1 /* 2 * Copyright 2022 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 24 #include <linux/delay.h> 25 #include <linux/firmware.h> 26 #include <linux/module.h> 27 #include <linux/pci.h> 28 29 #include "amdgpu.h" 30 #include "amdgpu_xcp.h" 31 #include "amdgpu_ucode.h" 32 #include "amdgpu_trace.h" 33 34 #include "sdma/sdma_4_4_2_offset.h" 35 #include "sdma/sdma_4_4_2_sh_mask.h" 36 37 #include "soc15_common.h" 38 #include "soc15.h" 39 #include "vega10_sdma_pkt_open.h" 40 41 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h" 42 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h" 43 44 #include "amdgpu_ras.h" 45 46 MODULE_FIRMWARE("amdgpu/sdma_4_4_2.bin"); 47 48 #define WREG32_SDMA(instance, offset, value) \ 49 WREG32(sdma_v4_4_2_get_reg_offset(adev, (instance), (offset)), value) 50 #define RREG32_SDMA(instance, offset) \ 51 RREG32(sdma_v4_4_2_get_reg_offset(adev, (instance), (offset))) 52 53 static void sdma_v4_4_2_set_ring_funcs(struct amdgpu_device *adev); 54 static void sdma_v4_4_2_set_buffer_funcs(struct amdgpu_device *adev); 55 static void sdma_v4_4_2_set_vm_pte_funcs(struct amdgpu_device *adev); 56 static void sdma_v4_4_2_set_irq_funcs(struct amdgpu_device *adev); 57 static void sdma_v4_4_2_set_ras_funcs(struct amdgpu_device *adev); 58 59 static u32 sdma_v4_4_2_get_reg_offset(struct amdgpu_device *adev, 60 u32 instance, u32 offset) 61 { 62 u32 dev_inst = GET_INST(SDMA0, instance); 63 64 return (adev->reg_offset[SDMA0_HWIP][dev_inst][0] + offset); 65 } 66 67 static unsigned sdma_v4_4_2_seq_to_irq_id(int seq_num) 68 { 69 switch (seq_num) { 70 case 0: 71 return SOC15_IH_CLIENTID_SDMA0; 72 case 1: 73 return SOC15_IH_CLIENTID_SDMA1; 74 case 2: 75 return SOC15_IH_CLIENTID_SDMA2; 76 case 3: 77 return SOC15_IH_CLIENTID_SDMA3; 78 default: 79 return -EINVAL; 80 } 81 } 82 83 static int sdma_v4_4_2_irq_id_to_seq(unsigned client_id) 84 { 85 switch (client_id) { 86 case SOC15_IH_CLIENTID_SDMA0: 87 return 0; 88 case SOC15_IH_CLIENTID_SDMA1: 89 return 1; 90 case SOC15_IH_CLIENTID_SDMA2: 91 return 2; 92 case SOC15_IH_CLIENTID_SDMA3: 93 return 3; 94 default: 95 return -EINVAL; 96 } 97 } 98 99 static void sdma_v4_4_2_inst_init_golden_registers(struct amdgpu_device *adev, 100 uint32_t inst_mask) 101 { 102 u32 val; 103 int i; 104 105 for (i = 0; i < adev->sdma.num_instances; i++) { 106 val = RREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG); 107 val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG, NUM_BANKS, 4); 108 val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG, 109 PIPE_INTERLEAVE_SIZE, 0); 110 WREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG, val); 111 112 val = RREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG_READ); 113 val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG_READ, NUM_BANKS, 114 4); 115 val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG_READ, 116 PIPE_INTERLEAVE_SIZE, 0); 117 WREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG_READ, val); 118 } 119 } 120 121 /** 122 * sdma_v4_4_2_init_microcode - load ucode images from disk 123 * 124 * @adev: amdgpu_device pointer 125 * 126 * Use the firmware interface to load the ucode images into 127 * the driver (not loaded into hw). 128 * Returns 0 on success, error on failure. 