xref: /linux/drivers/gpu/drm/amd/amdgpu/sdma_v4_4_2.c (revision 889d55154516ec8f98ea953e8660963f2e29c75d)
1 /*
2  * Copyright 2022 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28 
29 #include "amdgpu.h"
30 #include "amdgpu_xcp.h"
31 #include "amdgpu_ucode.h"
32 #include "amdgpu_trace.h"
33 
34 #include "sdma/sdma_4_4_2_offset.h"
35 #include "sdma/sdma_4_4_2_sh_mask.h"
36 
37 #include "soc15_common.h"
38 #include "soc15.h"
39 #include "vega10_sdma_pkt_open.h"
40 
41 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
42 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
43 
44 #include "amdgpu_ras.h"
45 
46 MODULE_FIRMWARE("amdgpu/sdma_4_4_2.bin");
47 
48 #define WREG32_SDMA(instance, offset, value) \
49 	WREG32(sdma_v4_4_2_get_reg_offset(adev, (instance), (offset)), value)
50 #define RREG32_SDMA(instance, offset) \
51 	RREG32(sdma_v4_4_2_get_reg_offset(adev, (instance), (offset)))
52 
53 static void sdma_v4_4_2_set_ring_funcs(struct amdgpu_device *adev);
54 static void sdma_v4_4_2_set_buffer_funcs(struct amdgpu_device *adev);
55 static void sdma_v4_4_2_set_vm_pte_funcs(struct amdgpu_device *adev);
56 static void sdma_v4_4_2_set_irq_funcs(struct amdgpu_device *adev);
57 static void sdma_v4_4_2_set_ras_funcs(struct amdgpu_device *adev);
58 
59 static u32 sdma_v4_4_2_get_reg_offset(struct amdgpu_device *adev,
60 		u32 instance, u32 offset)
61 {
62 	u32 dev_inst = GET_INST(SDMA0, instance);
63 
64 	return (adev->reg_offset[SDMA0_HWIP][dev_inst][0] + offset);
65 }
66 
67 static unsigned sdma_v4_4_2_seq_to_irq_id(int seq_num)
68 {
69 	switch (seq_num) {
70 	case 0:
71 		return SOC15_IH_CLIENTID_SDMA0;
72 	case 1:
73 		return SOC15_IH_CLIENTID_SDMA1;
74 	case 2:
75 		return SOC15_IH_CLIENTID_SDMA2;
76 	case 3:
77 		return SOC15_IH_CLIENTID_SDMA3;
78 	default:
79 		return -EINVAL;
80 	}
81 }
82 
83 static int sdma_v4_4_2_irq_id_to_seq(unsigned client_id)
84 {
85 	switch (client_id) {
86 	case SOC15_IH_CLIENTID_SDMA0:
87 		return 0;
88 	case SOC15_IH_CLIENTID_SDMA1:
89 		return 1;
90 	case SOC15_IH_CLIENTID_SDMA2:
91 		return 2;
92 	case SOC15_IH_CLIENTID_SDMA3:
93 		return 3;
94 	default:
95 		return -EINVAL;
96 	}
97 }
98 
99 static void sdma_v4_4_2_inst_init_golden_registers(struct amdgpu_device *adev,
100 						   uint32_t inst_mask)
101 {
102 	u32 val;
103 	int i;
104 
105 	for (i = 0; i < adev->sdma.num_instances; i++) {
106 		val = RREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG);
107 		val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG, NUM_BANKS, 4);
108 		val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG,
109 				    PIPE_INTERLEAVE_SIZE, 0);
110 		WREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG, val);
111 
112 		val = RREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG_READ);
113 		val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG_READ, NUM_BANKS,
114 				    4);
115 		val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG_READ,
116 				    PIPE_INTERLEAVE_SIZE, 0);
117 		WREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG_READ, val);
118 	}
119 }
120 
121 /**
122  * sdma_v4_4_2_init_microcode - load ucode images from disk
123  *
124  * @adev: amdgpu_device pointer
125  *
126  * Use the firmware interface to load the ucode images into
127  * the driver (not loaded into hw).
128  * Returns 0 on success, error on failure.
129  */
130 static int sdma_v4_4_2_init_microcode(struct amdgpu_device *adev)
131 {
132 	int ret, i;
133 
134 	for (i = 0; i < adev->sdma.num_instances; i++) {
135 		if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) ==
136 		    IP_VERSION(4, 4, 2)) {
137 			ret = amdgpu_sdma_init_microcode(adev, 0, true);
138 			break;
139 		} else {
140 			ret = amdgpu_sdma_init_microcode(adev, i, false);
141 			if (ret)
142 				return ret;
143 		}
144 	}
145 
146 	return ret;
147 }
148 
149 /**
150  * sdma_v4_4_2_ring_get_rptr - get the current read pointer
151  *
152  * @ring: amdgpu ring pointer
153  *
154  * Get the current rptr from the hardware.
155  */
156 static uint64_t sdma_v4_4_2_ring_get_rptr(struct amdgpu_ring *ring)
157 {
158 	u64 rptr;
159 
160 	/* XXX check if swapping is necessary on BE */
161 	rptr = READ_ONCE(*((u64 *)&ring->adev->wb.wb[ring->rptr_offs]));
162 
163 	DRM_DEBUG("rptr before shift == 0x%016llx\n", rptr);
164 	return rptr >> 2;
165 }
166 
167 /**
168  * sdma_v4_4_2_ring_get_wptr - get the current write pointer
169  *
170  * @ring: amdgpu ring pointer
171  *
172  * Get the current wptr from the hardware.
173  */
174 static uint64_t sdma_v4_4_2_ring_get_wptr(struct amdgpu_ring *ring)
175 {
176 	struct amdgpu_device *adev = ring->adev;
177 	u64 wptr;
178 
179 	if (ring->use_doorbell) {
180 		/* XXX check if swapping is necessary on BE */
181 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
182 		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
183 	} else {
184 		wptr = RREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR_HI);
185 		wptr = wptr << 32;
186 		wptr |= RREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR);
187 		DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
188 				ring->me, wptr);
189 	}
190 
191 	return wptr >> 2;
192 }
193 
194 /**
195  * sdma_v4_4_2_ring_set_wptr - commit the write pointer
196  *
197  * @ring: amdgpu ring pointer
198  *
199  * Write the wptr back to the hardware.
200  */
201 static void sdma_v4_4_2_ring_set_wptr(struct amdgpu_ring *ring)
202 {
203 	struct amdgpu_device *adev = ring->adev;
204 
205 	DRM_DEBUG("Setting write pointer\n");
206 	if (ring->use_doorbell) {
207 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
208 
209 		DRM_DEBUG("Using doorbell -- "
210 				"wptr_offs == 0x%08x "
211 				"lower_32_bits(ring->wptr) << 2 == 0x%08x "
212 				"upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
213 				ring->wptr_offs,
214 				lower_32_bits(ring->wptr << 2),
215 				upper_32_bits(ring->wptr << 2));
216 		/* XXX check if swapping is necessary on BE */
217 		WRITE_ONCE(*wb, (ring->wptr << 2));
218 		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
219 				ring->doorbell_index, ring->wptr << 2);
220 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
221 	} else {
222 		DRM_DEBUG("Not using doorbell -- "
223 				"regSDMA%i_GFX_RB_WPTR == 0x%08x "
224 				"regSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
225 				ring->me,
226 				lower_32_bits(ring->wptr << 2),
227 				ring->me,
228 				upper_32_bits(ring->wptr << 2));
229 		WREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR,
230 			    lower_32_bits(ring->wptr << 2));
231 		WREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR_HI,
232 			    upper_32_bits(ring->wptr << 2));
233 	}
234 }
235 
236 /**
237  * sdma_v4_4_2_page_ring_get_wptr - get the current write pointer
238  *
239  * @ring: amdgpu ring pointer
240  *
241  * Get the current wptr from the hardware.
242  */
243 static uint64_t sdma_v4_4_2_page_ring_get_wptr(struct amdgpu_ring *ring)
244 {
245 	struct amdgpu_device *adev = ring->adev;
246 	u64 wptr;
247 
248 	if (ring->use_doorbell) {
249 		/* XXX check if swapping is necessary on BE */
250 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
251 	} else {
252 		wptr = RREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR_HI);
253 		wptr = wptr << 32;
254 		wptr |= RREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR);
255 	}
256 
257 	return wptr >> 2;
258 }
259 
260 /**
261  * sdma_v4_4_2_page_ring_set_wptr - commit the write pointer
262  *
263  * @ring: amdgpu ring pointer
264  *
265  * Write the wptr back to the hardware.
266  */
267 static void sdma_v4_4_2_page_ring_set_wptr(struct amdgpu_ring *ring)
268 {
269 	struct amdgpu_device *adev = ring->adev;
270 
271 	if (ring->use_doorbell) {
272 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
273 
274 		/* XXX check if swapping is necessary on BE */
275 		WRITE_ONCE(*wb, (ring->wptr << 2));
276 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
277 	} else {
278 		uint64_t wptr = ring->wptr << 2;
279 
280 		WREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR,
281 			    lower_32_bits(wptr));
282 		WREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR_HI,
283 			    upper_32_bits(wptr));
284 	}
285 }
286 
287 static void sdma_v4_4_2_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
288 {
289 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
290 	int i;
291 
292 	for (i = 0; i < count; i++)
293 		if (sdma && sdma->burst_nop && (i == 0))
294 			amdgpu_ring_write(ring, ring->funcs->nop |
295 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
296 		else
297 			amdgpu_ring_write(ring, ring->funcs->nop);
298 }
299 
300 /**
301  * sdma_v4_4_2_ring_emit_ib - Schedule an IB on the DMA engine
302  *
303  * @ring: amdgpu ring pointer
304  * @job: job to retrieve vmid from
305  * @ib: IB object to schedule
306  * @flags: unused
307  *
308  * Schedule an IB in the DMA ring.
309  */
310 static void sdma_v4_4_2_ring_emit_ib(struct amdgpu_ring *ring,
311 				   struct amdgpu_job *job,
312 				   struct amdgpu_ib *ib,
313 				   uint32_t flags)
314 {
315 	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
316 
317 	/* IB packet must end on a 8 DW boundary */
318 	sdma_v4_4_2_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
319 
320 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
321 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
322 	/* base must be 32 byte aligned */
323 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
324 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
325 	amdgpu_ring_write(ring, ib->length_dw);
326 	amdgpu_ring_write(ring, 0);
327 	amdgpu_ring_write(ring, 0);
328 
329 }
330 
331 static void sdma_v4_4_2_wait_reg_mem(struct amdgpu_ring *ring,
332 				   int mem_space, int hdp,
333 				   uint32_t addr0, uint32_t addr1,
334 				   uint32_t ref, uint32_t mask,
335 				   uint32_t inv)
336 {
337 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
338 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
339 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
340 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
341 	if (mem_space) {
342 		/* memory */
343 		amdgpu_ring_write(ring, addr0);
344 		amdgpu_ring_write(ring, addr1);
345 	} else {
346 		/* registers */
347 		amdgpu_ring_write(ring, addr0 << 2);
348 		amdgpu_ring_write(ring, addr1 << 2);
349 	}
350 	amdgpu_ring_write(ring, ref); /* reference */
351 	amdgpu_ring_write(ring, mask); /* mask */
352 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
353 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
354 }
355 
356 /**
357  * sdma_v4_4_2_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
358  *
359  * @ring: amdgpu ring pointer
360  *
361  * Emit an hdp flush packet on the requested DMA ring.
