xref: /linux/drivers/gpu/drm/amd/amdgpu/sdma_v4_4_2.c (revision b02b0fc488ba6efc29884a517ab38c2efeaf9e34)
1 /*
2  * Copyright 2022 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28 
29 #include "amdgpu.h"
30 #include "amdgpu_xcp.h"
31 #include "amdgpu_ucode.h"
32 #include "amdgpu_trace.h"
33 #include "amdgpu_reset.h"
34 
35 #include "sdma/sdma_4_4_2_offset.h"
36 #include "sdma/sdma_4_4_2_sh_mask.h"
37 
38 #include "soc15_common.h"
39 #include "soc15.h"
40 #include "vega10_sdma_pkt_open.h"
41 
42 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
43 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
44 
45 #include "amdgpu_ras.h"
46 
47 MODULE_FIRMWARE("amdgpu/sdma_4_4_2.bin");
48 MODULE_FIRMWARE("amdgpu/sdma_4_4_5.bin");
49 
50 static const struct amdgpu_hwip_reg_entry sdma_reg_list_4_4_2[] = {
51 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_STATUS_REG),
52 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_STATUS1_REG),
53 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_STATUS2_REG),
54 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_STATUS3_REG),
55 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_UCODE_CHECKSUM),
56 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RB_RPTR_FETCH_HI),
57 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RB_RPTR_FETCH),
58 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_UTCL1_RD_STATUS),
59 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_UTCL1_WR_STATUS),
60 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_UTCL1_RD_XNACK0),
61 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_UTCL1_RD_XNACK1),
62 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_UTCL1_WR_XNACK0),
63 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_UTCL1_WR_XNACK1),
64 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_RB_CNTL),
65 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_RB_RPTR),
66 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_RB_RPTR_HI),
67 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_RB_WPTR),
68 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_RB_WPTR_HI),
69 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_IB_OFFSET),
70 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_IB_BASE_LO),
71 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_IB_BASE_HI),
72 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_IB_CNTL),
73 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_IB_RPTR),
74 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_IB_SUB_REMAIN),
75 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_DUMMY_REG),
76 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_RB_CNTL),
77 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_RB_RPTR),
78 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_RB_RPTR_HI),
79 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_RB_WPTR),
80 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_RB_WPTR_HI),
81 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_IB_OFFSET),
82 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_IB_BASE_LO),
83 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_IB_BASE_HI),
84 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_DUMMY_REG),
85 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_RB_CNTL),
86 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_RB_RPTR),
87 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_RB_RPTR_HI),
88 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_RB_WPTR),
89 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_RB_WPTR_HI),
90 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_IB_OFFSET),
91 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_IB_BASE_LO),
92 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_IB_BASE_HI),
93 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_DUMMY_REG),
94 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_VM_CNTL)
95 };
96 
97 #define mmSMNAID_AID0_MCA_SMU 0x03b30400
98 
99 #define WREG32_SDMA(instance, offset, value) \
100 	WREG32(sdma_v4_4_2_get_reg_offset(adev, (instance), (offset)), value)
101 #define RREG32_SDMA(instance, offset) \
102 	RREG32(sdma_v4_4_2_get_reg_offset(adev, (instance), (offset)))
103 
104 static void sdma_v4_4_2_set_ring_funcs(struct amdgpu_device *adev);
105 static void sdma_v4_4_2_set_buffer_funcs(struct amdgpu_device *adev);
106 static void sdma_v4_4_2_set_vm_pte_funcs(struct amdgpu_device *adev);
107 static void sdma_v4_4_2_set_irq_funcs(struct amdgpu_device *adev);
108 static void sdma_v4_4_2_set_ras_funcs(struct amdgpu_device *adev);
109 static void sdma_v4_4_2_update_reset_mask(struct amdgpu_device *adev);
110 static int sdma_v4_4_2_stop_queue(struct amdgpu_ring *ring);
111 static int sdma_v4_4_2_restore_queue(struct amdgpu_ring *ring);
112 static int sdma_v4_4_2_soft_reset_engine(struct amdgpu_device *adev,
113 					 u32 instance_id);
114 
115 static u32 sdma_v4_4_2_get_reg_offset(struct amdgpu_device *adev,
116 		u32 instance, u32 offset)
117 {
118 	u32 dev_inst = GET_INST(SDMA0, instance);
119 
120 	return (adev->reg_offset[SDMA0_HWIP][dev_inst][0] + offset);
121 }
122 
123 static unsigned sdma_v4_4_2_seq_to_irq_id(int seq_num)
124 {
125 	switch (seq_num) {
126 	case 0:
127 		return SOC15_IH_CLIENTID_SDMA0;
128 	case 1:
129 		return SOC15_IH_CLIENTID_SDMA1;
130 	case 2:
131 		return SOC15_IH_CLIENTID_SDMA2;
132 	case 3:
133 		return SOC15_IH_CLIENTID_SDMA3;
134 	default:
135 		return -EINVAL;
136 	}
137 }
138 
139 static int sdma_v4_4_2_irq_id_to_seq(struct amdgpu_device *adev, unsigned client_id)
140 {
141 	switch (client_id) {
142 	case SOC15_IH_CLIENTID_SDMA0:
143 		return 0;
144 	case SOC15_IH_CLIENTID_SDMA1:
145 		return 1;
146 	case SOC15_IH_CLIENTID_SDMA2:
147 		if (amdgpu_sriov_vf(adev) && (adev->gfx.xcc_mask == 0x1))
148 			return 0;
149 		else
150 			return 2;
151 	case SOC15_IH_CLIENTID_SDMA3:
152 		if (amdgpu_sriov_vf(adev) && (adev->gfx.xcc_mask == 0x1))
153 			return 1;
154 		else
155 			return 3;
156 	default:
157 		return -EINVAL;
158 	}
159 }
160 
161 static void sdma_v4_4_2_inst_init_golden_registers(struct amdgpu_device *adev,
162 						   uint32_t inst_mask)
163 {
164 	u32 val;
165 	int i;
166 
167 	for (i = 0; i < adev->sdma.num_instances; i++) {
168 		val = RREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG);
169 		val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG, NUM_BANKS, 4);
170 		val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG,
171 				    PIPE_INTERLEAVE_SIZE, 0);
172 		WREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG, val);
173 
174 		val = RREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG_READ);
175 		val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG_READ, NUM_BANKS,
176 				    4);
177 		val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG_READ,
178 				    PIPE_INTERLEAVE_SIZE, 0);
179 		WREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG_READ, val);
180 	}
181 }
182 
183 /**
184  * sdma_v4_4_2_init_microcode - load ucode images from disk
185  *
186  * @adev: amdgpu_device pointer
187  *
188  * Use the firmware interface to load the ucode images into
189  * the driver (not loaded into hw).
190  * Returns 0 on success, error on failure.
191  */
192 static int sdma_v4_4_2_init_microcode(struct amdgpu_device *adev)
193 {
194 	int ret, i;
195 
196 	for (i = 0; i < adev->sdma.num_instances; i++) {
197 		if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 2) ||
198 		    amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 4) ||
199 		    amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 5)) {
200 			ret = amdgpu_sdma_init_microcode(adev, 0, true);
201 			break;
202 		} else {
203 			ret = amdgpu_sdma_init_microcode(adev, i, false);
204 			if (ret)
205 				return ret;
206 		}
207 	}
208 
209 	return ret;
210 }
211 
212 /**
213  * sdma_v4_4_2_ring_get_rptr - get the current read pointer
214  *
215  * @ring: amdgpu ring pointer
216  *
217  * Get the current rptr from the hardware.
218  */
219 static uint64_t sdma_v4_4_2_ring_get_rptr(struct amdgpu_ring *ring)
220 {
221 	u64 rptr;
222 
223 	/* XXX check if swapping is necessary on BE */
224 	rptr = READ_ONCE(*((u64 *)&ring->adev->wb.wb[ring->rptr_offs]));
225 
226 	DRM_DEBUG("rptr before shift == 0x%016llx\n", rptr);
227 	return rptr >> 2;
228 }
229 
230 /**
231  * sdma_v4_4_2_ring_get_wptr - get the current write pointer
232  *
233  * @ring: amdgpu ring pointer
234  *
235  * Get the current wptr from the hardware.
236  */
237 static uint64_t sdma_v4_4_2_ring_get_wptr(struct amdgpu_ring *ring)
238 {
239 	struct amdgpu_device *adev = ring->adev;
240 	u64 wptr;
241 
242 	if (ring->use_doorbell) {
243 		/* XXX check if swapping is necessary on BE */
244 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
245 		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
246 	} else {
247 		wptr = RREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR_HI);
248 		wptr = wptr << 32;
249 		wptr |= RREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR);
250 		DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
251 				ring->me, wptr);
252 	}
253 
254 	return wptr >> 2;
255 }
256 
257 /**
258  * sdma_v4_4_2_ring_set_wptr - commit the write pointer
259  *
260  * @ring: amdgpu ring pointer
261  *
262  * Write the wptr back to the hardware.
263  */
264 static void sdma_v4_4_2_ring_set_wptr(struct amdgpu_ring *ring)
265 {
266 	struct amdgpu_device *adev = ring->adev;
267 
268 	DRM_DEBUG("Setting write pointer\n");
269 	if (ring->use_doorbell) {
270 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
271 
272 		DRM_DEBUG("Using doorbell -- "
273 				"wptr_offs == 0x%08x "
274 				"lower_32_bits(ring->wptr) << 2 == 0x%08x "
275 				"upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
276 				ring->wptr_offs,
277 				lower_32_bits(ring->wptr << 2),
278 				upper_32_bits(ring->wptr << 2));
279 		/* XXX check if swapping is necessary on BE */
280 		WRITE_ONCE(*wb, (ring->wptr << 2));
281 		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
282 				ring->doorbell_index, ring->wptr << 2);
283 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
284 	} else {
285 		DRM_DEBUG("Not using doorbell -- "
286 				"regSDMA%i_GFX_RB_WPTR == 0x%08x "
287 				"regSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
288 				ring->me,
289 				lower_32_bits(ring->wptr << 2),
290 				ring->me,
291 				upper_32_bits(ring->wptr << 2));
292 		WREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR,
293 			    lower_32_bits(ring->wptr << 2));
294 		WREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR_HI,
295 			    upper_32_bits(ring->wptr << 2));
296 	}
297 }
298 
299 /**
300  * sdma_v4_4_2_page_ring_get_wptr - get the current write pointer
301  *
302  * @ring: amdgpu ring pointer
303  *
304  * Get the current wptr from the hardware.
305  */
306 static uint64_t sdma_v4_4_2_page_ring_get_wptr(struct amdgpu_ring *ring)
307 {
308 	struct amdgpu_device *adev = ring->adev;
309 	u64 wptr;
310 
311 	if (ring->use_doorbell) {
312 		/* XXX check if swapping is necessary on BE */
313 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
314 	} else {
315 		wptr = RREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR_HI);
316 		wptr = wptr << 32;
317 		wptr |= RREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR);
318 	}
319 
320 	return wptr >> 2;
321 }
322 
323 /**
324  * sdma_v4_4_2_page_ring_set_wptr - commit the write pointer
325  *
326  * @ring: amdgpu ring pointer
327  *
328  * Write the wptr back to the hardware.
329  */
330 static void sdma_v4_4_2_page_ring_set_wptr(struct amdgpu_ring *ring)
331 {
332 	struct amdgpu_device *adev = ring->adev;
333 
334 	if (ring->use_doorbell) {
335 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
336 
337 		/* XXX check if swapping is necessary on BE */
338 		WRITE_ONCE(*wb, (ring->wptr << 2));
339 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
340 	} else {
341 		uint64_t wptr = ring->wptr << 2;
342 
343 		WREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR,
344 			    lower_32_bits(wptr));
345 		WREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR_HI,
346 			    upper_32_bits(wptr));
347 	}
348 }
349 
350 static void sdma_v4_4_2_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
351 {
352 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
353 	int i;
354 
355 	for (i = 0; i < count; i++)
356 		if (sdma && sdma->burst_nop && (i == 0))
357 			amdgpu_ring_write(ring, ring->funcs->nop |
358 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
359 		else
360 			amdgpu_ring_write(ring, ring->funcs->nop);
361 }
362 
363 /**
364  * sdma_v4_4_2_ring_emit_ib - Schedule an IB on the DMA engine
365  *
366  * @ring: amdgpu ring pointer
367  * @job: job to retrieve vmid from
368  * @ib: IB object to schedule
369  * @flags: unused
370  *
371  * Schedule an IB in the DMA ring.
372  */
373 static void sdma_v4_4_2_ring_emit_ib(struct amdgpu_ring *ring,
374 				   struct amdgpu_job *job,
375 				   struct amdgpu_ib *ib,
376 				   uint32_t flags)
377 {
378 	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
379 
380 	/* IB packet must end on a 8 DW boundary */
381 	sdma_v4_4_2_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
382 
383 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
384 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
385 	/* base must be 32 byte aligned */
386 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
387 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
388 	amdgpu_ring_write(ring, ib->length_dw);
389 	amdgpu_ring_write(ring, 0);
390 	amdgpu_ring_write(ring, 0);
391 
392 }
393 
394 static void sdma_v4_4_2_wait_reg_mem(struct amdgpu_ring *ring,
395 				   int mem_space, int hdp,
396 				   uint32_t addr0, uint32_t addr1,
397 				   uint32_t ref, uint32_t mask,
398 				   uint32_t inv)
399 {
400 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
401 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
402 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
403 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
404 	if (mem_space) {
405 		/* memory */
406 		amdgpu_ring_write(ring, addr0);
407 		amdgpu_ring_write(ring, addr1);
408 	} else {
409 		/* registers */
410 		amdgpu_ring_write(ring, addr0 << 2);
411 		amdgpu_ring_write(ring, addr1 << 2);
412 	}
413 	amdgpu_ring_write(ring, ref); /* reference */
414 	amdgpu_ring_write(ring, mask); /* mask */
415 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
416 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
417 }
418 
419 /**
420  * sdma_v4_4_2_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
421  *
422  * @ring: amdgpu ring pointer
423  *
424  * Emit an hdp flush packet on the requested DMA ring.
