1 /* 2 * Copyright 2022 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 24 #include <linux/delay.h> 25 #include <linux/firmware.h> 26 #include <linux/module.h> 27 #include <linux/pci.h> 28 29 #include "amdgpu.h" 30 #include "amdgpu_xcp.h" 31 #include "amdgpu_ucode.h" 32 #include "amdgpu_trace.h" 33 34 #include "sdma/sdma_4_4_2_offset.h" 35 #include "sdma/sdma_4_4_2_sh_mask.h" 36 37 #include "soc15_common.h" 38 #include "soc15.h" 39 #include "vega10_sdma_pkt_open.h" 40 41 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h" 42 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h" 43 44 #include "amdgpu_ras.h" 45 46 MODULE_FIRMWARE("amdgpu/sdma_4_4_2.bin"); 47 48 #define mmSMNAID_AID0_MCA_SMU 0x03b30400 49 50 #define WREG32_SDMA(instance, offset, value) \ 51 WREG32(sdma_v4_4_2_get_reg_offset(adev, (instance), (offset)), value) 52 #define RREG32_SDMA(instance, offset) \ 53 RREG32(sdma_v4_4_2_get_reg_offset(adev, (instance), (offset))) 54 55 static void sdma_v4_4_2_set_ring_funcs(struct amdgpu_device *adev); 56 static void sdma_v4_4_2_set_buffer_funcs(struct amdgpu_device *adev); 57 static void sdma_v4_4_2_set_vm_pte_funcs(struct amdgpu_device *adev); 58 static void sdma_v4_4_2_set_irq_funcs(struct amdgpu_device *adev); 59 static void sdma_v4_4_2_set_ras_funcs(struct amdgpu_device *adev); 60 61 static u32 sdma_v4_4_2_get_reg_offset(struct amdgpu_device *adev, 62 u32 instance, u32 offset) 63 { 64 u32 dev_inst = GET_INST(SDMA0, instance); 65 66 return (adev->reg_offset[SDMA0_HWIP][dev_inst][0] + offset); 67 } 68 69 static unsigned sdma_v4_4_2_seq_to_irq_id(int seq_num) 70 { 71 switch (seq_num) { 72 case 0: 73 return SOC15_IH_CLIENTID_SDMA0; 74 case 1: 75 return SOC15_IH_CLIENTID_SDMA1; 76 case 2: 77 return SOC15_IH_CLIENTID_SDMA2; 78 case 3: 79 return SOC15_IH_CLIENTID_SDMA3; 80 default: 81 return -EINVAL; 82 } 83 } 84 85 static int sdma_v4_4_2_irq_id_to_seq(unsigned client_id) 86 { 87 switch (client_id) { 88 case SOC15_IH_CLIENTID_SDMA0: 89 return 0; 90 case SOC15_IH_CLIENTID_SDMA1: 91 return 1; 92 case SOC15_IH_CLIENTID_SDMA2: 93 return 2; 94 case SOC15_IH_CLIENTID_SDMA3: 95 return 3; 96 default: 97 return -EINVAL; 98 } 99 } 100 101 static void sdma_v4_4_2_inst_init_golden_registers(struct amdgpu_device *adev, 102 uint32_t inst_mask) 103 { 104 u32 val; 105 int i; 106 107 for (i = 0; i < adev->sdma.num_instances; i++) { 108 val = RREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG); 109 val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG, NUM_BANKS, 4); 110 val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG, 111 PIPE_INTERLEAVE_SIZE, 0); 112 WREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG, val); 113 114 val = RREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG_READ); 115 val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG_READ, NUM_BANKS, 116 4); 117 val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG_READ, 118 PIPE_INTERLEAVE_SIZE, 0); 119 WREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG_READ, val); 120 } 121 } 122 123 /** 124 * sdma_v4_4_2_init_microcode - load ucode images from disk 125 * 126 * @adev: amdgpu_device pointer 127 * 128 * Use the firmware interface to load the ucode images into 129 * the driver (not loaded into hw). 130 * Returns 0 on success, error on failure. 131 */ 132 static int sdma_v4_4_2_init_microcode(struct amdgpu_device *adev) 133 { 134 int ret, i; 135 136 for (i = 0; i < adev->sdma.num_instances; i++) { 137 if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) == 138 IP_VERSION(4, 4, 2)) { 139 ret = amdgpu_sdma_init_microcode(adev, 0, true); 140 break; 141 } else { 142 ret = amdgpu_sdma_init_microcode(adev, i, false); 143 if (ret) 144 return ret; 145 } 146 } 147 148 return ret; 149 } 150 151 /** 152 * sdma_v4_4_2_ring_get_rptr - get the current read pointer 153 * 154 * @ring: amdgpu ring pointer 155 * 156 * Get the current rptr from the hardware. 157 */ 158 static uint64_t sdma_v4_4_2_ring_get_rptr(struct amdgpu_ring *ring) 159 { 160 u64 rptr; 161 162 /* XXX check if swapping is necessary on BE */ 163 rptr = READ_ONCE(*((u64 *)&ring->adev->wb.wb[ring->rptr_offs])); 164 165 DRM_DEBUG("rptr before shift == 0x%016llx\n", rptr); 166 return rptr >> 2; 167 } 168 169 /** 170 * sdma_v4_4_2_ring_get_wptr - get the current write pointer 171 * 172 * @ring: amdgpu ring pointer 173 * 174 * Get the current wptr from the hardware. 175 */ 176 static uint64_t sdma_v4_4_2_ring_get_wptr(struct amdgpu_ring *ring) 177 { 178 struct amdgpu_device *adev = ring->adev; 179 u64 wptr; 180 181 if (ring->use_doorbell) { 182 /* XXX check if swapping is necessary on BE */ 183 wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs])); 184 DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr); 185 } else { 186 wptr = RREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR_HI); 187 wptr = wptr << 32; 188 wptr |= RREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR); 189 DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n", 190 ring->me, wptr); 191 } 192 193 return wptr >> 2; 194 } 195 196 /** 197 * sdma_v4_4_2_ring_set_wptr - commit the write pointer 198 * 199 * @ring: amdgpu ring pointer 200 * 201 * Write the wptr back to the hardware. 202 */ 203 static void sdma_v4_4_2_ring_set_wptr(struct amdgpu_ring *ring) 204 { 205 struct amdgpu_device *adev = ring->adev; 206 207 DRM_DEBUG("Setting write pointer\n"); 208 if (ring->use_doorbell) { 209 u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs]; 210 211 DRM_DEBUG("Using doorbell -- " 212 "wptr_offs == 0x%08x " 213 "lower_32_bits(ring->wptr) << 2 == 0x%08x " 214 "upper_32_bits(ring->wptr) << 2 == 0x%08x\n", 215 ring->wptr_offs, 216 lower_32_bits(ring->wptr << 2), 217 upper_32_bits(ring->wptr << 2)); 218 /* XXX check if swapping is necessary on BE */ 219 WRITE_ONCE(*wb, (ring->wptr << 2)); 220 DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n", 221 ring->doorbell_index, ring->wptr << 2); 222 WDOORBELL64(ring->doorbell_index, ring->wptr << 2); 223 } else { 224 DRM_DEBUG("Not using doorbell -- " 225 "regSDMA%i_GFX_RB_WPTR == 0x%08x " 226 "regSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n", 227 ring->me, 228 lower_32_bits(ring->wptr << 2), 229 ring->me, 230 upper_32_bits(ring->wptr << 2)); 231 WREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR, 232 lower_32_bits(ring->wptr << 2)); 233 WREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR_HI, 234 upper_32_bits(ring->wptr << 2)); 235 } 236 } 237 238 /** 239 * sdma_v4_4_2_page_ring_get_wptr - get the current write pointer 240 * 241 * @ring: amdgpu ring pointer 242 * 243 * Get the current wptr from the hardware. 244 */ 245 static uint64_t sdma_v4_4_2_page_ring_get_wptr(struct amdgpu_ring *ring) 246 { 247 struct amdgpu_device *adev = ring->adev; 248 u64 wptr; 249 250 if (ring->use_doorbell) { 251 /* XXX check if swapping is necessary on BE */ 252 wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs])); 253 } else { 254 wptr = RREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR_HI); 255 wptr = wptr << 32; 256 wptr |= RREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR); 257 } 258 259 return wptr >> 2; 260 } 261 262 /** 263 * sdma_v4_4_2_page_ring_set_wptr - commit the write pointer 264 * 265 * @ring: amdgpu ring pointer 266 * 267 * Write the wptr back to the hardware. 268 */ 269 static void sdma_v4_4_2_page_ring_set_wptr(struct amdgpu_ring *ring) 270 { 271 struct amdgpu_device *adev = ring->adev; 272 273 if (ring->use_doorbell) { 274 u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs]; 275 276 /* XXX check if swapping is necessary on BE */ 277 WRITE_ONCE(*wb, (ring->wptr << 2)); 278 WDOORBELL64(ring->doorbell_index, ring->wptr << 2); 279 } else { 280 uint64_t wptr = ring->wptr << 2; 281 282 WREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR, 283 lower_32_bits(wptr)); 284 WREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR_HI, 285 upper_32_bits(wptr)); 286 } 287 } 288 289 static void sdma_v4_4_2_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count) 290 { 291 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); 292 int i; 293 294 for (i = 0; i < count; i++) 295 if (sdma && sdma->burst_nop && (i == 0)) 296 amdgpu_ring_write(ring, ring->funcs->nop | 297 SDMA_PKT_NOP_HEADER_COUNT(count - 1)); 298 else 299 amdgpu_ring_write(ring, ring->funcs->nop); 300 } 301 302 /** 303 * sdma_v4_4_2_ring_emit_ib - Schedule an IB on the DMA engine 304 * 305 * @ring: amdgpu ring pointer 306 * @job: job to retrieve vmid from 307 * @ib: IB object to schedule 308 * @flags: unused 309 * 310 * Schedule an IB in the DMA ring. 311 */ 312 static void sdma_v4_4_2_ring_emit_ib(struct amdgpu_ring *ring, 313 struct amdgpu_job *job, 314 struct amdgpu_ib *ib, 315 uint32_t flags) 316 { 317 unsigned vmid = AMDGPU_JOB_GET_VMID(job); 318 319 /* IB packet must end on a 8 DW boundary */ 320 sdma_v4_4_2_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7); 321 322 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) | 323 SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf)); 324 /* base must be 32 byte aligned */ 325 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0); 