362  */
363 static void sdma_v4_4_2_ring_emit_hdp_flush(struct amdgpu_ring *ring)
364 {
365 	struct amdgpu_device *adev = ring->adev;
366 	u32 ref_and_mask = 0;
367 	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
368 
369 	ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me;
370 
371 	sdma_v4_4_2_wait_reg_mem(ring, 0, 1,
372 			       adev->nbio.funcs->get_hdp_flush_done_offset(adev),
373 			       adev->nbio.funcs->get_hdp_flush_req_offset(adev),
374 			       ref_and_mask, ref_and_mask, 10);
375 }
376 
377 /**
378  * sdma_v4_4_2_ring_emit_fence - emit a fence on the DMA ring
379  *
380  * @ring: amdgpu ring pointer
381  * @addr: address
382  * @seq: sequence number
383  * @flags: fence related flags
384  *
385  * Add a DMA fence packet to the ring to write
386  * the fence seq number and DMA trap packet to generate
387  * an interrupt if needed.
388  */
389 static void sdma_v4_4_2_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
390 				      unsigned flags)
391 {
392 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
393 	/* write the fence */
394 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
395 	/* zero in first two bits */
396 	BUG_ON(addr & 0x3);
397 	amdgpu_ring_write(ring, lower_32_bits(addr));
398 	amdgpu_ring_write(ring, upper_32_bits(addr));
399 	amdgpu_ring_write(ring, lower_32_bits(seq));
400 
401 	/* optionally write high bits as well */
402 	if (write64bit) {
403 		addr += 4;
404 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
405 		/* zero in first two bits */
406 		BUG_ON(addr & 0x3);
407 		amdgpu_ring_write(ring, lower_32_bits(addr));
408 		amdgpu_ring_write(ring, upper_32_bits(addr));
409 		amdgpu_ring_write(ring, upper_32_bits(seq));
410 	}
411 
412 	/* generate an interrupt */
413 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
414 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
415 }
416 
417 
418 /**
419  * sdma_v4_4_2_inst_gfx_stop - stop the gfx async dma engines
420  *
421  * @adev: amdgpu_device pointer
422  * @inst_mask: mask of dma engine instances to be disabled
423  *
424  * Stop the gfx async dma ring buffers.
425  */
426 static void sdma_v4_4_2_inst_gfx_stop(struct amdgpu_device *adev,
427 				      uint32_t inst_mask)
428 {
429 	struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
430 	u32 rb_cntl, ib_cntl;
431 	int i, unset = 0;
432 
433 	for_each_inst(i, inst_mask) {
434 		sdma[i] = &adev->sdma.instance[i].ring;
435 
436 		if ((adev->mman.buffer_funcs_ring == sdma[i]) && unset != 1) {
437 			amdgpu_ttm_set_buffer_funcs_status(adev, false);
438 			unset = 1;
439 		}
440 
441 		rb_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_CNTL);
442 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_ENABLE, 0);
443 		WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl);
444 		ib_cntl = RREG32_SDMA(i, regSDMA_GFX_IB_CNTL);
445 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_ENABLE, 0);
446 		WREG32_SDMA(i, regSDMA_GFX_IB_CNTL, ib_cntl);
447 	}
448 }
449 
450 /**
451  * sdma_v4_4_2_inst_rlc_stop - stop the compute async dma engines
452  *
453  * @adev: amdgpu_device pointer
454  * @inst_mask: mask of dma engine instances to be disabled
455  *
456  * Stop the compute async dma queues.
457  */
458 static void sdma_v4_4_2_inst_rlc_stop(struct amdgpu_device *adev,
459 				      uint32_t inst_mask)
460 {
461 	/* XXX todo */
462 }
463 
464 /**
465  * sdma_v4_4_2_inst_page_stop - stop the page async dma engines
466  *
467  * @adev: amdgpu_device pointer
468  * @inst_mask: mask of dma engine instances to be disabled
469  *
470  * Stop the page async dma ring buffers.
471  */
472 static void sdma_v4_4_2_inst_page_stop(struct amdgpu_device *adev,
473 				       uint32_t inst_mask)
474 {
475 	struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
476 	u32 rb_cntl, ib_cntl;
477 	int i;
478 	bool unset = false;
479 
480 	for_each_inst(i, inst_mask) {
481 		sdma[i] = &adev->sdma.instance[i].page;
482 
483 		if ((adev->mman.buffer_funcs_ring == sdma[i]) &&
484 			(!unset)) {
485 			amdgpu_ttm_set_buffer_funcs_status(adev, false);
486 			unset = true;
487 		}
488 
489 		rb_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_CNTL);
490 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL,
491 					RB_ENABLE, 0);
492 		WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl);
493 		ib_cntl = RREG32_SDMA(i, regSDMA_PAGE_IB_CNTL);
494 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL,
495 					IB_ENABLE, 0);
496 		WREG32_SDMA(i, regSDMA_PAGE_IB_CNTL, ib_cntl);
497 	}
498 }
499 
500 /**
501  * sdma_v4_4_2_inst_ctx_switch_enable - stop the async dma engines context switch
502  *
503  * @adev: amdgpu_device pointer
504  * @enable: enable/disable the DMA MEs context switch.
505  * @inst_mask: mask of dma engine instances to be enabled
506  *
507  * Halt or unhalt the async dma engines context switch.
508  */
509 static void sdma_v4_4_2_inst_ctx_switch_enable(struct amdgpu_device *adev,
510 					       bool enable, uint32_t inst_mask)
511 {
512 	u32 f32_cntl, phase_quantum = 0;
513 	int i;
514 
515 	if (amdgpu_sdma_phase_quantum) {
516 		unsigned value = amdgpu_sdma_phase_quantum;
517 		unsigned unit = 0;
518 
519 		while (value > (SDMA_PHASE0_QUANTUM__VALUE_MASK >>
520 				SDMA_PHASE0_QUANTUM__VALUE__SHIFT)) {
521 			value = (value + 1) >> 1;
522 			unit++;
523 		}
524 		if (unit > (SDMA_PHASE0_QUANTUM__UNIT_MASK >>
525 			    SDMA_PHASE0_QUANTUM__UNIT__SHIFT)) {
526 			value = (SDMA_PHASE0_QUANTUM__VALUE_MASK >>
527 				 SDMA_PHASE0_QUANTUM__VALUE__SHIFT);
528 			unit = (SDMA_PHASE0_QUANTUM__UNIT_MASK >>
529 				SDMA_PHASE0_QUANTUM__UNIT__SHIFT);
530 			WARN_ONCE(1,
531 			"clamping sdma_phase_quantum to %uK clock cycles\n",
532 				  value << unit);
533 		}
534 		phase_quantum =
535 			value << SDMA_PHASE0_QUANTUM__VALUE__SHIFT |
536 			unit  << SDMA_PHASE0_QUANTUM__UNIT__SHIFT;
537 	}
538 
539 	for_each_inst(i, inst_mask) {
540 		f32_cntl = RREG32_SDMA(i, regSDMA_CNTL);
541 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA_CNTL,
542 				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
543 		if (enable && amdgpu_sdma_phase_quantum) {
544 			WREG32_SDMA(i, regSDMA_PHASE0_QUANTUM, phase_quantum);
545 			WREG32_SDMA(i, regSDMA_PHASE1_QUANTUM, phase_quantum);
546 			WREG32_SDMA(i, regSDMA_PHASE2_QUANTUM, phase_quantum);
547 		}
548 		WREG32_SDMA(i, regSDMA_CNTL, f32_cntl);
549 
550 		/* Extend page fault timeout to avoid interrupt storm */
551 		WREG32_SDMA(i, regSDMA_UTCL1_TIMEOUT, 0x00800080);
552 	}
553 }
554 
555 /**
556  * sdma_v4_4_2_inst_enable - stop the async dma engines
557  *
558  * @adev: amdgpu_device pointer
559  * @enable: enable/disable the DMA MEs.
560  * @inst_mask: mask of dma engine instances to be enabled
561  *
562  * Halt or unhalt the async dma engines.
563  */
564 static void sdma_v4_4_2_inst_enable(struct amdgpu_device *adev, bool enable,
565 				    uint32_t inst_mask)
566 {
567 	u32 f32_cntl;
568 	int i;
569 
570 	if (!enable) {
571 		sdma_v4_4_2_inst_gfx_stop(adev, inst_mask);
572 		sdma_v4_4_2_inst_rlc_stop(adev, inst_mask);
573 		if (adev->sdma.has_page_queue)
574 			sdma_v4_4_2_inst_page_stop(adev, inst_mask);
575 
576 		/* SDMA FW needs to respond to FREEZE requests during reset.
577 		 * Keep it running during reset */
578 		if (!amdgpu_sriov_vf(adev) && amdgpu_in_reset(adev))
579 			return;
580 	}
581 
582 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP)
583 		return;
584 
585 	for_each_inst(i, inst_mask) {
586 		f32_cntl = RREG32_SDMA(i, regSDMA_F32_CNTL);
587 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA_F32_CNTL, HALT, enable ? 0 : 1);
588 		WREG32_SDMA(i, regSDMA_F32_CNTL, f32_cntl);
589 	}
590 }
591 
592 /*
593  * sdma_v4_4_2_rb_cntl - get parameters for rb_cntl
594  */
595 static uint32_t sdma_v4_4_2_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
596 {
597 	/* Set ring buffer size in dwords */
598 	uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
599 
600 	barrier(); /* work around https://bugs.llvm.org/show_bug.cgi?id=42576 */
601 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
602 #ifdef __BIG_ENDIAN
603 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
604 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL,
605 				RPTR_WRITEBACK_SWAP_ENABLE, 1);
606 #endif
607 	return rb_cntl;
608 }
609 
610 /**
611  * sdma_v4_4_2_gfx_resume - setup and start the async dma engines
612  *
613  * @adev: amdgpu_device pointer
614  * @i: instance to resume
615  *
616  * Set up the gfx DMA ring buffers and enable them.
617  * Returns 0 for success, error for failure.