425  */
426 static void sdma_v4_4_2_ring_emit_hdp_flush(struct amdgpu_ring *ring)
427 {
428 	struct amdgpu_device *adev = ring->adev;
429 	u32 ref_and_mask = 0;
430 	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
431 
432 	ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0
433 		       << (ring->me % adev->sdma.num_inst_per_aid);
434 
435 	sdma_v4_4_2_wait_reg_mem(ring, 0, 1,
436 			       adev->nbio.funcs->get_hdp_flush_done_offset(adev),
437 			       adev->nbio.funcs->get_hdp_flush_req_offset(adev),
438 			       ref_and_mask, ref_and_mask, 10);
439 }
440 
441 /**
442  * sdma_v4_4_2_ring_emit_fence - emit a fence on the DMA ring
443  *
444  * @ring: amdgpu ring pointer
445  * @addr: address
446  * @seq: sequence number
447  * @flags: fence related flags
448  *
449  * Add a DMA fence packet to the ring to write
450  * the fence seq number and DMA trap packet to generate
451  * an interrupt if needed.
452  */
453 static void sdma_v4_4_2_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
454 				      unsigned flags)
455 {
456 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
457 	/* write the fence */
458 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
459 	/* zero in first two bits */
460 	BUG_ON(addr & 0x3);
461 	amdgpu_ring_write(ring, lower_32_bits(addr));
462 	amdgpu_ring_write(ring, upper_32_bits(addr));
463 	amdgpu_ring_write(ring, lower_32_bits(seq));
464 
465 	/* optionally write high bits as well */
466 	if (write64bit) {
467 		addr += 4;
468 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
469 		/* zero in first two bits */
470 		BUG_ON(addr & 0x3);
471 		amdgpu_ring_write(ring, lower_32_bits(addr));
472 		amdgpu_ring_write(ring, upper_32_bits(addr));
473 		amdgpu_ring_write(ring, upper_32_bits(seq));
474 	}
475 
476 	/* generate an interrupt */
477 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
478 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
479 }
480 
481 
482 /**
483  * sdma_v4_4_2_inst_gfx_stop - stop the gfx async dma engines
484  *
485  * @adev: amdgpu_device pointer
486  * @inst_mask: mask of dma engine instances to be disabled
487  *
488  * Stop the gfx async dma ring buffers.
489  */
490 static void sdma_v4_4_2_inst_gfx_stop(struct amdgpu_device *adev,
491 				      uint32_t inst_mask)
492 {
493 	struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
494 	u32 doorbell_offset, doorbell;
495 	u32 rb_cntl, ib_cntl;
496 	int i;
497 
498 	for_each_inst(i, inst_mask) {
499 		sdma[i] = &adev->sdma.instance[i].ring;
500 
501 		rb_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_CNTL);
502 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_ENABLE, 0);
503 		WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl);
504 		ib_cntl = RREG32_SDMA(i, regSDMA_GFX_IB_CNTL);
505 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_ENABLE, 0);
506 		WREG32_SDMA(i, regSDMA_GFX_IB_CNTL, ib_cntl);
507 
508 		if (sdma[i]->use_doorbell) {
509 			doorbell = RREG32_SDMA(i, regSDMA_GFX_DOORBELL);
510 			doorbell_offset = RREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET);
511 
512 			doorbell = REG_SET_FIELD(doorbell, SDMA_GFX_DOORBELL, ENABLE, 0);
513 			doorbell_offset = REG_SET_FIELD(doorbell_offset,
514 					SDMA_GFX_DOORBELL_OFFSET,
515 					OFFSET, 0);
516 			WREG32_SDMA(i, regSDMA_GFX_DOORBELL, doorbell);
517 			WREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET, doorbell_offset);
518 		}
519 	}
520 }
521 
522 /**
523  * sdma_v4_4_2_inst_rlc_stop - stop the compute async dma engines
524  *
525  * @adev: amdgpu_device pointer
526  * @inst_mask: mask of dma engine instances to be disabled
527  *
528  * Stop the compute async dma queues.
529  */
530 static void sdma_v4_4_2_inst_rlc_stop(struct amdgpu_device *adev,
531 				      uint32_t inst_mask)
532 {
533 	/* XXX todo */
534 }
535 
536 /**
537  * sdma_v4_4_2_inst_page_stop - stop the page async dma engines
538  *
539  * @adev: amdgpu_device pointer
540  * @inst_mask: mask of dma engine instances to be disabled
541  *
542  * Stop the page async dma ring buffers.
543  */
544 static void sdma_v4_4_2_inst_page_stop(struct amdgpu_device *adev,
545 				       uint32_t inst_mask)
546 {
547 	u32 rb_cntl, ib_cntl;
548 	int i;
549 
550 	for_each_inst(i, inst_mask) {
551 		rb_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_CNTL);
552 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL,
553 					RB_ENABLE, 0);
554 		WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl);
555 		ib_cntl = RREG32_SDMA(i, regSDMA_PAGE_IB_CNTL);
556 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL,
557 					IB_ENABLE, 0);
558 		WREG32_SDMA(i, regSDMA_PAGE_IB_CNTL, ib_cntl);
559 	}
560 }
561 
562 /**
563  * sdma_v4_4_2_inst_ctx_switch_enable - stop the async dma engines context switch
564  *
565  * @adev: amdgpu_device pointer
566  * @enable: enable/disable the DMA MEs context switch.
567  * @inst_mask: mask of dma engine instances to be enabled
568  *
569  * Halt or unhalt the async dma engines context switch.
570  */
571 static void sdma_v4_4_2_inst_ctx_switch_enable(struct amdgpu_device *adev,
572 					       bool enable, uint32_t inst_mask)
573 {
574 	u32 f32_cntl, phase_quantum = 0;
575 	int i;
576 
577 	if (amdgpu_sdma_phase_quantum) {
578 		unsigned value = amdgpu_sdma_phase_quantum;
579 		unsigned unit = 0;
580 
581 		while (value > (SDMA_PHASE0_QUANTUM__VALUE_MASK >>
582 				SDMA_PHASE0_QUANTUM__VALUE__SHIFT)) {
583 			value = (value + 1) >> 1;
584 			unit++;
585 		}
586 		if (unit > (SDMA_PHASE0_QUANTUM__UNIT_MASK >>
587 			    SDMA_PHASE0_QUANTUM__UNIT__SHIFT)) {
588 			value = (SDMA_PHASE0_QUANTUM__VALUE_MASK >>
589 				 SDMA_PHASE0_QUANTUM__VALUE__SHIFT);
590 			unit = (SDMA_PHASE0_QUANTUM__UNIT_MASK >>
591 				SDMA_PHASE0_QUANTUM__UNIT__SHIFT);
592 			WARN_ONCE(1,
593 			"clamping sdma_phase_quantum to %uK clock cycles\n",
594 				  value << unit);
595 		}
596 		phase_quantum =
597 			value << SDMA_PHASE0_QUANTUM__VALUE__SHIFT |
598 			unit  << SDMA_PHASE0_QUANTUM__UNIT__SHIFT;
599 	}
600 
601 	for_each_inst(i, inst_mask) {
602 		f32_cntl = RREG32_SDMA(i, regSDMA_CNTL);
603 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA_CNTL,
604 				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
605 		if (enable && amdgpu_sdma_phase_quantum) {
606 			WREG32_SDMA(i, regSDMA_PHASE0_QUANTUM, phase_quantum);
607 			WREG32_SDMA(i, regSDMA_PHASE1_QUANTUM, phase_quantum);
608 			WREG32_SDMA(i, regSDMA_PHASE2_QUANTUM, phase_quantum);
609 		}
610 		WREG32_SDMA(i, regSDMA_CNTL, f32_cntl);
611 
612 		/* Extend page fault timeout to avoid interrupt storm */
613 		WREG32_SDMA(i, regSDMA_UTCL1_TIMEOUT, 0x00800080);
614 	}
615 }
616 
617 /**
618  * sdma_v4_4_2_inst_enable - stop the async dma engines
619  *
620  * @adev: amdgpu_device pointer
621  * @enable: enable/disable the DMA MEs.
622  * @inst_mask: mask of dma engine instances to be enabled
623  *
624  * Halt or unhalt the async dma engines.
625  */
626 static void sdma_v4_4_2_inst_enable(struct amdgpu_device *adev, bool enable,
627 				    uint32_t inst_mask)
628 {
629 	u32 f32_cntl;
630 	int i;
631 
632 	if (!enable) {
633 		sdma_v4_4_2_inst_gfx_stop(adev, inst_mask);
634 		sdma_v4_4_2_inst_rlc_stop(adev, inst_mask);
635 		if (adev->sdma.has_page_queue)
636 			sdma_v4_4_2_inst_page_stop(adev, inst_mask);
637 
638 		/* SDMA FW needs to respond to FREEZE requests during reset.
639 		 * Keep it running during reset */
640 		if (!amdgpu_sriov_vf(adev) && amdgpu_in_reset(adev))
641 			return;
642 	}
643 
644 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP)
645 		return;
646 
647 	for_each_inst(i, inst_mask) {
648 		f32_cntl = RREG32_SDMA(i, regSDMA_F32_CNTL);
649 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA_F32_CNTL, HALT, enable ? 0 : 1);
650 		WREG32_SDMA(i, regSDMA_F32_CNTL, f32_cntl);
651 	}
652 }
653 
654 /*
655  * sdma_v4_4_2_rb_cntl - get parameters for rb_cntl
656  */
657 static uint32_t sdma_v4_4_2_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
658 {
659 	/* Set ring buffer size in dwords */
660 	uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
661 
662 	barrier(); /* work around https://llvm.org/pr42576 */
663 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
664 #ifdef __BIG_ENDIAN
665 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
666 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL,
667 				RPTR_WRITEBACK_SWAP_ENABLE, 1);
668 #endif
669 	return rb_cntl;
670 }
671 
672 /**
673  * sdma_v4_4_2_gfx_resume - setup and start the async dma engines
674  *
675  * @adev: amdgpu_device pointer
676  * @i: instance to resume
677  * @restore: used to restore wptr when restart
678  *
679  * Set up the gfx DMA ring buffers and enable them.
680  * Returns 0 for success, error for failure.
681  */
682 static void sdma_v4_4_2_gfx_resume(struct amdgpu_device *adev, unsigned int i, bool restore)
683 {
684 	struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
685 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
686 	u32 wb_offset;
687 	u32 doorbell;
688 	u32 doorbell_offset;
689 	u64 wptr_gpu_addr;
690 	u64 rwptr;
691 
692 	wb_offset = (ring->rptr_offs * 4);
693 
694 	rb_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_CNTL);
695 	rb_cntl = sdma_v4_4_2_rb_cntl(ring, rb_cntl);
696 	WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl);
697 
698 	/* set the wb address whether it's enabled or not */
699 	WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_ADDR_HI,
700 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
701 	WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_ADDR_LO,
702 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
703 
704 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL,
705 				RPTR_WRITEBACK_ENABLE, 1);
706 
707 	WREG32_SDMA(i, regSDMA_GFX_RB_BASE, ring->gpu_addr >> 8);
708 	WREG32_SDMA(i, regSDMA_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
709 
710 	if (!restore)
711 		ring->wptr = 0;
712 
713 	/* before programing wptr to a less value, need set minor_ptr_update first */
714 	WREG32_SDMA(i, regSDMA_GFX_MINOR_PTR_UPDATE, 1);
715 
716 	/* For the guilty queue, set RPTR to the current wptr to skip bad commands,
717 	 * It is not a guilty queue, restore cache_rptr and continue execution.