326 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr)); 327 amdgpu_ring_write(ring, ib->length_dw); 328 amdgpu_ring_write(ring, 0); 329 amdgpu_ring_write(ring, 0); 330 331 } 332 333 static void sdma_v4_4_2_wait_reg_mem(struct amdgpu_ring *ring, 334 int mem_space, int hdp, 335 uint32_t addr0, uint32_t addr1, 336 uint32_t ref, uint32_t mask, 337 uint32_t inv) 338 { 339 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | 340 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) | 341 SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) | 342 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */ 343 if (mem_space) { 344 /* memory */ 345 amdgpu_ring_write(ring, addr0); 346 amdgpu_ring_write(ring, addr1); 347 } else { 348 /* registers */ 349 amdgpu_ring_write(ring, addr0 << 2); 350 amdgpu_ring_write(ring, addr1 << 2); 351 } 352 amdgpu_ring_write(ring, ref); /* reference */ 353 amdgpu_ring_write(ring, mask); /* mask */ 354 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 355 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */ 356 } 357 358 /** 359 * sdma_v4_4_2_ring_emit_hdp_flush - emit an hdp flush on the DMA ring 360 * 361 * @ring: amdgpu ring pointer 362 * 363 * Emit an hdp flush packet on the requested DMA ring. 364 */ 365 static void sdma_v4_4_2_ring_emit_hdp_flush(struct amdgpu_ring *ring) 366 { 367 struct amdgpu_device *adev = ring->adev; 368 u32 ref_and_mask = 0; 369 const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg; 370 371 ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 372 << (ring->me % adev->sdma.num_inst_per_aid); 373 374 sdma_v4_4_2_wait_reg_mem(ring, 0, 1, 375 adev->nbio.funcs->get_hdp_flush_done_offset(adev), 376 adev->nbio.funcs->get_hdp_flush_req_offset(adev), 377 ref_and_mask, ref_and_mask, 10); 378 } 379 380 /** 381 * sdma_v4_4_2_ring_emit_fence - emit a fence on the DMA ring 382 * 383 * @ring: amdgpu ring pointer 384 * @addr: address 385 * @seq: sequence number 386 * @flags: fence related flags 387 * 388 * Add a DMA fence packet to the ring to write 389 * the fence seq number and DMA trap packet to generate 390 * an interrupt if needed. 391 */ 392 static void sdma_v4_4_2_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq, 393 unsigned flags) 394 { 395 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT; 396 /* write the fence */ 397 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); 398 /* zero in first two bits */ 399 BUG_ON(addr & 0x3); 400 amdgpu_ring_write(ring, lower_32_bits(addr)); 401 amdgpu_ring_write(ring, upper_32_bits(addr)); 402 amdgpu_ring_write(ring, lower_32_bits(seq)); 403 404 /* optionally write high bits as well */ 405 if (write64bit) { 406 addr += 4; 407 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); 408 /* zero in first two bits */ 409 BUG_ON(addr & 0x3); 410 amdgpu_ring_write(ring, lower_32_bits(addr)); 411 amdgpu_ring_write(ring, upper_32_bits(addr)); 412 amdgpu_ring_write(ring, upper_32_bits(seq)); 413 } 414 415 /* generate an interrupt */ 416 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP)); 417 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0)); 418 } 419 420 421 /** 422 * sdma_v4_4_2_inst_gfx_stop - stop the gfx async dma engines 423 * 424 * @adev: amdgpu_device pointer 425 * @inst_mask: mask of dma engine instances to be disabled 426 * 427 * Stop the gfx async dma ring buffers. 428 */ 429 static void sdma_v4_4_2_inst_gfx_stop(struct amdgpu_device *adev, 430 uint32_t inst_mask) 431 { 432 struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES]; 433 u32 doorbell_offset, doorbell; 434 u32 rb_cntl, ib_cntl; 435 int i; 436 437 for_each_inst(i, inst_mask) { 438 sdma[i] = &adev->sdma.instance[i].ring; 439 440 rb_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_CNTL); 441 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_ENABLE, 0); 442 WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl); 443 ib_cntl = RREG32_SDMA(i, regSDMA_GFX_IB_CNTL); 444 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_ENABLE, 0); 445 WREG32_SDMA(i, regSDMA_GFX_IB_CNTL, ib_cntl); 446 447 if (sdma[i]->use_doorbell) { 448 doorbell = RREG32_SDMA(i, regSDMA_GFX_DOORBELL); 449 doorbell_offset = RREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET); 450 451 doorbell = REG_SET_FIELD(doorbell, SDMA_GFX_DOORBELL, ENABLE, 0); 452 doorbell_offset = REG_SET_FIELD(doorbell_offset, 453 SDMA_GFX_DOORBELL_OFFSET, 454 OFFSET, 0); 455 WREG32_SDMA(i, regSDMA_GFX_DOORBELL, doorbell); 456 WREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET, doorbell_offset); 457 } 458 } 459 } 460 461 /** 462 * sdma_v4_4_2_inst_rlc_stop - stop the compute async dma engines 463 * 464 * @adev: amdgpu_device pointer 465 * @inst_mask: mask of dma engine instances to be disabled 466 * 467 * Stop the compute async dma queues. 468 */ 469 static void sdma_v4_4_2_inst_rlc_stop(struct amdgpu_device *adev, 470 uint32_t inst_mask) 471 { 472 /* XXX todo */ 473 } 474 475 /** 476 * sdma_v4_4_2_inst_page_stop - stop the page async dma engines 477 * 478 * @adev: amdgpu_device pointer 479 * @inst_mask: mask of dma engine instances to be disabled 480 * 481 * Stop the page async dma ring buffers. 482 */ 483 static void sdma_v4_4_2_inst_page_stop(struct amdgpu_device *adev, 484 uint32_t inst_mask) 485 { 486 u32 rb_cntl, ib_cntl; 487 int i; 488 489 for_each_inst(i, inst_mask) { 490 rb_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_CNTL); 491 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL, 492 RB_ENABLE, 0); 493 WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl); 494 ib_cntl = RREG32_SDMA(i, regSDMA_PAGE_IB_CNTL); 495 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL, 496 IB_ENABLE, 0); 497 WREG32_SDMA(i, regSDMA_PAGE_IB_CNTL, ib_cntl); 498 } 499 } 500 501 /** 502 * sdma_v4_4_2_inst_ctx_switch_enable - stop the async dma engines context switch 503 * 504 * @adev: amdgpu_device pointer 505 * @enable: enable/disable the DMA MEs context switch. 506 * @inst_mask: mask of dma engine instances to be enabled 507 * 508 * Halt or unhalt the async dma engines context switch. 509 */ 510 static void sdma_v4_4_2_inst_ctx_switch_enable(struct amdgpu_device *adev, 511 bool enable, uint32_t inst_mask) 512 { 513 u32 f32_cntl, phase_quantum = 0; 514 int i; 515 516 if (amdgpu_sdma_phase_quantum) { 517 unsigned value = amdgpu_sdma_phase_quantum; 518 unsigned unit = 0; 519 520 while (value > (SDMA_PHASE0_QUANTUM__VALUE_MASK >> 521 SDMA_PHASE0_QUANTUM__VALUE__SHIFT)) { 522 value = (value + 1) >> 1; 523 unit++; 524 } 525 if (unit > (SDMA_PHASE0_QUANTUM__UNIT_MASK >> 526 SDMA_PHASE0_QUANTUM__UNIT__SHIFT)) { 527 value = (SDMA_PHASE0_QUANTUM__VALUE_MASK >> 528 SDMA_PHASE0_QUANTUM__VALUE__SHIFT); 529 unit = (SDMA_PHASE0_QUANTUM__UNIT_MASK >> 530 SDMA_PHASE0_QUANTUM__UNIT__SHIFT); 531 WARN_ONCE(1, 532 "clamping sdma_phase_quantum to %uK clock cycles\n", 533 value << unit); 534 } 535 phase_quantum = 536 value << SDMA_PHASE0_QUANTUM__VALUE__SHIFT | 537 unit << SDMA_PHASE0_QUANTUM__UNIT__SHIFT; 538 } 539 540 for_each_inst(i, inst_mask) { 541 f32_cntl = RREG32_SDMA(i, regSDMA_CNTL); 542 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA_CNTL, 543 AUTO_CTXSW_ENABLE, enable ? 1 : 0); 544 if (enable && amdgpu_sdma_phase_quantum) { 545 WREG32_SDMA(i, regSDMA_PHASE0_QUANTUM, phase_quantum); 546 WREG32_SDMA(i, regSDMA_PHASE1_QUANTUM, phase_quantum); 547 WREG32_SDMA(i, regSDMA_PHASE2_QUANTUM, phase_quantum); 548 } 549 WREG32_SDMA(i, regSDMA_CNTL, f32_cntl); 550 551 /* Extend page fault timeout to avoid interrupt storm */ 552 WREG32_SDMA(i, regSDMA_UTCL1_TIMEOUT, 0x00800080); 553 } 554 } 555 556 /** 557 * sdma_v4_4_2_inst_enable - stop the async dma engines 558 * 559 * @adev: amdgpu_device pointer 560 * @enable: enable/disable the DMA MEs. 561 * @inst_mask: mask of dma engine instances to be enabled 562 * 563 * Halt or unhalt the async dma engines. 564 */ 565 static void sdma_v4_4_2_inst_enable(struct amdgpu_device *adev, bool enable, 566 uint32_t inst_mask) 567 { 568 u32 f32_cntl; 569 int i; 570 571 if (!enable) { 572 sdma_v4_4_2_inst_gfx_stop(adev, inst_mask); 573 sdma_v4_4_2_inst_rlc_stop(adev, inst_mask); 574 if (adev->sdma.has_page_queue) 575 sdma_v4_4_2_inst_page_stop(adev, inst_mask); 576 577 /* SDMA FW needs to respond to FREEZE requests during reset. 578 * Keep it running during reset */ 579 if (!amdgpu_sriov_vf(adev) && amdgpu_in_reset(adev)) 580 return; 581 } 582 583 if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) 584 return; 585 586 for_each_inst(i, inst_mask) { 587 f32_cntl = RREG32_SDMA(i, regSDMA_F32_CNTL); 588 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA_F32_CNTL, HALT, enable ? 0 : 1); 589 WREG32_SDMA(i, regSDMA_F32_CNTL, f32_cntl); 590 } 591 } 592 593 /* 594 * sdma_v4_4_2_rb_cntl - get parameters for rb_cntl 595 */ 596 static uint32_t sdma_v4_4_2_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl) 597 { 598 /* Set ring buffer size in dwords */ 599 uint32_t rb_bufsz = order_base_2(ring->ring_size / 4); 600 601 barrier(); /* work around https://llvm.org/pr42576 */ 602 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_SIZE, rb_bufsz); 603 #ifdef __BIG_ENDIAN 604 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_SWAP_ENABLE, 1); 605 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, 606 RPTR_WRITEBACK_SWAP_ENABLE, 1); 607 #endif 608 return rb_cntl; 609 } 610 611 /** 612 * sdma_v4_4_2_gfx_resume - setup and start the async dma engines 613 * 614 * @adev: amdgpu_device pointer 615 * @i: instance to resume 616 * 617 * Set up the gfx DMA ring buffers and enable them. 618 * Returns 0 for success, error for failure. 