fw_size; j++)
857 			WREG32_SDMA(i, regSDMA_UCODE_DATA,
858 				    le32_to_cpup(fw_data++));
859 
860 		WREG32_SDMA(i, regSDMA_UCODE_ADDR,
861 			    adev->sdma.instance[i].fw_version);
862 	}
863 
864 	return 0;
865 }
866 
867 /**
868  * sdma_v4_4_2_inst_start - setup and start the async dma engines
869  *
870  * @adev: amdgpu_device pointer
871  * @inst_mask: mask of dma engine instances to be enabled
872  *
873  * Set up the DMA engines and enable them.
874  * Returns 0 for success, error for failure.
875  */
876 static int sdma_v4_4_2_inst_start(struct amdgpu_device *adev,
877 				  uint32_t inst_mask)
878 {
879 	struct amdgpu_ring *ring;
880 	uint32_t tmp_mask;
881 	int i, r = 0;
882 
883 	if (amdgpu_sriov_vf(adev)) {
884 		sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask);
885 		sdma_v4_4_2_inst_enable(adev, false, inst_mask);
886 	} else {
887 		/* bypass sdma microcode loading on Gopher */
888 		if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP &&
889 		    adev->sdma.instance[0].fw) {
890 			r = sdma_v4_4_2_inst_load_microcode(adev, inst_mask);
891 			if (r)
892 				return r;
893 		}
894 
895 		/* unhalt the MEs */
896 		sdma_v4_4_2_inst_enable(adev, true, inst_mask);
897 		/* enable sdma ring preemption */
898 		sdma_v4_4_2_inst_ctx_switch_enable(adev, true, inst_mask);
899 	}
900 
901 	/* start the gfx rings and rlc compute queues */
902 	tmp_mask = inst_mask;
903 	for_each_inst(i, tmp_mask) {
904 		uint32_t temp;
905 
906 		WREG32_SDMA(i, regSDMA_SEM_WAIT_FAIL_TIMER_CNTL, 0);
907 		sdma_v4_4_2_gfx_resume(adev, i);
908 		if (adev->sdma.has_page_queue)
909 			sdma_v4_4_2_page_resume(adev, i);
910 
911 		/* set utc l1 enable flag always to 1 */
912 		temp = RREG32_SDMA(i, regSDMA_CNTL);
913 		temp = REG_SET_FIELD(temp, SDMA_CNTL, UTC_L1_ENABLE, 1);
914 		/* enable context empty interrupt during initialization */
915 		temp = REG_SET_FIELD(temp, SDMA_CNTL, CTXEMPTY_INT_ENABLE, 1);
916 		WREG32_SDMA(i, regSDMA_CNTL, temp);
917 
918 		if (!amdgpu_sriov_vf(adev)) {
919 			if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
920 				/* unhalt engine */
921 				temp = RREG32_SDMA(i, regSDMA_F32_CNTL);
922 				temp = REG_SET_FIELD(temp, SDMA_F32_CNTL, HALT, 0);
923 				WREG32_SDMA(i, regSDMA_F32_CNTL, temp);
924 			}
925 		}
926 	}
927 
928 	if (amdgpu_sriov_vf(adev)) {
929 		sdma_v4_4_2_inst_ctx_switch_enable(adev, true, inst_mask);
930 		sdma_v4_4_2_inst_enable(adev, true, inst_mask);
931 	} else {
932 		r = sdma_v4_4_2_inst_rlc_resume(adev, inst_mask);
933 		if (r)
934 			return r;
935 	}
936 
937 	tmp_mask = inst_mask;
938 	for_each_inst(i, tmp_mask) {
939 		ring = &adev->sdma.instance[i].ring;
940 
941 		r = amdgpu_ring_test_helper(ring);
942 		if (r)
943 			return r;
944 
945 		if (adev->sdma.has_page_queue) {
946 			struct amdgpu_ring *page = &adev->sdma.instance[i].page;
947 
948 			r = amdgpu_ring_test_helper(page);
949 			if (r)
950 				return r;
951 
952 			if (adev->mman.buffer_funcs_ring == page)
953 				amdgpu_ttm_set_buffer_funcs_status(adev, true);
954 		}
955 
956 		if (adev->mman.buffer_funcs_ring == ring)
957 			amdgpu_ttm_set_buffer_funcs_status(adev, true);
958 	}
959 
960 	return r;
961 }
962 
963 /**
964  * sdma_v4_4_2_ring_test_ring - simple async dma engine test
965  *
966  * @ring: amdgpu_ring structure holding ring information
967  *
968  * Test the DMA engine by writing using it to write an
969  * value to memory.
970  * Returns 0 for success, error for failure.
971  */
972 static int sdma_v4_4_2_ring_test_ring(struct amdgpu_ring *ring)
973 {
974 	struct amdgpu_device *adev = ring->adev;
975 	unsigned i;
976 	unsigned index;
977 	int r;
978 	u32 tmp;
979 	u64 gpu_addr;
980 
981 	r = amdgpu_device_wb_get(adev, &index);
982 	if (r)
983 		return r;
984 
985 	gpu_addr = adev->wb.gpu_addr + (index * 4);
986 	tmp = 0xCAFEDEAD;
987 	adev->wb.wb[index] = cpu_to_le32(tmp);
988 
989 	r = amdgpu_ring_alloc(ring, 5);
990 	if (r)
991 		goto error_free_wb;
992 
993 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
994 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
995 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
996 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
997 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
998 	amdgpu_ring_write(ring, 0xDEADBEEF);
999 	amdgpu_ring_commit(ring);
1000 
1001 	for (i = 0; i < adev->usec_timeout; i++) {
1002 		tmp = le32_to_cpu(adev->wb.wb[index]);
1003 		if (tmp == 0xDEADBEEF)
1004 			break;
1005 		udelay(1);
1006 	}
1007 
1008 	if (i >= adev->usec_timeout)
1009 		r = -ETIMEDOUT;
1010 
1011 error_free_wb:
1012 	amdgpu_device_wb_free(adev, index);
1013 	return r;
1014 }
1015 
1016 /**
1017  * sdma_v4_4_2_ring_test_ib - test an IB on the DMA engine
1018  *
1019  * @ring: amdgpu_ring structure holding ring information
1020  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
1021  *
1022  * Test a simple IB in the DMA ring.
1023  * Returns 0 on success, error on failure.