718 	 */
719 	if (adev->sdma.instance[i].gfx_guilty)
720 		rwptr = ring->wptr;
721 	else
722 		rwptr = ring->cached_rptr;
723 
724 	/* Initialize the ring buffer's read and write pointers */
725 	if (restore) {
726 		WREG32_SDMA(i, regSDMA_GFX_RB_RPTR, lower_32_bits(rwptr << 2));
727 		WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_HI, upper_32_bits(rwptr << 2));
728 		WREG32_SDMA(i, regSDMA_GFX_RB_WPTR, lower_32_bits(rwptr << 2));
729 		WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_HI, upper_32_bits(rwptr << 2));
730 	} else {
731 		WREG32_SDMA(i, regSDMA_GFX_RB_RPTR, 0);
732 		WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_HI, 0);
733 		WREG32_SDMA(i, regSDMA_GFX_RB_WPTR, 0);
734 		WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_HI, 0);
735 	}
736 
737 	doorbell = RREG32_SDMA(i, regSDMA_GFX_DOORBELL);
738 	doorbell_offset = RREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET);
739 
740 	doorbell = REG_SET_FIELD(doorbell, SDMA_GFX_DOORBELL, ENABLE,
741 				 ring->use_doorbell);
742 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
743 					SDMA_GFX_DOORBELL_OFFSET,
744 					OFFSET, ring->doorbell_index);
745 	WREG32_SDMA(i, regSDMA_GFX_DOORBELL, doorbell);
746 	WREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET, doorbell_offset);
747 
748 	sdma_v4_4_2_ring_set_wptr(ring);
749 
750 	/* set minor_ptr_update to 0 after wptr programed */
751 	WREG32_SDMA(i, regSDMA_GFX_MINOR_PTR_UPDATE, 0);
752 
753 	/* setup the wptr shadow polling */
754 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
755 	WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_ADDR_LO,
756 		    lower_32_bits(wptr_gpu_addr));
757 	WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_ADDR_HI,
758 		    upper_32_bits(wptr_gpu_addr));
759 	wptr_poll_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_CNTL);
760 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
761 				       SDMA_GFX_RB_WPTR_POLL_CNTL,
762 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
763 	WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
764 
765 	/* enable DMA RB */
766 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_ENABLE, 1);
767 	WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl);
768 
769 	ib_cntl = RREG32_SDMA(i, regSDMA_GFX_IB_CNTL);
770 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_ENABLE, 1);
771 #ifdef __BIG_ENDIAN
772 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
773 #endif
774 	/* enable DMA IBs */
775 	WREG32_SDMA(i, regSDMA_GFX_IB_CNTL, ib_cntl);
776 }
777 
778 /**
779  * sdma_v4_4_2_page_resume - setup and start the async dma engines
780  *
781  * @adev: amdgpu_device pointer
782  * @i: instance to resume
783  * @restore: boolean to say restore needed or not
784  *
785  * Set up the page DMA ring buffers and enable them.
786  * Returns 0 for success, error for failure.
787  */
788 static void sdma_v4_4_2_page_resume(struct amdgpu_device *adev, unsigned int i, bool restore)
789 {
790 	struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
791 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
792 	u32 wb_offset;
793 	u32 doorbell;
794 	u32 doorbell_offset;
795 	u64 wptr_gpu_addr;
796 	u64 rwptr;
797 
798 	wb_offset = (ring->rptr_offs * 4);
799 
800 	rb_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_CNTL);
801 	rb_cntl = sdma_v4_4_2_rb_cntl(ring, rb_cntl);
802 	WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl);
803 
804 	/* For the guilty queue, set RPTR to the current wptr to skip bad commands,
805 	 * It is not a guilty queue, restore cache_rptr and continue execution.
806 	 */
807 	if (adev->sdma.instance[i].page_guilty)
808 		rwptr = ring->wptr;
809 	else
810 		rwptr = ring->cached_rptr;
811 
812 	/* Initialize the ring buffer's read and write pointers */
813 	if (restore) {
814 		WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR, lower_32_bits(rwptr << 2));
815 		WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_HI, upper_32_bits(rwptr << 2));
816 		WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR, lower_32_bits(rwptr << 2));
817 		WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_HI, upper_32_bits(rwptr << 2));
818 	} else {
819 		WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR, 0);
820 		WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_HI, 0);
821 		WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR, 0);
822 		WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_HI, 0);
823 	}
824 
825 	/* set the wb address whether it's enabled or not */
826 	WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_ADDR_HI,
827 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
828 	WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_ADDR_LO,
829 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
830 
831 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL,
832 				RPTR_WRITEBACK_ENABLE, 1);
833 
834 	WREG32_SDMA(i, regSDMA_PAGE_RB_BASE, ring->gpu_addr >> 8);
835 	WREG32_SDMA(i, regSDMA_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
836 
837 	if (!restore)
838 		ring->wptr = 0;
839 
840 	/* before programing wptr to a less value, need set minor_ptr_update first */
841 	WREG32_SDMA(i, regSDMA_PAGE_MINOR_PTR_UPDATE, 1);
842 
843 	doorbell = RREG32_SDMA(i, regSDMA_PAGE_DOORBELL);
844 	doorbell_offset = RREG32_SDMA(i, regSDMA_PAGE_DOORBELL_OFFSET);
845 
846 	doorbell = REG_SET_FIELD(doorbell, SDMA_PAGE_DOORBELL, ENABLE,
847 				 ring->use_doorbell);
848 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
849 					SDMA_PAGE_DOORBELL_OFFSET,
850 					OFFSET, ring->doorbell_index);
851 	WREG32_SDMA(i, regSDMA_PAGE_DOORBELL, doorbell);
852 	WREG32_SDMA(i, regSDMA_PAGE_DOORBELL_OFFSET, doorbell_offset);
853 
854 	/* paging queue doorbell range is setup at sdma_v4_4_2_gfx_resume */
855 	sdma_v4_4_2_page_ring_set_wptr(ring);
856 
857 	/* set minor_ptr_update to 0 after wptr programed */
858 	WREG32_SDMA(i, regSDMA_PAGE_MINOR_PTR_UPDATE, 0);
859 
860 	/* setup the wptr shadow polling */
861 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
862 	WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_ADDR_LO,
863 		    lower_32_bits(wptr_gpu_addr));
864 	WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_ADDR_HI,
865 		    upper_32_bits(wptr_gpu_addr));
866 	wptr_poll_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_CNTL);
867 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
868 				       SDMA_PAGE_RB_WPTR_POLL_CNTL,
869 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
870 	WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
871 
872 	/* enable DMA RB */
873 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL, RB_ENABLE, 1);
874 	WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl);
875 
876 	ib_cntl = RREG32_SDMA(i, regSDMA_PAGE_IB_CNTL);
877 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL, IB_ENABLE, 1);
878 #ifdef __BIG_ENDIAN
879 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
880 #endif
881 	/* enable DMA IBs */
882 	WREG32_SDMA(i, regSDMA_PAGE_IB_CNTL, ib_cntl);
883 }
884 
885 static void sdma_v4_4_2_init_pg(struct amdgpu_device *adev)
886 {
887 
888 }
889 
890 /**
891  * sdma_v4_4_2_inst_rlc_resume - setup and start the async dma engines
892  *
893  * @adev: amdgpu_device pointer
894  * @inst_mask: mask of dma engine instances to be enabled
895  *
896  * Set up the compute DMA queues and enable them.
897  * Returns 0 for success, error for failure.
898  */
899 static int sdma_v4_4_2_inst_rlc_resume(struct amdgpu_device *adev,
900 				       uint32_t inst_mask)
901 {
902 	sdma_v4_4_2_init_pg(adev);
903 
904 	return 0;
905 }
906 
907 /**
908  * sdma_v4_4_2_inst_load_microcode - load the sDMA ME ucode
909  *
910  * @adev: amdgpu_device pointer
911  * @inst_mask: mask of dma engine instances to be enabled
912  *
913  * Loads the sDMA0/1 ucode.
914  * Returns 0 for success, -EINVAL if the ucode is not available.
915  */
916 static int sdma_v4_4_2_inst_load_microcode(struct amdgpu_device *adev,
917 					   uint32_t inst_mask)
918 {
919 	const struct sdma_firmware_header_v1_0 *hdr;
920 	const __le32 *fw_data;
921 	u32 fw_size;
922 	int i, j;
923 
924 	/* halt the MEs */
925 	sdma_v4_4_2_inst_enable(adev, false, inst_mask);
926 
927 	for_each_inst(i, inst_mask) {
928 		if (!adev->sdma.instance[i].fw)
929 			return -EINVAL;
930 
931 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
932 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
933 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
934 
935 		fw_data = (const __le32 *)
936 			(adev->sdma.instance[i].fw->data +
937 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
938 
939 		WREG32_SDMA(i, regSDMA_UCODE_ADDR, 0);
940 
941 		for (j = 0; j < fw_size; j++)
942 			WREG32_SDMA(i, regSDMA_UCODE_DATA,
943 				    le32_to_cpup(fw_data++));
944 
945 		WREG32_SDMA(i, regSDMA_UCODE_ADDR,
946 			    adev->sdma.instance[i].fw_version);
947 	}
948 
949 	return 0;
950 }
951 
952 /**
953  * sdma_v4_4_2_inst_start - setup and start the async dma engines
954  *
955  * @adev: amdgpu_device pointer
956  * @inst_mask: mask of dma engine instances to be enabled
957  * @restore: boolean to say restore needed or not
958  *
959  * Set up the DMA engines and enable them.
960  * Returns 0 for success, error for failure.
961  */
962 static int sdma_v4_4_2_inst_start(struct amdgpu_device *adev,
963 				  uint32_t inst_mask, bool restore)
964 {
965 	struct amdgpu_ring *ring;
966 	uint32_t tmp_mask;
967 	int i, r = 0;
968 
969 	if (amdgpu_sriov_vf(adev)) {
970 		sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask);
971 		sdma_v4_4_2_inst_enable(adev, false, inst_mask);
972 	} else {
973 		/* bypass sdma microcode loading on Gopher */
974 		if (!restore && adev->firmware.load_type != AMDGPU_FW_LOAD_PSP &&
975 		    adev->sdma.instance[0].fw) {
976 			r = sdma_v4_4_2_inst_load_microcode(adev, inst_mask);
977 			if (r)
978 				return r;
979 		}
980 
981 		/* unhalt the MEs */
982 		sdma_v4_4_2_inst_enable(adev, true, inst_mask);
983 		/* enable sdma ring preemption */
984 		sdma_v4_4_2_inst_ctx_switch_enable(adev, true, inst_mask);
985 	}
986 
987 	/* start the gfx rings and rlc compute queues */
988 	tmp_mask = inst_mask;
989 	for_each_inst(i, tmp_mask) {
990 		uint32_t temp;
991 
992 		WREG32_SDMA(i, regSDMA_SEM_WAIT_FAIL_TIMER_CNTL, 0);
993 		sdma_v4_4_2_gfx_resume(adev, i, restore);
994 		if (adev->sdma.has_page_queue)
995 			sdma_v4_4_2_page_resume(adev, i, restore);
996 
997 		/* set utc l1 enable flag always to 1 */
998 		temp = RREG32_SDMA(i, regSDMA_CNTL);
999 		temp = REG_SET_FIELD(temp, SDMA_CNTL, UTC_L1_ENABLE, 1);
1000 
1001 		if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) < IP_VERSION(4, 4, 5)) {
1002 			/* enable context empty interrupt during initialization */
1003 			temp = REG_SET_FIELD(temp, SDMA_CNTL, CTXEMPTY_INT_ENABLE, 1);
1004 			WREG32_SDMA(i, regSDMA_CNTL, temp);
1005 		}
1006 		if (!amdgpu_sriov_vf(adev)) {
1007 			if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
1008 				/* unhalt engine */
1009 				temp = RREG32_SDMA(i, regSDMA_F32_CNTL);
1010 				temp = REG_SET_FIELD(temp, SDMA_F32_CNTL, HALT, 0);
1011 				WREG32_SDMA(i, regSDMA_F32_CNTL, temp);
1012 			}
1013 		}
1014 	}
1015 
1016 	if (amdgpu_sriov_vf(adev)) {
1017 		sdma_v4_4_2_inst_ctx_switch_enable(adev, true, inst_mask);
1018 		sdma_v4_4_2_inst_enable(adev, true, inst_mask);
1019 	} else {
1020 		r = sdma_v4_4_2_inst_rlc_resume(adev, inst_mask);
1021 		if (r)
1022 			return r;
1023 	}
1024 
1025 	tmp_mask = inst_mask;
1026 	for_each_inst(i, tmp_mask) {
1027 		ring = &adev->sdma.instance[i].ring;
1028 
1029 		r = amdgpu_ring_test_helper(ring);
1030 		if (r)
1031 			return r;
1032 
1033 		if (adev->sdma.has_page_queue) {
1034 			struct amdgpu_ring *page = &adev->sdma.instance[i].page;
1035 
1036 			r = amdgpu_ring_test_helper(page);
1037 			if (r)
1038 				return r;
1039 		}
1040 	}
1041 
1042 	return r;
1043 }
1044 
1045 /**
1046  * sdma_v4_4_2_ring_test_ring - simple async dma engine test
1047  *
1048  * @ring: amdgpu_ring structure holding ring information
1049  *
1050  * Test the DMA engine by writing using it to write an
1051  * value to memory.
1052  * Returns 0 for success, error for failure.
1053  */
1054 static int sdma_v4_4_2_ring_test_ring(struct amdgpu_ring *ring)
1055 {
1056 	struct amdgpu_device *adev = ring->adev;
1057 	unsigned i;
1058 	unsigned index;
1059 	int r;
1060 	u32 tmp;
1061 	u64 gpu_addr;
1062 
1063 	r = amdgpu_device_wb_get(adev, &index);
1064 	if (r)
1065 		return r;
1066 
1067 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1068 	tmp = 0xCAFEDEAD;
1069 	adev->wb.wb[index] = cpu_to_le32(tmp);
1070 
1071 	r = amdgpu_ring_alloc(ring, 5);
1072 	if (r)
1073 		goto error_free_wb;
1074 
1075 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1076 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1077 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1078 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1079 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1080 	amdgpu_ring_write(ring, 0xDEADBEEF);
1081 	amdgpu_ring_commit(ring);
1082 
1083 	for (i = 0; i < adev->usec_timeout; i++) {
1084 		tmp = le32_to_cpu(adev->wb.wb[index]);
1085 		if (tmp == 0xDEADBEEF)
1086 			break;
1087 		udelay(1);
1088 	}
1089 
1090 	if (i >= adev->usec_timeout)
1091 		r = -ETIMEDOUT;
1092 
1093 error_free_wb:
1094 	amdgpu_device_wb_free(adev, index);
1095 	return r;
1096 }
1097 
1098 /**
1099  * sdma_v4_4_2_ring_test_ib - test an IB on the DMA engine
1100  *
1101  * @ring: amdgpu_ring structure holding ring information
1102  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
1103  *
1104  * Test a simple IB in the DMA ring.