619 */ 620 static void sdma_v4_4_2_gfx_resume(struct amdgpu_device *adev, unsigned int i) 621 { 622 struct amdgpu_ring *ring = &adev->sdma.instance[i].ring; 623 u32 rb_cntl, ib_cntl, wptr_poll_cntl; 624 u32 wb_offset; 625 u32 doorbell; 626 u32 doorbell_offset; 627 u64 wptr_gpu_addr; 628 629 wb_offset = (ring->rptr_offs * 4); 630 631 rb_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_CNTL); 632 rb_cntl = sdma_v4_4_2_rb_cntl(ring, rb_cntl); 633 WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl); 634 635 /* set the wb address whether it's enabled or not */ 636 WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_ADDR_HI, 637 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF); 638 WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_ADDR_LO, 639 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC); 640 641 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, 642 RPTR_WRITEBACK_ENABLE, 1); 643 644 WREG32_SDMA(i, regSDMA_GFX_RB_BASE, ring->gpu_addr >> 8); 645 WREG32_SDMA(i, regSDMA_GFX_RB_BASE_HI, ring->gpu_addr >> 40); 646 647 ring->wptr = 0; 648 649 /* before programing wptr to a less value, need set minor_ptr_update first */ 650 WREG32_SDMA(i, regSDMA_GFX_MINOR_PTR_UPDATE, 1); 651 652 /* Initialize the ring buffer's read and write pointers */ 653 WREG32_SDMA(i, regSDMA_GFX_RB_RPTR, 0); 654 WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_HI, 0); 655 WREG32_SDMA(i, regSDMA_GFX_RB_WPTR, 0); 656 WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_HI, 0); 657 658 doorbell = RREG32_SDMA(i, regSDMA_GFX_DOORBELL); 659 doorbell_offset = RREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET); 660 661 doorbell = REG_SET_FIELD(doorbell, SDMA_GFX_DOORBELL, ENABLE, 662 ring->use_doorbell); 663 doorbell_offset = REG_SET_FIELD(doorbell_offset, 664 SDMA_GFX_DOORBELL_OFFSET, 665 OFFSET, ring->doorbell_index); 666 WREG32_SDMA(i, regSDMA_GFX_DOORBELL, doorbell); 667 WREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET, doorbell_offset); 668 669 sdma_v4_4_2_ring_set_wptr(ring); 670 671 /* set minor_ptr_update to 0 after wptr programed */ 672 WREG32_SDMA(i, regSDMA_GFX_MINOR_PTR_UPDATE, 0); 673 674 /* setup the wptr shadow polling */ 675 wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4); 676 WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_ADDR_LO, 677 lower_32_bits(wptr_gpu_addr)); 678 WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_ADDR_HI, 679 upper_32_bits(wptr_gpu_addr)); 680 wptr_poll_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_CNTL); 681 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, 682 SDMA_GFX_RB_WPTR_POLL_CNTL, 683 F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0); 684 WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl); 685 686 /* enable DMA RB */ 687 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_ENABLE, 1); 688 WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl); 689 690 ib_cntl = RREG32_SDMA(i, regSDMA_GFX_IB_CNTL); 691 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_ENABLE, 1); 692 #ifdef __BIG_ENDIAN 693 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_SWAP_ENABLE, 1); 694 #endif 695 /* enable DMA IBs */ 696 WREG32_SDMA(i, regSDMA_GFX_IB_CNTL, ib_cntl); 697 } 698 699 /** 700 * sdma_v4_4_2_page_resume - setup and start the async dma engines 701 * 702 * @adev: amdgpu_device pointer 703 * @i: instance to resume 704 * 705 * Set up the page DMA ring buffers and enable them. 706 * Returns 0 for success, error for failure. 707 */ 708 static void sdma_v4_4_2_page_resume(struct amdgpu_device *adev, unsigned int i) 709 { 710 struct amdgpu_ring *ring = &adev->sdma.instance[i].page; 711 u32 rb_cntl, ib_cntl, wptr_poll_cntl; 712 u32 wb_offset; 713 u32 doorbell; 714 u32 doorbell_offset; 715 u64 wptr_gpu_addr; 716 717 wb_offset = (ring->rptr_offs * 4); 718 719 rb_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_CNTL); 720 rb_cntl = sdma_v4_4_2_rb_cntl(ring, rb_cntl); 721 WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl); 722 723 /* Initialize the ring buffer's read and write pointers */ 724 WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR, 0); 725 WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_HI, 0); 726 WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR, 0); 727 WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_HI, 0); 728 729 /* set the wb address whether it's enabled or not */ 730 WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_ADDR_HI, 731 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF); 732 WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_ADDR_LO, 733 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC); 734 735 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL, 736 RPTR_WRITEBACK_ENABLE, 1); 737 738 WREG32_SDMA(i, regSDMA_PAGE_RB_BASE, ring->gpu_addr >> 8); 739 WREG32_SDMA(i, regSDMA_PAGE_RB_BASE_HI, ring->gpu_addr >> 40); 740 741 ring->wptr = 0; 742 743 /* before programing wptr to a less value, need set minor_ptr_update first */ 744 WREG32_SDMA(i, regSDMA_PAGE_MINOR_PTR_UPDATE, 1); 745 746 doorbell = RREG32_SDMA(i, regSDMA_PAGE_DOORBELL); 747 doorbell_offset = RREG32_SDMA(i, regSDMA_PAGE_DOORBELL_OFFSET); 748 749 doorbell = REG_SET_FIELD(doorbell, SDMA_PAGE_DOORBELL, ENABLE, 750 ring->use_doorbell); 751 doorbell_offset = REG_SET_FIELD(doorbell_offset, 752 SDMA_PAGE_DOORBELL_OFFSET, 753 OFFSET, ring->doorbell_index); 754 WREG32_SDMA(i, regSDMA_PAGE_DOORBELL, doorbell); 755 WREG32_SDMA(i, regSDMA_PAGE_DOORBELL_OFFSET, doorbell_offset); 756 757 /* paging queue doorbell range is setup at sdma_v4_4_2_gfx_resume */ 758 sdma_v4_4_2_page_ring_set_wptr(ring); 759 760 /* set minor_ptr_update to 0 after wptr programed */ 761 WREG32_SDMA(i, regSDMA_PAGE_MINOR_PTR_UPDATE, 0); 762 763 /* setup the wptr shadow polling */ 764 wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4); 765 WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_ADDR_LO, 766 lower_32_bits(wptr_gpu_addr)); 767 WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_ADDR_HI, 768 upper_32_bits(wptr_gpu_addr)); 769 wptr_poll_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_CNTL); 770 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, 771 SDMA_PAGE_RB_WPTR_POLL_CNTL, 772 F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0); 773 WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl); 774 775 /* enable DMA RB */ 776 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL, RB_ENABLE, 1); 777 WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl); 778 779 ib_cntl = RREG32_SDMA(i, regSDMA_PAGE_IB_CNTL); 780 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL, IB_ENABLE, 1); 781 #ifdef __BIG_ENDIAN 782 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1); 783 #endif 784 /* enable DMA IBs */ 785 WREG32_SDMA(i, regSDMA_PAGE_IB_CNTL, ib_cntl); 786 } 787 788 static void sdma_v4_4_2_init_pg(struct amdgpu_device *adev) 789 { 790 791 } 792 793 /** 794 * sdma_v4_4_2_inst_rlc_resume - setup and start the async dma engines 795 * 796 * @adev: amdgpu_device pointer 797 * @inst_mask: mask of dma engine instances to be enabled 798 * 799 * Set up the compute DMA queues and enable them. 800 * Returns 0 for success, error for failure. 801 */ 802 static int sdma_v4_4_2_inst_rlc_resume(struct amdgpu_device *adev, 803 uint32_t inst_mask) 804 { 805 sdma_v4_4_2_init_pg(adev); 806 807 return 0; 808 } 809 810 /** 811 * sdma_v4_4_2_inst_load_microcode - load the sDMA ME ucode 812 * 813 * @adev: amdgpu_device pointer 814 * @inst_mask: mask of dma engine instances to be enabled 815 * 816 * Loads the sDMA0/1 ucode. 817 * Returns 0 for success, -EINVAL if the ucode is not available. 818 */ 819 static int sdma_v4_4_2_inst_load_microcode(struct amdgpu_device *adev, 820 uint32_t inst_mask) 821 { 822 const struct sdma_firmware_header_v1_0 *hdr; 823 const __le32 *fw_data; 824 u32 fw_size; 825 int i, j; 826 827 /* halt the MEs */ 828 sdma_v4_4_2_inst_enable(adev, false, inst_mask); 829 830 for_each_inst(i, inst_mask) { 831 if (!adev->sdma.instance[i].fw) 832 return -EINVAL; 833 834 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data; 835 amdgpu_ucode_print_sdma_hdr(&hdr->header); 836 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4; 837 838 fw_data = (const __le32 *) 839 (adev->sdma.instance[i].fw->data + 840 le32_to_cpu(hdr->header.ucode_array_offset_bytes)); 841 842 WREG32_SDMA(i, regSDMA_UCODE_ADDR, 0); 843 844 for (j = 0; j < fw_size; j++) 845 WREG32_SDMA(i, regSDMA_UCODE_DATA, 846 le32_to_cpup(fw_data++)); 847 848 WREG32_SDMA(i, regSDMA_UCODE_ADDR, 849 adev->sdma.instance[i].fw_version); 850 } 851 852 return 0; 853 } 854 855 /** 856 * sdma_v4_4_2_inst_start - setup and start the async dma engines 857 * 858 * @adev: amdgpu_device pointer 859 * @inst_mask: mask of dma engine instances to be enabled 860 * 861 * Set up the DMA engines and enable them. 862 * Returns 0 for success, error for failure. 