1024  */
1025 static int sdma_v4_4_2_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1026 {
1027 	struct amdgpu_device *adev = ring->adev;
1028 	struct amdgpu_ib ib;
1029 	struct dma_fence *f = NULL;
1030 	unsigned index;
1031 	long r;
1032 	u32 tmp = 0;
1033 	u64 gpu_addr;
1034 
1035 	r = amdgpu_device_wb_get(adev, &index);
1036 	if (r)
1037 		return r;
1038 
1039 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1040 	tmp = 0xCAFEDEAD;
1041 	adev->wb.wb[index] = cpu_to_le32(tmp);
1042 	memset(&ib, 0, sizeof(ib));
1043 	r = amdgpu_ib_get(adev, NULL, 256,
1044 					AMDGPU_IB_POOL_DIRECT, &ib);
1045 	if (r)
1046 		goto err0;
1047 
1048 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1049 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1050 	ib.ptr[1] = lower_32_bits(gpu_addr);
1051 	ib.ptr[2] = upper_32_bits(gpu_addr);
1052 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1053 	ib.ptr[4] = 0xDEADBEEF;
1054 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1055 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1056 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1057 	ib.length_dw = 8;
1058 
1059 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1060 	if (r)
1061 		goto err1;
1062 
1063 	r = dma_fence_wait_timeout(f, false, timeout);
1064 	if (r == 0) {
1065 		r = -ETIMEDOUT;
1066 		goto err1;
1067 	} else if (r < 0) {
1068 		goto err1;
1069 	}
1070 	tmp = le32_to_cpu(adev->wb.wb[index]);
1071 	if (tmp == 0xDEADBEEF)
1072 		r = 0;
1073 	else
1074 		r = -EINVAL;
1075 
1076 err1:
1077 	amdgpu_ib_free(adev, &ib, NULL);
1078 	dma_fence_put(f);
1079 err0:
1080 	amdgpu_device_wb_free(adev, index);
1081 	return r;
1082 }
1083 
1084 
1085 /**
1086  * sdma_v4_4_2_vm_copy_pte - update PTEs by copying them from the GART
1087  *
1088  * @ib: indirect buffer to fill with commands
1089  * @pe: addr of the page entry
1090  * @src: src addr to copy from
1091  * @count: number of page entries to update
1092  *
1093  * Update PTEs by copying them from the GART using sDMA.
1094  */
1095 static void sdma_v4_4_2_vm_copy_pte(struct amdgpu_ib *ib,
1096 				  uint64_t pe, uint64_t src,
1097 				  unsigned count)
1098 {
1099 	unsigned bytes = count * 8;
1100 
1101 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1102 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1103 	ib->ptr[ib->length_dw++] = bytes - 1;
1104 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1105 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1106 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1107 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1108 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1109 
1110 }
1111 
1112 /**
1113  * sdma_v4_4_2_vm_write_pte - update PTEs by writing them manually
1114  *
1115  * @ib: indirect buffer to fill with commands
1116  * @pe: addr of the page entry
1117  * @value: dst addr to write into pe
1118  * @count: number of page entries to update
1119  * @incr: increase next addr by incr bytes
1120  *
1121  * Update PTEs by writing them manually using sDMA.
1122  */
1123 static void sdma_v4_4_2_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1124 				   uint64_t value, unsigned count,
1125 				   uint32_t incr)
1126 {
1127 	unsigned ndw = count * 2;
1128 
1129 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1130 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1131 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1132 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1133 	ib->ptr[ib->length_dw++] = ndw - 1;
1134 	for (; ndw > 0; ndw -= 2) {
1135 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1136 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1137 		value += incr;
1138 	}
1139 }
1140 
1141 /**
1142  * sdma_v4_4_2_vm_set_pte_pde - update the page tables using sDMA
1143  *
1144  * @ib: indirect buffer to fill with commands
1145  * @pe: addr of the page entry
1146  * @addr: dst addr to write into pe
1147  * @count: number of page entries to update
1148  * @incr: increase next addr by incr bytes
1149  * @flags: access flags
1150  *
1151  * Update the page tables using sDMA.
1152  */
1153 static void sdma_v4_4_2_vm_set_pte_pde(struct amdgpu_ib *ib,
1154 				     uint64_t pe,
1155 				     uint64_t addr, unsigned count,
1156 				     uint32_t incr, uint64_t flags)
1157 {
1158 	/* for physically contiguous pages (vram) */
1159 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1160 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1161 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1162 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1163 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1164 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1165 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1166 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1167 	ib->ptr[ib->length_dw++] = 0;
1168 	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1169 }
1170 
1171 /**
1172  * sdma_v4_4_2_ring_pad_ib - pad the IB to the required number of dw
1173  *
1174  * @ring: amdgpu_ring structure holding ring information
1175  * @ib: indirect buffer to fill with padding
1176  */
1177 static void sdma_v4_4_2_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1178 {
1179 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1180 	u32 pad_count;
1181 	int i;
1182 
1183 	pad_count = (-ib->length_dw) & 7;
1184 	for (i = 0; i < pad_count; i++)
1185 		if (sdma && sdma->burst_nop && (i == 0))
1186 			ib->ptr[ib->length_dw++] =
1187 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1188 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1189 		else
1190 			ib->ptr[ib->length_dw++] =
1191 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1192 }
1193 
1194 
1195 /**
1196  * sdma_v4_4_2_ring_emit_pipeline_sync - sync the pipeline
1197  *
1198  * @ring: amdgpu_ring pointer
1199  *
1200  * Make sure all previous operations are completed (CIK).
1201  */
1202 static void sdma_v4_4_2_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1203 {
1204 	uint32_t seq = ring->fence_drv.sync_seq;
1205 	uint64_t addr = ring->fence_drv.gpu_addr;
1206 
1207 	/* wait for idle */
1208 	sdma_v4_4_2_wait_reg_mem(ring, 1, 0,
1209 			       addr & 0xfffffffc,
1210 			       upper_32_bits(addr) & 0xffffffff,
1211 			       seq, 0xffffffff, 4);
1212 }
1213 
1214 
1215 /**
1216  * sdma_v4_4_2_ring_emit_vm_flush - vm flush using sDMA
1217  *
1218  * @ring: amdgpu_ring pointer
1219  * @vmid: vmid number to use
1220  * @pd_addr: address
1221  *
1222  * Update the page table base and flush the VM TLB
1223  * using sDMA.