1105  * Returns 0 on success, error on failure.
1106  */
1107 static int sdma_v4_4_2_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1108 {
1109 	struct amdgpu_device *adev = ring->adev;
1110 	struct amdgpu_ib ib;
1111 	struct dma_fence *f = NULL;
1112 	unsigned index;
1113 	long r;
1114 	u32 tmp = 0;
1115 	u64 gpu_addr;
1116 
1117 	r = amdgpu_device_wb_get(adev, &index);
1118 	if (r)
1119 		return r;
1120 
1121 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1122 	tmp = 0xCAFEDEAD;
1123 	adev->wb.wb[index] = cpu_to_le32(tmp);
1124 	memset(&ib, 0, sizeof(ib));
1125 	r = amdgpu_ib_get(adev, NULL, 256,
1126 					AMDGPU_IB_POOL_DIRECT, &ib);
1127 	if (r)
1128 		goto err0;
1129 
1130 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1131 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1132 	ib.ptr[1] = lower_32_bits(gpu_addr);
1133 	ib.ptr[2] = upper_32_bits(gpu_addr);
1134 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1135 	ib.ptr[4] = 0xDEADBEEF;
1136 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1137 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1138 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1139 	ib.length_dw = 8;
1140 
1141 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1142 	if (r)
1143 		goto err1;
1144 
1145 	r = dma_fence_wait_timeout(f, false, timeout);
1146 	if (r == 0) {
1147 		r = -ETIMEDOUT;
1148 		goto err1;
1149 	} else if (r < 0) {
1150 		goto err1;
1151 	}
1152 	tmp = le32_to_cpu(adev->wb.wb[index]);
1153 	if (tmp == 0xDEADBEEF)
1154 		r = 0;
1155 	else
1156 		r = -EINVAL;
1157 
1158 err1:
1159 	amdgpu_ib_free(&ib, NULL);
1160 	dma_fence_put(f);
1161 err0:
1162 	amdgpu_device_wb_free(adev, index);
1163 	return r;
1164 }
1165 
1166 
1167 /**
1168  * sdma_v4_4_2_vm_copy_pte - update PTEs by copying them from the GART
1169  *
1170  * @ib: indirect buffer to fill with commands
1171  * @pe: addr of the page entry
1172  * @src: src addr to copy from
1173  * @count: number of page entries to update
1174  *
1175  * Update PTEs by copying them from the GART using sDMA.
1176  */
1177 static void sdma_v4_4_2_vm_copy_pte(struct amdgpu_ib *ib,
1178 				  uint64_t pe, uint64_t src,
1179 				  unsigned count)
1180 {
1181 	unsigned bytes = count * 8;
1182 
1183 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1184 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1185 	ib->ptr[ib->length_dw++] = bytes - 1;
1186 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1187 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1188 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1189 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1190 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1191 
1192 }
1193 
1194 /**
1195  * sdma_v4_4_2_vm_write_pte - update PTEs by writing them manually
1196  *
1197  * @ib: indirect buffer to fill with commands
1198  * @pe: addr of the page entry
1199  * @value: dst addr to write into pe
1200  * @count: number of page entries to update
1201  * @incr: increase next addr by incr bytes
1202  *
1203  * Update PTEs by writing them manually using sDMA.
1204  */
1205 static void sdma_v4_4_2_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1206 				   uint64_t value, unsigned count,
1207 				   uint32_t incr)
1208 {
1209 	unsigned ndw = count * 2;
1210 
1211 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1212 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1213 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1214 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1215 	ib->ptr[ib->length_dw++] = ndw - 1;
1216 	for (; ndw > 0; ndw -= 2) {
1217 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1218 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1219 		value += incr;
1220 	}
1221 }
1222 
1223 /**
1224  * sdma_v4_4_2_vm_set_pte_pde - update the page tables using sDMA
1225  *
1226  * @ib: indirect buffer to fill with commands
1227  * @pe: addr of the page entry
1228  * @addr: dst addr to write into pe
1229  * @count: number of page entries to update
1230  * @incr: increase next addr by incr bytes
1231  * @flags: access flags
1232  *
1233  * Update the page tables using sDMA.
1234  */
1235 static void sdma_v4_4_2_vm_set_pte_pde(struct amdgpu_ib *ib,
1236 				     uint64_t pe,
1237 				     uint64_t addr, unsigned count,
1238 				     uint32_t incr, uint64_t flags)
1239 {
1240 	/* for physically contiguous pages (vram) */
1241 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1242 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1243 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1244 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1245 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1246 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1247 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1248 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1249 	ib->ptr[ib->length_dw++] = 0;
1250 	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1251 }
1252 
1253 /**
1254  * sdma_v4_4_2_ring_pad_ib - pad the IB to the required number of dw
1255  *
1256  * @ring: amdgpu_ring structure holding ring information
1257  * @ib: indirect buffer to fill with padding
1258  */
1259 static void sdma_v4_4_2_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1260 {
1261 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1262 	u32 pad_count;
1263 	int i;
1264 
1265 	pad_count = (-ib->length_dw) & 7;
1266 	for (i = 0; i < pad_count; i++)
1267 		if (sdma && sdma->burst_nop && (i == 0))
1268 			ib->ptr[ib->length_dw++] =
1269 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1270 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1271 		else
1272 			ib->ptr[ib->length_dw++] =
1273 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1274 }
1275 
1276 
1277 /**
1278  * sdma_v4_4_2_ring_emit_pipeline_sync - sync the pipeline
1279  *
1280  * @ring: amdgpu_ring pointer
1281  *
1282  * Make sure all previous operations are completed (CIK).
1283  */
1284 static void sdma_v4_4_2_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1285 {
1286 	uint32_t seq = ring->fence_drv.sync_seq;
1287 	uint64_t addr = ring->fence_drv.gpu_addr;
1288 
1289 	/* wait for idle */
1290 	sdma_v4_4_2_wait_reg_mem(ring, 1, 0,
1291 			       addr & 0xfffffffc,
1292 			       upper_32_bits(addr) & 0xffffffff,
1293 			       seq, 0xffffffff, 4);
1294 }
1295 
1296 
1297 /**
1298  * sdma_v4_4_2_ring_emit_vm_flush - vm flush using sDMA
1299  *
1300  * @ring: amdgpu_ring pointer
1301  * @vmid: vmid number to use
1302  * @pd_addr: address
1303  *
1304  * Update the page table base and flush the VM TLB
1305  * using sDMA.
1306  */
1307 static void sdma_v4_4_2_ring_emit_vm_flush(struct amdgpu_ring *ring,
1308 					 unsigned vmid, uint64_t pd_addr)
1309 {
1310 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1311 }
1312 
1313 static void sdma_v4_4_2_ring_emit_wreg(struct amdgpu_ring *ring,
1314 				     uint32_t reg, uint32_t val)
1315 {
1316 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1317 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1318 	amdgpu_ring_write(ring, reg);
1319 	amdgpu_ring_write(ring, val);
1320 }
1321 
1322 static void sdma_v4_4_2_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1323 					 uint32_t val, uint32_t mask)
1324 {
1325 	sdma_v4_4_2_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1326 }
1327 
1328 static bool sdma_v4_4_2_fw_support_paging_queue(struct amdgpu_device *adev)
1329 {
1330 	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
1331 	case IP_VERSION(4, 4, 2):
1332 	case IP_VERSION(4, 4, 5):
1333 		return false;
1334 	default:
1335 		return false;
1336 	}
1337 }
1338 
1339 static const struct amdgpu_sdma_funcs sdma_v4_4_2_sdma_funcs = {
1340 	.stop_kernel_queue = &sdma_v4_4_2_stop_queue,
1341 	.start_kernel_queue = &sdma_v4_4_2_restore_queue,
1342 	.soft_reset_kernel_queue = &sdma_v4_4_2_soft_reset_engine,
1343 };
1344 
1345 static int sdma_v4_4_2_early_init(struct amdgpu_ip_block *ip_block)
1346 {
1347 	struct amdgpu_device *adev = ip_block->adev;
1348 	int r;
1349 
1350 	r = sdma_v4_4_2_init_microcode(adev);
1351 	if (r)
1352 		return r;
1353 
1354 	/* TODO: Page queue breaks driver reload under SRIOV */
1355 	if (sdma_v4_4_2_fw_support_paging_queue(adev))
1356 		adev->sdma.has_page_queue = true;
1357 
1358 	sdma_v4_4_2_set_ring_funcs(adev);
1359 	sdma_v4_4_2_set_buffer_funcs(adev);
1360 	sdma_v4_4_2_set_vm_pte_funcs(adev);
1361 	sdma_v4_4_2_set_irq_funcs(adev);
1362 	sdma_v4_4_2_set_ras_funcs(adev);
1363 	return 0;
1364 }
1365 
1366 #if 0
1367 static int sdma_v4_4_2_process_ras_data_cb(struct amdgpu_device *adev,
1368 		void *err_data,
1369 		struct amdgpu_iv_entry *entry);
1370 #endif
1371 
1372 static int sdma_v4_4_2_late_init(struct amdgpu_ip_block *ip_block)
1373 {
1374 	struct amdgpu_device *adev = ip_block->adev;
1375 #if 0
1376 	struct ras_ih_if ih_info = {
1377 		.cb = sdma_v4_4_2_process_ras_data_cb,
1378 	};
1379 #endif
1380 	if (!amdgpu_persistent_edc_harvesting_supported(adev))
1381 		amdgpu_ras_reset_error_count(adev, AMDGPU_RAS_BLOCK__SDMA);
1382 
1383 	/* The initialization is done in the late_init stage to ensure that the SMU
1384 	 * initialization and capability setup are completed before we check the SDMA
1385 	 * reset capability
1386 	 */
1387 	sdma_v4_4_2_update_reset_mask(adev);
1388 
1389 	return 0;
1390 }
1391 
1392 static int sdma_v4_4_2_sw_init(struct amdgpu_ip_block *ip_block)
1393 {
1394 	struct amdgpu_ring *ring;
1395 	int r, i;
1396 	struct amdgpu_device *adev = ip_block->adev;
1397 	u32 aid_id;
1398 	uint32_t reg_count = ARRAY_SIZE(sdma_reg_list_4_4_2);
1399 	uint32_t *ptr;
1400 
1401 	/* SDMA trap event */
1402 	for (i = 0; i < adev->sdma.num_inst_per_aid; i++) {
1403 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1404 				      SDMA0_4_0__SRCID__SDMA_TRAP,
1405 				      &adev->sdma.trap_irq);
1406 		if (r)
1407 			return r;
1408 	}
1409 
1410 	/* SDMA SRAM ECC event */
1411 	for (i = 0; i < adev->sdma.num_inst_per_aid; i++) {
1412 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1413 				      SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
1414 				      &adev->sdma.ecc_irq);
1415 		if (r)
1416 			return r;
1417 	}
1418 
1419 	/* SDMA VM_HOLE/DOORBELL_INV/POLL_TIMEOUT/SRBM_WRITE_PROTECTION event*/
1420 	for (i = 0; i < adev->sdma.num_inst_per_aid; i++) {
1421 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1422 				      SDMA0_4_0__SRCID__SDMA_VM_HOLE,
1423 				      &adev->sdma.vm_hole_irq);
1424 		if (r)
1425 			return r;
1426 
1427 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1428 				      SDMA0_4_0__SRCID__SDMA_DOORBELL_INVALID,
1429 				      &adev->sdma.doorbell_invalid_irq);
1430 		if (r)
1431 			return r;
1432 
1433 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1434 				      SDMA0_4_0__SRCID__SDMA_POLL_TIMEOUT,
1435 				      &adev->sdma.pool_timeout_irq);
1436 		if (r)
1437 			return r;
1438 
1439 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1440 				      SDMA0_4_0__SRCID__SDMA_SRBMWRITE,
1441 				      &adev->sdma.srbm_write_irq);
1442 		if (r)