863 */ 864 static int sdma_v4_4_2_inst_start(struct amdgpu_device *adev, 865 uint32_t inst_mask) 866 { 867 struct amdgpu_ring *ring; 868 uint32_t tmp_mask; 869 int i, r = 0; 870 871 if (amdgpu_sriov_vf(adev)) { 872 sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask); 873 sdma_v4_4_2_inst_enable(adev, false, inst_mask); 874 } else { 875 /* bypass sdma microcode loading on Gopher */ 876 if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP && 877 adev->sdma.instance[0].fw) { 878 r = sdma_v4_4_2_inst_load_microcode(adev, inst_mask); 879 if (r) 880 return r; 881 } 882 883 /* unhalt the MEs */ 884 sdma_v4_4_2_inst_enable(adev, true, inst_mask); 885 /* enable sdma ring preemption */ 886 sdma_v4_4_2_inst_ctx_switch_enable(adev, true, inst_mask); 887 } 888 889 /* start the gfx rings and rlc compute queues */ 890 tmp_mask = inst_mask; 891 for_each_inst(i, tmp_mask) { 892 uint32_t temp; 893 894 WREG32_SDMA(i, regSDMA_SEM_WAIT_FAIL_TIMER_CNTL, 0); 895 sdma_v4_4_2_gfx_resume(adev, i); 896 if (adev->sdma.has_page_queue) 897 sdma_v4_4_2_page_resume(adev, i); 898 899 /* set utc l1 enable flag always to 1 */ 900 temp = RREG32_SDMA(i, regSDMA_CNTL); 901 temp = REG_SET_FIELD(temp, SDMA_CNTL, UTC_L1_ENABLE, 1); 902 /* enable context empty interrupt during initialization */ 903 temp = REG_SET_FIELD(temp, SDMA_CNTL, CTXEMPTY_INT_ENABLE, 1); 904 WREG32_SDMA(i, regSDMA_CNTL, temp); 905 906 if (!amdgpu_sriov_vf(adev)) { 907 if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) { 908 /* unhalt engine */ 909 temp = RREG32_SDMA(i, regSDMA_F32_CNTL); 910 temp = REG_SET_FIELD(temp, SDMA_F32_CNTL, HALT, 0); 911 WREG32_SDMA(i, regSDMA_F32_CNTL, temp); 912 } 913 } 914 } 915 916 if (amdgpu_sriov_vf(adev)) { 917 sdma_v4_4_2_inst_ctx_switch_enable(adev, true, inst_mask); 918 sdma_v4_4_2_inst_enable(adev, true, inst_mask); 919 } else { 920 r = sdma_v4_4_2_inst_rlc_resume(adev, inst_mask); 921 if (r) 922 return r; 923 } 924 925 tmp_mask = inst_mask; 926 for_each_inst(i, tmp_mask) { 927 ring = &adev->sdma.instance[i].ring; 928 929 r = amdgpu_ring_test_helper(ring); 930 if (r) 931 return r; 932 933 if (adev->sdma.has_page_queue) { 934 struct amdgpu_ring *page = &adev->sdma.instance[i].page; 935 936 r = amdgpu_ring_test_helper(page); 937 if (r) 938 return r; 939 } 940 } 941 942 return r; 943 } 944 945 /** 946 * sdma_v4_4_2_ring_test_ring - simple async dma engine test 947 * 948 * @ring: amdgpu_ring structure holding ring information 949 * 950 * Test the DMA engine by writing using it to write an 951 * value to memory. 952 * Returns 0 for success, error for failure. 953 */ 954 static int sdma_v4_4_2_ring_test_ring(struct amdgpu_ring *ring) 955 { 956 struct amdgpu_device *adev = ring->adev; 957 unsigned i; 958 unsigned index; 959 int r; 960 u32 tmp; 961 u64 gpu_addr; 962 963 r = amdgpu_device_wb_get(adev, &index); 964 if (r) 965 return r; 966 967 gpu_addr = adev->wb.gpu_addr + (index * 4); 968 tmp = 0xCAFEDEAD; 969 adev->wb.wb[index] = cpu_to_le32(tmp); 970 971 r = amdgpu_ring_alloc(ring, 5); 972 if (r) 973 goto error_free_wb; 974 975 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 976 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR)); 977 amdgpu_ring_write(ring, lower_32_bits(gpu_addr)); 978 amdgpu_ring_write(ring, upper_32_bits(gpu_addr)); 979 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0)); 980 amdgpu_ring_write(ring, 0xDEADBEEF); 981 amdgpu_ring_commit(ring); 982 983 for (i = 0; i < adev->usec_timeout; i++) { 984 tmp = le32_to_cpu(adev->wb.wb[index]); 985 if (tmp == 0xDEADBEEF) 986 break; 987 udelay(1); 988 } 989 990 if (i >= adev->usec_timeout) 991 r = -ETIMEDOUT; 992 993 error_free_wb: 994 amdgpu_device_wb_free(adev, index); 995 return r; 996 } 997 998 /** 999 * sdma_v4_4_2_ring_test_ib - test an IB on the DMA engine 1000 * 1001 * @ring: amdgpu_ring structure holding ring information 1002 * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT 1003 * 1004 * Test a simple IB in the DMA ring. 1005 * Returns 0 on success, error on failure. 1006 */ 1007 static int sdma_v4_4_2_ring_test_ib(struct amdgpu_ring *ring, long timeout) 1008 { 1009 struct amdgpu_device *adev = ring->adev; 1010 struct amdgpu_ib ib; 1011 struct dma_fence *f = NULL; 1012 unsigned index; 1013 long r; 1014 u32 tmp = 0; 1015 u64 gpu_addr; 1016 1017 r = amdgpu_device_wb_get(adev, &index); 1018 if (r) 1019 return r; 1020 1021 gpu_addr = adev->wb.gpu_addr + (index * 4); 1022 tmp = 0xCAFEDEAD; 1023 adev->wb.wb[index] = cpu_to_le32(tmp); 1024 memset(&ib, 0, sizeof(ib)); 1025 r = amdgpu_ib_get(adev, NULL, 256, 1026 AMDGPU_IB_POOL_DIRECT, &ib); 1027 if (r) 1028 goto err0; 1029 1030 ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 1031 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); 1032 ib.ptr[1] = lower_32_bits(gpu_addr); 1033 ib.ptr[2] = upper_32_bits(gpu_addr); 1034 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0); 1035 ib.ptr[4] = 0xDEADBEEF; 1036 ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 1037 ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 1038 ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 1039 ib.length_dw = 8; 1040 1041 r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f); 1042 if (r) 1043 goto err1; 1044 1045 r = dma_fence_wait_timeout(f, false, timeout); 1046 if (r == 0) { 1047 r = -ETIMEDOUT; 1048 goto err1; 1049 } else if (r < 0) { 1050 goto err1; 1051 } 1052 tmp = le32_to_cpu(adev->wb.wb[index]); 1053 if (tmp == 0xDEADBEEF) 1054 r = 0; 1055 else 1056 r = -EINVAL; 1057 1058 err1: 1059 amdgpu_ib_free(adev, &ib, NULL); 1060 dma_fence_put(f); 1061 err0: 1062 amdgpu_device_wb_free(adev, index); 1063 return r; 1064 } 1065 1066 1067 /** 1068 * sdma_v4_4_2_vm_copy_pte - update PTEs by copying them from the GART 1069 * 1070 * @ib: indirect buffer to fill with commands 1071 * @pe: addr of the page entry 1072 * @src: src addr to copy from 1073 * @count: number of page entries to update 1074 * 1075 * Update PTEs by copying them from the GART using sDMA. 1076 */ 1077 static void sdma_v4_4_2_vm_copy_pte(struct amdgpu_ib *ib, 1078 uint64_t pe, uint64_t src, 1079 unsigned count) 1080 { 1081 unsigned bytes = count * 8; 1082 1083 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | 1084 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); 1085 ib->ptr[ib->length_dw++] = bytes - 1; 1086 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 1087 ib->ptr[ib->length_dw++] = lower_32_bits(src); 1088 ib->ptr[ib->length_dw++] = upper_32_bits(src); 1089 ib->ptr[ib->length_dw++] = lower_32_bits(pe); 1090 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1091 1092 } 1093 1094 /** 1095 * sdma_v4_4_2_vm_write_pte - update PTEs by writing them manually 1096 * 1097 * @ib: indirect buffer to fill with commands 1098 * @pe: addr of the page entry 1099 * @value: dst addr to write into pe 1100 * @count: number of page entries to update 1101 * @incr: increase next addr by incr bytes 1102 * 1103 * Update PTEs by writing them manually using sDMA. 1104 */ 1105 static void sdma_v4_4_2_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe, 1106 uint64_t value, unsigned count, 1107 uint32_t incr) 1108 { 1109 unsigned ndw = count * 2; 1110 1111 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 1112 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); 1113 ib->ptr[ib->length_dw++] = lower_32_bits(pe); 1114 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1115 ib->ptr[ib->length_dw++] = ndw - 1; 1116 for (; ndw > 0; ndw -= 2) { 1117 ib->ptr[ib->length_dw++] = lower_32_bits(value); 1118 ib->ptr[ib->length_dw++] = upper_32_bits(value); 1119 value += incr; 1120 } 1121 } 1122 1123 /** 1124 * sdma_v4_4_2_vm_set_pte_pde - update the page tables using sDMA 1125 * 1126 * @ib: indirect buffer to fill with commands 1127 * @pe: addr of the page entry 1128 * @addr: dst addr to write into pe 1129 * @count: number of page entries to update 1130 * @incr: increase next addr by incr bytes 1131 * @flags: access flags 1132 * 1133 * Update the page tables using sDMA. 1134 */ 1135 static void sdma_v4_4_2_vm_set_pte_pde(struct amdgpu_ib *ib, 1136 uint64_t pe, 1137 uint64_t addr, unsigned count, 1138 uint32_t incr, uint64_t flags) 1139 { 1140 /* for physically contiguous pages (vram) */ 1141 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE); 1142 ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */ 1143 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1144 ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */ 1145 ib->ptr[ib->length_dw++] = upper_32_bits(flags); 1146 ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */ 1147 ib->ptr[ib->length_dw++] = upper_32_bits(addr); 1148 ib->ptr[ib->length_dw++] = incr; /* increment size */ 1149 ib->ptr[ib->length_dw++] = 0; 1150 ib->ptr[ib->length_dw++] = count - 1; /* number of entries */ 1151 } 1152 1153 /** 1154 * sdma_v4_4_2_ring_pad_ib - pad the IB to the required number of dw 1155 * 1156 * @ring: amdgpu_ring structure holding ring information 1157 * @ib: indirect buffer to fill with padding 1158 */ 1159 static void sdma_v4_4_2_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib) 1160 { 1161 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); 1162 u32 pad_count; 1163 int i; 1164 1165 pad_count = (-ib->length_dw) & 7; 1166 for (i = 0; i < pad_count; i++) 1167 if (sdma && sdma->burst_nop && (i == 0)) 1168 ib->ptr[ib->length_dw++] = 1169 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) | 1170 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1); 1171 else 1172 ib->ptr[ib->length_dw++] = 1173 SDMA_PKT_HEADER_OP(SDMA_OP_NOP); 1174 } 1175 1176 1177 /** 1178 * sdma_v4_4_2_ring_emit_pipeline_sync - sync the pipeline 1179 * 1180 * @ring: amdgpu_ring pointer 1181 * 1182 * Make sure all previous operations are completed (CIK). 