1224  */
1225 static void sdma_v4_4_2_ring_emit_vm_flush(struct amdgpu_ring *ring,
1226 					 unsigned vmid, uint64_t pd_addr)
1227 {
1228 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1229 }
1230 
1231 static void sdma_v4_4_2_ring_emit_wreg(struct amdgpu_ring *ring,
1232 				     uint32_t reg, uint32_t val)
1233 {
1234 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1235 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1236 	amdgpu_ring_write(ring, reg);
1237 	amdgpu_ring_write(ring, val);
1238 }
1239 
1240 static void sdma_v4_4_2_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1241 					 uint32_t val, uint32_t mask)
1242 {
1243 	sdma_v4_4_2_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1244 }
1245 
1246 static bool sdma_v4_4_2_fw_support_paging_queue(struct amdgpu_device *adev)
1247 {
1248 	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
1249 	case IP_VERSION(4, 4, 2):
1250 		return false;
1251 	default:
1252 		return false;
1253 	}
1254 }
1255 
1256 static int sdma_v4_4_2_early_init(void *handle)
1257 {
1258 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1259 	int r;
1260 
1261 	r = sdma_v4_4_2_init_microcode(adev);
1262 	if (r)
1263 		return r;
1264 
1265 	/* TODO: Page queue breaks driver reload under SRIOV */
1266 	if (sdma_v4_4_2_fw_support_paging_queue(adev))
1267 		adev->sdma.has_page_queue = true;
1268 
1269 	sdma_v4_4_2_set_ring_funcs(adev);
1270 	sdma_v4_4_2_set_buffer_funcs(adev);
1271 	sdma_v4_4_2_set_vm_pte_funcs(adev);
1272 	sdma_v4_4_2_set_irq_funcs(adev);
1273 	sdma_v4_4_2_set_ras_funcs(adev);
1274 
1275 	return 0;
1276 }
1277 
1278 #if 0
1279 static int sdma_v4_4_2_process_ras_data_cb(struct amdgpu_device *adev,
1280 		void *err_data,
1281 		struct amdgpu_iv_entry *entry);
1282 #endif
1283 
1284 static int sdma_v4_4_2_late_init(void *handle)
1285 {
1286 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1287 #if 0
1288 	struct ras_ih_if ih_info = {
1289 		.cb = sdma_v4_4_2_process_ras_data_cb,
1290 	};
1291 #endif
1292 	if (!amdgpu_persistent_edc_harvesting_supported(adev))
1293 		amdgpu_ras_reset_error_count(adev, AMDGPU_RAS_BLOCK__SDMA);
1294 
1295 	return 0;
1296 }
1297 
1298 static int sdma_v4_4_2_sw_init(void *handle)
1299 {
1300 	struct amdgpu_ring *ring;
1301 	int r, i;
1302 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1303 	u32 aid_id;
1304 
1305 	/* SDMA trap event */
1306 	for (i = 0; i < adev->sdma.num_inst_per_aid; i++) {
1307 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1308 				      SDMA0_4_0__SRCID__SDMA_TRAP,
1309 				      &adev->sdma.trap_irq);
1310 		if (r)
1311 			return r;
1312 	}
1313 
1314 	/* SDMA SRAM ECC event */
1315 	for (i = 0; i < adev->sdma.num_inst_per_aid; i++) {
1316 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1317 				      SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
1318 				      &adev->sdma.ecc_irq);
1319 		if (r)
1320 			return r;
1321 	}
1322 
1323 	/* SDMA VM_HOLE/DOORBELL_INV/POLL_TIMEOUT/SRBM_WRITE_PROTECTION event*/
1324 	for (i = 0; i < adev->sdma.num_inst_per_aid; i++) {
1325 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1326 				      SDMA0_4_0__SRCID__SDMA_VM_HOLE,
1327 				      &adev->sdma.vm_hole_irq);
1328 		if (r)
1329 			return r;
1330 
1331 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1332 				      SDMA0_4_0__SRCID__SDMA_DOORBELL_INVALID,
1333 				      &adev->sdma.doorbell_invalid_irq);
1334 		if (r)
1335 			return r;
1336 
1337 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1338 				      SDMA0_4_0__SRCID__SDMA_POLL_TIMEOUT,
1339 				      &adev->sdma.pool_timeout_irq);
1340 		if (r)
1341 			return r;
1342 
1343 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1344 				      SDMA0_4_0__SRCID__SDMA_SRBMWRITE,
1345 				      &adev->sdma.srbm_write_irq);
1346 		if (r)
1347 			return r;
1348 	}
1349 
1350 	for (i = 0; i < adev->sdma.num_instances; i++) {
1351 		ring = &adev->sdma.instance[i].ring;
1352 		ring->ring_obj = NULL;
1353 		ring->use_doorbell = true;
1354 		aid_id = adev->sdma.instance[i].aid_id;
1355 
1356 		DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i,
1357 				ring->use_doorbell?"true":"false");
1358 
1359 		/* doorbell size is 2 dwords, get DWORD offset */
1360 		ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1361 		ring->vm_hub = AMDGPU_MMHUB0(aid_id);
1362 
1363 		sprintf(ring->name, "sdma%d.%d", aid_id,
1364 				i % adev->sdma.num_inst_per_aid);
1365 		r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1366 				     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1367 				     AMDGPU_RING_PRIO_DEFAULT, NULL);
1368 		if (r)
1369 			return r;
1370 
1371 		if (adev->sdma.has_page_queue) {
1372 			ring = &adev->sdma.instance[i].page;
1373 			ring->ring_obj = NULL;
1374 			ring->use_doorbell = true;
1375 
1376 			/* doorbell index of page queue is assigned right after
1377 			 * gfx queue on the same instance
1378 			 */
1379 			ring->doorbell_index =
1380 				(adev->doorbell_index.sdma_engine[i] + 1) << 1;
1381 			ring->vm_hub = AMDGPU_MMHUB0(aid_id);
1382 
1383 			sprintf(ring->name, "page%d.%d", aid_id,
1384 					i % adev->sdma.num_inst_per_aid);
1385 			r = amdgpu_ring_init(adev, ring, 1024,
1386 					     &adev->sdma.trap_irq,
1387 					     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1388 					     AMDGPU_RING_PRIO_DEFAULT, NULL);
1389 			if (r)
1390 				return r;
1391 		}
1392 	}
1393 
1394 	if (amdgpu_sdma_ras_sw_init(adev)) {
1395 		dev_err(adev->dev, "fail to initialize sdma ras block\n");
1396 		return -EINVAL;
1397 	}
1398 
1399 	return r;
1400 }
1401 
1402 static int sdma_v4_4_2_sw_fini(void *handle)
1403 {
1404 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1405 	int i;
1406 
1407 	for (i = 0; i < adev->sdma.num_instances; i++) {
1408 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1409 		if (adev->sdma.has_page_queue)
1410 			amdgpu_ring_fini(&adev->sdma.instance[i].page);
1411 	}
1412 
1413 	if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 2))
1414 		amdgpu_sdma_destroy_inst_ctx(adev, true);
1415 	else
1416 		amdgpu_sdma_destroy_inst_ctx(adev, false);
1417 
1418 	return 0;
1419 }
1420 
1421 static int sdma_v4_4_2_hw_init(void *handle)
1422 {
1423 	int r;
1424 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1425 	uint32_t inst_mask;
1426 
1427 	inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
1428 	if (!amdgpu_sriov_vf(adev))
1429 		sdma_v4_4_2_inst_init_golden_registers(adev, inst_mask);