618  */
619 static void sdma_v4_4_2_gfx_resume(struct amdgpu_device *adev, unsigned int i)
620 {
621 	struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
622 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
623 	u32 wb_offset;
624 	u32 doorbell;
625 	u32 doorbell_offset;
626 	u64 wptr_gpu_addr;
627 
628 	wb_offset = (ring->rptr_offs * 4);
629 
630 	rb_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_CNTL);
631 	rb_cntl = sdma_v4_4_2_rb_cntl(ring, rb_cntl);
632 	WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl);
633 
634 	/* Initialize the ring buffer's read and write pointers */
635 	WREG32_SDMA(i, regSDMA_GFX_RB_RPTR, 0);
636 	WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_HI, 0);
637 	WREG32_SDMA(i, regSDMA_GFX_RB_WPTR, 0);
638 	WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_HI, 0);
639 
640 	/* set the wb address whether it's enabled or not */
641 	WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_ADDR_HI,
642 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
643 	WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_ADDR_LO,
644 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
645 
646 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL,
647 				RPTR_WRITEBACK_ENABLE, 1);
648 
649 	WREG32_SDMA(i, regSDMA_GFX_RB_BASE, ring->gpu_addr >> 8);
650 	WREG32_SDMA(i, regSDMA_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
651 
652 	ring->wptr = 0;
653 
654 	/* before programing wptr to a less value, need set minor_ptr_update first */
655 	WREG32_SDMA(i, regSDMA_GFX_MINOR_PTR_UPDATE, 1);
656 
657 	doorbell = RREG32_SDMA(i, regSDMA_GFX_DOORBELL);
658 	doorbell_offset = RREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET);
659 
660 	doorbell = REG_SET_FIELD(doorbell, SDMA_GFX_DOORBELL, ENABLE,
661 				 ring->use_doorbell);
662 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
663 					SDMA_GFX_DOORBELL_OFFSET,
664 					OFFSET, ring->doorbell_index);
665 	WREG32_SDMA(i, regSDMA_GFX_DOORBELL, doorbell);
666 	WREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET, doorbell_offset);
667 
668 	sdma_v4_4_2_ring_set_wptr(ring);
669 
670 	/* set minor_ptr_update to 0 after wptr programed */
671 	WREG32_SDMA(i, regSDMA_GFX_MINOR_PTR_UPDATE, 0);
672 
673 	/* setup the wptr shadow polling */
674 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
675 	WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_ADDR_LO,
676 		    lower_32_bits(wptr_gpu_addr));
677 	WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_ADDR_HI,
678 		    upper_32_bits(wptr_gpu_addr));
679 	wptr_poll_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_CNTL);
680 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
681 				       SDMA_GFX_RB_WPTR_POLL_CNTL,
682 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
683 	WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
684 
685 	/* enable DMA RB */
686 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_ENABLE, 1);
687 	WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl);
688 
689 	ib_cntl = RREG32_SDMA(i, regSDMA_GFX_IB_CNTL);
690 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_ENABLE, 1);
691 #ifdef __BIG_ENDIAN
692 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
693 #endif
694 	/* enable DMA IBs */
695 	WREG32_SDMA(i, regSDMA_GFX_IB_CNTL, ib_cntl);
696 }
697 
698 /**
699  * sdma_v4_4_2_page_resume - setup and start the async dma engines
700  *
701  * @adev: amdgpu_device pointer
702  * @i: instance to resume
703  *
704  * Set up the page DMA ring buffers and enable them.
705  * Returns 0 for success, error for failure.
706  */
707 static void sdma_v4_4_2_page_resume(struct amdgpu_device *adev, unsigned int i)
708 {
709 	struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
710 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
711 	u32 wb_offset;
712 	u32 doorbell;
713 	u32 doorbell_offset;
714 	u64 wptr_gpu_addr;
715 
716 	wb_offset = (ring->rptr_offs * 4);
717 
718 	rb_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_CNTL);
719 	rb_cntl = sdma_v4_4_2_rb_cntl(ring, rb_cntl);
720 	WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl);
721 
722 	/* Initialize the ring buffer's read and write pointers */
723 	WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR, 0);
724 	WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_HI, 0);
725 	WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR, 0);
726 	WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_HI, 0);
727 
728 	/* set the wb address whether it's enabled or not */
729 	WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_ADDR_HI,
730 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
731 	WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_ADDR_LO,
732 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
733 
734 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL,
735 				RPTR_WRITEBACK_ENABLE, 1);
736 
737 	WREG32_SDMA(i, regSDMA_PAGE_RB_BASE, ring->gpu_addr >> 8);
738 	WREG32_SDMA(i, regSDMA_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
739 
740 	ring->wptr = 0;
741 
742 	/* before programing wptr to a less value, need set minor_ptr_update first */
743 	WREG32_SDMA(i, regSDMA_PAGE_MINOR_PTR_UPDATE, 1);
744 
745 	doorbell = RREG32_SDMA(i, regSDMA_PAGE_DOORBELL);
746 	doorbell_offset = RREG32_SDMA(i, regSDMA_PAGE_DOORBELL_OFFSET);
747 
748 	doorbell = REG_SET_FIELD(doorbell, SDMA_PAGE_DOORBELL, ENABLE,
749 				 ring->use_doorbell);
750 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
751 					SDMA_PAGE_DOORBELL_OFFSET,
752 					OFFSET, ring->doorbell_index);
753 	WREG32_SDMA(i, regSDMA_PAGE_DOORBELL, doorbell);
754 	WREG32_SDMA(i, regSDMA_PAGE_DOORBELL_OFFSET, doorbell_offset);
755 
756 	/* paging queue doorbell range is setup at sdma_v4_4_2_gfx_resume */
757 	sdma_v4_4_2_page_ring_set_wptr(ring);
758 
759 	/* set minor_ptr_update to 0 after wptr programed */
760 	WREG32_SDMA(i, regSDMA_PAGE_MINOR_PTR_UPDATE, 0);
761 
762 	/* setup the wptr shadow polling */
763 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
764 	WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_ADDR_LO,
765 		    lower_32_bits(wptr_gpu_addr));
766 	WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_ADDR_HI,
767 		    upper_32_bits(wptr_gpu_addr));
768 	wptr_poll_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_CNTL);
769 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
770 				       SDMA_PAGE_RB_WPTR_POLL_CNTL,
771 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
772 	WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
773 
774 	/* enable DMA RB */
775 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL, RB_ENABLE, 1);
776 	WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl);
777 
778 	ib_cntl = RREG32_SDMA(i, regSDMA_PAGE_IB_CNTL);
779 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL, IB_ENABLE, 1);
780 #ifdef __BIG_ENDIAN
781 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
782 #endif
783 	/* enable DMA IBs */
784 	WREG32_SDMA(i, regSDMA_PAGE_IB_CNTL, ib_cntl);
785 }
786 
787 static void sdma_v4_4_2_init_pg(struct amdgpu_device *adev)
788 {
789 
790 }
791 
792 /**
793  * sdma_v4_4_2_inst_rlc_resume - setup and start the async dma engines
794  *
795  * @adev: amdgpu_device pointer
796  * @inst_mask: mask of dma engine instances to be enabled
797  *
798  * Set up the compute DMA queues and enable them.
799  * Returns 0 for success, error for failure.
800  */
801 static int sdma_v4_4_2_inst_rlc_resume(struct amdgpu_device *adev,
802 				       uint32_t inst_mask)
803 {
804 	sdma_v4_4_2_init_pg(adev);
805 
806 	return 0;
807 }
808 
809 /**
810  * sdma_v4_4_2_inst_load_microcode - load the sDMA ME ucode
811  *
812  * @adev: amdgpu_device pointer
813  * @inst_mask: mask of dma engine instances to be enabled
814  *
815  * Loads the sDMA0/1 ucode.
816  * Returns 0 for success, -EINVAL if the ucode is not available.
817  */
818 static int sdma_v4_4_2_inst_load_microcode(struct amdgpu_device *adev,
819 					   uint32_t inst_mask)
820 {
821 	const struct sdma_firmware_header_v1_0 *hdr;
822 	const __le32 *fw_data;
823 	u32 fw_size;
824 	int i, j;
825 
826 	/* halt the MEs */
827 	sdma_v4_4_2_inst_enable(adev, false, inst_mask);
828 
829 	for_each_inst(i, inst_mask) {
830 		if (!adev->sdma.instance[i].fw)
831 			return -EINVAL;
832 
833 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
834 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
835 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
836 
837 		fw_data = (const __le32 *)
838 			(adev->sdma.instance[i].fw->data +
839 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
840 
841 		WREG32_SDMA(i, regSDMA_UCODE_ADDR, 0);
842 
843 		for (j = 0; j < fw_size; j++)
844 			WREG32_SDMA(i, regSDMA_UCODE_DATA,
845 				    le32_to_cpup(fw_data++));
846 
847 		WREG32_SDMA(i, regSDMA_UCODE_ADDR,
848 			    adev->sdma.instance[i].fw_version);
849 	}
850 
851 	return 0;
852 }
853 
854 /**
855  * sdma_v4_4_2_inst_start - setup and start the async dma engines
856  *
857  * @adev: amdgpu_device pointer
858  * @inst_mask: mask of dma engine instances to be enabled
859  *
860  * Set up the DMA engines and enable them.
861  * Returns 0 for success, error for failure.