1443 			return r;
1444 
1445 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1446 				      SDMA0_4_0__SRCID__SDMA_CTXEMPTY,
1447 				      &adev->sdma.ctxt_empty_irq);
1448 		if (r)
1449 			return r;
1450 	}
1451 
1452 	for (i = 0; i < adev->sdma.num_instances; i++) {
1453 		mutex_init(&adev->sdma.instance[i].engine_reset_mutex);
1454 		/* Initialize guilty flags for GFX and PAGE queues */
1455 		adev->sdma.instance[i].gfx_guilty = false;
1456 		adev->sdma.instance[i].page_guilty = false;
1457 		adev->sdma.instance[i].funcs = &sdma_v4_4_2_sdma_funcs;
1458 
1459 		ring = &adev->sdma.instance[i].ring;
1460 		ring->ring_obj = NULL;
1461 		ring->use_doorbell = true;
1462 		aid_id = adev->sdma.instance[i].aid_id;
1463 
1464 		DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i,
1465 				ring->use_doorbell?"true":"false");
1466 
1467 		/* doorbell size is 2 dwords, get DWORD offset */
1468 		ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1469 		ring->vm_hub = AMDGPU_MMHUB0(aid_id);
1470 
1471 		sprintf(ring->name, "sdma%d.%d", aid_id,
1472 				i % adev->sdma.num_inst_per_aid);
1473 		r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1474 				     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1475 				     AMDGPU_RING_PRIO_DEFAULT, NULL);
1476 		if (r)
1477 			return r;
1478 
1479 		if (adev->sdma.has_page_queue) {
1480 			ring = &adev->sdma.instance[i].page;
1481 			ring->ring_obj = NULL;
1482 			ring->use_doorbell = true;
1483 
1484 			/* doorbell index of page queue is assigned right after
1485 			 * gfx queue on the same instance
1486 			 */
1487 			ring->doorbell_index =
1488 				(adev->doorbell_index.sdma_engine[i] + 1) << 1;
1489 			ring->vm_hub = AMDGPU_MMHUB0(aid_id);
1490 
1491 			sprintf(ring->name, "page%d.%d", aid_id,
1492 					i % adev->sdma.num_inst_per_aid);
1493 			r = amdgpu_ring_init(adev, ring, 1024,
1494 					     &adev->sdma.trap_irq,
1495 					     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1496 					     AMDGPU_RING_PRIO_DEFAULT, NULL);
1497 			if (r)
1498 				return r;
1499 		}
1500 	}
1501 
1502 	adev->sdma.supported_reset =
1503 		amdgpu_get_soft_full_reset_mask(&adev->sdma.instance[0].ring);
1504 
1505 	if (amdgpu_sdma_ras_sw_init(adev)) {
1506 		dev_err(adev->dev, "fail to initialize sdma ras block\n");
1507 		return -EINVAL;
1508 	}
1509 
1510 	/* Allocate memory for SDMA IP Dump buffer */
1511 	ptr = kcalloc(adev->sdma.num_instances * reg_count, sizeof(uint32_t), GFP_KERNEL);
1512 	if (ptr)
1513 		adev->sdma.ip_dump = ptr;
1514 	else
1515 		DRM_ERROR("Failed to allocated memory for SDMA IP Dump\n");
1516 
1517 	r = amdgpu_sdma_sysfs_reset_mask_init(adev);
1518 	if (r)
1519 		return r;
1520 
1521 	return r;
1522 }
1523 
1524 static int sdma_v4_4_2_sw_fini(struct amdgpu_ip_block *ip_block)
1525 {
1526 	struct amdgpu_device *adev = ip_block->adev;
1527 	int i;
1528 
1529 	for (i = 0; i < adev->sdma.num_instances; i++) {
1530 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1531 		if (adev->sdma.has_page_queue)
1532 			amdgpu_ring_fini(&adev->sdma.instance[i].page);
1533 	}
1534 
1535 	amdgpu_sdma_sysfs_reset_mask_fini(adev);
1536 	if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 2) ||
1537 	    amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 4) ||
1538 	    amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 5))
1539 		amdgpu_sdma_destroy_inst_ctx(adev, true);
1540 	else
1541 		amdgpu_sdma_destroy_inst_ctx(adev, false);
1542 
1543 	kfree(adev->sdma.ip_dump);
1544 
1545 	return 0;
1546 }
1547 
1548 static int sdma_v4_4_2_hw_init(struct amdgpu_ip_block *ip_block)
1549 {
1550 	int r;
1551 	struct amdgpu_device *adev = ip_block->adev;
1552 	uint32_t inst_mask;
1553 
1554 	inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
1555 	if (!amdgpu_sriov_vf(adev))
1556 		sdma_v4_4_2_inst_init_golden_registers(adev, inst_mask);
1557 
1558 	r = sdma_v4_4_2_inst_start(adev, inst_mask, false);
1559 
1560 	return r;
1561 }
1562 
1563 static int sdma_v4_4_2_hw_fini(struct amdgpu_ip_block *ip_block)
1564 {
1565 	struct amdgpu_device *adev = ip_block->adev;
1566 	uint32_t inst_mask;
1567 	int i;
1568 
1569 	if (amdgpu_sriov_vf(adev))
1570 		return 0;
1571 
1572 	inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
1573 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
1574 		for (i = 0; i < adev->sdma.num_instances; i++) {
1575 			amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
1576 				       AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1577 		}
1578 	}
1579 
1580 	sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask);
1581 	sdma_v4_4_2_inst_enable(adev, false, inst_mask);
1582 
1583 	return 0;
1584 }
1585 
1586 static int sdma_v4_4_2_set_clockgating_state(struct amdgpu_ip_block *ip_block,
1587 					     enum amd_clockgating_state state);
1588 
1589 static int sdma_v4_4_2_suspend(struct amdgpu_ip_block *ip_block)
1590 {
1591 	struct amdgpu_device *adev = ip_block->adev;
1592 
1593 	if (amdgpu_in_reset(adev))
1594 		sdma_v4_4_2_set_clockgating_state(ip_block, AMD_CG_STATE_UNGATE);
1595 
1596 	return sdma_v4_4_2_hw_fini(ip_block);
1597 }
1598 
1599 static int sdma_v4_4_2_resume(struct amdgpu_ip_block *ip_block)
1600 {
1601 	return sdma_v4_4_2_hw_init(ip_block);
1602 }
1603 
1604 static bool sdma_v4_4_2_is_idle(struct amdgpu_ip_block *ip_block)
1605 {
1606 	struct amdgpu_device *adev = ip_block->adev;
1607 	u32 i;
1608 
1609 	for (i = 0; i < adev->sdma.num_instances; i++) {
1610 		u32 tmp = RREG32_SDMA(i, regSDMA_STATUS_REG);
1611 
1612 		if (!(tmp & SDMA_STATUS_REG__IDLE_MASK))
1613 			return false;
1614 	}
1615 
1616 	return true;
1617 }
1618 
1619 static int sdma_v4_4_2_wait_for_idle(struct amdgpu_ip_block *ip_block)
1620 {
1621 	unsigned i, j;
1622 	u32 sdma[AMDGPU_MAX_SDMA_INSTANCES];
1623 	struct amdgpu_device *adev = ip_block->adev;
1624 
1625 	for (i = 0; i < adev->usec_timeout; i++) {
1626 		for (j = 0; j < adev->sdma.num_instances; j++) {
1627 			sdma[j] = RREG32_SDMA(j, regSDMA_STATUS_REG);
1628 			if (!(sdma[j] & SDMA_STATUS_REG__IDLE_MASK))
1629 				break;
1630 		}
1631 		if (j == adev->sdma.num_instances)
1632 			return 0;
1633 		udelay(1);
1634 	}
1635 	return -ETIMEDOUT;
1636 }
1637 
1638 static int sdma_v4_4_2_soft_reset(struct amdgpu_ip_block *ip_block)
1639 {
1640 	/* todo */
1641 
1642 	return 0;
1643 }
1644 
1645 static bool sdma_v4_4_2_is_queue_selected(struct amdgpu_device *adev, uint32_t instance_id, bool is_page_queue)
1646 {
1647 	uint32_t reg_offset = is_page_queue ? regSDMA_PAGE_CONTEXT_STATUS : regSDMA_GFX_CONTEXT_STATUS;
1648 	uint32_t context_status = RREG32(sdma_v4_4_2_get_reg_offset(adev, instance_id, reg_offset));
1649 
1650 	/* Check if the SELECTED bit is set */
1651 	return (context_status & SDMA_GFX_CONTEXT_STATUS__SELECTED_MASK) != 0;
1652 }
1653 
1654 static bool sdma_v4_4_2_ring_is_guilty(struct amdgpu_ring *ring)
1655 {
1656 	struct amdgpu_device *adev = ring->adev;
1657 	uint32_t instance_id = ring->me;
1658 
1659 	return sdma_v4_4_2_is_queue_selected(adev, instance_id, false);
1660 }
1661 
1662 static bool sdma_v4_4_2_page_ring_is_guilty(struct amdgpu_ring *ring)
1663 {
1664 	struct amdgpu_device *adev = ring->adev;
1665 	uint32_t instance_id = ring->me;
1666 
1667 	if (!adev->sdma.has_page_queue)
1668 		return false;
1669 
1670 	return sdma_v4_4_2_is_queue_selected(adev, instance_id, true);
1671 }
1672 
1673 static int sdma_v4_4_2_reset_queue(struct amdgpu_ring *ring, unsigned int vmid)
1674 {
1675 	struct amdgpu_device *adev = ring->adev;
1676 	u32 id = ring->me;
1677 	int r;
1678 
1679 	if (!(adev->sdma.supported_reset & AMDGPU_RESET_TYPE_PER_QUEUE))
1680 		return -EOPNOTSUPP;
1681 
1682 	amdgpu_amdkfd_suspend(adev, true);
1683 	r = amdgpu_sdma_reset_engine(adev, id);
1684 	amdgpu_amdkfd_resume(adev, true);
1685 
1686 	return r;
1687 }
1688 
1689 static int sdma_v4_4_2_stop_queue(struct amdgpu_ring *ring)
1690 {
1691 	struct amdgpu_device *adev = ring->adev;
1692 	u32 instance_id = ring->me;
1693 	u32 inst_mask;
1694 	uint64_t rptr;
1695 
1696 	if (amdgpu_sriov_vf(adev))
1697 		return -EINVAL;
1698 
1699 	/* Check if this queue is the guilty one */
1700 	adev->sdma.instance[instance_id].gfx_guilty =
1701 		sdma_v4_4_2_is_queue_selected(adev, instance_id, false);
1702 	if (adev->sdma.has_page_queue)
1703 		adev->sdma.instance[instance_id].page_guilty =
1704 			sdma_v4_4_2_is_queue_selected(adev, instance_id, true);
1705 
1706 	/* Cache the rptr before reset, after the reset,
1707 	* all of the registers will be reset to 0
1708 	*/
1709 	rptr = amdgpu_ring_get_rptr(ring);
1710 	ring->cached_rptr = rptr;
1711 	/* Cache the rptr for the page queue if it exists */
1712 	if (adev->sdma.has_page_queue) {
1713 		struct amdgpu_ring *page_ring = &adev->sdma.instance[instance_id].page;
1714 		rptr = amdgpu_ring_get_rptr(page_ring);
1715 		page_ring->cached_rptr = rptr;
1716 	}
1717 
1718 	/* stop queue */
1719 	inst_mask = 1 << ring->me;
1720 	sdma_v4_4_2_inst_gfx_stop(adev, inst_mask);
1721 	if (adev->sdma.has_page_queue)
1722 		sdma_v4_4_2_inst_page_stop(adev, inst_mask);
1723 
1724 	return 0;
1725 }
1726 
1727 static int sdma_v4_4_2_restore_queue(struct amdgpu_ring *ring)
1728 {
1729 	struct amdgpu_device *adev = ring->adev;
1730 	u32 inst_mask;
1731 	int i;
1732 
1733 	inst_mask = 1 << ring->me;
1734 	udelay(50);
1735 
1736 	for (i = 0; i < adev->usec_timeout; i++) {
1737 		if (!REG_GET_FIELD(RREG32_SDMA(ring->me, regSDMA_F32_CNTL), SDMA_F32_CNTL, HALT))
1738 			break;
1739 		udelay(1);
1740 	}
1741 
1742 	if (i == adev->usec_timeout) {
1743 		dev_err(adev->dev, "timed out waiting for SDMA%d unhalt after reset\n",
1744 			ring->me);
1745 		return -ETIMEDOUT;
1746 	}
1747 
1748 	return sdma_v4_4_2_inst_start(adev, inst_mask, true);
1749 }
1750 
1751 static int sdma_v4_4_2_soft_reset_engine(struct amdgpu_device *adev,
1752 					 u32 instance_id)
1753 {
1754 	/* For SDMA 4.x, use the existing DPM interface for backward compatibility
1755 	 * we need to convert the logical instance ID to physical instance ID before reset.
1756 	 */
1757 	return amdgpu_dpm_reset_sdma(adev, 1 << GET_INST(SDMA0, instance_id));
1758 }
1759 
1760 static int sdma_v4_4_2_set_trap_irq_state(struct amdgpu_device *adev,
1761 					struct amdgpu_irq_src *source,
1762 					unsigned type,
1763 					enum amdgpu_interrupt_state state)
1764 {
1765 	u32 sdma_cntl;
1766 
1767 	sdma_cntl = RREG32_SDMA(type, regSDMA_CNTL);
1768 	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA_CNTL, TRAP_ENABLE,
1769 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1770 	WREG32_SDMA(type, regSDMA_CNTL, sdma_cntl);
1771 
1772 	return 0;
1773 }
1774 
1775 static int sdma_v4_4_2_process_trap_irq(struct amdgpu_device *adev,
1776 				      struct amdgpu_irq_src *source,
1777 				      struct amdgpu_iv_entry *entry)
1778 {
1779 	uint32_t instance, i;
1780 
1781 	DRM_DEBUG("IH: SDMA trap\n");
1782 	instance = sdma_v4_4_2_irq_id_to_seq(adev, entry->client_id);
1783 
1784 	/* Client id gives the SDMA instance in AID. To know the exact SDMA
1785 	 * instance, interrupt entry gives the node id which corresponds to the AID instance.