1430 
1431 	r = sdma_v4_4_2_inst_start(adev, inst_mask);
1432 
1433 	return r;
1434 }
1435 
1436 static int sdma_v4_4_2_hw_fini(void *handle)
1437 {
1438 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1439 	uint32_t inst_mask;
1440 	int i;
1441 
1442 	if (amdgpu_sriov_vf(adev))
1443 		return 0;
1444 
1445 	inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
1446 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
1447 		for (i = 0; i < adev->sdma.num_instances; i++) {
1448 			amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
1449 				       AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1450 		}
1451 	}
1452 
1453 	sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask);
1454 	sdma_v4_4_2_inst_enable(adev, false, inst_mask);
1455 
1456 	return 0;
1457 }
1458 
1459 static int sdma_v4_4_2_set_clockgating_state(void *handle,
1460 					     enum amd_clockgating_state state);
1461 
1462 static int sdma_v4_4_2_suspend(void *handle)
1463 {
1464 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1465 
1466 	if (amdgpu_in_reset(adev))
1467 		sdma_v4_4_2_set_clockgating_state(adev, AMD_CG_STATE_UNGATE);
1468 
1469 	return sdma_v4_4_2_hw_fini(adev);
1470 }
1471 
1472 static int sdma_v4_4_2_resume(void *handle)
1473 {
1474 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1475 
1476 	return sdma_v4_4_2_hw_init(adev);
1477 }
1478 
1479 static bool sdma_v4_4_2_is_idle(void *handle)
1480 {
1481 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1482 	u32 i;
1483 
1484 	for (i = 0; i < adev->sdma.num_instances; i++) {
1485 		u32 tmp = RREG32_SDMA(i, regSDMA_STATUS_REG);
1486 
1487 		if (!(tmp & SDMA_STATUS_REG__IDLE_MASK))
1488 			return false;
1489 	}
1490 
1491 	return true;
1492 }
1493 
1494 static int sdma_v4_4_2_wait_for_idle(void *handle)
1495 {
1496 	unsigned i, j;
1497 	u32 sdma[AMDGPU_MAX_SDMA_INSTANCES];
1498 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1499 
1500 	for (i = 0; i < adev->usec_timeout; i++) {
1501 		for (j = 0; j < adev->sdma.num_instances; j++) {
1502 			sdma[j] = RREG32_SDMA(j, regSDMA_STATUS_REG);
1503 			if (!(sdma[j] & SDMA_STATUS_REG__IDLE_MASK))
1504 				break;
1505 		}
1506 		if (j == adev->sdma.num_instances)
1507 			return 0;
1508 		udelay(1);
1509 	}
1510 	return -ETIMEDOUT;
1511 }
1512 
1513 static int sdma_v4_4_2_soft_reset(void *handle)
1514 {
1515 	/* todo */
1516 
1517 	return 0;
1518 }
1519 
1520 static int sdma_v4_4_2_set_trap_irq_state(struct amdgpu_device *adev,
1521 					struct amdgpu_irq_src *source,
1522 					unsigned type,
1523 					enum amdgpu_interrupt_state state)
1524 {
1525 	u32 sdma_cntl;
1526 
1527 	sdma_cntl = RREG32_SDMA(type, regSDMA_CNTL);
1528 	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA_CNTL, TRAP_ENABLE,
1529 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1530 	WREG32_SDMA(type, regSDMA_CNTL, sdma_cntl);
1531 
1532 	return 0;
1533 }
1534 
1535 static int sdma_v4_4_2_process_trap_irq(struct amdgpu_device *adev,
1536 				      struct amdgpu_irq_src *source,
1537 				      struct amdgpu_iv_entry *entry)
1538 {
1539 	uint32_t instance, i;
1540 
1541 	DRM_DEBUG("IH: SDMA trap\n");
1542 	instance = sdma_v4_4_2_irq_id_to_seq(entry->client_id);
1543 
1544 	/* Client id gives the SDMA instance in AID. To know the exact SDMA
1545 	 * instance, interrupt entry gives the node id which corresponds to the AID instance.
1546 	 * Match node id with the AID id associated with the SDMA instance. */
1547 	for (i = instance; i < adev->sdma.num_instances;
1548 	     i += adev->sdma.num_inst_per_aid) {
1549 		if (adev->sdma.instance[i].aid_id ==
1550 		    node_id_to_phys_map[entry->node_id])
1551 			break;
1552 	}
1553 
1554 	if (i >= adev->sdma.num_instances) {
1555 		dev_WARN_ONCE(
1556 			adev->dev, 1,
1557 			"Couldn't find the right sdma instance in trap handler");
1558 		return 0;
1559 	}
1560 
1561 	switch (entry->ring_id) {
1562 	case 0:
1563 		amdgpu_fence_process(&adev->sdma.instance[i].ring);
1564 		break;
1565 	default:
1566 		break;
1567 	}
1568 	return 0;
1569 }
1570 
1571 #if 0
1572 static int sdma_v4_4_2_process_ras_data_cb(struct amdgpu_device *adev,
1573 		void *err_data,
1574 		struct amdgpu_iv_entry *entry)
1575 {
1576 	int instance;
1577 
1578 	/* When “Full RAS” is enabled, the per-IP interrupt sources should
1579 	 * be disabled and the driver should only look for the aggregated
1580 	 * interrupt via sync flood
1581 	 */
1582 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA))
1583 		goto out;
1584 
1585 	instance = sdma_v4_4_2_irq_id_to_seq(entry->client_id);
1586 	if (instance < 0)
1587 		goto out;
1588 
1589 	amdgpu_sdma_process_ras_data_cb(adev, err_data, entry);
1590 
1591 out:
1592 	return AMDGPU_RAS_SUCCESS;
1593 }
1594 #endif
1595 
1596 static int sdma_v4_4_2_process_illegal_inst_irq(struct amdgpu_device *adev,
1597 					      struct amdgpu_irq_src *source,
1598 					      struct amdgpu_iv_entry *entry)
1599 {
1600 	int instance;
1601 
1602 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
1603 
1604 	instance = sdma_v4_4_2_irq_id_to_seq(entry->client_id);
1605 	if (instance < 0)
1606 		return 0;
1607 
1608 	switch (entry->ring_id) {
1609 	case 0:
1610 		drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
1611 		break;
1612 	}
1613 	return 0;
1614 }
1615 
1616 static int sdma_v4_4_2_set_ecc_irq_state(struct amdgpu_device *adev,
1617 					struct amdgpu_irq_src *source,
1618 					unsigned type,
1619 					enum amdgpu_interrupt_state state)
1620 {
1621 	u32 sdma_cntl;
1622 
1623 	sdma_cntl = RREG32_SDMA(type, regSDMA_CNTL);
1624 	switch (state) {
1625 	case AMDGPU_IRQ_STATE_DISABLE:
1626 		sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA_CNTL,
1627 					  DRAM_ECC_INT_ENABLE, 0);
1628 		WREG32_SDMA(type, regSDMA_CNTL, sdma_cntl);
1629 		break;
1630 	/* sdma ecc interrupt is enabled by default
1631 	 * driver doesn't need to do anything to
1632 	 * enable the interrupt */
1633 	case AMDGPU_IRQ_STATE_ENABLE:
1634 	default:
1635 		break;
1636 	}
1637 
1638 	return 0;
1639 }
1640 
1641 static int sdma_v4_4_2_print_iv_entry(struct amdgpu_device *adev,
1642 					      struct amdgpu_iv_entry *entry)
1643 {
1644 	int instance;
1645 	struct amdgpu_task_info task_info;
1646 	u64 addr;
1647 
1648 	instance = sdma_v4_4_2_irq_id_to_seq(entry->client_id);
1649 	if (instance < 0 || instance >= adev->sdma.num_instances) {
1650 		dev_err(adev->dev, "sdma instance invalid %d\n", instance);
1651 		return -EINVAL;
1652 	}
1653 