862  */
863 static int sdma_v4_4_2_inst_start(struct amdgpu_device *adev,
864 				  uint32_t inst_mask)
865 {
866 	struct amdgpu_ring *ring;
867 	uint32_t tmp_mask;
868 	int i, r = 0;
869 
870 	if (amdgpu_sriov_vf(adev)) {
871 		sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask);
872 		sdma_v4_4_2_inst_enable(adev, false, inst_mask);
873 	} else {
874 		/* bypass sdma microcode loading on Gopher */
875 		if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP &&
876 		    adev->sdma.instance[0].fw) {
877 			r = sdma_v4_4_2_inst_load_microcode(adev, inst_mask);
878 			if (r)
879 				return r;
880 		}
881 
882 		/* unhalt the MEs */
883 		sdma_v4_4_2_inst_enable(adev, true, inst_mask);
884 		/* enable sdma ring preemption */
885 		sdma_v4_4_2_inst_ctx_switch_enable(adev, true, inst_mask);
886 	}
887 
888 	/* start the gfx rings and rlc compute queues */
889 	tmp_mask = inst_mask;
890 	for_each_inst(i, tmp_mask) {
891 		uint32_t temp;
892 
893 		WREG32_SDMA(i, regSDMA_SEM_WAIT_FAIL_TIMER_CNTL, 0);
894 		sdma_v4_4_2_gfx_resume(adev, i);
895 		if (adev->sdma.has_page_queue)
896 			sdma_v4_4_2_page_resume(adev, i);
897 
898 		/* set utc l1 enable flag always to 1 */
899 		temp = RREG32_SDMA(i, regSDMA_CNTL);
900 		temp = REG_SET_FIELD(temp, SDMA_CNTL, UTC_L1_ENABLE, 1);
901 		/* enable context empty interrupt during initialization */
902 		temp = REG_SET_FIELD(temp, SDMA_CNTL, CTXEMPTY_INT_ENABLE, 1);
903 		WREG32_SDMA(i, regSDMA_CNTL, temp);
904 
905 		if (!amdgpu_sriov_vf(adev)) {
906 			if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
907 				/* unhalt engine */
908 				temp = RREG32_SDMA(i, regSDMA_F32_CNTL);
909 				temp = REG_SET_FIELD(temp, SDMA_F32_CNTL, HALT, 0);
910 				WREG32_SDMA(i, regSDMA_F32_CNTL, temp);
911 			}
912 		}
913 	}
914 
915 	if (amdgpu_sriov_vf(adev)) {
916 		sdma_v4_4_2_inst_ctx_switch_enable(adev, true, inst_mask);
917 		sdma_v4_4_2_inst_enable(adev, true, inst_mask);
918 	} else {
919 		r = sdma_v4_4_2_inst_rlc_resume(adev, inst_mask);
920 		if (r)
921 			return r;
922 	}
923 
924 	tmp_mask = inst_mask;
925 	for_each_inst(i, tmp_mask) {
926 		ring = &adev->sdma.instance[i].ring;
927 
928 		r = amdgpu_ring_test_helper(ring);
929 		if (r)
930 			return r;
931 
932 		if (adev->sdma.has_page_queue) {
933 			struct amdgpu_ring *page = &adev->sdma.instance[i].page;
934 
935 			r = amdgpu_ring_test_helper(page);
936 			if (r)
937 				return r;
938 
939 			if (adev->mman.buffer_funcs_ring == page)
940 				amdgpu_ttm_set_buffer_funcs_status(adev, true);
941 		}
942 
943 		if (adev->mman.buffer_funcs_ring == ring)
944 			amdgpu_ttm_set_buffer_funcs_status(adev, true);
945 	}
946 
947 	return r;
948 }
949 
950 /**
951  * sdma_v4_4_2_ring_test_ring - simple async dma engine test
952  *
953  * @ring: amdgpu_ring structure holding ring information
954  *
955  * Test the DMA engine by writing using it to write an
956  * value to memory.
957  * Returns 0 for success, error for failure.
958  */
959 static int sdma_v4_4_2_ring_test_ring(struct amdgpu_ring *ring)
960 {
961 	struct amdgpu_device *adev = ring->adev;
962 	unsigned i;
963 	unsigned index;
964 	int r;
965 	u32 tmp;
966 	u64 gpu_addr;
967 
968 	r = amdgpu_device_wb_get(adev, &index);
969 	if (r)
970 		return r;
971 
972 	gpu_addr = adev->wb.gpu_addr + (index * 4);
973 	tmp = 0xCAFEDEAD;
974 	adev->wb.wb[index] = cpu_to_le32(tmp);
975 
976 	r = amdgpu_ring_alloc(ring, 5);
977 	if (r)
978 		goto error_free_wb;
979 
980 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
981 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
982 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
983 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
984 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
985 	amdgpu_ring_write(ring, 0xDEADBEEF);
986 	amdgpu_ring_commit(ring);
987 
988 	for (i = 0; i < adev->usec_timeout; i++) {
989 		tmp = le32_to_cpu(adev->wb.wb[index]);
990 		if (tmp == 0xDEADBEEF)
991 			break;
992 		udelay(1);
993 	}
994 
995 	if (i >= adev->usec_timeout)
996 		r = -ETIMEDOUT;
997 
998 error_free_wb:
999 	amdgpu_device_wb_free(adev, index);
1000 	return r;
1001 }
1002 
1003 /**
1004  * sdma_v4_4_2_ring_test_ib - test an IB on the DMA engine
1005  *
1006  * @ring: amdgpu_ring structure holding ring information
1007  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
1008  *
1009  * Test a simple IB in the DMA ring.
1010  * Returns 0 on success, error on failure.
1011  */
1012 static int sdma_v4_4_2_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1013 {
1014 	struct amdgpu_device *adev = ring->adev;
1015 	struct amdgpu_ib ib;
1016 	struct dma_fence *f = NULL;
1017 	unsigned index;
1018 	long r;
1019 	u32 tmp = 0;
1020 	u64 gpu_addr;
1021 
1022 	r = amdgpu_device_wb_get(adev, &index);
1023 	if (r)
1024 		return r;
1025 
1026 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1027 	tmp = 0xCAFEDEAD;
1028 	adev->wb.wb[index] = cpu_to_le32(tmp);
1029 	memset(&ib, 0, sizeof(ib));
1030 	r = amdgpu_ib_get(adev, NULL, 256,
1031 					AMDGPU_IB_POOL_DIRECT, &ib);
1032 	if (r)
1033 		goto err0;
1034 
1035 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1036 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1037 	ib.ptr[1] = lower_32_bits(gpu_addr);
1038 	ib.ptr[2] = upper_32_bits(gpu_addr);
1039 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1040 	ib.ptr[4] = 0xDEADBEEF;
1041 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1042 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1043 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1044 	ib.length_dw = 8;
1045 
1046 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1047 	if (r)
1048 		goto err1;
1049 
1050 	r = dma_fence_wait_timeout(f, false, timeout);
1051 	if (r == 0) {
1052 		r = -ETIMEDOUT;
1053 		goto err1;
1054 	} else if (r < 0) {
1055 		goto err1;
1056 	}
1057 	tmp = le32_to_cpu(adev->wb.wb[index]);
1058 	if (tmp == 0xDEADBEEF)
1059 		r = 0;
1060 	else
1061 		r = -EINVAL;
1062 
1063 err1:
1064 	amdgpu_ib_free(adev, &ib, NULL);
1065 	dma_fence_put(f);
1066 err0:
1067 	amdgpu_device_wb_free(adev, index);
1068 	return r;
1069 }
1070 
1071 
1072 /**
1073  * sdma_v4_4_2_vm_copy_pte - update PTEs by copying them from the GART
1074  *
1075  * @ib: indirect buffer to fill with commands
1076  * @pe: addr of the page entry
1077  * @src: src addr to copy from
1078  * @count: number of page entries to update
1079  *
1080  * Update PTEs by copying them from the GART using sDMA.
1081  */
1082 static void sdma_v4_4_2_vm_copy_pte(struct amdgpu_ib *ib,
1083 				  uint64_t pe, uint64_t src,
1084 				  unsigned count)
1085 {
1086 	unsigned bytes = count * 8;
1087 
1088 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1089 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1090 	ib->ptr[ib->length_dw++] = bytes - 1;
1091 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1092 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1093 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1094 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1095 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1096 
1097 }
1098 
1099 /**
1100  * sdma_v4_4_2_vm_write_pte - update PTEs by writing them manually
1101  *
1102  * @ib: indirect buffer to fill with commands
1103  * @pe: addr of the page entry
1104  * @value: dst addr to write into pe
1105  * @count: number of page entries to update
1106  * @incr: increase next addr by incr bytes
1107  *
1108  * Update PTEs by writing them manually using sDMA.
1109  */
1110 static void sdma_v4_4_2_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1111 				   uint64_t value, unsigned count,
1112 				   uint32_t incr)
1113 {
1114 	unsigned ndw = count * 2;
1115 
1116 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1117 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1118 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1119 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1120 	ib->ptr[ib->length_dw++] = ndw - 1;
1121 	for (; ndw > 0; ndw -= 2) {
1122 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1123 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1124 		value += incr;
1125 	}
1126 }
1127 
1128 /**
1129  * sdma_v4_4_2_vm_set_pte_pde - update the page tables using sDMA
1130  *
1131  * @ib: indirect buffer to fill with commands
1132  * @pe: addr of the page entry
1133  * @addr: dst addr to write into pe
1134  * @count: number of page entries to update
1135  * @incr: increase next addr by incr bytes
1136  * @flags: access flags
1137  *
1138  * Update the page tables using sDMA.
1139  */
1140 static void sdma_v4_4_2_vm_set_pte_pde(struct amdgpu_ib *ib,
1141 				     uint64_t pe,
1142 				     uint64_t addr, unsigned count,
1143 				     uint32_t incr, uint64_t flags)
1144 {
1145 	/* for physically contiguous pages (vram) */
1146 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1147 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1148 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1149 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1150 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1151 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1152 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1153 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1154 	ib->ptr[ib->length_dw++] = 0;
1155 	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1156 }
1157 
1158 /**
1159  * sdma_v4_4_2_ring_pad_ib - pad the IB to the required number of dw
1160  *
1161  * @ring: amdgpu_ring structure holding ring information
1162  * @ib: indirect buffer to fill with padding
1163  */
1164 static void sdma_v4_4_2_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1165 {
1166 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1167 	u32 pad_count;
1168 	int i;
1169 
1170 	pad_count = (-ib->length_dw) & 7;
1171 	for (i = 0; i < pad_count; i++)
1172 		if (sdma && sdma->burst_nop && (i == 0))
1173 			ib->ptr[ib->length_dw++] =
1174 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1175 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1176 		else
1177 			ib->ptr[ib->length_dw++] =
1178 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1179 }
1180 
1181 
1182 /**
1183  * sdma_v4_4_2_ring_emit_pipeline_sync - sync the pipeline
1184  *
1185  * @ring: amdgpu_ring pointer
1186  *
1187  * Make sure all previous operations are completed (CIK).
1188  */
1189 static void sdma_v4_4_2_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1190 {
1191 	uint32_t seq = ring->fence_drv.sync_seq;
1192 	uint64_t addr = ring->fence_drv.gpu_addr;
1193 
1194 	/* wait for idle */
1195 	sdma_v4_4_2_wait_reg_mem(ring, 1, 0,
1196 			       addr & 0xfffffffc,
1197 			       upper_32_bits(addr) & 0xffffffff,
1198 			       seq, 0xffffffff, 4);
1199 }
1200 
1201 
1202 /**
1203  * sdma_v4_4_2_ring_emit_vm_flush - vm flush using sDMA
1204  *
1205  * @ring: amdgpu_ring pointer
1206  * @vmid: vmid number to use
1207  * @pd_addr: address
1208  *
1209  * Update the page table base and flush the VM TLB
1210  * using sDMA.