1183 */ 1184 static void sdma_v4_4_2_ring_emit_pipeline_sync(struct amdgpu_ring *ring) 1185 { 1186 uint32_t seq = ring->fence_drv.sync_seq; 1187 uint64_t addr = ring->fence_drv.gpu_addr; 1188 1189 /* wait for idle */ 1190 sdma_v4_4_2_wait_reg_mem(ring, 1, 0, 1191 addr & 0xfffffffc, 1192 upper_32_bits(addr) & 0xffffffff, 1193 seq, 0xffffffff, 4); 1194 } 1195 1196 1197 /** 1198 * sdma_v4_4_2_ring_emit_vm_flush - vm flush using sDMA 1199 * 1200 * @ring: amdgpu_ring pointer 1201 * @vmid: vmid number to use 1202 * @pd_addr: address 1203 * 1204 * Update the page table base and flush the VM TLB 1205 * using sDMA. 1206 */ 1207 static void sdma_v4_4_2_ring_emit_vm_flush(struct amdgpu_ring *ring, 1208 unsigned vmid, uint64_t pd_addr) 1209 { 1210 amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr); 1211 } 1212 1213 static void sdma_v4_4_2_ring_emit_wreg(struct amdgpu_ring *ring, 1214 uint32_t reg, uint32_t val) 1215 { 1216 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) | 1217 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf)); 1218 amdgpu_ring_write(ring, reg); 1219 amdgpu_ring_write(ring, val); 1220 } 1221 1222 static void sdma_v4_4_2_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg, 1223 uint32_t val, uint32_t mask) 1224 { 1225 sdma_v4_4_2_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10); 1226 } 1227 1228 static bool sdma_v4_4_2_fw_support_paging_queue(struct amdgpu_device *adev) 1229 { 1230 switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) { 1231 case IP_VERSION(4, 4, 2): 1232 return false; 1233 default: 1234 return false; 1235 } 1236 } 1237 1238 static int sdma_v4_4_2_early_init(void *handle) 1239 { 1240 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1241 int r; 1242 1243 r = sdma_v4_4_2_init_microcode(adev); 1244 if (r) 1245 return r; 1246 1247 /* TODO: Page queue breaks driver reload under SRIOV */ 1248 if (sdma_v4_4_2_fw_support_paging_queue(adev)) 1249 adev->sdma.has_page_queue = true; 1250 1251 sdma_v4_4_2_set_ring_funcs(adev); 1252 sdma_v4_4_2_set_buffer_funcs(adev); 1253 sdma_v4_4_2_set_vm_pte_funcs(adev); 1254 sdma_v4_4_2_set_irq_funcs(adev); 1255 sdma_v4_4_2_set_ras_funcs(adev); 1256 1257 return 0; 1258 } 1259 1260 #if 0 1261 static int sdma_v4_4_2_process_ras_data_cb(struct amdgpu_device *adev, 1262 void *err_data, 1263 struct amdgpu_iv_entry *entry); 1264 #endif 1265 1266 static int sdma_v4_4_2_late_init(void *handle) 1267 { 1268 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1269 #if 0 1270 struct ras_ih_if ih_info = { 1271 .cb = sdma_v4_4_2_process_ras_data_cb, 1272 }; 1273 #endif 1274 if (!amdgpu_persistent_edc_harvesting_supported(adev)) 1275 amdgpu_ras_reset_error_count(adev, AMDGPU_RAS_BLOCK__SDMA); 1276 1277 return 0; 1278 } 1279 1280 static int sdma_v4_4_2_sw_init(void *handle) 1281 { 1282 struct amdgpu_ring *ring; 1283 int r, i; 1284 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1285 u32 aid_id; 1286 1287 /* SDMA trap event */ 1288 for (i = 0; i < adev->sdma.num_inst_per_aid; i++) { 1289 r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i), 1290 SDMA0_4_0__SRCID__SDMA_TRAP, 1291 &adev->sdma.trap_irq); 1292 if (r) 1293 return r; 1294 } 1295 1296 /* SDMA SRAM ECC event */ 1297 for (i = 0; i < adev->sdma.num_inst_per_aid; i++) { 1298 r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i), 1299 SDMA0_4_0__SRCID__SDMA_SRAM_ECC, 1300 &adev->sdma.ecc_irq); 1301 if (r) 1302 return r; 1303 } 1304 1305 /* SDMA VM_HOLE/DOORBELL_INV/POLL_TIMEOUT/SRBM_WRITE_PROTECTION event*/ 1306 for (i = 0; i < adev->sdma.num_inst_per_aid; i++) { 1307 r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i), 1308 SDMA0_4_0__SRCID__SDMA_VM_HOLE, 1309 &adev->sdma.vm_hole_irq); 1310 if (r) 1311 return r; 1312 1313 r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i), 1314 SDMA0_4_0__SRCID__SDMA_DOORBELL_INVALID, 1315 &adev->sdma.doorbell_invalid_irq); 1316 if (r) 1317 return r; 1318 1319 r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i), 1320 SDMA0_4_0__SRCID__SDMA_POLL_TIMEOUT, 1321 &adev->sdma.pool_timeout_irq); 1322 if (r) 1323 return r; 1324 1325 r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i), 1326 SDMA0_4_0__SRCID__SDMA_SRBMWRITE, 1327 &adev->sdma.srbm_write_irq); 1328 if (r) 1329 return r; 1330 } 1331 1332 for (i = 0; i < adev->sdma.num_instances; i++) { 1333 ring = &adev->sdma.instance[i].ring; 1334 ring->ring_obj = NULL; 1335 ring->use_doorbell = true; 1336 aid_id = adev->sdma.instance[i].aid_id; 1337 1338 DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i, 1339 ring->use_doorbell?"true":"false"); 1340 1341 /* doorbell size is 2 dwords, get DWORD offset */ 1342 ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1; 1343 ring->vm_hub = AMDGPU_MMHUB0(aid_id); 1344 1345 sprintf(ring->name, "sdma%d.%d", aid_id, 1346 i % adev->sdma.num_inst_per_aid); 1347 r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq, 1348 AMDGPU_SDMA_IRQ_INSTANCE0 + i, 1349 AMDGPU_RING_PRIO_DEFAULT, NULL); 1350 if (r) 1351 return r; 1352 1353 if (adev->sdma.has_page_queue) { 1354 ring = &adev->sdma.instance[i].page; 1355 ring->ring_obj = NULL; 1356 ring->use_doorbell = true; 1357 1358 /* doorbell index of page queue is assigned right after 1359 * gfx queue on the same instance 1360 */ 1361 ring->doorbell_index = 1362 (adev->doorbell_index.sdma_engine[i] + 1) << 1; 1363 ring->vm_hub = AMDGPU_MMHUB0(aid_id); 1364 1365 sprintf(ring->name, "page%d.%d", aid_id, 1366 i % adev->sdma.num_inst_per_aid); 1367 r = amdgpu_ring_init(adev, ring, 1024, 1368 &adev->sdma.trap_irq, 1369 AMDGPU_SDMA_IRQ_INSTANCE0 + i, 1370 AMDGPU_RING_PRIO_DEFAULT, NULL); 1371 if (r) 1372 return r; 1373 } 1374 } 1375 1376 if (amdgpu_sdma_ras_sw_init(adev)) { 1377 dev_err(adev->dev, "fail to initialize sdma ras block\n"); 1378 return -EINVAL; 1379 } 1380 1381 return r; 1382 } 1383 1384 static int sdma_v4_4_2_sw_fini(void *handle) 1385 { 1386 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1387 int i; 1388 1389 for (i = 0; i < adev->sdma.num_instances; i++) { 1390 amdgpu_ring_fini(&adev->sdma.instance[i].ring); 1391 if (adev->sdma.has_page_queue) 1392 amdgpu_ring_fini(&adev->sdma.instance[i].page); 1393 } 1394 1395 if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 2)) 1396 amdgpu_sdma_destroy_inst_ctx(adev, true); 1397 else 1398 amdgpu_sdma_destroy_inst_ctx(adev, false); 1399 1400 return 0; 1401 } 1402 1403 static int sdma_v4_4_2_hw_init(void *handle) 1404 { 1405 int r; 1406 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1407 uint32_t inst_mask; 1408 1409 inst_mask = GENMASK(adev->sdma.num_instances - 1, 0); 1410 if (!amdgpu_sriov_vf(adev)) 1411 sdma_v4_4_2_inst_init_golden_registers(adev, inst_mask); 1412 1413 r = sdma_v4_4_2_inst_start(adev, inst_mask); 1414 1415 return r; 1416 } 1417 1418 static int sdma_v4_4_2_hw_fini(void *handle) 1419 { 1420 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1421 uint32_t inst_mask; 1422 int i; 1423 1424 if (amdgpu_sriov_vf(adev)) 1425 return 0; 1426 1427 inst_mask = GENMASK(adev->sdma.num_instances - 1, 0); 1428 if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) { 1429 for (i = 0; i < adev->sdma.num_instances; i++) { 1430 amdgpu_irq_put(adev, &adev->sdma.ecc_irq, 1431 AMDGPU_SDMA_IRQ_INSTANCE0 + i); 1432 } 1433 } 1434 1435 sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask); 1436 sdma_v4_4_2_inst_enable(adev, false, inst_mask); 1437 1438 return 0; 1439 } 1440 1441 static int sdma_v4_4_2_set_clockgating_state(void *handle, 1442 enum amd_clockgating_state state); 1443 1444 static int sdma_v4_4_2_suspend(void *handle) 1445 { 1446 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1447 1448 if (amdgpu_in_reset(adev)) 1449 sdma_v4_4_2_set_clockgating_state(adev, AMD_CG_STATE_UNGATE); 1450 1451 return sdma_v4_4_2_hw_fini(adev); 1452 } 1453 1454 static int sdma_v4_4_2_resume(void *handle) 1455 { 1456 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1457 1458 return sdma_v4_4_2_hw_init(adev); 1459 } 1460 1461 static bool sdma_v4_4_2_is_idle(void *handle) 1462 { 1463 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1464 u32 i; 1465 1466 for (i = 0; i < adev->sdma.num_instances; i++) { 1467 u32 tmp = RREG32_SDMA(i, regSDMA_STATUS_REG); 1468 1469 if (!