1654 	addr = (u64)entry->src_data[0] << 12;
1655 	addr |= ((u64)entry->src_data[1] & 0xf) << 44;
1656 
1657 	memset(&task_info, 0, sizeof(struct amdgpu_task_info));
1658 	amdgpu_vm_get_task_info(adev, entry->pasid, &task_info);
1659 
1660 	dev_dbg_ratelimited(adev->dev,
1661 		   "[sdma%d] address:0x%016llx src_id:%u ring:%u vmid:%u "
1662 		   "pasid:%u, for process %s pid %d thread %s pid %d\n",
1663 		   instance, addr, entry->src_id, entry->ring_id, entry->vmid,
1664 		   entry->pasid, task_info.process_name, task_info.tgid,
1665 		   task_info.task_name, task_info.pid);
1666 	return 0;
1667 }
1668 
1669 static int sdma_v4_4_2_process_vm_hole_irq(struct amdgpu_device *adev,
1670 					      struct amdgpu_irq_src *source,
1671 					      struct amdgpu_iv_entry *entry)
1672 {
1673 	dev_dbg_ratelimited(adev->dev, "MC or SEM address in VM hole\n");
1674 	sdma_v4_4_2_print_iv_entry(adev, entry);
1675 	return 0;
1676 }
1677 
1678 static int sdma_v4_4_2_process_doorbell_invalid_irq(struct amdgpu_device *adev,
1679 					      struct amdgpu_irq_src *source,
1680 					      struct amdgpu_iv_entry *entry)
1681 {
1682 
1683 	dev_dbg_ratelimited(adev->dev, "SDMA received a doorbell from BIF with byte_enable !=0xff\n");
1684 	sdma_v4_4_2_print_iv_entry(adev, entry);
1685 	return 0;
1686 }
1687 
1688 static int sdma_v4_4_2_process_pool_timeout_irq(struct amdgpu_device *adev,
1689 					      struct amdgpu_irq_src *source,
1690 					      struct amdgpu_iv_entry *entry)
1691 {
1692 	dev_dbg_ratelimited(adev->dev,
1693 		"Polling register/memory timeout executing POLL_REG/MEM with finite timer\n");
1694 	sdma_v4_4_2_print_iv_entry(adev, entry);
1695 	return 0;
1696 }
1697 
1698 static int sdma_v4_4_2_process_srbm_write_irq(struct amdgpu_device *adev,
1699 					      struct amdgpu_irq_src *source,
1700 					      struct amdgpu_iv_entry *entry)
1701 {
1702 	dev_dbg_ratelimited(adev->dev,
1703 		"SDMA gets an Register Write SRBM_WRITE command in non-privilege command buffer\n");
1704 	sdma_v4_4_2_print_iv_entry(adev, entry);
1705 	return 0;
1706 }
1707 
1708 static void sdma_v4_4_2_inst_update_medium_grain_light_sleep(
1709 	struct amdgpu_device *adev, bool enable, uint32_t inst_mask)
1710 {
1711 	uint32_t data, def;
1712 	int i;
1713 
1714 	/* leave as default if it is not driver controlled */
1715 	if (!(adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS))
1716 		return;
1717 
1718 	if (enable) {
1719 		for_each_inst(i, inst_mask) {
1720 			/* 1-not override: enable sdma mem light sleep */
1721 			def = data = RREG32_SDMA(i, regSDMA_POWER_CNTL);
1722 			data |= SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1723 			if (def != data)
1724 				WREG32_SDMA(i, regSDMA_POWER_CNTL, data);
1725 		}
1726 	} else {
1727 		for_each_inst(i, inst_mask) {
1728 			/* 0-override:disable sdma mem light sleep */
1729 			def = data = RREG32_SDMA(i, regSDMA_POWER_CNTL);
1730 			data &= ~SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1731 			if (def != data)
1732 				WREG32_SDMA(i, regSDMA_POWER_CNTL, data);
1733 		}
1734 	}
1735 }
1736 
1737 static void sdma_v4_4_2_inst_update_medium_grain_clock_gating(
1738 	struct amdgpu_device *adev, bool enable, uint32_t inst_mask)
1739 {
1740 	uint32_t data, def;
1741 	int i;
1742 
1743 	/* leave as default if it is not driver controlled */
1744 	if (!(adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG))
1745 		return;
1746 
1747 	if (enable) {
1748 		for_each_inst(i, inst_mask) {
1749 			def = data = RREG32_SDMA(i, regSDMA_CLK_CTRL);
1750 			data &= ~(SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1751 				  SDMA_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1752 				  SDMA_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1753 				  SDMA_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1754 				  SDMA_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1755 				  SDMA_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1756 			if (def != data)
1757 				WREG32_SDMA(i, regSDMA_CLK_CTRL, data);
1758 		}
1759 	} else {
1760 		for_each_inst(i, inst_mask) {
1761 			def = data = RREG32_SDMA(i, regSDMA_CLK_CTRL);
1762 			data |= (SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1763 				 SDMA_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1764 				 SDMA_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1765 				 SDMA_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1766 				 SDMA_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1767 				 SDMA_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1768 			if (def != data)
1769 				WREG32_SDMA(i, regSDMA_CLK_CTRL, data);
1770 		}
1771 	}
1772 }
1773 
1774 static int sdma_v4_4_2_set_clockgating_state(void *handle,
1775 					  enum amd_clockgating_state state)
1776 {
1777 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1778 	uint32_t inst_mask;
1779 
1780 	if (amdgpu_sriov_vf(adev))
1781 		return 0;
1782 
1783 	inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
1784 
1785 	sdma_v4_4_2_inst_update_medium_grain_clock_gating(
1786 		adev, state == AMD_CG_STATE_GATE, inst_mask);
1787 	sdma_v4_4_2_inst_update_medium_grain_light_sleep(
1788 		adev, state == AMD_CG_STATE_GATE, inst_mask);
1789 	return 0;
1790 }
1791 
1792 static int sdma_v4_4_2_set_powergating_state(void *handle,
1793 					  enum amd_powergating_state state)
1794 {
1795 	return 0;
1796 }
1797 
1798 static void sdma_v4_4_2_get_clockgating_state(void *handle, u64 *flags)
1799 {
1800 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1801 	int data;
1802 
1803 	if (amdgpu_sriov_vf(adev))
1804 		*flags = 0;
1805 
1806 	/* AMD_CG_SUPPORT_SDMA_MGCG */
1807 	data = RREG32(SOC15_REG_OFFSET(SDMA0, GET_INST(SDMA0, 0), regSDMA_CLK_CTRL));
1808 	if (!(data & SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK))
1809 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1810 
1811 	/* AMD_CG_SUPPORT_SDMA_LS */
1812 	data = RREG32(SOC15_REG_OFFSET(SDMA0, GET_INST(SDMA0, 0), regSDMA_POWER_CNTL));
1813 	if (data & SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1814 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
1815 }
1816 
1817 const struct amd_ip_funcs sdma_v4_4_2_ip_funcs = {
1818 	.name = "sdma_v4_4_2",
1819 	.early_init = sdma_v4_4_2_early_init,
1820 	.late_init = sdma_v4_4_2_late_init,
1821 	.sw_init = sdma_v4_4_2_sw_init,
1822 	.sw_fini = sdma_v4_4_2_sw_fini,
1823 	.hw_init = sdma_v4_4_2_hw_init,
1824 	.hw_fini = sdma_v4_4_2_hw_fini,
1825 	.suspend = sdma_v4_4_2_suspend,