1211  */
1212 static void sdma_v4_4_2_ring_emit_vm_flush(struct amdgpu_ring *ring,
1213 					 unsigned vmid, uint64_t pd_addr)
1214 {
1215 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1216 }
1217 
1218 static void sdma_v4_4_2_ring_emit_wreg(struct amdgpu_ring *ring,
1219 				     uint32_t reg, uint32_t val)
1220 {
1221 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1222 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1223 	amdgpu_ring_write(ring, reg);
1224 	amdgpu_ring_write(ring, val);
1225 }
1226 
1227 static void sdma_v4_4_2_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1228 					 uint32_t val, uint32_t mask)
1229 {
1230 	sdma_v4_4_2_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1231 }
1232 
1233 static bool sdma_v4_4_2_fw_support_paging_queue(struct amdgpu_device *adev)
1234 {
1235 	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
1236 	case IP_VERSION(4, 4, 2):
1237 		return false;
1238 	default:
1239 		return false;
1240 	}
1241 }
1242 
1243 static int sdma_v4_4_2_early_init(void *handle)
1244 {
1245 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1246 	int r;
1247 
1248 	r = sdma_v4_4_2_init_microcode(adev);
1249 	if (r)
1250 		return r;
1251 
1252 	/* TODO: Page queue breaks driver reload under SRIOV */
1253 	if (sdma_v4_4_2_fw_support_paging_queue(adev))
1254 		adev->sdma.has_page_queue = true;
1255 
1256 	sdma_v4_4_2_set_ring_funcs(adev);
1257 	sdma_v4_4_2_set_buffer_funcs(adev);
1258 	sdma_v4_4_2_set_vm_pte_funcs(adev);
1259 	sdma_v4_4_2_set_irq_funcs(adev);
1260 	sdma_v4_4_2_set_ras_funcs(adev);
1261 
1262 	return 0;
1263 }
1264 
1265 #if 0
1266 static int sdma_v4_4_2_process_ras_data_cb(struct amdgpu_device *adev,
1267 		void *err_data,
1268 		struct amdgpu_iv_entry *entry);
1269 #endif
1270 
1271 static int sdma_v4_4_2_late_init(void *handle)
1272 {
1273 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1274 #if 0
1275 	struct ras_ih_if ih_info = {
1276 		.cb = sdma_v4_4_2_process_ras_data_cb,
1277 	};
1278 #endif
1279 	if (!amdgpu_persistent_edc_harvesting_supported(adev)) {
1280 		if (adev->sdma.ras && adev->sdma.ras->ras_block.hw_ops &&
1281 		    adev->sdma.ras->ras_block.hw_ops->reset_ras_error_count)
1282 			adev->sdma.ras->ras_block.hw_ops->reset_ras_error_count(adev);
1283 	}
1284 
1285 	return 0;
1286 }
1287 
1288 static int sdma_v4_4_2_sw_init(void *handle)
1289 {
1290 	struct amdgpu_ring *ring;
1291 	int r, i;
1292 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1293 	u32 aid_id;
1294 
1295 	/* SDMA trap event */
1296 	for (i = 0; i < adev->sdma.num_inst_per_aid; i++) {
1297 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1298 				      SDMA0_4_0__SRCID__SDMA_TRAP,
1299 				      &adev->sdma.trap_irq);
1300 		if (r)
1301 			return r;
1302 	}
1303 
1304 	/* SDMA SRAM ECC event */
1305 	for (i = 0; i < adev->sdma.num_inst_per_aid; i++) {
1306 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1307 				      SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
1308 				      &adev->sdma.ecc_irq);
1309 		if (r)
1310 			return r;
1311 	}
1312 
1313 	/* SDMA VM_HOLE/DOORBELL_INV/POLL_TIMEOUT/SRBM_WRITE_PROTECTION event*/
1314 	for (i = 0; i < adev->sdma.num_inst_per_aid; i++) {
1315 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1316 				      SDMA0_4_0__SRCID__SDMA_VM_HOLE,
1317 				      &adev->sdma.vm_hole_irq);
1318 		if (r)
1319 			return r;
1320 
1321 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1322 				      SDMA0_4_0__SRCID__SDMA_DOORBELL_INVALID,
1323 				      &adev->sdma.doorbell_invalid_irq);
1324 		if (r)
1325 			return r;
1326 
1327 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1328 				      SDMA0_4_0__SRCID__SDMA_POLL_TIMEOUT,
1329 				      &adev->sdma.pool_timeout_irq);
1330 		if (r)
1331 			return r;
1332 
1333 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1334 				      SDMA0_4_0__SRCID__SDMA_SRBMWRITE,
1335 				      &adev->sdma.srbm_write_irq);
1336 		if (r)
1337 			return r;
1338 	}
1339 
1340 	for (i = 0; i < adev->sdma.num_instances; i++) {
1341 		ring = &adev->sdma.instance[i].ring;
1342 		ring->ring_obj = NULL;
1343 		ring->use_doorbell = true;
1344 		aid_id = adev->sdma.instance[i].aid_id;
1345 
1346 		DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i,
1347 				ring->use_doorbell?"true":"false");
1348 
1349 		/* doorbell size is 2 dwords, get DWORD offset */
1350 		ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1351 		ring->vm_hub = AMDGPU_MMHUB0(aid_id);
1352 
1353 		sprintf(ring->name, "sdma%d.%d", aid_id,
1354 				i % adev->sdma.num_inst_per_aid);
1355 		r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1356 				     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1357 				     AMDGPU_RING_PRIO_DEFAULT, NULL);
1358 		if (r)
1359 			return r;
1360 
1361 		if (adev->sdma.has_page_queue) {
1362 			ring = &adev->sdma.instance[i].page;
1363 			ring->ring_obj = NULL;
1364 			ring->use_doorbell = true;
1365 
1366 			/* doorbell index of page queue is assigned right after
1367 			 * gfx queue on the same instance
1368 			 */
1369 			ring->doorbell_index =
1370 				(adev->doorbell_index.sdma_engine[i] + 1) << 1;
1371 			ring->vm_hub = AMDGPU_MMHUB0(aid_id);
1372 
1373 			sprintf(ring->name, "page%d.%d", aid_id,
1374 					i % adev->sdma.num_inst_per_aid);
1375 			r = amdgpu_ring_init(adev, ring, 1024,
1376 					     &adev->sdma.trap_irq,
1377 					     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1378 					     AMDGPU_RING_PRIO_DEFAULT, NULL);
1379 			if (r)
1380 				return r;
1381 		}
1382 	}
1383 
1384 	if (amdgpu_sdma_ras_sw_init(adev)) {
1385 		dev_err(adev->dev, "fail to initialize sdma ras block\n");
1386 		return -EINVAL;
1387 	}
1388 
1389 	return r;
1390 }
1391 
1392 static int sdma_v4_4_2_sw_fini(void *handle)
1393 {
1394 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1395 	int i;
1396 
1397 	for (i = 0; i < adev->sdma.num_instances; i++) {
1398 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1399 		if (adev->sdma.has_page_queue)
1400 			amdgpu_ring_fini(&adev->sdma.instance[i].page);
1401 	}
1402 
1403 	if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 2))
1404 		amdgpu_sdma_destroy_inst_ctx(adev, true);
1405 	else
1406 		amdgpu_sdma_destroy_inst_ctx(adev, false);
1407 
1408 	return 0;
1409 }
1410 
1411 static int sdma_v4_4_2_hw_init(void *handle)
1412 {
1413 	int r;
1414 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1415 	uint32_t inst_mask;
1416 
1417 	inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
1418 	if (!amdgpu_sriov_vf(adev))
1419 		sdma_v4_4_2_inst_init_golden_registers(adev, inst_mask);
1420 
1421 	r = sdma_v4_4_2_inst_start(adev, inst_mask);
1422 
1423 	return r;
1424 }
1425 
1426 static int sdma_v4_4_2_hw_fini(void *handle)
1427 {
1428 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1429 	uint32_t inst_mask;
1430 	int i;
1431 
1432 	if (amdgpu_sriov_vf(adev))
1433 		return 0;
1434 
1435 	inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
1436 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
1437 		for (i = 0; i < adev->sdma.num_instances; i++) {
1438 			amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
1439 				       AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1440 		}
1441 	}
1442 
1443 	sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask);
1444 	sdma_v4_4_2_inst_enable(adev, false, inst_mask);
1445 
1446 	return 0;
1447 }
1448 
1449 static int sdma_v4_4_2_set_clockgating_state(void *handle,
1450 					     enum amd_clockgating_state state);
1451 
1452 static int sdma_v4_4_2_suspend(void *handle)
1453 {
1454 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1455 
1456 	if (amdgpu_in_reset(adev))
1457 		sdma_v4_4_2_set_clockgating_state(adev, AMD_CG_STATE_UNGATE);
1458 
1459 	return sdma_v4_4_2_hw_fini(adev);
1460 }
1461 
1462 static int sdma_v4_4_2_resume(void *handle)
1463 {
1464 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1465 
1466 	return sdma_v4_4_2_hw_init(adev);
1467 }
1468 
1469 static bool sdma_v4_4_2_is_idle(void *handle)
1470 {
1471 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1472 	u32 i;
1473 
1474 	for (i = 0; i < adev->sdma.num_instances; i++) {
1475 		u32 tmp = RREG32_SDMA(i, regSDMA_STATUS_REG);
1476 
1477 		if (!(tmp & SDMA_STATUS_REG__IDLE_MASK))
1478 			return false;
1479 	}
1480 
1481 	return true;
1482 }
1483 
1484 static int sdma_v4_4_2_wait_for_idle(void *handle)
1485 {
1486 	unsigned i, j;
1487 	u32 sdma[AMDGPU_MAX_SDMA_INSTANCES];
1488 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1489 
1490 	for (i = 0; i < adev->usec_timeout; i++) {
1491 		for (j = 0; j < adev->sdma.num_instances; j++) {
1492 			sdma[j] = RREG32_SDMA(j, regSDMA_STATUS_REG);
1493 			if (!(sdma[j] & SDMA_STATUS_REG__IDLE_MASK))
1494 				break;
1495 		}
1496 		if (j == adev->sdma.num_instances)
1497 			return 0;
1498 		udelay(1);
1499 	}
1500 	return -ETIMEDOUT;
1501 }
1502 
1503 static int sdma_v4_4_2_soft_reset(void *handle)
1504 {
1505 	/* todo */
1506 
1507 	return 0;
1508 }
1509 
1510 static int sdma_v4_4_2_set_trap_irq_state(struct amdgpu_device *adev,
1511 					struct amdgpu_irq_src *source,
1512 					unsigned type,
1513 					enum amdgpu_interrupt_state state)
1514 {
1515 	u32 sdma_cntl;
1516 
1517 	sdma_cntl = RREG32_SDMA(type, regSDMA_CNTL);
1518 	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA_CNTL, TRAP_ENABLE,
1519 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1520 	WREG32_SDMA(type, regSDMA_CNTL, sdma_cntl);
1521 
1522 	return 0;
1523 }
1524 
1525 static int sdma_v4_4_2_process_trap_irq(struct amdgpu_device *adev,
1526 				      struct amdgpu_irq_src *source,
1527 				      struct amdgpu_iv_entry *entry)
1528 {
1529 	uint32_t instance, i;
1530 
1531 	DRM_DEBUG("IH: SDMA trap\n");
1532 	instance = sdma_v4_4_2_irq_id_to_seq(entry->client_id);
1533 
1534 	/* Client id gives the SDMA instance in AID. To know the exact SDMA
1535 	 * instance, interrupt entry gives the node id which corresponds to the AID instance.