1786 	 * Match node id with the AID id associated with the SDMA instance. */
1787 	for (i = instance; i < adev->sdma.num_instances;
1788 	     i += adev->sdma.num_inst_per_aid) {
1789 		if (adev->sdma.instance[i].aid_id ==
1790 		    node_id_to_phys_map[entry->node_id])
1791 			break;
1792 	}
1793 
1794 	if (i >= adev->sdma.num_instances) {
1795 		dev_WARN_ONCE(
1796 			adev->dev, 1,
1797 			"Couldn't find the right sdma instance in trap handler");
1798 		return 0;
1799 	}
1800 
1801 	switch (entry->ring_id) {
1802 	case 0:
1803 		amdgpu_fence_process(&adev->sdma.instance[i].ring);
1804 		break;
1805 	case 1:
1806 		amdgpu_fence_process(&adev->sdma.instance[i].page);
1807 		break;
1808 	default:
1809 		break;
1810 	}
1811 	return 0;
1812 }
1813 
1814 #if 0
1815 static int sdma_v4_4_2_process_ras_data_cb(struct amdgpu_device *adev,
1816 		void *err_data,
1817 		struct amdgpu_iv_entry *entry)
1818 {
1819 	int instance;
1820 
1821 	/* When “Full RAS” is enabled, the per-IP interrupt sources should
1822 	 * be disabled and the driver should only look for the aggregated
1823 	 * interrupt via sync flood
1824 	 */
1825 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA))
1826 		goto out;
1827 
1828 	instance = sdma_v4_4_2_irq_id_to_seq(adev, entry->client_id);
1829 	if (instance < 0)
1830 		goto out;
1831 
1832 	amdgpu_sdma_process_ras_data_cb(adev, err_data, entry);
1833 
1834 out:
1835 	return AMDGPU_RAS_SUCCESS;
1836 }
1837 #endif
1838 
1839 static int sdma_v4_4_2_process_illegal_inst_irq(struct amdgpu_device *adev,
1840 					      struct amdgpu_irq_src *source,
1841 					      struct amdgpu_iv_entry *entry)
1842 {
1843 	int instance;
1844 
1845 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
1846 
1847 	instance = sdma_v4_4_2_irq_id_to_seq(adev, entry->client_id);
1848 	if (instance < 0)
1849 		return 0;
1850 
1851 	switch (entry->ring_id) {
1852 	case 0:
1853 		drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
1854 		break;
1855 	}
1856 	return 0;
1857 }
1858 
1859 static int sdma_v4_4_2_set_ecc_irq_state(struct amdgpu_device *adev,
1860 					struct amdgpu_irq_src *source,
1861 					unsigned type,
1862 					enum amdgpu_interrupt_state state)
1863 {
1864 	u32 sdma_cntl;
1865 
1866 	sdma_cntl = RREG32_SDMA(type, regSDMA_CNTL);
1867 	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA_CNTL, DRAM_ECC_INT_ENABLE,
1868 					state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1869 	WREG32_SDMA(type, regSDMA_CNTL, sdma_cntl);
1870 
1871 	return 0;
1872 }
1873 
1874 static int sdma_v4_4_2_print_iv_entry(struct amdgpu_device *adev,
1875 					      struct amdgpu_iv_entry *entry)
1876 {
1877 	int instance;
1878 	struct amdgpu_task_info *task_info;
1879 	u64 addr;
1880 
1881 	instance = sdma_v4_4_2_irq_id_to_seq(adev, entry->client_id);
1882 	if (instance < 0 || instance >= adev->sdma.num_instances) {
1883 		dev_err(adev->dev, "sdma instance invalid %d\n", instance);
1884 		return -EINVAL;
1885 	}
1886 
1887 	addr = (u64)entry->src_data[0] << 12;
1888 	addr |= ((u64)entry->src_data[1] & 0xf) << 44;
1889 
1890 	dev_dbg_ratelimited(adev->dev,
1891 			    "[sdma%d] address:0x%016llx src_id:%u ring:%u vmid:%u pasid:%u\n",
1892 			    instance, addr, entry->src_id, entry->ring_id, entry->vmid,
1893 			    entry->pasid);
1894 
1895 	task_info = amdgpu_vm_get_task_info_pasid(adev, entry->pasid);
1896 	if (task_info) {
1897 		dev_dbg_ratelimited(adev->dev, " for process %s pid %d thread %s pid %d\n",
1898 				    task_info->process_name, task_info->tgid,
1899 				    task_info->task_name, task_info->pid);
1900 		amdgpu_vm_put_task_info(task_info);
1901 	}
1902 
1903 	return 0;
1904 }
1905 
1906 static int sdma_v4_4_2_process_vm_hole_irq(struct amdgpu_device *adev,
1907 					      struct amdgpu_irq_src *source,
1908 					      struct amdgpu_iv_entry *entry)
1909 {
1910 	dev_dbg_ratelimited(adev->dev, "MC or SEM address in VM hole\n");
1911 	sdma_v4_4_2_print_iv_entry(adev, entry);
1912 	return 0;
1913 }
1914 
1915 static int sdma_v4_4_2_process_doorbell_invalid_irq(struct amdgpu_device *adev,
1916 					      struct amdgpu_irq_src *source,
1917 					      struct amdgpu_iv_entry *entry)
1918 {
1919 
1920 	dev_dbg_ratelimited(adev->dev, "SDMA received a doorbell from BIF with byte_enable !=0xff\n");
1921 	sdma_v4_4_2_print_iv_entry(adev, entry);
1922 	return 0;
1923 }
1924 
1925 static int sdma_v4_4_2_process_pool_timeout_irq(struct amdgpu_device *adev,
1926 					      struct amdgpu_irq_src *source,
1927 					      struct amdgpu_iv_entry *entry)
1928 {
1929 	dev_dbg_ratelimited(adev->dev,
1930 		"Polling register/memory timeout executing POLL_REG/MEM with finite timer\n");
1931 	sdma_v4_4_2_print_iv_entry(adev, entry);
1932 	return 0;
1933 }
1934 
1935 static int sdma_v4_4_2_process_srbm_write_irq(struct amdgpu_device *adev,
1936 					      struct amdgpu_irq_src *source,
1937 					      struct amdgpu_iv_entry *entry)
1938 {
1939 	dev_dbg_ratelimited(adev->dev,
1940 		"SDMA gets an Register Write SRBM_WRITE command in non-privilege command buffer\n");
1941 	sdma_v4_4_2_print_iv_entry(adev, entry);
1942 	return 0;
1943 }
1944 
1945 static int sdma_v4_4_2_process_ctxt_empty_irq(struct amdgpu_device *adev,
1946 					      struct amdgpu_irq_src *source,
1947 					      struct amdgpu_iv_entry *entry)
1948 {
1949 	/* There is nothing useful to be done here, only kept for debug */
1950 	dev_dbg_ratelimited(adev->dev, "SDMA context empty interrupt");
1951 	sdma_v4_4_2_print_iv_entry(adev, entry);
1952 	return 0;
1953 }
1954 
1955 static void sdma_v4_4_2_inst_update_medium_grain_light_sleep(
1956 	struct amdgpu_device *adev, bool enable, uint32_t inst_mask)
1957 {
1958 	uint32_t data, def;
1959 	int i;
1960 
1961 	/* leave as default if it is not driver controlled */
1962 	if (!(adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS))
1963 		return;
1964 
1965 	if (enable) {
1966 		for_each_inst(i, inst_mask) {
1967 			/* 1-not override: enable sdma mem light sleep */
1968 			def = data = RREG32_SDMA(i, regSDMA_POWER_CNTL);
1969 			data |= SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1970 			if (def != data)
1971 				WREG32_SDMA(i, regSDMA_POWER_CNTL, data);
1972 		}
1973 	} else {
1974 		for_each_inst(i, inst_mask) {
1975 			/* 0-override:disable sdma mem light sleep */
1976 			def = data = RREG32_SDMA(i, regSDMA_POWER_CNTL);
1977 			data &= ~SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1978 			if (def != data)
1979 				WREG32_SDMA(i, regSDMA_POWER_CNTL, data);
1980 		}
1981 	}
1982 }
1983 
1984 static void sdma_v4_4_2_inst_update_medium_grain_clock_gating(
1985 	struct amdgpu_device *adev, bool enable, uint32_t inst_mask)
1986 {
1987 	uint32_t data, def;
1988 	int i;
1989 
1990 	/* leave as default if it is not driver controlled */
1991 	if (!(adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG))
1992 		return;
1993 
1994 	if (enable) {
1995 		for_each_inst(i, inst_mask) {
1996 			def = data = RREG32_SDMA(i, regSDMA_CLK_CTRL);
1997 			data &= ~(SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1998 				  SDMA_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1999 				  SDMA_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2000 				  SDMA_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2001 				  SDMA_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2002 				  SDMA_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2003 			if (def != data)
2004 				WREG32_SDMA(i, regSDMA_CLK_CTRL, data);
2005 		}
2006 	} else {
2007 		for_each_inst(i, inst_mask) {
2008 			def = data = RREG32_SDMA(i, regSDMA_CLK_CTRL);
2009 			data |= (SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2010 				 SDMA_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2011 				 SDMA_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2012 				 SDMA_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2013 				 SDMA_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2014 				 SDMA_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2015 			if (def != data)
2016 				WREG32_SDMA(i, regSDMA_CLK_CTRL, data);
2017 		}
2018 	}
2019 }
2020 
2021 static int sdma_v4_4_2_set_clockgating_state(struct amdgpu_ip_block *ip_block,
2022 					  enum amd_clockgating_state state)
2023 {
2024 	struct amdgpu_device *adev = ip_block->adev;
2025 	uint32_t inst_mask;
2026 
2027 	if (amdgpu_sriov_vf(adev))
2028 		return 0;
2029 
2030 	inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
2031 
2032 	sdma_v4_4_2_inst_update_medium_grain_clock_gating(
2033 		adev, state == AMD_CG_STATE_GATE, inst_mask);
2034 	sdma_v4_4_2_inst_update_medium_grain_light_sleep(
2035 		adev, state == AMD_CG_STATE_GATE, inst_mask);
2036 	return 0;
2037 }
2038 
2039 static int sdma_v4_4_2_set_powergating_state(struct amdgpu_ip_block *ip_block,
2040 					  enum amd_powergating_state state)
2041 {
2042 	return 0;
2043 }
2044 
2045 static void sdma_v4_4_2_get_clockgating_state(struct amdgpu_ip_block *ip_block, u64 *flags)
2046 {
2047 	struct amdgpu_device *adev = ip_block->adev;
2048 	int data;
2049 
2050 	if (amdgpu_sriov_vf(adev))
2051 		*flags = 0;
2052 
2053 	/* AMD_CG_SUPPORT_SDMA_MGCG */
2054 	data = RREG32(SOC15_REG_OFFSET(SDMA0, GET_INST(SDMA0, 0), regSDMA_CLK_CTRL));
2055 	if (!(data & SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK))
2056 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
2057 
2058 	/* AMD_CG_SUPPORT_SDMA_LS */
2059 	data = RREG32(SOC15_REG_OFFSET(SDMA0, GET_INST(SDMA0, 0), regSDMA_POWER_CNTL));
2060 	if (data & SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
2061 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
2062 }
2063 
2064 static void sdma_v4_4_2_print_ip_state(struct amdgpu_ip_block *ip_block, struct drm_printer *p)
2065 {
2066 	struct amdgpu_device *adev = ip_block->adev;
2067 	int i, j;
2068 	uint32_t reg_count = ARRAY_SIZE(sdma_reg_list_4_4_2);
2069 	uint32_t instance_offset;
2070 
2071 	if (!adev->sdma.ip_dump)
2072 		return;
2073 
2074 	drm_printf(p, "num_instances:%d\n", adev->sdma.num_instances);
2075 	for (i = 0; i < adev->sdma.num_instances; i++) {
2076 		instance_offset = i * reg_count;
2077 		drm_printf(p, "\nInstance:%d\n", i);
2078 
2079 		for (j = 0; j < reg_count; j++)
2080 			drm_printf(p, "%-50s \t 0x%08x\n", sdma_reg_list_4_4_2[j].reg_name,
2081 				   adev->sdma.ip_dump[instance_offset + j]);
2082 	}
2083 }
2084 
2085 static void sdma_v4_4_2_dump_ip_state(struct amdgpu_ip_block *ip_block)
2086 {
2087 	struct amdgpu_device *adev = ip_block->adev;
2088 	int i, j;
2089 	uint32_t instance_offset;
2090 	uint32_t reg_count = ARRAY_SIZE(sdma_reg_list_4_4_2);
2091 
2092 	if (!adev->sdma.ip_dump)
2093 		return;
2094 
2095 	for (i = 0; i < adev->sdma.num_instances; i++) {
2096 		instance_offset = i * reg_count;
2097 		for (j = 0; j < reg_count; j++)
2098 			adev->sdma.ip_dump[instance_offset + j] =
2099 				RREG32(sdma_v4_4_2_get_reg_offset(adev, i,