(tmp & SDMA_STATUS_REG__IDLE_MASK)) 1470 return false; 1471 } 1472 1473 return true; 1474 } 1475 1476 static int sdma_v4_4_2_wait_for_idle(void *handle) 1477 { 1478 unsigned i, j; 1479 u32 sdma[AMDGPU_MAX_SDMA_INSTANCES]; 1480 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1481 1482 for (i = 0; i < adev->usec_timeout; i++) { 1483 for (j = 0; j < adev->sdma.num_instances; j++) { 1484 sdma[j] = RREG32_SDMA(j, regSDMA_STATUS_REG); 1485 if (!(sdma[j] & SDMA_STATUS_REG__IDLE_MASK)) 1486 break; 1487 } 1488 if (j == adev->sdma.num_instances) 1489 return 0; 1490 udelay(1); 1491 } 1492 return -ETIMEDOUT; 1493 } 1494 1495 static int sdma_v4_4_2_soft_reset(void *handle) 1496 { 1497 /* todo */ 1498 1499 return 0; 1500 } 1501 1502 static int sdma_v4_4_2_set_trap_irq_state(struct amdgpu_device *adev, 1503 struct amdgpu_irq_src *source, 1504 unsigned type, 1505 enum amdgpu_interrupt_state state) 1506 { 1507 u32 sdma_cntl; 1508 1509 sdma_cntl = RREG32_SDMA(type, regSDMA_CNTL); 1510 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA_CNTL, TRAP_ENABLE, 1511 state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0); 1512 WREG32_SDMA(type, regSDMA_CNTL, sdma_cntl); 1513 1514 return 0; 1515 } 1516 1517 static int sdma_v4_4_2_process_trap_irq(struct amdgpu_device *adev, 1518 struct amdgpu_irq_src *source, 1519 struct amdgpu_iv_entry *entry) 1520 { 1521 uint32_t instance, i; 1522 1523 DRM_DEBUG("IH: SDMA trap\n"); 1524 instance = sdma_v4_4_2_irq_id_to_seq(entry->client_id); 1525 1526 /* Client id gives the SDMA instance in AID. To know the exact SDMA 1527 * instance, interrupt entry gives the node id which corresponds to the AID instance. 1528 * Match node id with the AID id associated with the SDMA instance. */ 1529 for (i = instance; i < adev->sdma.num_instances; 1530 i += adev->sdma.num_inst_per_aid) { 1531 if (adev->sdma.instance[i].aid_id == 1532 node_id_to_phys_map[entry->node_id]) 1533 break; 1534 } 1535 1536 if (i >= adev->sdma.num_instances) { 1537 dev_WARN_ONCE( 1538 adev->dev, 1, 1539 "Couldn't find the right sdma instance in trap handler"); 1540 return 0; 1541 } 1542 1543 switch (entry->ring_id) { 1544 case 0: 1545 amdgpu_fence_process(&adev->sdma.instance[i].ring); 1546 break; 1547 default: 1548 break; 1549 } 1550 return 0; 1551 } 1552 1553 #if 0 1554 static int sdma_v4_4_2_process_ras_data_cb(struct amdgpu_device *adev, 1555 void *err_data, 1556 struct amdgpu_iv_entry *entry) 1557 { 1558 int instance; 1559 1560 /* When “Full RAS” is enabled, the per-IP interrupt sources should 1561 * be disabled and the driver should only look for the aggregated 1562 * interrupt via sync flood 1563 */ 1564 if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) 1565 goto out; 1566 1567 instance = sdma_v4_4_2_irq_id_to_seq(entry->client_id); 1568 if (instance < 0) 1569 goto out; 1570 1571 amdgpu_sdma_process_ras_data_cb(adev, err_data, entry); 1572 1573 out: 1574 return AMDGPU_RAS_SUCCESS; 1575 } 1576 #endif 1577 1578 static int sdma_v4_4_2_process_illegal_inst_irq(struct amdgpu_device *adev, 1579 struct amdgpu_irq_src *source, 1580 struct amdgpu_iv_entry *entry) 1581 { 1582 int instance; 1583 1584 DRM_ERROR("Illegal instruction in SDMA command stream\n"); 1585 1586 instance = sdma_v4_4_2_irq_id_to_seq(entry->client_id); 1587 if (instance < 0) 1588 return 0; 1589 1590 switch (entry->ring_id) { 1591 case 0: 1592 drm_sched_fault(&adev->sdma.instance[instance].ring.sched); 1593 break; 1594 } 1595 return 0; 1596 } 1597 1598 static int sdma_v4_4_2_set_ecc_irq_state(struct amdgpu_device *adev, 1599 struct amdgpu_irq_src *source, 1600 unsigned type, 1601 enum amdgpu_interrupt_state state) 1602 { 1603 u32 sdma_cntl; 1604 1605 sdma_cntl = RREG32_SDMA(type, regSDMA_CNTL); 1606 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA_CNTL, DRAM_ECC_INT_ENABLE, 1607 state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0); 1608 WREG32_SDMA(type, regSDMA_CNTL, sdma_cntl); 1609 1610 return 0; 1611 } 1612 1613 static int sdma_v4_4_2_print_iv_entry(struct amdgpu_device *adev, 1614 struct amdgpu_iv_entry *entry) 1615 { 1616 int instance; 1617 struct amdgpu_task_info *task_info; 1618 u64 addr; 1619 1620 instance = sdma_v4_4_2_irq_id_to_seq(entry->client_id); 1621 if (instance < 0 || instance >= adev->sdma.num_instances) { 1622 dev_err(adev->dev, "sdma instance invalid %d\n", instance); 1623 return -EINVAL; 1624 } 1625 1626 addr = (u64)entry->src_data[0] << 12; 1627 addr |= ((u64)entry->src_data[1] & 0xf) << 44; 1628 1629 dev_dbg_ratelimited(adev->dev, 1630 "[sdma%d] address:0x%016llx src_id:%u ring:%u vmid:%u pasid:%u\n", 1631 instance, addr, entry->src_id, entry->ring_id, entry->vmid, 1632 entry->pasid); 1633 1634 task_info = amdgpu_vm_get_task_info_pasid(adev, entry->pasid); 1635 if (task_info) { 1636 dev_dbg_ratelimited(adev->dev, " for process %s pid %d thread %s pid %d\n", 1637 task_info->process_name, task_info->tgid, 1638 task_info->task_name, task_info->pid); 1639 amdgpu_vm_put_task_info(task_info); 1640 } 1641 1642 return 0; 1643 } 1644 1645 static int sdma_v4_4_2_process_vm_hole_irq(struct amdgpu_device *adev, 1646 struct amdgpu_irq_src *source, 1647 struct amdgpu_iv_entry *entry) 1648 { 1649 dev_dbg_ratelimited(adev->dev, "MC or SEM address in VM hole\n"); 1650 sdma_v4_4_2_print_iv_entry(adev, entry); 1651 return 0; 1652 } 1653 1654 static int sdma_v4_4_2_process_doorbell_invalid_irq(struct amdgpu_device *adev, 1655 struct amdgpu_irq_src *source, 1656 struct amdgpu_iv_entry *entry) 1657 { 1658 1659 dev_dbg_ratelimited(adev->dev, "SDMA received a doorbell from BIF with byte_enable !=0xff\n"); 1660 sdma_v4_4_2_print_iv_entry(adev, entry); 1661 return 0; 1662 } 1663 1664 static int sdma_v4_4_2_process_pool_timeout_irq(struct amdgpu_device *adev, 1665 struct amdgpu_irq_src *source, 1666 struct amdgpu_iv_entry *entry) 1667 { 1668 dev_dbg_ratelimited(adev->dev, 1669 "Polling register/memory timeout executing POLL_REG/MEM with finite timer\n"); 1670 sdma_v4_4_2_print_iv_entry(adev, entry); 1671 return 0; 1672 } 1673 1674 static int sdma_v4_4_2_process_srbm_write_irq(struct amdgpu_device *adev, 1675 struct amdgpu_irq_src *source, 1676 struct amdgpu_iv_entry *entry) 1677 { 1678 dev_dbg_ratelimited(adev->dev, 1679 "SDMA gets an Register Write SRBM_WRITE command in non-privilege command buffer\n"); 1680 sdma_v4_4_2_print_iv_entry(adev, entry); 1681 return 0; 1682 } 1683 1684 static void sdma_v4_4_2_inst_update_medium_grain_light_sleep( 1685 struct amdgpu_device *adev, bool enable, uint32_t inst_mask) 1686 { 1687 uint32_t data, def; 1688 int i; 1689 1690 /* leave as default if it is not driver controlled */ 1691 if (!(adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) 1692 return; 1693 1694 if (enable) { 1695 for_each_inst(i, inst_mask) { 1696 /* 1-not override: enable sdma mem light sleep */ 1697 def = data = RREG32_SDMA(i, regSDMA_POWER_CNTL); 1698 data |= SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; 1699 if (def != data) 1700 WREG32_SDMA(i, regSDMA_POWER_CNTL, data); 1701 } 1702 } else { 1703 for_each_inst(i, inst_mask) { 1704 /* 0-override:disable sdma mem light sleep */ 1705 def = data = RREG32_SDMA(i, regSDMA_POWER_CNTL); 1706 data &= ~SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; 1707 if (def != data) 1708 WREG32_SDMA(i, regSDMA_POWER_CNTL, data); 1709 } 1710 } 1711 } 1712 1713 static void sdma_v4_4_2_inst_update_medium_grain_clock_gating( 1714 struct amdgpu_device *adev, bool enable, uint32_t inst_mask) 1715 { 1716 uint32_t data, def; 1717 int i; 1718 1719 /* leave as default if it is not driver controlled */ 1720 if (!(adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) 1721 return; 1722 1723 if (enable) { 1724 for_each_inst(i, inst_mask) { 1725 def = data = RREG32_SDMA(i, regSDMA_CLK_CTRL); 1726 data &= ~(SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK | 1727 SDMA_CLK_CTRL__SOFT_OVERRIDE4_MASK | 1728 SDMA_CLK_CTRL__SOFT_OVERRIDE3_MASK | 1729 SDMA_CLK_CTRL__SOFT_OVERRIDE2_MASK | 1730 SDMA_CLK_CTRL__SOFT_OVERRIDE1_MASK | 1731 SDMA_CLK_CTRL__SOFT_OVERRIDE0_MASK); 1732 if (def != data) 1733 WREG32_SDMA(i, regSDMA_CLK_CTRL, data); 1734 } 1735 } else { 1736 for_each_inst(i, inst_mask) { 1737 def = data = RREG32_SDMA(i, regSDMA_CLK_CTRL); 1738 data |= (SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK | 1739 SDMA_CLK_CTRL__SOFT_OVERRIDE4_MASK | 1740 SDMA_CLK_CTRL__SOFT_OVERRIDE3_MASK | 1741 SDMA_CLK_CTRL__SOFT_OVERRIDE2_MASK | 1742 SDMA_CLK_CTRL__SOFT_OVERRIDE1_MASK | 1743 SDMA_CLK_CTRL__SOFT_OVERRIDE0_MASK); 1744 if (def != data) 1745 WREG32_SDMA(i, regSDMA_CLK_CTRL, data); 1746 } 1747 } 1748 } 1749 1750 static int sdma_v4_4_2_set_clockgating_state(void *handle, 1751 enum amd_clockgating_state state) 1752 { 1753 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1754 uint32_t inst_mask; 1755 1756 if (amdgpu_sriov_vf(adev)) 1757 return 0; 1758 1759 inst_mask = GENMASK(adev->sdma.num_instances - 1, 0); 1760 1761 sdma_v4_4_2_inst_update_medium_grain_clock_gating( 1762 adev, state == AMD_CG_STATE_GATE, inst_mask); 1763 sdma_v4_4_2_inst_update_medium_grain_light_sleep( 1764 adev, state == AMD_CG_STATE_GATE, inst_mask); 1765 return 0; 1766 } 1767 1768 static int sdma_v4_4_2_set_powergating_state(void *handle, 1769 enum amd_powergating_state state) 1770 { 1771 return 0; 1772 } 1773 1774 static void sdma_v4_4_2_get_clockgating_state(void *handle, u64 *flags) 1775 { 1776 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1777 int data; 1778 1779 if (amdgpu_sriov_vf(adev)) 1780 *flags = 0; 1781 1782 /* AMD_CG_SUPPORT_SDMA_MGCG */ 1783 data = RREG32(SOC15_REG_OFFSET(SDMA0, GET_INST(SDMA0, 0), regSDMA_CLK_CTRL)); 1784 if (!