1826 	.resume = sdma_v4_4_2_resume,
1827 	.is_idle = sdma_v4_4_2_is_idle,
1828 	.wait_for_idle = sdma_v4_4_2_wait_for_idle,
1829 	.soft_reset = sdma_v4_4_2_soft_reset,
1830 	.set_clockgating_state = sdma_v4_4_2_set_clockgating_state,
1831 	.set_powergating_state = sdma_v4_4_2_set_powergating_state,
1832 	.get_clockgating_state = sdma_v4_4_2_get_clockgating_state,
1833 };
1834 
1835 static const struct amdgpu_ring_funcs sdma_v4_4_2_ring_funcs = {
1836 	.type = AMDGPU_RING_TYPE_SDMA,
1837 	.align_mask = 0xff,
1838 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1839 	.support_64bit_ptrs = true,
1840 	.get_rptr = sdma_v4_4_2_ring_get_rptr,
1841 	.get_wptr = sdma_v4_4_2_ring_get_wptr,
1842 	.set_wptr = sdma_v4_4_2_ring_set_wptr,
1843 	.emit_frame_size =
1844 		6 + /* sdma_v4_4_2_ring_emit_hdp_flush */
1845 		3 + /* hdp invalidate */
1846 		6 + /* sdma_v4_4_2_ring_emit_pipeline_sync */
1847 		/* sdma_v4_4_2_ring_emit_vm_flush */
1848 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
1849 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
1850 		10 + 10 + 10, /* sdma_v4_4_2_ring_emit_fence x3 for user fence, vm fence */
1851 	.emit_ib_size = 7 + 6, /* sdma_v4_4_2_ring_emit_ib */
1852 	.emit_ib = sdma_v4_4_2_ring_emit_ib,
1853 	.emit_fence = sdma_v4_4_2_ring_emit_fence,
1854 	.emit_pipeline_sync = sdma_v4_4_2_ring_emit_pipeline_sync,
1855 	.emit_vm_flush = sdma_v4_4_2_ring_emit_vm_flush,
1856 	.emit_hdp_flush = sdma_v4_4_2_ring_emit_hdp_flush,
1857 	.test_ring = sdma_v4_4_2_ring_test_ring,
1858 	.test_ib = sdma_v4_4_2_ring_test_ib,
1859 	.insert_nop = sdma_v4_4_2_ring_insert_nop,
1860 	.pad_ib = sdma_v4_4_2_ring_pad_ib,
1861 	.emit_wreg = sdma_v4_4_2_ring_emit_wreg,
1862 	.emit_reg_wait = sdma_v4_4_2_ring_emit_reg_wait,
1863 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
1864 };
1865 
1866 static const struct amdgpu_ring_funcs sdma_v4_4_2_page_ring_funcs = {
1867 	.type = AMDGPU_RING_TYPE_SDMA,
1868 	.align_mask = 0xff,
1869 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1870 	.support_64bit_ptrs = true,
1871 	.get_rptr = sdma_v4_4_2_ring_get_rptr,
1872 	.get_wptr = sdma_v4_4_2_page_ring_get_wptr,
1873 	.set_wptr = sdma_v4_4_2_page_ring_set_wptr,
1874 	.emit_frame_size =
1875 		6 + /* sdma_v4_4_2_ring_emit_hdp_flush */
1876 		3 + /* hdp invalidate */
1877 		6 + /* sdma_v4_4_2_ring_emit_pipeline_sync */
1878 		/* sdma_v4_4_2_ring_emit_vm_flush */
1879 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
1880 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
1881 		10 + 10 + 10, /* sdma_v4_4_2_ring_emit_fence x3 for user fence, vm fence */
1882 	.emit_ib_size = 7 + 6, /* sdma_v4_4_2_ring_emit_ib */
1883 	.emit_ib = sdma_v4_4_2_ring_emit_ib,
1884 	.emit_fence = sdma_v4_4_2_ring_emit_fence,
1885 	.emit_pipeline_sync = sdma_v4_4_2_ring_emit_pipeline_sync,
1886 	.emit_vm_flush = sdma_v4_4_2_ring_emit_vm_flush,
1887 	.emit_hdp_flush = sdma_v4_4_2_ring_emit_hdp_flush,
1888 	.test_ring = sdma_v4_4_2_ring_test_ring,
1889 	.test_ib = sdma_v4_4_2_ring_test_ib,
1890 	.insert_nop = sdma_v4_4_2_ring_insert_nop,
1891 	.pad_ib = sdma_v4_4_2_ring_pad_ib,
1892 	.emit_wreg = sdma_v4_4_2_ring_emit_wreg,
1893 	.emit_reg_wait = sdma_v4_4_2_ring_emit_reg_wait,
1894 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
1895 };
1896 
1897 static void sdma_v4_4_2_set_ring_funcs(struct amdgpu_device *adev)
1898 {
1899 	int i, dev_inst;
1900 
1901 	for (i = 0; i < adev->sdma.num_instances; i++) {
1902 		adev->sdma.instance[i].ring.funcs = &sdma_v4_4_2_ring_funcs;
1903 		adev->sdma.instance[i].ring.me = i;
1904 		if (adev->sdma.has_page_queue) {
1905 			adev->sdma.instance[i].page.funcs =
1906 				&sdma_v4_4_2_page_ring_funcs;
1907 			adev->sdma.instance[i].page.me = i;
1908 		}
1909 
1910 		dev_inst = GET_INST(SDMA0, i);
1911 		/* AID to which SDMA belongs depends on physical instance */
1912 		adev->sdma.instance[i].aid_id =
1913 			dev_inst / adev->sdma.num_inst_per_aid;
1914 	}
1915 }
1916 
1917 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_trap_irq_funcs = {
1918 	.set = sdma_v4_4_2_set_trap_irq_state,
1919 	.process = sdma_v4_4_2_process_trap_irq,
1920 };
1921 
1922 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_illegal_inst_irq_funcs = {
1923 	.process = sdma_v4_4_2_process_illegal_inst_irq,
1924 };
1925 
1926 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_ecc_irq_funcs = {
1927 	.set = sdma_v4_4_2_set_ecc_irq_state,
1928 	.process = amdgpu_sdma_process_ecc_irq,
1929 };
1930 
1931 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_vm_hole_irq_funcs = {
1932 	.process = sdma_v4_4_2_process_vm_hole_irq,
1933 };
1934 
1935 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_doorbell_invalid_irq_funcs = {
1936 	.process = sdma_v4_4_2_process_doorbell_invalid_irq,
1937 };
1938 
1939 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_pool_timeout_irq_funcs = {
1940 	.process = sdma_v4_4_2_process_pool_timeout_irq,
1941 };
1942 
1943 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_srbm_write_irq_funcs = {
1944 	.process = sdma_v4_4_2_process_srbm_write_irq,
1945 };
1946 
1947 static void sdma_v4_4_2_set_irq_funcs(struct amdgpu_device *adev)
1948 {
1949 	adev->sdma.trap_irq.num_types = adev->sdma.num_instances;
1950 	adev->sdma.ecc_irq.num_types = adev->sdma.num_instances;
1951 	adev->sdma.vm_hole_irq.num_types = adev->sdma.num_instances;
1952 	adev->sdma.doorbell_invalid_irq.num_types = adev->sdma.num_instances;
1953 	adev->sdma.pool_timeout_irq.num_types = adev->sdma.num_instances;
1954 	adev->sdma.srbm_write_irq.num_types = adev->sdma.num_instances;
1955 
1956 	adev->sdma.trap_irq.funcs = &sdma_v4_4_2_trap_irq_funcs;
1957 	adev->sdma.illegal_inst_irq.funcs = &sdma_v4_4_2_illegal_inst_irq_funcs;
1958 	adev->sdma.ecc_irq.funcs = &sdma_v4_4_2_ecc_irq_funcs;
1959 	adev->sdma.vm_hole_irq.funcs = &sdma_v4_4_2_vm_hole_irq_funcs;
1960 	adev->sdma.doorbell_invalid_irq.funcs = &sdma_v4_4_2_doorbell_invalid_irq_funcs;
1961 	adev->sdma.pool_timeout_irq.funcs = &sdma_v4_4_2_pool_timeout_irq_funcs;
1962 	adev->sdma.srbm_write_irq.funcs = &sdma_v4_4_2_srbm_write_irq_funcs;
1963 }
1964 
1965 /**
1966  * sdma_v4_4_2_emit_copy_buffer - copy buffer using the sDMA engine
1967  *
1968  * @ib: indirect buffer to copy to
1969  * @src_offset: src GPU address
1970  * @dst_offset: dst GPU address
1971  * @byte_count: number of bytes to xfer
1972  * @tmz: if a secure copy should be used
1973  *
1974  * Copy GPU buffers using the DMA engine.