2100 				       sdma_reg_list_4_4_2[j].reg_offset));
2101 	}
2102 }
2103 
2104 const struct amd_ip_funcs sdma_v4_4_2_ip_funcs = {
2105 	.name = "sdma_v4_4_2",
2106 	.early_init = sdma_v4_4_2_early_init,
2107 	.late_init = sdma_v4_4_2_late_init,
2108 	.sw_init = sdma_v4_4_2_sw_init,
2109 	.sw_fini = sdma_v4_4_2_sw_fini,
2110 	.hw_init = sdma_v4_4_2_hw_init,
2111 	.hw_fini = sdma_v4_4_2_hw_fini,
2112 	.suspend = sdma_v4_4_2_suspend,
2113 	.resume = sdma_v4_4_2_resume,
2114 	.is_idle = sdma_v4_4_2_is_idle,
2115 	.wait_for_idle = sdma_v4_4_2_wait_for_idle,
2116 	.soft_reset = sdma_v4_4_2_soft_reset,
2117 	.set_clockgating_state = sdma_v4_4_2_set_clockgating_state,
2118 	.set_powergating_state = sdma_v4_4_2_set_powergating_state,
2119 	.get_clockgating_state = sdma_v4_4_2_get_clockgating_state,
2120 	.dump_ip_state = sdma_v4_4_2_dump_ip_state,
2121 	.print_ip_state = sdma_v4_4_2_print_ip_state,
2122 };
2123 
2124 static const struct amdgpu_ring_funcs sdma_v4_4_2_ring_funcs = {
2125 	.type = AMDGPU_RING_TYPE_SDMA,
2126 	.align_mask = 0xff,
2127 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2128 	.support_64bit_ptrs = true,
2129 	.get_rptr = sdma_v4_4_2_ring_get_rptr,
2130 	.get_wptr = sdma_v4_4_2_ring_get_wptr,
2131 	.set_wptr = sdma_v4_4_2_ring_set_wptr,
2132 	.emit_frame_size =
2133 		6 + /* sdma_v4_4_2_ring_emit_hdp_flush */
2134 		3 + /* hdp invalidate */
2135 		6 + /* sdma_v4_4_2_ring_emit_pipeline_sync */
2136 		/* sdma_v4_4_2_ring_emit_vm_flush */
2137 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2138 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2139 		10 + 10 + 10, /* sdma_v4_4_2_ring_emit_fence x3 for user fence, vm fence */
2140 	.emit_ib_size = 7 + 6, /* sdma_v4_4_2_ring_emit_ib */
2141 	.emit_ib = sdma_v4_4_2_ring_emit_ib,
2142 	.emit_fence = sdma_v4_4_2_ring_emit_fence,
2143 	.emit_pipeline_sync = sdma_v4_4_2_ring_emit_pipeline_sync,
2144 	.emit_vm_flush = sdma_v4_4_2_ring_emit_vm_flush,
2145 	.emit_hdp_flush = sdma_v4_4_2_ring_emit_hdp_flush,
2146 	.test_ring = sdma_v4_4_2_ring_test_ring,
2147 	.test_ib = sdma_v4_4_2_ring_test_ib,
2148 	.insert_nop = sdma_v4_4_2_ring_insert_nop,
2149 	.pad_ib = sdma_v4_4_2_ring_pad_ib,
2150 	.emit_wreg = sdma_v4_4_2_ring_emit_wreg,
2151 	.emit_reg_wait = sdma_v4_4_2_ring_emit_reg_wait,
2152 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2153 	.reset = sdma_v4_4_2_reset_queue,
2154 	.is_guilty = sdma_v4_4_2_ring_is_guilty,
2155 };
2156 
2157 static const struct amdgpu_ring_funcs sdma_v4_4_2_page_ring_funcs = {
2158 	.type = AMDGPU_RING_TYPE_SDMA,
2159 	.align_mask = 0xff,
2160 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2161 	.support_64bit_ptrs = true,
2162 	.get_rptr = sdma_v4_4_2_ring_get_rptr,
2163 	.get_wptr = sdma_v4_4_2_page_ring_get_wptr,
2164 	.set_wptr = sdma_v4_4_2_page_ring_set_wptr,
2165 	.emit_frame_size =
2166 		6 + /* sdma_v4_4_2_ring_emit_hdp_flush */
2167 		3 + /* hdp invalidate */
2168 		6 + /* sdma_v4_4_2_ring_emit_pipeline_sync */
2169 		/* sdma_v4_4_2_ring_emit_vm_flush */
2170 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2171 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2172 		10 + 10 + 10, /* sdma_v4_4_2_ring_emit_fence x3 for user fence, vm fence */
2173 	.emit_ib_size = 7 + 6, /* sdma_v4_4_2_ring_emit_ib */
2174 	.emit_ib = sdma_v4_4_2_ring_emit_ib,
2175 	.emit_fence = sdma_v4_4_2_ring_emit_fence,
2176 	.emit_pipeline_sync = sdma_v4_4_2_ring_emit_pipeline_sync,
2177 	.emit_vm_flush = sdma_v4_4_2_ring_emit_vm_flush,
2178 	.emit_hdp_flush = sdma_v4_4_2_ring_emit_hdp_flush,
2179 	.test_ring = sdma_v4_4_2_ring_test_ring,
2180 	.test_ib = sdma_v4_4_2_ring_test_ib,
2181 	.insert_nop = sdma_v4_4_2_ring_insert_nop,
2182 	.pad_ib = sdma_v4_4_2_ring_pad_ib,
2183 	.emit_wreg = sdma_v4_4_2_ring_emit_wreg,
2184 	.emit_reg_wait = sdma_v4_4_2_ring_emit_reg_wait,
2185 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2186 	.reset = sdma_v4_4_2_reset_queue,
2187 	.is_guilty = sdma_v4_4_2_page_ring_is_guilty,
2188 };
2189 
2190 static void sdma_v4_4_2_set_ring_funcs(struct amdgpu_device *adev)
2191 {
2192 	int i, dev_inst;
2193 
2194 	for (i = 0; i < adev->sdma.num_instances; i++) {
2195 		adev->sdma.instance[i].ring.funcs = &sdma_v4_4_2_ring_funcs;
2196 		adev->sdma.instance[i].ring.me = i;
2197 		if (adev->sdma.has_page_queue) {
2198 			adev->sdma.instance[i].page.funcs =
2199 				&sdma_v4_4_2_page_ring_funcs;
2200 			adev->sdma.instance[i].page.me = i;
2201 		}
2202 
2203 		dev_inst = GET_INST(SDMA0, i);
2204 		/* AID to which SDMA belongs depends on physical instance */
2205 		adev->sdma.instance[i].aid_id =
2206 			dev_inst / adev->sdma.num_inst_per_aid;
2207 	}
2208 }
2209 
2210 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_trap_irq_funcs = {
2211 	.set = sdma_v4_4_2_set_trap_irq_state,
2212 	.process = sdma_v4_4_2_process_trap_irq,
2213 };
2214 
2215 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_illegal_inst_irq_funcs = {
2216 	.process = sdma_v4_4_2_process_illegal_inst_irq,
2217 };
2218 
2219 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_ecc_irq_funcs = {
2220 	.set = sdma_v4_4_2_set_ecc_irq_state,
2221 	.process = amdgpu_sdma_process_ecc_irq,
2222 };
2223 
2224 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_vm_hole_irq_funcs = {
2225 	.process = sdma_v4_4_2_process_vm_hole_irq,
2226 };
2227 
2228 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_doorbell_invalid_irq_funcs = {
2229 	.process = sdma_v4_4_2_process_doorbell_invalid_irq,
2230 };
2231 
2232 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_pool_timeout_irq_funcs = {
2233 	.process = sdma_v4_4_2_process_pool_timeout_irq,
2234 };
2235 
2236 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_srbm_write_irq_funcs = {
2237 	.process = sdma_v4_4_2_process_srbm_write_irq,
2238 };
2239 
2240 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_ctxt_empty_irq_funcs = {
2241 	.process = sdma_v4_4_2_process_ctxt_empty_irq,
2242 };
2243 
2244 static void sdma_v4_4_2_set_irq_funcs(struct amdgpu_device *adev)
2245 {
2246 	adev->sdma.trap_irq.num_types = adev->sdma.num_instances;
2247 	adev->sdma.ecc_irq.num_types = adev->sdma.num_instances;
2248 	adev->sdma.vm_hole_irq.num_types = adev->sdma.num_instances;
2249 	adev->sdma.doorbell_invalid_irq.num_types = adev->sdma.num_instances;
2250 	adev->sdma.pool_timeout_irq.num_types = adev->sdma.num_instances;
2251 	adev->sdma.srbm_write_irq.num_types = adev->sdma.num_instances;
2252 	adev->sdma.ctxt_empty_irq.num_types = adev->sdma.num_instances;
2253 
2254 	adev->sdma.trap_irq.funcs = &sdma_v4_4_2_trap_irq_funcs;
2255 	adev->sdma.illegal_inst_irq.funcs = &sdma_v4_4_2_illegal_inst_irq_funcs;
2256 	adev->sdma.ecc_irq.funcs = &sdma_v4_4_2_ecc_irq_funcs;
2257 	adev->sdma.vm_hole_irq.funcs = &sdma_v4_4_2_vm_hole_irq_funcs;
2258 	adev->sdma.doorbell_invalid_irq.funcs = &sdma_v4_4_2_doorbell_invalid_irq_funcs;
2259 	adev->sdma.pool_timeout_irq.funcs = &sdma_v4_4_2_pool_timeout_irq_funcs;
2260 	adev->sdma.srbm_write_irq.funcs = &sdma_v4_4_2_srbm_write_irq_funcs;
2261 	adev->sdma.ctxt_empty_irq.funcs = &sdma_v4_4_2_ctxt_empty_irq_funcs;
2262 }
2263 
2264 /**
2265  * sdma_v4_4_2_emit_copy_buffer - copy buffer using the sDMA engine
2266  *
2267  * @ib: indirect buffer to copy to
2268  * @src_offset: src GPU address
2269  * @dst_offset: dst GPU address
2270  * @byte_count: number of bytes to xfer
2271  * @copy_flags: copy flags for the buffers
2272  *
2273  * Copy GPU buffers using the DMA engine.
2274  * Used by the amdgpu ttm implementation to move pages if
2275  * registered as the asic copy callback.
2276  */
2277 static void sdma_v4_4_2_emit_copy_buffer(struct amdgpu_ib *ib,
2278 				       uint64_t src_offset,
2279 				       uint64_t dst_offset,
2280 				       uint32_t byte_count,
2281 				       uint32_t copy_flags)
2282 {
2283 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
2284 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
2285 		SDMA_PKT_COPY_LINEAR_HEADER_TMZ((copy_flags & AMDGPU_COPY_FLAGS_TMZ) ? 1 : 0);
2286 	ib->ptr[ib->length_dw++] = byte_count - 1;
2287 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
2288 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
2289 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
2290 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2291 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2292 }
2293 
2294 /**
2295  * sdma_v4_4_2_emit_fill_buffer - fill buffer using the sDMA engine
2296  *
2297  * @ib: indirect buffer to copy to
2298  * @src_data: value to write to buffer
2299  * @dst_offset: dst GPU address
2300  * @byte_count: number of bytes to xfer
2301  *
2302  * Fill GPU buffers using the DMA engine.
2303  */
2304 static void sdma_v4_4_2_emit_fill_buffer(struct amdgpu_ib *ib,
2305 				       uint32_t src_data,
2306 				       uint64_t dst_offset,
2307 				       uint32_t byte_count)
2308 {
2309 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2310 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2311 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2312 	ib->ptr[ib->length_dw++] = src_data;
2313 	ib->ptr[ib->length_dw++] = byte_count - 1;
2314 }
2315 
2316 static const struct amdgpu_buffer_funcs sdma_v4_4_2_buffer_funcs = {
2317 	.copy_max_bytes = 0x400000,
2318 	.copy_num_dw = 7,
2319 	.emit_copy_buffer = sdma_v4_4_2_emit_copy_buffer,
2320 
2321 	.fill_max_bytes = 0x400000,
2322 	.fill_num_dw = 5,
2323 	.emit_fill_buffer = sdma_v4_4_2_emit_fill_buffer,
2324 };
2325 
2326 static void sdma_v4_4_2_set_buffer_funcs(struct amdgpu_device *adev)
2327 {
2328 	adev->mman.buffer_funcs = &sdma_v4_4_2_buffer_funcs;
2329 	if (adev->sdma.has_page_queue)
2330 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
2331 	else
2332 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2333 }
2334 
2335 static const struct amdgpu_vm_pte_funcs sdma_v4_4_2_vm_pte_funcs = {
2336 	.copy_pte_num_dw = 7,
2337 	.copy_pte = sdma_v4_4_2_vm_copy_pte,
2338 
2339 	.write_pte = sdma_v4_4_2_vm_write_pte,
2340 	.set_pte_pde = sdma_v4_4_2_vm_set_pte_pde,
2341 };
2342 
2343 static void sdma_v4_4_2_set_vm_pte_funcs(struct amdgpu_device *adev)
2344 {
2345 	struct drm_gpu_scheduler *sched;
2346 	unsigned i;
2347 
2348 	adev->vm_manager.vm_pte_funcs = &sdma_v4_4_2_vm_pte_funcs;
2349 	for (i = 0; i < adev->sdma.num_instances; i++) {
2350 		if (adev->sdma.has_page_queue)
2351 			sched = &adev->sdma.instance[i].page.sched;
2352 		else
2353 			sched = &adev->sdma.instance[i].ring.sched;
2354 		adev->vm_manager.vm_pte_scheds[i] = sched;
2355 	}
2356 	adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
2357 }
2358 
2359 /**
2360  * sdma_v4_4_2_update_reset_mask - update  reset mask for SDMA
2361  * @adev: Pointer to the AMDGPU device structure
2362  *
2363  * This function update reset mask for SDMA and sets the supported
2364  * reset types based on the IP version and firmware versions.