1536 	 * Match node id with the AID id associated with the SDMA instance. */
1537 	for (i = instance; i < adev->sdma.num_instances;
1538 	     i += adev->sdma.num_inst_per_aid) {
1539 		if (adev->sdma.instance[i].aid_id ==
1540 		    node_id_to_phys_map[entry->node_id])
1541 			break;
1542 	}
1543 
1544 	if (i >= adev->sdma.num_instances) {
1545 		dev_WARN_ONCE(
1546 			adev->dev, 1,
1547 			"Couldn't find the right sdma instance in trap handler");
1548 		return 0;
1549 	}
1550 
1551 	switch (entry->ring_id) {
1552 	case 0:
1553 		amdgpu_fence_process(&adev->sdma.instance[i].ring);
1554 		break;
1555 	default:
1556 		break;
1557 	}
1558 	return 0;
1559 }
1560 
1561 #if 0
1562 static int sdma_v4_4_2_process_ras_data_cb(struct amdgpu_device *adev,
1563 		void *err_data,
1564 		struct amdgpu_iv_entry *entry)
1565 {
1566 	int instance;
1567 
1568 	/* When “Full RAS” is enabled, the per-IP interrupt sources should
1569 	 * be disabled and the driver should only look for the aggregated
1570 	 * interrupt via sync flood
1571 	 */
1572 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA))
1573 		goto out;
1574 
1575 	instance = sdma_v4_4_2_irq_id_to_seq(entry->client_id);
1576 	if (instance < 0)
1577 		goto out;
1578 
1579 	amdgpu_sdma_process_ras_data_cb(adev, err_data, entry);
1580 
1581 out:
1582 	return AMDGPU_RAS_SUCCESS;
1583 }
1584 #endif
1585 
1586 static int sdma_v4_4_2_process_illegal_inst_irq(struct amdgpu_device *adev,
1587 					      struct amdgpu_irq_src *source,
1588 					      struct amdgpu_iv_entry *entry)
1589 {
1590 	int instance;
1591 
1592 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
1593 
1594 	instance = sdma_v4_4_2_irq_id_to_seq(entry->client_id);
1595 	if (instance < 0)
1596 		return 0;
1597 
1598 	switch (entry->ring_id) {
1599 	case 0:
1600 		drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
1601 		break;
1602 	}
1603 	return 0;
1604 }
1605 
1606 static int sdma_v4_4_2_set_ecc_irq_state(struct amdgpu_device *adev,
1607 					struct amdgpu_irq_src *source,
1608 					unsigned type,
1609 					enum amdgpu_interrupt_state state)
1610 {
1611 	u32 sdma_cntl;
1612 
1613 	sdma_cntl = RREG32_SDMA(type, regSDMA_CNTL);
1614 	switch (state) {
1615 	case AMDGPU_IRQ_STATE_DISABLE:
1616 		sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA_CNTL,
1617 					  DRAM_ECC_INT_ENABLE, 0);
1618 		WREG32_SDMA(type, regSDMA_CNTL, sdma_cntl);
1619 		break;
1620 	/* sdma ecc interrupt is enabled by default
1621 	 * driver doesn't need to do anything to
1622 	 * enable the interrupt */
1623 	case AMDGPU_IRQ_STATE_ENABLE:
1624 	default:
1625 		break;
1626 	}
1627 
1628 	return 0;
1629 }
1630 
1631 static int sdma_v4_4_2_print_iv_entry(struct amdgpu_device *adev,
1632 					      struct amdgpu_iv_entry *entry)
1633 {
1634 	int instance;
1635 	struct amdgpu_task_info task_info;
1636 	u64 addr;
1637 
1638 	instance = sdma_v4_4_2_irq_id_to_seq(entry->client_id);
1639 	if (instance < 0 || instance >= adev->sdma.num_instances) {
1640 		dev_err(adev->dev, "sdma instance invalid %d\n", instance);
1641 		return -EINVAL;
1642 	}
1643 
1644 	addr = (u64)entry->src_data[0] << 12;
1645 	addr |= ((u64)entry->src_data[1] & 0xf) << 44;
1646 
1647 	memset(&task_info, 0, sizeof(struct amdgpu_task_info));
1648 	amdgpu_vm_get_task_info(adev, entry->pasid, &task_info);
1649 
1650 	dev_dbg_ratelimited(adev->dev,
1651 		   "[sdma%d] address:0x%016llx src_id:%u ring:%u vmid:%u "
1652 		   "pasid:%u, for process %s pid %d thread %s pid %d\n",
1653 		   instance, addr, entry->src_id, entry->ring_id, entry->vmid,
1654 		   entry->pasid, task_info.process_name, task_info.tgid,
1655 		   task_info.task_name, task_info.pid);
1656 	return 0;
1657 }
1658 
1659 static int sdma_v4_4_2_process_vm_hole_irq(struct amdgpu_device *adev,
1660 					      struct amdgpu_irq_src *source,
1661 					      struct amdgpu_iv_entry *entry)
1662 {
1663 	dev_dbg_ratelimited(adev->dev, "MC or SEM address in VM hole\n");
1664 	sdma_v4_4_2_print_iv_entry(adev, entry);
1665 	return 0;
1666 }
1667 
1668 static int sdma_v4_4_2_process_doorbell_invalid_irq(struct amdgpu_device *adev,
1669 					      struct amdgpu_irq_src *source,
1670 					      struct amdgpu_iv_entry *entry)
1671 {
1672 
1673 	dev_dbg_ratelimited(adev->dev, "SDMA received a doorbell from BIF with byte_enable !=0xff\n");
1674 	sdma_v4_4_2_print_iv_entry(adev, entry);
1675 	return 0;
1676 }
1677 
1678 static int sdma_v4_4_2_process_pool_timeout_irq(struct amdgpu_device *adev,
1679 					      struct amdgpu_irq_src *source,
1680 					      struct amdgpu_iv_entry *entry)
1681 {
1682 	dev_dbg_ratelimited(adev->dev,
1683 		"Polling register/memory timeout executing POLL_REG/MEM with finite timer\n");
1684 	sdma_v4_4_2_print_iv_entry(adev, entry);
1685 	return 0;
1686 }
1687 
1688 static int sdma_v4_4_2_process_srbm_write_irq(struct amdgpu_device *adev,
1689 					      struct amdgpu_irq_src *source,
1690 					      struct amdgpu_iv_entry *entry)
1691 {
1692 	dev_dbg_ratelimited(adev->dev,
1693 		"SDMA gets an Register Write SRBM_WRITE command in non-privilege command buffer\n");
1694 	sdma_v4_4_2_print_iv_entry(adev, entry);
1695 	return 0;
1696 }
1697 
1698 static void sdma_v4_4_2_inst_update_medium_grain_light_sleep(
1699 	struct amdgpu_device *adev, bool enable, uint32_t inst_mask)
1700 {
1701 	uint32_t data, def;
1702 	int i;
1703 
1704 	/* leave as default if it is not driver controlled */
1705 	if (!(adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS))
1706 		return;
1707 
1708 	if (enable) {
1709 		for_each_inst(i, inst_mask) {
1710 			/* 1-not override: enable sdma mem light sleep */
1711 			def = data = RREG32_SDMA(i, regSDMA_POWER_CNTL);
1712 			data |= SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1713 			if (def != data)
1714 				WREG32_SDMA(i, regSDMA_POWER_CNTL, data);
1715 		}
1716 	} else {
1717 		for_each_inst(i, inst_mask) {
1718 			/* 0-override:disable sdma mem light sleep */
1719 			def = data = RREG32_SDMA(i, regSDMA_POWER_CNTL);
1720 			data &= ~SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1721 			if (def != data)
1722 				WREG32_SDMA(i, regSDMA_POWER_CNTL, data);
1723 		}
1724 	}
1725 }
1726 
1727 static void sdma_v4_4_2_inst_update_medium_grain_clock_gating(
1728 	struct amdgpu_device *adev, bool enable, uint32_t inst_mask)
1729 {
1730 	uint32_t data, def;
1731 	int i;
1732 
1733 	/* leave as default if it is not driver controlled */
1734 	if (!(adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG))
1735 		return;
1736 
1737 	if (enable) {
1738 		for_each_inst(i, inst_mask) {
1739 			def = data = RREG32_SDMA(i, regSDMA_CLK_CTRL);
1740 			data &= ~(SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1741 				  SDMA_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1742 				  SDMA_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1743 				  SDMA_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1744 				  SDMA_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1745 				  SDMA_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1746 			if (def != data)
1747 				WREG32_SDMA(i, regSDMA_CLK_CTRL, data);
1748 		}
1749 	} else {
1750 		for_each_inst(i, inst_mask) {
1751 			def = data = RREG32_SDMA(i, regSDMA_CLK_CTRL);
1752 			data |= (SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1753 				 SDMA_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1754 				 SDMA_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1755 				 SDMA_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1756 				 SDMA_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1757 				 SDMA_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1758 			if (def != data)
1759 				WREG32_SDMA(i, regSDMA_CLK_CTRL, data);
1760 		}
1761 	}
1762 }
1763 
1764 static int sdma_v4_4_2_set_clockgating_state(void *handle,
1765 					  enum amd_clockgating_state state)
1766 {
1767 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1768 	uint32_t inst_mask;
1769 
1770 	if (amdgpu_sriov_vf(adev))
1771 		return 0;
1772 
1773 	inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
1774 
1775 	sdma_v4_4_2_inst_update_medium_grain_clock_gating(
1776 		adev, state == AMD_CG_STATE_GATE, inst_mask);
1777 	sdma_v4_4_2_inst_update_medium_grain_light_sleep(
1778 		adev, state == AMD_CG_STATE_GATE, inst_mask);
1779 	return 0;
1780 }
1781 
1782 static int sdma_v4_4_2_set_powergating_state(void *handle,
1783 					  enum amd_powergating_state state)
1784 {
1785 	return 0;
1786 }
1787 
1788 static void sdma_v4_4_2_get_clockgating_state(void *handle, u64 *flags)
1789 {
1790 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1791 	int data;