1975  * Used by the amdgpu ttm implementation to move pages if
1976  * registered as the asic copy callback.
1977  */
1978 static void sdma_v4_4_2_emit_copy_buffer(struct amdgpu_ib *ib,
1979 				       uint64_t src_offset,
1980 				       uint64_t dst_offset,
1981 				       uint32_t byte_count,
1982 				       bool tmz)
1983 {
1984 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1985 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
1986 		SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0);
1987 	ib->ptr[ib->length_dw++] = byte_count - 1;
1988 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1989 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1990 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1991 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1992 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1993 }
1994 
1995 /**
1996  * sdma_v4_4_2_emit_fill_buffer - fill buffer using the sDMA engine
1997  *
1998  * @ib: indirect buffer to copy to
1999  * @src_data: value to write to buffer
2000  * @dst_offset: dst GPU address
2001  * @byte_count: number of bytes to xfer
2002  *
2003  * Fill GPU buffers using the DMA engine.
2004  */
2005 static void sdma_v4_4_2_emit_fill_buffer(struct amdgpu_ib *ib,
2006 				       uint32_t src_data,
2007 				       uint64_t dst_offset,
2008 				       uint32_t byte_count)
2009 {
2010 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2011 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2012 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2013 	ib->ptr[ib->length_dw++] = src_data;
2014 	ib->ptr[ib->length_dw++] = byte_count - 1;
2015 }
2016 
2017 static const struct amdgpu_buffer_funcs sdma_v4_4_2_buffer_funcs = {
2018 	.copy_max_bytes = 0x400000,
2019 	.copy_num_dw = 7,
2020 	.emit_copy_buffer = sdma_v4_4_2_emit_copy_buffer,
2021 
2022 	.fill_max_bytes = 0x400000,
2023 	.fill_num_dw = 5,
2024 	.emit_fill_buffer = sdma_v4_4_2_emit_fill_buffer,
2025 };
2026 
2027 static void sdma_v4_4_2_set_buffer_funcs(struct amdgpu_device *adev)
2028 {
2029 	adev->mman.buffer_funcs = &sdma_v4_4_2_buffer_funcs;
2030 	if (adev->sdma.has_page_queue)
2031 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
2032 	else
2033 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2034 }
2035 
2036 static const struct amdgpu_vm_pte_funcs sdma_v4_4_2_vm_pte_funcs = {
2037 	.copy_pte_num_dw = 7,
2038 	.copy_pte = sdma_v4_4_2_vm_copy_pte,
2039 
2040 	.write_pte = sdma_v4_4_2_vm_write_pte,
2041 	.set_pte_pde = sdma_v4_4_2_vm_set_pte_pde,
2042 };
2043 
2044 static void sdma_v4_4_2_set_vm_pte_funcs(struct amdgpu_device *adev)
2045 {
2046 	struct drm_gpu_scheduler *sched;
2047 	unsigned i;
2048 
2049 	adev->vm_manager.vm_pte_funcs = &sdma_v4_4_2_vm_pte_funcs;
2050 	for (i = 0; i < adev->sdma.num_instances; i++) {
2051 		if (adev->sdma.has_page_queue)
2052 			sched = &adev->sdma.instance[i].page.sched;
2053 		else
2054 			sched = &adev->sdma.instance[i].ring.sched;
2055 		adev->vm_manager.vm_pte_scheds[i] = sched;
2056 	}
2057 	adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
2058 }
2059 
2060 const struct amdgpu_ip_block_version sdma_v4_4_2_ip_block = {
2061 	.type = AMD_IP_BLOCK_TYPE_SDMA,
2062 	.major = 4,
2063 	.minor = 4,
2064 	.rev = 2,
2065 	.funcs = &sdma_v4_4_2_ip_funcs,
2066 };
2067 
2068 static int sdma_v4_4_2_xcp_resume(void *handle, uint32_t inst_mask)
2069 {
2070 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2071 	int r;
2072 
2073 	if (!amdgpu_sriov_vf(adev))
2074 		sdma_v4_4_2_inst_init_golden_registers(adev, inst_mask);
2075 
2076 	r = sdma_v4_4_2_inst_start(adev, inst_mask);
2077 
2078 	return r;
2079 }
2080 
2081 static int sdma_v4_4_2_xcp_suspend(void *handle, uint32_t inst_mask)
2082 {
2083 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2084 	uint32_t tmp_mask = inst_mask;
2085 	int i;
2086 
2087 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2088 		for_each_inst(i, tmp_mask) {
2089 			amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
2090 				       AMDGPU_SDMA_IRQ_INSTANCE0 + i);
2091 		}
2092 	}
2093 
2094 	sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask);
2095 	sdma_v4_4_2_inst_enable(adev, false, inst_mask);
2096 
2097 	return 0;
2098 }
2099 
2100 struct amdgpu_xcp_ip_funcs sdma_v4_4_2_xcp_funcs = {
2101 	.suspend = &sdma_v4_4_2_xcp_suspend,
2102 	.resume = &sdma_v4_4_2_xcp_resume
2103 };
2104 
2105 static const struct amdgpu_ras_err_status_reg_entry sdma_v4_2_2_ue_reg_list[] = {