(data & SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK)) 1785 *flags |= AMD_CG_SUPPORT_SDMA_MGCG; 1786 1787 /* AMD_CG_SUPPORT_SDMA_LS */ 1788 data = RREG32(SOC15_REG_OFFSET(SDMA0, GET_INST(SDMA0, 0), regSDMA_POWER_CNTL)); 1789 if (data & SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK) 1790 *flags |= AMD_CG_SUPPORT_SDMA_LS; 1791 } 1792 1793 const struct amd_ip_funcs sdma_v4_4_2_ip_funcs = { 1794 .name = "sdma_v4_4_2", 1795 .early_init = sdma_v4_4_2_early_init, 1796 .late_init = sdma_v4_4_2_late_init, 1797 .sw_init = sdma_v4_4_2_sw_init, 1798 .sw_fini = sdma_v4_4_2_sw_fini, 1799 .hw_init = sdma_v4_4_2_hw_init, 1800 .hw_fini = sdma_v4_4_2_hw_fini, 1801 .suspend = sdma_v4_4_2_suspend, 1802 .resume = sdma_v4_4_2_resume, 1803 .is_idle = sdma_v4_4_2_is_idle, 1804 .wait_for_idle = sdma_v4_4_2_wait_for_idle, 1805 .soft_reset = sdma_v4_4_2_soft_reset, 1806 .set_clockgating_state = sdma_v4_4_2_set_clockgating_state, 1807 .set_powergating_state = sdma_v4_4_2_set_powergating_state, 1808 .get_clockgating_state = sdma_v4_4_2_get_clockgating_state, 1809 }; 1810 1811 static const struct amdgpu_ring_funcs sdma_v4_4_2_ring_funcs = { 1812 .type = AMDGPU_RING_TYPE_SDMA, 1813 .align_mask = 0xff, 1814 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 1815 .support_64bit_ptrs = true, 1816 .get_rptr = sdma_v4_4_2_ring_get_rptr, 1817 .get_wptr = sdma_v4_4_2_ring_get_wptr, 1818 .set_wptr = sdma_v4_4_2_ring_set_wptr, 1819 .emit_frame_size = 1820 6 + /* sdma_v4_4_2_ring_emit_hdp_flush */ 1821 3 + /* hdp invalidate */ 1822 6 + /* sdma_v4_4_2_ring_emit_pipeline_sync */ 1823 /* sdma_v4_4_2_ring_emit_vm_flush */ 1824 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + 1825 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 + 1826 10 + 10 + 10, /* sdma_v4_4_2_ring_emit_fence x3 for user fence, vm fence */ 1827 .emit_ib_size = 7 + 6, /* sdma_v4_4_2_ring_emit_ib */ 1828 .emit_ib = sdma_v4_4_2_ring_emit_ib, 1829 .emit_fence = sdma_v4_4_2_ring_emit_fence, 1830 .emit_pipeline_sync = sdma_v4_4_2_ring_emit_pipeline_sync, 1831 .emit_vm_flush = sdma_v4_4_2_ring_emit_vm_flush, 1832 .emit_hdp_flush = sdma_v4_4_2_ring_emit_hdp_flush, 1833 .test_ring = sdma_v4_4_2_ring_test_ring, 1834 .test_ib = sdma_v4_4_2_ring_test_ib, 1835 .insert_nop = sdma_v4_4_2_ring_insert_nop, 1836 .pad_ib = sdma_v4_4_2_ring_pad_ib, 1837 .emit_wreg = sdma_v4_4_2_ring_emit_wreg, 1838 .emit_reg_wait = sdma_v4_4_2_ring_emit_reg_wait, 1839 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper, 1840 }; 1841 1842 static const struct amdgpu_ring_funcs sdma_v4_4_2_page_ring_funcs = { 1843 .type = AMDGPU_RING_TYPE_SDMA, 1844 .align_mask = 0xff, 1845 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 1846 .support_64bit_ptrs = true, 1847 .get_rptr = sdma_v4_4_2_ring_get_rptr, 1848 .get_wptr = sdma_v4_4_2_page_ring_get_wptr, 1849 .set_wptr = sdma_v4_4_2_page_ring_set_wptr, 1850 .emit_frame_size = 1851 6 + /* sdma_v4_4_2_ring_emit_hdp_flush */ 1852 3 + /* hdp invalidate */ 1853 6 + /* sdma_v4_4_2_ring_emit_pipeline_sync */ 1854 /* sdma_v4_4_2_ring_emit_vm_flush */ 1855 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + 1856 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 + 1857 10 + 10 + 10, /* sdma_v4_4_2_ring_emit_fence x3 for user fence, vm fence */ 1858 .emit_ib_size = 7 + 6, /* sdma_v4_4_2_ring_emit_ib */ 1859 .emit_ib = sdma_v4_4_2_ring_emit_ib, 1860 .emit_fence = sdma_v4_4_2_ring_emit_fence, 1861 .emit_pipeline_sync = sdma_v4_4_2_ring_emit_pipeline_sync, 1862 .emit_vm_flush = sdma_v4_4_2_ring_emit_vm_flush, 1863 .emit_hdp_flush = sdma_v4_4_2_ring_emit_hdp_flush, 1864 .test_ring = sdma_v4_4_2_ring_test_ring, 1865 .test_ib = sdma_v4_4_2_ring_test_ib, 1866 .insert_nop = sdma_v4_4_2_ring_insert_nop, 1867 .pad_ib = sdma_v4_4_2_ring_pad_ib, 1868 .emit_wreg = sdma_v4_4_2_ring_emit_wreg, 1869 .emit_reg_wait = sdma_v4_4_2_ring_emit_reg_wait, 1870 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper, 1871 }; 1872 1873 static void sdma_v4_4_2_set_ring_funcs(struct amdgpu_device *adev) 1874 { 1875 int i, dev_inst; 1876 1877 for (i = 0; i < adev->sdma.num_instances; i++) { 1878 adev->sdma.instance[i].ring.funcs = &sdma_v4_4_2_ring_funcs; 1879 adev->sdma.instance[i].ring.me = i; 1880 if (adev->sdma.has_page_queue) { 1881 adev->sdma.instance[i].page.funcs = 1882 &sdma_v4_4_2_page_ring_funcs; 1883 adev->sdma.instance[i].page.me = i; 1884 } 1885 1886 dev_inst = GET_INST(SDMA0, i); 1887 /* AID to which SDMA belongs depends on physical instance */ 1888 adev->sdma.instance[i].aid_id = 1889 dev_inst / adev->sdma.num_inst_per_aid; 1890 } 1891 } 1892 1893 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_trap_irq_funcs = { 1894 .set = sdma_v4_4_2_set_trap_irq_state, 1895 .process = sdma_v4_4_2_process_trap_irq, 1896 }; 1897 1898 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_illegal_inst_irq_funcs = { 1899 .process = sdma_v4_4_2_process_illegal_inst_irq, 1900 }; 1901 1902 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_ecc_irq_funcs = { 1903 .set = sdma_v4_4_2_set_ecc_irq_state, 1904 .process = amdgpu_sdma_process_ecc_irq, 1905 }; 1906 1907 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_vm_hole_irq_funcs = { 1908 .process = sdma_v4_4_2_process_vm_hole_irq, 1909 }; 1910 1911 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_doorbell_invalid_irq_funcs = { 1912 .process = sdma_v4_4_2_process_doorbell_invalid_irq, 1913 }; 1914 1915 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_pool_timeout_irq_funcs = { 1916 .process = sdma_v4_4_2_process_pool_timeout_irq, 1917 }; 1918 1919 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_srbm_write_irq_funcs = { 1920 .process = sdma_v4_4_2_process_srbm_write_irq, 1921 }; 1922 1923 static void sdma_v4_4_2_set_irq_funcs(struct amdgpu_device *adev) 1924 { 1925 adev->sdma.trap_irq.num_types = adev->sdma.num_instances; 1926 adev->sdma.ecc_irq.num_types = adev->sdma.num_instances; 1927 adev->sdma.vm_hole_irq.num_types = adev->sdma.num_instances; 1928 adev->sdma.doorbell_invalid_irq.num_types = adev->sdma.num_instances; 1929 adev->sdma.pool_timeout_irq.num_types = adev->sdma.num_instances; 1930 adev->sdma.srbm_write_irq.num_types = adev->sdma.num_instances; 1931 1932 adev->sdma.trap_irq.funcs = &sdma_v4_4_2_trap_irq_funcs; 1933 adev->sdma.illegal_inst_irq.funcs = &sdma_v4_4_2_illegal_inst_irq_funcs; 1934 adev->sdma.ecc_irq.funcs = &sdma_v4_4_2_ecc_irq_funcs; 1935 adev->sdma.vm_hole_irq.funcs = &sdma_v4_4_2_vm_hole_irq_funcs; 1936 adev->sdma.doorbell_invalid_irq.funcs = &sdma_v4_4_2_doorbell_invalid_irq_funcs; 1937 adev->sdma.pool_timeout_irq.funcs = &sdma_v4_4_2_pool_timeout_irq_funcs; 1938 adev->sdma.srbm_write_irq.funcs = &sdma_v4_4_2_srbm_write_irq_funcs; 1939 } 1940 1941 /** 1942 * sdma_v4_4_2_emit_copy_buffer - copy buffer using the sDMA engine 1943 * 1944 * @ib: indirect buffer to copy to 1945 * @src_offset: src GPU address 1946 * @dst_offset: dst GPU address 1947 * @byte_count: number of bytes to xfer 1948 * @copy_flags: copy flags for the buffers 1949 * 1950 * Copy GPU buffers using the DMA engine. 1951 * Used by the amdgpu ttm implementation to move pages if 1952 * registered as the asic copy callback. 1953 */ 1954 static void sdma_v4_4_2_emit_copy_buffer(struct amdgpu_ib *ib, 1955 uint64_t src_offset, 1956 uint64_t dst_offset, 1957 uint32_t byte_count, 1958 uint32_t copy_flags) 1959 { 1960 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | 1961 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) | 1962 SDMA_PKT_COPY_LINEAR_HEADER_TMZ((copy_flags & AMDGPU_COPY_FLAGS_TMZ) ? 1 : 0); 1963 ib->ptr[ib->length_dw++] = byte_count - 1; 1964 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 1965 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset); 1966 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset); 1967 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 1968 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 1969 } 1970 1971 /** 1972 * sdma_v4_4_2_emit_fill_buffer - fill buffer using the sDMA engine 1973 * 1974 * @ib: indirect buffer to copy to 1975 * @src_data: value to write to buffer 1976 * @dst_offset: dst GPU address 1977 * @byte_count: number of bytes to xfer 1978 * 1979 * Fill GPU buffers using the DMA engine. 