1792 
1793 	if (amdgpu_sriov_vf(adev))
1794 		*flags = 0;
1795 
1796 	/* AMD_CG_SUPPORT_SDMA_MGCG */
1797 	data = RREG32(SOC15_REG_OFFSET(SDMA0, GET_INST(SDMA0, 0), regSDMA_CLK_CTRL));
1798 	if (!(data & SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK))
1799 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1800 
1801 	/* AMD_CG_SUPPORT_SDMA_LS */
1802 	data = RREG32(SOC15_REG_OFFSET(SDMA0, GET_INST(SDMA0, 0), regSDMA_POWER_CNTL));
1803 	if (data & SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1804 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
1805 }
1806 
1807 const struct amd_ip_funcs sdma_v4_4_2_ip_funcs = {
1808 	.name = "sdma_v4_4_2",
1809 	.early_init = sdma_v4_4_2_early_init,
1810 	.late_init = sdma_v4_4_2_late_init,
1811 	.sw_init = sdma_v4_4_2_sw_init,
1812 	.sw_fini = sdma_v4_4_2_sw_fini,
1813 	.hw_init = sdma_v4_4_2_hw_init,
1814 	.hw_fini = sdma_v4_4_2_hw_fini,
1815 	.suspend = sdma_v4_4_2_suspend,
1816 	.resume = sdma_v4_4_2_resume,
1817 	.is_idle = sdma_v4_4_2_is_idle,
1818 	.wait_for_idle = sdma_v4_4_2_wait_for_idle,
1819 	.soft_reset = sdma_v4_4_2_soft_reset,
1820 	.set_clockgating_state = sdma_v4_4_2_set_clockgating_state,
1821 	.set_powergating_state = sdma_v4_4_2_set_powergating_state,
1822 	.get_clockgating_state = sdma_v4_4_2_get_clockgating_state,
1823 };
1824 
1825 static const struct amdgpu_ring_funcs sdma_v4_4_2_ring_funcs = {
1826 	.type = AMDGPU_RING_TYPE_SDMA,
1827 	.align_mask = 0xff,
1828 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1829 	.support_64bit_ptrs = true,
1830 	.get_rptr = sdma_v4_4_2_ring_get_rptr,
1831 	.get_wptr = sdma_v4_4_2_ring_get_wptr,
1832 	.set_wptr = sdma_v4_4_2_ring_set_wptr,
1833 	.emit_frame_size =
1834 		6 + /* sdma_v4_4_2_ring_emit_hdp_flush */
1835 		3 + /* hdp invalidate */
1836 		6 + /* sdma_v4_4_2_ring_emit_pipeline_sync */
1837 		/* sdma_v4_4_2_ring_emit_vm_flush */
1838 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
1839 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
1840 		10 + 10 + 10, /* sdma_v4_4_2_ring_emit_fence x3 for user fence, vm fence */
1841 	.emit_ib_size = 7 + 6, /* sdma_v4_4_2_ring_emit_ib */
1842 	.emit_ib = sdma_v4_4_2_ring_emit_ib,
1843 	.emit_fence = sdma_v4_4_2_ring_emit_fence,
1844 	.emit_pipeline_sync = sdma_v4_4_2_ring_emit_pipeline_sync,
1845 	.emit_vm_flush = sdma_v4_4_2_ring_emit_vm_flush,
1846 	.emit_hdp_flush = sdma_v4_4_2_ring_emit_hdp_flush,
1847 	.test_ring = sdma_v4_4_2_ring_test_ring,
1848 	.test_ib = sdma_v4_4_2_ring_test_ib,
1849 	.insert_nop = sdma_v4_4_2_ring_insert_nop,
1850 	.pad_ib = sdma_v4_4_2_ring_pad_ib,
1851 	.emit_wreg = sdma_v4_4_2_ring_emit_wreg,
1852 	.emit_reg_wait = sdma_v4_4_2_ring_emit_reg_wait,
1853 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
1854 };
1855 
1856 static const struct amdgpu_ring_funcs sdma_v4_4_2_page_ring_funcs = {
1857 	.type = AMDGPU_RING_TYPE_SDMA,
1858 	.align_mask = 0xff,
1859 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1860 	.support_64bit_ptrs = true,
1861 	.get_rptr = sdma_v4_4_2_ring_get_rptr,
1862 	.get_wptr = sdma_v4_4_2_page_ring_get_wptr,
1863 	.set_wptr = sdma_v4_4_2_page_ring_set_wptr,
1864 	.emit_frame_size =
1865 		6 + /* sdma_v4_4_2_ring_emit_hdp_flush */
1866 		3 + /* hdp invalidate */
1867 		6 + /* sdma_v4_4_2_ring_emit_pipeline_sync */
1868 		/* sdma_v4_4_2_ring_emit_vm_flush */
1869 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
1870 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
1871 		10 + 10 + 10, /* sdma_v4_4_2_ring_emit_fence x3 for user fence, vm fence */
1872 	.emit_ib_size = 7 + 6, /* sdma_v4_4_2_ring_emit_ib */
1873 	.emit_ib = sdma_v4_4_2_ring_emit_ib,
1874 	.emit_fence = sdma_v4_4_2_ring_emit_fence,
1875 	.emit_pipeline_sync = sdma_v4_4_2_ring_emit_pipeline_sync,
1876 	.emit_vm_flush = sdma_v4_4_2_ring_emit_vm_flush,
1877 	.emit_hdp_flush = sdma_v4_4_2_ring_emit_hdp_flush,
1878 	.test_ring = sdma_v4_4_2_ring_test_ring,
1879 	.test_ib = sdma_v4_4_2_ring_test_ib,
1880 	.insert_nop = sdma_v4_4_2_ring_insert_nop,
1881 	.pad_ib = sdma_v4_4_2_ring_pad_ib,
1882 	.emit_wreg = sdma_v4_4_2_ring_emit_wreg,
1883 	.emit_reg_wait = sdma_v4_4_2_ring_emit_reg_wait,
1884 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
1885 };
1886 
1887 static void sdma_v4_4_2_set_ring_funcs(struct amdgpu_device *adev)
1888 {
1889 	int i, dev_inst;
1890 
1891 	for (i = 0; i < adev->sdma.num_instances; i++) {
1892 		adev->sdma.instance[i].ring.funcs = &sdma_v4_4_2_ring_funcs;
1893 		adev->sdma.instance[i].ring.me = i;
1894 		if (adev->sdma.has_page_queue) {
1895 			adev->sdma.instance[i].page.funcs =
1896 				&sdma_v4_4_2_page_ring_funcs;
1897 			adev->sdma.instance[i].page.me = i;
1898 		}
1899 
1900 		dev_inst = GET_INST(SDMA0, i);
1901 		/* AID to which SDMA belongs depends on physical instance */
1902 		adev->sdma.instance[i].aid_id =
1903 			dev_inst / adev->sdma.num_inst_per_aid;
1904 	}
1905 }
1906 
1907 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_trap_irq_funcs = {
1908 	.set = sdma_v4_4_2_set_trap_irq_state,
1909 	.process = sdma_v4_4_2_process_trap_irq,
1910 };
1911 
1912 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_illegal_inst_irq_funcs = {
1913 	.process = sdma_v4_4_2_process_illegal_inst_irq,
1914 };
1915 
1916 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_ecc_irq_funcs = {
1917 	.set = sdma_v4_4_2_set_ecc_irq_state,
1918 	.process = amdgpu_sdma_process_ecc_irq,
1919 };
1920 
1921 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_vm_hole_irq_funcs = {
1922 	.process = sdma_v4_4_2_process_vm_hole_irq,
1923 };
1924 
1925 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_doorbell_invalid_irq_funcs = {
1926 	.process = sdma_v4_4_2_process_doorbell_invalid_irq,
1927 };
1928 
1929 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_pool_timeout_irq_funcs = {
1930 	.process = sdma_v4_4_2_process_pool_timeout_irq,
1931 };
1932 
1933 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_srbm_write_irq_funcs = {
1934 	.process = sdma_v4_4_2_process_srbm_write_irq,
1935 };
1936 
1937 static void sdma_v4_4_2_set_irq_funcs(struct amdgpu_device *adev)
1938 {
1939 	adev->sdma.trap_irq.num_types = adev->sdma.num_instances;
1940 	adev->sdma.ecc_irq.num_types = adev->sdma.num_instances;
1941 	adev->sdma.vm_hole_irq.num_types = adev->sdma.num_instances;
1942 	adev->sdma.doorbell_invalid_irq.num_types = adev->sdma.num_instances;
1943 	adev->sdma.pool_timeout_irq.num_types = adev->sdma.num_instances;
1944 	adev->sdma.srbm_write_irq.num_types = adev->sdma.num_instances;
1945 
1946 	adev->sdma.trap_irq.funcs = &sdma_v4_4_2_trap_irq_funcs;
1947 	adev->sdma.illegal_inst_irq.funcs = &sdma_v4_4_2_illegal_inst_irq_funcs;
1948 	adev->sdma.ecc_irq.funcs = &sdma_v4_4_2_ecc_irq_funcs;
1949 	adev->sdma.vm_hole_irq.funcs = &sdma_v4_4_2_vm_hole_irq_funcs;
1950 	adev->sdma.doorbell_invalid_irq.funcs = &sdma_v4_4_2_doorbell_invalid_irq_funcs;
1951 	adev->sdma.pool_timeout_irq.funcs = &sdma_v4_4_2_pool_timeout_irq_funcs;
1952 	adev->sdma.srbm_write_irq.funcs = &sdma_v4_4_2_srbm_write_irq_funcs;
1953 }
1954 
1955 /**
1956  * sdma_v4_4_2_emit_copy_buffer - copy buffer using the sDMA engine
1957  *
1958  * @ib: indirect buffer to copy to
1959  * @src_offset: src GPU address
1960  * @dst_offset: dst GPU address
1961  * @byte_count: number of bytes to xfer
1962  * @tmz: if a secure copy should be used
1963  *
1964  * Copy GPU buffers using the DMA engine.
1965  * Used by the amdgpu ttm implementation to move pages if
1966  * registered as the asic copy callback.
1967  */
1968 static void sdma_v4_4_2_emit_copy_buffer(struct amdgpu_ib *ib,
1969 				       uint64_t src_offset,
1970 				       uint64_t dst_offset,
1971 				       uint32_t byte_count,
1972 				       bool tmz)
1973 {
1974 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1975 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
1976 		SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0);
1977 	ib->ptr[ib->length_dw++] = byte_count - 1;
1978 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1979 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1980 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1981 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1982 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1983 }
1984 
1985 /**
1986  * sdma_v4_4_2_emit_fill_buffer - fill buffer using the sDMA engine
1987  *
1988  * @ib: indirect buffer to copy to
1989  * @src_data: value to write to buffer
1990  * @dst_offset: dst GPU address
1991  * @byte_count: number of bytes to xfer
1992  *
1993  * Fill GPU buffers using the DMA engine.