2106 	{AMDGPU_RAS_REG_ENTRY(SDMA0, 0, regSDMA_UE_ERR_STATUS_LO, regSDMA_UE_ERR_STATUS_HI),
2107 	1, (AMDGPU_RAS_ERR_INFO_VALID | AMDGPU_RAS_ERR_STATUS_VALID), "SDMA"},
2108 };
2109 
2110 static const struct amdgpu_ras_memory_id_entry sdma_v4_4_2_ras_memory_list[] = {
2111 	{AMDGPU_SDMA_MBANK_DATA_BUF0, "SDMA_MBANK_DATA_BUF0"},
2112 	{AMDGPU_SDMA_MBANK_DATA_BUF1, "SDMA_MBANK_DATA_BUF1"},
2113 	{AMDGPU_SDMA_MBANK_DATA_BUF2, "SDMA_MBANK_DATA_BUF2"},
2114 	{AMDGPU_SDMA_MBANK_DATA_BUF3, "SDMA_MBANK_DATA_BUF3"},
2115 	{AMDGPU_SDMA_MBANK_DATA_BUF4, "SDMA_MBANK_DATA_BUF4"},
2116 	{AMDGPU_SDMA_MBANK_DATA_BUF5, "SDMA_MBANK_DATA_BUF5"},
2117 	{AMDGPU_SDMA_MBANK_DATA_BUF6, "SDMA_MBANK_DATA_BUF6"},
2118 	{AMDGPU_SDMA_MBANK_DATA_BUF7, "SDMA_MBANK_DATA_BUF7"},
2119 	{AMDGPU_SDMA_MBANK_DATA_BUF8, "SDMA_MBANK_DATA_BUF8"},
2120 	{AMDGPU_SDMA_MBANK_DATA_BUF9, "SDMA_MBANK_DATA_BUF9"},
2121 	{AMDGPU_SDMA_MBANK_DATA_BUF10, "SDMA_MBANK_DATA_BUF10"},
2122 	{AMDGPU_SDMA_MBANK_DATA_BUF11, "SDMA_MBANK_DATA_BUF11"},
2123 	{AMDGPU_SDMA_MBANK_DATA_BUF12, "SDMA_MBANK_DATA_BUF12"},
2124 	{AMDGPU_SDMA_MBANK_DATA_BUF13, "SDMA_MBANK_DATA_BUF13"},
2125 	{AMDGPU_SDMA_MBANK_DATA_BUF14, "SDMA_MBANK_DATA_BUF14"},
2126 	{AMDGPU_SDMA_MBANK_DATA_BUF15, "SDMA_MBANK_DATA_BUF15"},
2127 	{AMDGPU_SDMA_UCODE_BUF, "SDMA_UCODE_BUF"},
2128 	{AMDGPU_SDMA_RB_CMD_BUF, "SDMA_RB_CMD_BUF"},
2129 	{AMDGPU_SDMA_IB_CMD_BUF, "SDMA_IB_CMD_BUF"},
2130 	{AMDGPU_SDMA_UTCL1_RD_FIFO, "SDMA_UTCL1_RD_FIFO"},
2131 	{AMDGPU_SDMA_UTCL1_RDBST_FIFO, "SDMA_UTCL1_RDBST_FIFO"},
2132 	{AMDGPU_SDMA_UTCL1_WR_FIFO, "SDMA_UTCL1_WR_FIFO"},
2133 	{AMDGPU_SDMA_DATA_LUT_FIFO, "SDMA_DATA_LUT_FIFO"},
2134 	{AMDGPU_SDMA_SPLIT_DAT_BUF, "SDMA_SPLIT_DAT_BUF"},
2135 };
2136 
2137 static void sdma_v4_4_2_inst_query_ras_error_count(struct amdgpu_device *adev,
2138 						   uint32_t sdma_inst,
2139 						   void *ras_err_status)
2140 {
2141 	struct ras_err_data *err_data = (struct ras_err_data *)ras_err_status;
2142 	uint32_t sdma_dev_inst = GET_INST(SDMA0, sdma_inst);
2143 	unsigned long ue_count = 0;
2144 	struct amdgpu_smuio_mcm_config_info mcm_info = {
2145 		.socket_id = adev->smuio.funcs->get_socket_id(adev),
2146 		.die_id = adev->sdma.instance[sdma_inst].aid_id,
2147 	};
2148 
2149 	/* sdma v4_4_2 doesn't support query ce counts */
2150 	amdgpu_ras_inst_query_ras_error_count(adev,
2151 					sdma_v4_2_2_ue_reg_list,
2152 					ARRAY_SIZE(sdma_v4_2_2_ue_reg_list),
2153 					sdma_v4_4_2_ras_memory_list,
2154 					ARRAY_SIZE(sdma_v4_4_2_ras_memory_list),
2155 					sdma_dev_inst,
2156 					AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE,
2157 					&ue_count);
2158 
2159 	amdgpu_ras_error_statistic_ue_count(err_data, &mcm_info, NULL, ue_count);
2160 }
2161 
2162 static void sdma_v4_4_2_query_ras_error_count(struct amdgpu_device *adev,
2163 					      void *ras_err_status)
2164 {
2165 	uint32_t inst_mask;
2166 	int i = 0;
2167 
2168 	inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
2169 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2170 		for_each_inst(i, inst_mask)
2171 			sdma_v4_4_2_inst_query_ras_error_count(adev, i, ras_err_status);
2172 	} else {
2173 		dev_warn(adev->dev, "SDMA RAS is not supported\n");
2174 	}
2175 }
2176 
2177 static void sdma_v4_4_2_inst_reset_ras_error_count(struct amdgpu_device *adev,
2178 						   uint32_t sdma_inst)
2179 {
2180 	uint32_t sdma_dev_inst = GET_INST(SDMA0, sdma_inst);
2181 
2182 	amdgpu_ras_inst_reset_ras_error_count(adev,
2183 					sdma_v4_2_2_ue_reg_list,
2184 					ARRAY_SIZE(sdma_v4_2_2_ue_reg_list),
2185 					sdma_dev_inst);
2186 }
2187 
2188 static void sdma_v4_4_2_reset_ras_error_count(struct amdgpu_device *adev)
2189 {
2190 	uint32_t inst_mask;
2191 	int i = 0;
2192 
2193 	inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
2194 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2195 		for_each_inst(i, inst_mask)
2196 			sdma_v4_4_2_inst_reset_ras_error_count(adev, i);
2197 	} else {
2198 		dev_warn(adev->dev, "SDMA RAS is not supported\n");
2199 	}
2200 }
2201 
2202 static const struct amdgpu_ras_block_hw_ops sdma_v4_4_2_ras_hw_ops = {
2203 	.query_ras_error_count = sdma_v4_4_2_query_ras_error_count,
2204 	.reset_ras_error_count = sdma_v4_4_2_reset_ras_error_count,
2205 };
2206 
2207 static struct amdgpu_sdma_ras sdma_v4_4_2_ras = {
2208 	.ras_block = {
2209 		.hw_ops = &sdma_v4_4_2_ras_hw_ops,
2210 	},
2211 };
2212 
2213 static void sdma_v4_4_2_set_ras_funcs(struct amdgpu_device *adev)
2214 {
2215 	adev->sdma.ras = &sdma_v4_4_2_ras;
2216 }
2217