2365  *
2366  */
2367 static void sdma_v4_4_2_update_reset_mask(struct amdgpu_device *adev)
2368 {
2369 	/* per queue reset not supported for SRIOV */
2370 	if (amdgpu_sriov_vf(adev))
2371 		return;
2372 
2373 	/*
2374 	 * the user queue relies on MEC fw and pmfw when the sdma queue do reset.
2375 	 * it needs to check both of them at here to skip old mec and pmfw.
2376 	 */
2377 	switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
2378 	case IP_VERSION(9, 4, 3):
2379 	case IP_VERSION(9, 4, 4):
2380 		if ((adev->gfx.mec_fw_version >= 0xb0) && amdgpu_dpm_reset_sdma_is_supported(adev))
2381 			adev->sdma.supported_reset |= AMDGPU_RESET_TYPE_PER_QUEUE;
2382 		break;
2383 	case IP_VERSION(9, 5, 0):
2384 		if ((adev->gfx.mec_fw_version >= 0xf) && amdgpu_dpm_reset_sdma_is_supported(adev))
2385 			adev->sdma.supported_reset |= AMDGPU_RESET_TYPE_PER_QUEUE;
2386 		break;
2387 	default:
2388 		break;
2389 	}
2390 
2391 }
2392 
2393 const struct amdgpu_ip_block_version sdma_v4_4_2_ip_block = {
2394 	.type = AMD_IP_BLOCK_TYPE_SDMA,
2395 	.major = 4,
2396 	.minor = 4,
2397 	.rev = 2,
2398 	.funcs = &sdma_v4_4_2_ip_funcs,
2399 };
2400 
2401 static int sdma_v4_4_2_xcp_resume(void *handle, uint32_t inst_mask)
2402 {
2403 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2404 	int r;
2405 
2406 	if (!amdgpu_sriov_vf(adev))
2407 		sdma_v4_4_2_inst_init_golden_registers(adev, inst_mask);
2408 
2409 	r = sdma_v4_4_2_inst_start(adev, inst_mask, false);
2410 
2411 	return r;
2412 }
2413 
2414 static int sdma_v4_4_2_xcp_suspend(void *handle, uint32_t inst_mask)
2415 {
2416 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2417 	uint32_t tmp_mask = inst_mask;
2418 	int i;
2419 
2420 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2421 		for_each_inst(i, tmp_mask) {
2422 			amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
2423 				       AMDGPU_SDMA_IRQ_INSTANCE0 + i);
2424 		}
2425 	}
2426 
2427 	sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask);
2428 	sdma_v4_4_2_inst_enable(adev, false, inst_mask);
2429 
2430 	return 0;
2431 }
2432 
2433 struct amdgpu_xcp_ip_funcs sdma_v4_4_2_xcp_funcs = {
2434 	.suspend = &sdma_v4_4_2_xcp_suspend,
2435 	.resume = &sdma_v4_4_2_xcp_resume
2436 };
2437 
2438 static const struct amdgpu_ras_err_status_reg_entry sdma_v4_2_2_ue_reg_list[] = {
2439 	{AMDGPU_RAS_REG_ENTRY(SDMA0, 0, regSDMA_UE_ERR_STATUS_LO, regSDMA_UE_ERR_STATUS_HI),
2440 	1, (AMDGPU_RAS_ERR_INFO_VALID | AMDGPU_RAS_ERR_STATUS_VALID), "SDMA"},
2441 };
2442 
2443 static const struct amdgpu_ras_memory_id_entry sdma_v4_4_2_ras_memory_list[] = {
2444 	{AMDGPU_SDMA_MBANK_DATA_BUF0, "SDMA_MBANK_DATA_BUF0"},
2445 	{AMDGPU_SDMA_MBANK_DATA_BUF1, "SDMA_MBANK_DATA_BUF1"},
2446 	{AMDGPU_SDMA_MBANK_DATA_BUF2, "SDMA_MBANK_DATA_BUF2"},
2447 	{AMDGPU_SDMA_MBANK_DATA_BUF3, "SDMA_MBANK_DATA_BUF3"},
2448 	{AMDGPU_SDMA_MBANK_DATA_BUF4, "SDMA_MBANK_DATA_BUF4"},
2449 	{AMDGPU_SDMA_MBANK_DATA_BUF5, "SDMA_MBANK_DATA_BUF5"},
2450 	{AMDGPU_SDMA_MBANK_DATA_BUF6, "SDMA_MBANK_DATA_BUF6"},
2451 	{AMDGPU_SDMA_MBANK_DATA_BUF7, "SDMA_MBANK_DATA_BUF7"},
2452 	{AMDGPU_SDMA_MBANK_DATA_BUF8, "SDMA_MBANK_DATA_BUF8"},
2453 	{AMDGPU_SDMA_MBANK_DATA_BUF9, "SDMA_MBANK_DATA_BUF9"},
2454 	{AMDGPU_SDMA_MBANK_DATA_BUF10, "SDMA_MBANK_DATA_BUF10"},
2455 	{AMDGPU_SDMA_MBANK_DATA_BUF11, "SDMA_MBANK_DATA_BUF11"},
2456 	{AMDGPU_SDMA_MBANK_DATA_BUF12, "SDMA_MBANK_DATA_BUF12"},
2457 	{AMDGPU_SDMA_MBANK_DATA_BUF13, "SDMA_MBANK_DATA_BUF13"},
2458 	{AMDGPU_SDMA_MBANK_DATA_BUF14, "SDMA_MBANK_DATA_BUF14"},
2459 	{AMDGPU_SDMA_MBANK_DATA_BUF15, "SDMA_MBANK_DATA_BUF15"},
2460 	{AMDGPU_SDMA_UCODE_BUF, "SDMA_UCODE_BUF"},
2461 	{AMDGPU_SDMA_RB_CMD_BUF, "SDMA_RB_CMD_BUF"},
2462 	{AMDGPU_SDMA_IB_CMD_BUF, "SDMA_IB_CMD_BUF"},
2463 	{AMDGPU_SDMA_UTCL1_RD_FIFO, "SDMA_UTCL1_RD_FIFO"},
2464 	{AMDGPU_SDMA_UTCL1_RDBST_FIFO, "SDMA_UTCL1_RDBST_FIFO"},
2465 	{AMDGPU_SDMA_UTCL1_WR_FIFO, "SDMA_UTCL1_WR_FIFO"},
2466 	{AMDGPU_SDMA_DATA_LUT_FIFO, "SDMA_DATA_LUT_FIFO"},
2467 	{AMDGPU_SDMA_SPLIT_DAT_BUF, "SDMA_SPLIT_DAT_BUF"},
2468 };
2469 
2470 static void sdma_v4_4_2_inst_query_ras_error_count(struct amdgpu_device *adev,
2471 						   uint32_t sdma_inst,
2472 						   void *ras_err_status)
2473 {
2474 	struct ras_err_data *err_data = (struct ras_err_data *)ras_err_status;
2475 	uint32_t sdma_dev_inst = GET_INST(SDMA0, sdma_inst);
2476 	unsigned long ue_count = 0;
2477 	struct amdgpu_smuio_mcm_config_info mcm_info = {
2478 		.socket_id = adev->smuio.funcs->get_socket_id(adev),
2479 		.die_id = adev->sdma.instance[sdma_inst].aid_id,
2480 	};
2481 
2482 	/* sdma v4_4_2 doesn't support query ce counts */
2483 	amdgpu_ras_inst_query_ras_error_count(adev,
2484 					sdma_v4_2_2_ue_reg_list,
2485 					ARRAY_SIZE(sdma_v4_2_2_ue_reg_list),
2486 					sdma_v4_4_2_ras_memory_list,
2487 					ARRAY_SIZE(sdma_v4_4_2_ras_memory_list),
2488 					sdma_dev_inst,
2489 					AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE,
2490 					&ue_count);
2491 
2492 	amdgpu_ras_error_statistic_ue_count(err_data, &mcm_info, ue_count);
2493 }
2494 
2495 static void sdma_v4_4_2_query_ras_error_count(struct amdgpu_device *adev,
2496 					      void *ras_err_status)
2497 {
2498 	uint32_t inst_mask;
2499 	int i = 0;
2500 
2501 	inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
2502 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2503 		for_each_inst(i, inst_mask)
2504 			sdma_v4_4_2_inst_query_ras_error_count(adev, i, ras_err_status);
2505 	} else {
2506 		dev_warn(adev->dev, "SDMA RAS is not supported\n");
2507 	}
2508 }
2509 
2510 static void sdma_v4_4_2_inst_reset_ras_error_count(struct amdgpu_device *adev,
2511 						   uint32_t sdma_inst)
2512 {
2513 	uint32_t sdma_dev_inst = GET_INST(SDMA0, sdma_inst);
2514 
2515 	amdgpu_ras_inst_reset_ras_error_count(adev,
2516 					sdma_v4_2_2_ue_reg_list,
2517 					ARRAY_SIZE(sdma_v4_2_2_ue_reg_list),
2518 					sdma_dev_inst);
2519 }
2520 
2521 static void sdma_v4_4_2_reset_ras_error_count(struct amdgpu_device *adev)
2522 {
2523 	uint32_t inst_mask;
2524 	int i = 0;
2525 
2526 	inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
2527 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2528 		for_each_inst(i, inst_mask)
2529 			sdma_v4_4_2_inst_reset_ras_error_count(adev, i);
2530 	} else {
2531 		dev_warn(adev->dev, "SDMA RAS is not supported\n");
2532 	}
2533 }
2534 
2535 static const struct amdgpu_ras_block_hw_ops sdma_v4_4_2_ras_hw_ops = {
2536 	.query_ras_error_count = sdma_v4_4_2_query_ras_error_count,
2537 	.reset_ras_error_count = sdma_v4_4_2_reset_ras_error_count,
2538 };
2539 
2540 static int sdma_v4_4_2_aca_bank_parser(struct aca_handle *handle, struct aca_bank *bank,
2541 				       enum aca_smu_type type, void *data)
2542 {
2543 	struct aca_bank_info info;
2544 	u64 misc0;
2545 	int ret;
2546 
2547 	ret = aca_bank_info_decode(bank, &info);
2548 	if (ret)
2549 		return ret;
2550 
2551 	misc0 = bank->regs[ACA_REG_IDX_MISC0];
2552 	switch (type) {
2553 	case ACA_SMU_TYPE_UE:
2554 		bank->aca_err_type = ACA_ERROR_TYPE_UE;
2555 		ret = aca_error_cache_log_bank_error(handle, &info, ACA_ERROR_TYPE_UE,
2556 						     1ULL);
2557 		break;
2558 	case ACA_SMU_TYPE_CE:
2559 		bank->aca_err_type = ACA_ERROR_TYPE_CE;
2560 		ret = aca_error_cache_log_bank_error(handle, &info, bank->aca_err_type,
2561 						     ACA_REG__MISC0__ERRCNT(misc0));
2562 		break;
2563 	default:
2564 		return -EINVAL;
2565 	}
2566 
2567 	return ret;
2568 }
2569 
2570 /* CODE_SDMA0 - CODE_SDMA4, reference to smu driver if header file */
2571 static int sdma_v4_4_2_err_codes[] = { 33, 34, 35, 36 };
2572 
2573 static bool sdma_v4_4_2_aca_bank_is_valid(struct aca_handle *handle, struct aca_bank *bank,
2574 					  enum aca_smu_type type, void *data)
2575 {
2576 	u32 instlo;
2577 
2578 	instlo = ACA_REG__IPID__INSTANCEIDLO(bank->regs[ACA_REG_IDX_IPID]);
2579 	instlo &= GENMASK(31, 1);
2580 
2581 	if (instlo != mmSMNAID_AID0_MCA_SMU)
2582 		return false;
2583 
2584 	if (aca_bank_check_error_codes(handle->adev, bank,
2585 				       sdma_v4_4_2_err_codes,
2586 				       ARRAY_SIZE(sdma_v4_4_2_err_codes)))
2587 		return false;
2588 
2589 	return true;
2590 }
2591 
2592 static const struct aca_bank_ops sdma_v4_4_2_aca_bank_ops = {
2593 	.aca_bank_parser = sdma_v4_4_2_aca_bank_parser,
2594 	.aca_bank_is_valid = sdma_v4_4_2_aca_bank_is_valid,
2595 };
2596 
2597 static const struct aca_info sdma_v4_4_2_aca_info = {
2598 	.hwip = ACA_HWIP_TYPE_SMU,
2599 	.mask = ACA_ERROR_UE_MASK,
2600 	.bank_ops = &sdma_v4_4_2_aca_bank_ops,
2601 };
2602 
2603 static int sdma_v4_4_2_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block)
2604 {
2605 	int r;
2606 
2607 	r = amdgpu_sdma_ras_late_init(adev, ras_block);
2608 	if (r)
2609 		return r;
2610 
2611 	return amdgpu_ras_bind_aca(adev, AMDGPU_RAS_BLOCK__SDMA,
2612 				   &sdma_v4_4_2_aca_info, NULL);
2613 }
2614 
2615 static struct amdgpu_sdma_ras sdma_v4_4_2_ras = {
2616 	.ras_block = {
2617 		.hw_ops = &sdma_v4_4_2_ras_hw_ops,
2618 		.ras_late_init = sdma_v4_4_2_ras_late_init,
2619 	},
2620 };
2621 
2622 static void sdma_v4_4_2_set_ras_funcs(struct amdgpu_device *adev)
2623 {
2624 	adev->sdma.ras = &sdma_v4_4_2_ras;
2625 }
2626