1994  */
1995 static void sdma_v4_4_2_emit_fill_buffer(struct amdgpu_ib *ib,
1996 				       uint32_t src_data,
1997 				       uint64_t dst_offset,
1998 				       uint32_t byte_count)
1999 {
2000 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2001 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2002 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2003 	ib->ptr[ib->length_dw++] = src_data;
2004 	ib->ptr[ib->length_dw++] = byte_count - 1;
2005 }
2006 
2007 static const struct amdgpu_buffer_funcs sdma_v4_4_2_buffer_funcs = {
2008 	.copy_max_bytes = 0x400000,
2009 	.copy_num_dw = 7,
2010 	.emit_copy_buffer = sdma_v4_4_2_emit_copy_buffer,
2011 
2012 	.fill_max_bytes = 0x400000,
2013 	.fill_num_dw = 5,
2014 	.emit_fill_buffer = sdma_v4_4_2_emit_fill_buffer,
2015 };
2016 
2017 static void sdma_v4_4_2_set_buffer_funcs(struct amdgpu_device *adev)
2018 {
2019 	adev->mman.buffer_funcs = &sdma_v4_4_2_buffer_funcs;
2020 	if (adev->sdma.has_page_queue)
2021 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
2022 	else
2023 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2024 }
2025 
2026 static const struct amdgpu_vm_pte_funcs sdma_v4_4_2_vm_pte_funcs = {
2027 	.copy_pte_num_dw = 7,
2028 	.copy_pte = sdma_v4_4_2_vm_copy_pte,
2029 
2030 	.write_pte = sdma_v4_4_2_vm_write_pte,
2031 	.set_pte_pde = sdma_v4_4_2_vm_set_pte_pde,
2032 };
2033 
2034 static void sdma_v4_4_2_set_vm_pte_funcs(struct amdgpu_device *adev)
2035 {
2036 	struct drm_gpu_scheduler *sched;
2037 	unsigned i;
2038 
2039 	adev->vm_manager.vm_pte_funcs = &sdma_v4_4_2_vm_pte_funcs;
2040 	for (i = 0; i < adev->sdma.num_instances; i++) {
2041 		if (adev->sdma.has_page_queue)
2042 			sched = &adev->sdma.instance[i].page.sched;
2043 		else
2044 			sched = &adev->sdma.instance[i].ring.sched;
2045 		adev->vm_manager.vm_pte_scheds[i] = sched;
2046 	}
2047 	adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
2048 }
2049 
2050 const struct amdgpu_ip_block_version sdma_v4_4_2_ip_block = {
2051 	.type = AMD_IP_BLOCK_TYPE_SDMA,
2052 	.major = 4,
2053 	.minor = 4,
2054 	.rev = 0,
2055 	.funcs = &sdma_v4_4_2_ip_funcs,
2056 };
2057 
2058 static int sdma_v4_4_2_xcp_resume(void *handle, uint32_t inst_mask)
2059 {
2060 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2061 	int r;
2062 
2063 	if (!amdgpu_sriov_vf(adev))
2064 		sdma_v4_4_2_inst_init_golden_registers(adev, inst_mask);
2065 
2066 	r = sdma_v4_4_2_inst_start(adev, inst_mask);
2067 
2068 	return r;
2069 }
2070 
2071 static int sdma_v4_4_2_xcp_suspend(void *handle, uint32_t inst_mask)
2072 {
2073 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2074 	uint32_t tmp_mask = inst_mask;
2075 	int i;
2076 
2077 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2078 		for_each_inst(i, tmp_mask) {
2079 			amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
2080 				       AMDGPU_SDMA_IRQ_INSTANCE0 + i);
2081 		}
2082 	}
2083 
2084 	sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask);
2085 	sdma_v4_4_2_inst_enable(adev, false, inst_mask);
2086 
2087 	return 0;
2088 }
2089 
2090 struct amdgpu_xcp_ip_funcs sdma_v4_4_2_xcp_funcs = {
2091 	.suspend = &sdma_v4_4_2_xcp_suspend,
2092 	.resume = &sdma_v4_4_2_xcp_resume
2093 };
2094 
2095 static const struct amdgpu_ras_err_status_reg_entry sdma_v4_2_2_ue_reg_list[] = {
2096 	{AMDGPU_RAS_REG_ENTRY(SDMA0, 0, regSDMA_UE_ERR_STATUS_LO, regSDMA_UE_ERR_STATUS_HI),
2097 	1, (AMDGPU_RAS_ERR_INFO_VALID | AMDGPU_RAS_ERR_STATUS_VALID), "SDMA"},
2098 };
2099 
2100 static const struct amdgpu_ras_memory_id_entry sdma_v4_4_2_ras_memory_list[] = {
2101 	{AMDGPU_SDMA_MBANK_DATA_BUF0, "SDMA_MBANK_DATA_BUF0"},
2102 	{AMDGPU_SDMA_MBANK_DATA_BUF1, "SDMA_MBANK_DATA_BUF1"},
2103 	{AMDGPU_SDMA_MBANK_DATA_BUF2, "SDMA_MBANK_DATA_BUF2"},
2104 	{AMDGPU_SDMA_MBANK_DATA_BUF3, "SDMA_MBANK_DATA_BUF3"},
2105 	{AMDGPU_SDMA_MBANK_DATA_BUF4, "SDMA_MBANK_DATA_BUF4"},
2106 	{AMDGPU_SDMA_MBANK_DATA_BUF5, "SDMA_MBANK_DATA_BUF5"},
2107 	{AMDGPU_SDMA_MBANK_DATA_BUF6, "SDMA_MBANK_DATA_BUF6"},
2108 	{AMDGPU_SDMA_MBANK_DATA_BUF7, "SDMA_MBANK_DATA_BUF7"},
2109 	{AMDGPU_SDMA_MBANK_DATA_BUF8, "SDMA_MBANK_DATA_BUF8"},
2110 	{AMDGPU_SDMA_MBANK_DATA_BUF9, "SDMA_MBANK_DATA_BUF9"},
2111 	{AMDGPU_SDMA_MBANK_DATA_BUF10, "SDMA_MBANK_DATA_BUF10"},
2112 	{AMDGPU_SDMA_MBANK_DATA_BUF11, "SDMA_MBANK_DATA_BUF11"},
2113 	{AMDGPU_SDMA_MBANK_DATA_BUF12, "SDMA_MBANK_DATA_BUF12"},
2114 	{AMDGPU_SDMA_MBANK_DATA_BUF13, "SDMA_MBANK_DATA_BUF13"},
2115 	{AMDGPU_SDMA_MBANK_DATA_BUF14, "SDMA_MBANK_DATA_BUF14"},
2116 	{AMDGPU_SDMA_MBANK_DATA_BUF15, "SDMA_MBANK_DATA_BUF15"},
2117 	{AMDGPU_SDMA_UCODE_BUF, "SDMA_UCODE_BUF"},
2118 	{AMDGPU_SDMA_RB_CMD_BUF, "SDMA_RB_CMD_BUF"},
2119 	{AMDGPU_SDMA_IB_CMD_BUF, "SDMA_IB_CMD_BUF"},
2120 	{AMDGPU_SDMA_UTCL1_RD_FIFO, "SDMA_UTCL1_RD_FIFO"},
2121 	{AMDGPU_SDMA_UTCL1_RDBST_FIFO, "SDMA_UTCL1_RDBST_FIFO"},
2122 	{AMDGPU_SDMA_UTCL1_WR_FIFO, "SDMA_UTCL1_WR_FIFO"},
2123 	{AMDGPU_SDMA_DATA_LUT_FIFO, "SDMA_DATA_LUT_FIFO"},
2124 	{AMDGPU_SDMA_SPLIT_DAT_BUF, "SDMA_SPLIT_DAT_BUF"},
2125 };
2126 
2127 static void sdma_v4_4_2_inst_query_ras_error_count(struct amdgpu_device *adev,
2128 						   uint32_t sdma_inst,
2129 						   void *ras_err_status)
2130 {
2131 	struct ras_err_data *err_data = (struct ras_err_data *)ras_err_status;
2132 	uint32_t sdma_dev_inst = GET_INST(SDMA0, sdma_inst);
2133 
2134 	/* sdma v4_4_2 doesn't support query ce counts */
2135 	amdgpu_ras_inst_query_ras_error_count(adev,
2136 					sdma_v4_2_2_ue_reg_list,
2137 					ARRAY_SIZE(sdma_v4_2_2_ue_reg_list),
2138 					sdma_v4_4_2_ras_memory_list,
2139 					ARRAY_SIZE(sdma_v4_4_2_ras_memory_list),
2140 					sdma_dev_inst,
2141 					AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE,
2142 					&err_data->ue_count);
2143 }
2144 
2145 static void sdma_v4_4_2_query_ras_error_count(struct amdgpu_device *adev,
2146 					      void *ras_err_status)
2147 {
2148 	uint32_t inst_mask;
2149 	int i = 0;
2150 
2151 	inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
2152 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2153 		for_each_inst(i, inst_mask)
2154 			sdma_v4_4_2_inst_query_ras_error_count(adev, i, ras_err_status);
2155 	} else {
2156 		dev_warn(adev->dev, "SDMA RAS is not supported\n");
2157 	}
2158 }
2159 
2160 static void sdma_v4_4_2_inst_reset_ras_error_count(struct amdgpu_device *adev,
2161 						   uint32_t sdma_inst)
2162 {
2163 	uint32_t sdma_dev_inst = GET_INST(SDMA0, sdma_inst);
2164 
2165 	amdgpu_ras_inst_reset_ras_error_count(adev,
2166 					sdma_v4_2_2_ue_reg_list,
2167 					ARRAY_SIZE(sdma_v4_2_2_ue_reg_list),
2168 					sdma_dev_inst);
2169 }
2170 
2171 static void sdma_v4_4_2_reset_ras_error_count(struct amdgpu_device *adev)
2172 {
2173 	uint32_t inst_mask;
2174 	int i = 0;
2175 
2176 	inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
2177 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2178 		for_each_inst(i, inst_mask)
2179 			sdma_v4_4_2_inst_reset_ras_error_count(adev, i);
2180 	} else {
2181 		dev_warn(adev->dev, "SDMA RAS is not supported\n");
2182 	}
2183 }
2184 
2185 static const struct amdgpu_ras_block_hw_ops sdma_v4_4_2_ras_hw_ops = {
2186 	.query_ras_error_count = sdma_v4_4_2_query_ras_error_count,
2187 	.reset_ras_error_count = sdma_v4_4_2_reset_ras_error_count,
2188 };
2189 
2190 static struct amdgpu_sdma_ras sdma_v4_4_2_ras = {
2191 	.ras_block = {
2192 		.hw_ops = &sdma_v4_4_2_ras_hw_ops,
2193 	},
2194 };
2195 
2196 static void sdma_v4_4_2_set_ras_funcs(struct amdgpu_device *adev)
2197 {
2198 	adev->sdma.ras = &sdma_v4_4_2_ras;
2199 }
2200