1980 */ 1981 static void sdma_v4_4_2_emit_fill_buffer(struct amdgpu_ib *ib, 1982 uint32_t src_data, 1983 uint64_t dst_offset, 1984 uint32_t byte_count) 1985 { 1986 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL); 1987 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 1988 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 1989 ib->ptr[ib->length_dw++] = src_data; 1990 ib->ptr[ib->length_dw++] = byte_count - 1; 1991 } 1992 1993 static const struct amdgpu_buffer_funcs sdma_v4_4_2_buffer_funcs = { 1994 .copy_max_bytes = 0x400000, 1995 .copy_num_dw = 7, 1996 .emit_copy_buffer = sdma_v4_4_2_emit_copy_buffer, 1997 1998 .fill_max_bytes = 0x400000, 1999 .fill_num_dw = 5, 2000 .emit_fill_buffer = sdma_v4_4_2_emit_fill_buffer, 2001 }; 2002 2003 static void sdma_v4_4_2_set_buffer_funcs(struct amdgpu_device *adev) 2004 { 2005 adev->mman.buffer_funcs = &sdma_v4_4_2_buffer_funcs; 2006 if (adev->sdma.has_page_queue) 2007 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page; 2008 else 2009 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring; 2010 } 2011 2012 static const struct amdgpu_vm_pte_funcs sdma_v4_4_2_vm_pte_funcs = { 2013 .copy_pte_num_dw = 7, 2014 .copy_pte = sdma_v4_4_2_vm_copy_pte, 2015 2016 .write_pte = sdma_v4_4_2_vm_write_pte, 2017 .set_pte_pde = sdma_v4_4_2_vm_set_pte_pde, 2018 }; 2019 2020 static void sdma_v4_4_2_set_vm_pte_funcs(struct amdgpu_device *adev) 2021 { 2022 struct drm_gpu_scheduler *sched; 2023 unsigned i; 2024 2025 adev->vm_manager.vm_pte_funcs = &sdma_v4_4_2_vm_pte_funcs; 2026 for (i = 0; i < adev->sdma.num_instances; i++) { 2027 if (adev->sdma.has_page_queue) 2028 sched = &adev->sdma.instance[i].page.sched; 2029 else 2030 sched = &adev->sdma.instance[i].ring.sched; 2031 adev->vm_manager.vm_pte_scheds[i] = sched; 2032 } 2033 adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances; 2034 } 2035 2036 const struct amdgpu_ip_block_version sdma_v4_4_2_ip_block = { 2037 .type = AMD_IP_BLOCK_TYPE_SDMA, 2038 .major = 4, 2039 .minor = 4, 2040 .rev = 2, 2041 .funcs = &sdma_v4_4_2_ip_funcs, 2042 }; 2043 2044 static int sdma_v4_4_2_xcp_resume(void *handle, uint32_t inst_mask) 2045 { 2046 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2047 int r; 2048 2049 if (!amdgpu_sriov_vf(adev)) 2050 sdma_v4_4_2_inst_init_golden_registers(adev, inst_mask); 2051 2052 r = sdma_v4_4_2_inst_start(adev, inst_mask); 2053 2054 return r; 2055 } 2056 2057 static int sdma_v4_4_2_xcp_suspend(void *handle, uint32_t inst_mask) 2058 { 2059 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2060 uint32_t tmp_mask = inst_mask; 2061 int i; 2062 2063 if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) { 2064 for_each_inst(i, tmp_mask) { 2065 amdgpu_irq_put(adev, &adev->sdma.ecc_irq, 2066 AMDGPU_SDMA_IRQ_INSTANCE0 + i); 2067 } 2068 } 2069 2070 sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask); 2071 sdma_v4_4_2_inst_enable(adev, false, inst_mask); 2072 2073 return 0; 2074 } 2075 2076 struct amdgpu_xcp_ip_funcs sdma_v4_4_2_xcp_funcs = { 2077 .suspend = &sdma_v4_4_2_xcp_suspend, 2078 .resume = &sdma_v4_4_2_xcp_resume 2079 }; 2080 2081 static const struct amdgpu_ras_err_status_reg_entry sdma_v4_2_2_ue_reg_list[] = { 2082 {AMDGPU_RAS_REG_ENTRY(SDMA0, 0, regSDMA_UE_ERR_STATUS_LO, regSDMA_UE_ERR_STATUS_HI), 2083 1, (AMDGPU_RAS_ERR_INFO_VALID | AMDGPU_RAS_ERR_STATUS_VALID), "SDMA"}, 2084 }; 2085 2086 static const struct amdgpu_ras_memory_id_entry sdma_v4_4_2_ras_memory_list[] = { 2087 {AMDGPU_SDMA_MBANK_DATA_BUF0, "SDMA_MBANK_DATA_BUF0"}, 2088 {AMDGPU_SDMA_MBANK_DATA_BUF1, "SDMA_MBANK_DATA_BUF1"}, 2089 {AMDGPU_SDMA_MBANK_DATA_BUF2, "SDMA_MBANK_DATA_BUF2"}, 2090 {AMDGPU_SDMA_MBANK_DATA_BUF3, "SDMA_MBANK_DATA_BUF3"}, 2091 {AMDGPU_SDMA_MBANK_DATA_BUF4, "SDMA_MBANK_DATA_BUF4"}, 2092 {AMDGPU_SDMA_MBANK_DATA_BUF5, "SDMA_MBANK_DATA_BUF5"}, 2093 {AMDGPU_SDMA_MBANK_DATA_BUF6, "SDMA_MBANK_DATA_BUF6"}, 2094 {AMDGPU_SDMA_MBANK_DATA_BUF7, "SDMA_MBANK_DATA_BUF7"}, 2095 {AMDGPU_SDMA_MBANK_DATA_BUF8, "SDMA_MBANK_DATA_BUF8"}, 2096 {AMDGPU_SDMA_MBANK_DATA_BUF9, "SDMA_MBANK_DATA_BUF9"}, 2097 {AMDGPU_SDMA_MBANK_DATA_BUF10, "SDMA_MBANK_DATA_BUF10"}, 2098 {AMDGPU_SDMA_MBANK_DATA_BUF11, "SDMA_MBANK_DATA_BUF11"}, 2099 {AMDGPU_SDMA_MBANK_DATA_BUF12, "SDMA_MBANK_DATA_BUF12"}, 2100 {AMDGPU_SDMA_MBANK_DATA_BUF13, "SDMA_MBANK_DATA_BUF13"}, 2101 {AMDGPU_SDMA_MBANK_DATA_BUF14, "SDMA_MBANK_DATA_BUF14"}, 2102 {AMDGPU_SDMA_MBANK_DATA_BUF15, "SDMA_MBANK_DATA_BUF15"}, 2103 {AMDGPU_SDMA_UCODE_BUF, "SDMA_UCODE_BUF"}, 2104 {AMDGPU_SDMA_RB_CMD_BUF, "SDMA_RB_CMD_BUF"}, 2105 {AMDGPU_SDMA_IB_CMD_BUF, "SDMA_IB_CMD_BUF"}, 2106 {AMDGPU_SDMA_UTCL1_RD_FIFO, "SDMA_UTCL1_RD_FIFO"}, 2107 {AMDGPU_SDMA_UTCL1_RDBST_FIFO, "SDMA_UTCL1_RDBST_FIFO"}, 2108 {AMDGPU_SDMA_UTCL1_WR_FIFO, "SDMA_UTCL1_WR_FIFO"}, 2109 {AMDGPU_SDMA_DATA_LUT_FIFO, "SDMA_DATA_LUT_FIFO"}, 2110 {AMDGPU_SDMA_SPLIT_DAT_BUF, "SDMA_SPLIT_DAT_BUF"}, 2111 }; 2112 2113 static void sdma_v4_4_2_inst_query_ras_error_count(struct amdgpu_device *adev, 2114 uint32_t sdma_inst, 2115 void *ras_err_status) 2116 { 2117 struct ras_err_data *err_data = (struct ras_err_data *)ras_err_status; 2118 uint32_t sdma_dev_inst = GET_INST(SDMA0, sdma_inst); 2119 unsigned long ue_count = 0; 2120 struct amdgpu_smuio_mcm_config_info mcm_info = { 2121 .socket_id = adev->smuio.funcs->get_socket_id(adev), 2122 .die_id = adev->sdma.instance[sdma_inst].aid_id, 2123 }; 2124 2125 /* sdma v4_4_2 doesn't support query ce counts */ 2126 amdgpu_ras_inst_query_ras_error_count(adev, 2127 sdma_v4_2_2_ue_reg_list, 2128 ARRAY_SIZE(sdma_v4_2_2_ue_reg_list), 2129 sdma_v4_4_2_ras_memory_list, 2130 ARRAY_SIZE(sdma_v4_4_2_ras_memory_list), 2131 sdma_dev_inst, 2132 AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE, 2133 &ue_count); 2134 2135 amdgpu_ras_error_statistic_ue_count(err_data, &mcm_info, NULL, ue_count); 2136 } 2137 2138 static void sdma_v4_4_2_query_ras_error_count(struct amdgpu_device *adev, 2139 void *ras_err_status) 2140 { 2141 uint32_t inst_mask; 2142 int i = 0; 2143 2144 inst_mask = GENMASK(adev->sdma.num_instances - 1, 0); 2145 if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) { 2146 for_each_inst(i, inst_mask) 2147 sdma_v4_4_2_inst_query_ras_error_count(adev, i, ras_err_status); 2148 } else { 2149 dev_warn(adev->dev, "SDMA RAS is not supported\n"); 2150 } 2151 } 2152 2153 static void sdma_v4_4_2_inst_reset_ras_error_count(struct amdgpu_device *adev, 2154 uint32_t sdma_inst) 2155 { 2156 uint32_t sdma_dev_inst = GET_INST(SDMA0, sdma_inst); 2157 2158 amdgpu_ras_inst_reset_ras_error_count(adev, 2159 sdma_v4_2_2_ue_reg_list, 2160 ARRAY_SIZE(sdma_v4_2_2_ue_reg_list), 2161 sdma_dev_inst); 2162 } 2163 2164 static void sdma_v4_4_2_reset_ras_error_count(struct amdgpu_device *adev) 2165 { 2166 uint32_t inst_mask; 2167 int i = 0; 2168 2169 inst_mask = GENMASK(adev->sdma.num_instances - 1, 0); 2170 if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) { 2171 for_each_inst(i, inst_mask) 2172 sdma_v4_4_2_inst_reset_ras_error_count(adev, i); 2173 } else { 2174 dev_warn(adev->dev, "SDMA RAS is not supported\n"); 2175 } 2176 } 2177 2178 static const struct amdgpu_ras_block_hw_ops sdma_v4_4_2_ras_hw_ops = { 2179 .query_ras_error_count = sdma_v4_4_2_query_ras_error_count, 2180 .reset_ras_error_count = sdma_v4_4_2_reset_ras_error_count, 2181 }; 2182 2183 static int sdma_v4_4_2_aca_bank_parser(struct aca_handle *handle, struct aca_bank *bank, 2184 enum aca_smu_type type, void *data) 2185 { 2186 struct aca_bank_info info; 2187 u64 misc0; 2188 int ret; 2189 2190 ret = aca_bank_info_decode(bank, &info); 2191 if (ret) 2192 return ret; 2193 2194 misc0 = bank->regs[ACA_REG_IDX_MISC0]; 2195 switch (type) { 2196 case ACA_SMU_TYPE_UE: 2197 ret = aca_error_cache_log_bank_error(handle, &info, ACA_ERROR_TYPE_UE, 2198 1ULL); 2199 break; 2200 case ACA_SMU_TYPE_CE: 2201 ret = aca_error_cache_log_bank_error(handle, &info, ACA_ERROR_TYPE_CE, 2202 ACA_REG__MISC0__ERRCNT(misc0)); 2203 break; 2204 default: 2205 return -EINVAL; 2206 } 2207 2208 return ret; 2209 } 2210 2211 /* CODE_SDMA0 - CODE_SDMA4, reference to smu driver if header file */ 2212 static int sdma_v4_4_2_err_codes[] = { 33, 34, 35, 36 }; 2213 2214 static bool sdma_v4_4_2_aca_bank_is_valid(struct aca_handle *handle, struct aca_bank *bank, 2215 enum aca_smu_type type, void *data) 2216 { 2217 u32 instlo; 2218 2219 instlo = ACA_REG__IPID__INSTANCEIDLO(bank->regs[ACA_REG_IDX_IPID]); 2220 instlo &= GENMASK(31, 1); 2221 2222 if (instlo != mmSMNAID_AID0_MCA_SMU) 2223 return false; 2224 2225 if (aca_bank_check_error_codes(handle->adev, bank, 2226 sdma_v4_4_2_err_codes, 2227 ARRAY_SIZE(sdma_v4_4_2_err_codes))) 2228 return false; 2229 2230 return true; 2231 } 2232 2233 static const struct aca_bank_ops sdma_v4_4_2_aca_bank_ops = { 2234 .aca_bank_parser = sdma_v4_4_2_aca_bank_parser, 2235 .aca_bank_is_valid = sdma_v4_4_2_aca_bank_is_valid, 2236 }; 2237 2238 static const struct aca_info sdma_v4_4_2_aca_info = { 2239 .hwip = ACA_HWIP_TYPE_SMU, 2240 .mask = ACA_ERROR_UE_MASK, 2241 .bank_ops = &sdma_v4_4_2_aca_bank_ops, 2242 }; 2243 2244 static int sdma_v4_4_2_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block) 2245 { 2246 int r; 2247 2248 r = amdgpu_sdma_ras_late_init(adev, ras_block); 2249 if (r) 2250 return r; 2251 2252 return amdgpu_ras_bind_aca(adev, AMDGPU_RAS_BLOCK__SDMA, 2253 &sdma_v4_4_2_aca_info, NULL); 2254 } 2255 2256 static struct amdgpu_sdma_ras sdma_v4_4_2_ras = { 2257 .ras_block = { 2258 .hw_ops = &sdma_v4_4_2_ras_hw_ops, 2259 .ras_late_init = sdma_v4_4_2_ras_late_init, 2260 }, 2261 }; 2262 2263 static void sdma_v4_4_2_set_ras_funcs(struct amdgpu_device *adev) 2264 { 2265 adev->sdma.ras = &sdma_v4_4_2_ras; 2266 } 2267