129 */ 130 static int sdma_v4_4_2_init_microcode(struct amdgpu_device *adev) 131 { 132 int ret, i; 133 134 for (i = 0; i < adev->sdma.num_instances; i++) { 135 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 4, 2)) { 136 ret = amdgpu_sdma_init_microcode(adev, 0, true); 137 break; 138 } else { 139 ret = amdgpu_sdma_init_microcode(adev, i, false); 140 if (ret) 141 return ret; 142 } 143 } 144 145 return ret; 146 } 147 148 /** 149 * sdma_v4_4_2_ring_get_rptr - get the current read pointer 150 * 151 * @ring: amdgpu ring pointer 152 * 153 * Get the current rptr from the hardware. 154 */ 155 static uint64_t sdma_v4_4_2_ring_get_rptr(struct amdgpu_ring *ring) 156 { 157 u64 *rptr; 158 159 /* XXX check if swapping is necessary on BE */ 160 rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]); 161 162 DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr); 163 return ((*rptr) >> 2); 164 } 165 166 /** 167 * sdma_v4_4_2_ring_get_wptr - get the current write pointer 168 * 169 * @ring: amdgpu ring pointer 170 * 171 * Get the current wptr from the hardware. 172 */ 173 static uint64_t sdma_v4_4_2_ring_get_wptr(struct amdgpu_ring *ring) 174 { 175 struct amdgpu_device *adev = ring->adev; 176 u64 wptr; 177 178 if (ring->use_doorbell) { 179 /* XXX check if swapping is necessary on BE */ 180 wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs])); 181 DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr); 182 } else { 183 wptr = RREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR_HI); 184 wptr = wptr << 32; 185 wptr |= RREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR); 186 DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n", 187 ring->me, wptr); 188 } 189 190 return wptr >> 2; 191 } 192 193 /** 194 * sdma_v4_4_2_ring_set_wptr - commit the write pointer 195 * 196 * @ring: amdgpu ring pointer 197 * 198 * Write the wptr back to the hardware. 199 */ 200 static void sdma_v4_4_2_ring_set_wptr(struct amdgpu_ring *ring) 201 { 202 struct amdgpu_device *adev = ring->adev; 203 204 DRM_DEBUG("Setting write pointer\n"); 205 if (ring->use_doorbell) { 206 u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs]; 207 208 DRM_DEBUG("Using doorbell -- " 209 "wptr_offs == 0x%08x " 210 "lower_32_bits(ring->wptr) << 2 == 0x%08x " 211 "upper_32_bits(ring->wptr) << 2 == 0x%08x\n", 212 ring->wptr_offs, 213 lower_32_bits(ring->wptr << 2), 214 upper_32_bits(ring->wptr << 2)); 215 /* XXX check if swapping is necessary on BE */ 216 WRITE_ONCE(*wb, (ring->wptr << 2)); 217 DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n", 218 ring->doorbell_index, ring->wptr << 2); 219 WDOORBELL64(ring->doorbell_index, ring->wptr << 2); 220 } else { 221 DRM_DEBUG("Not using doorbell -- " 222 "regSDMA%i_GFX_RB_WPTR == 0x%08x " 223 "regSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n", 224 ring->me, 225 lower_32_bits(ring->wptr << 2), 226 ring->me, 227 upper_32_bits(ring->wptr << 2)); 228 WREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR, 229 lower_32_bits(ring->wptr << 2)); 230 WREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR_HI, 231 upper_32_bits(ring->wptr << 2)); 232 } 233 } 234 235 /** 236 * sdma_v4_4_2_page_ring_get_wptr - get the current write pointer 237 * 238 * @ring: amdgpu ring pointer 239 * 240 * Get the current wptr from the hardware. 241 */ 242 static uint64_t sdma_v4_4_2_page_ring_get_wptr(struct amdgpu_ring *ring) 243 { 244 struct amdgpu_device *adev = ring->adev; 245 u64 wptr; 246 247 if (ring->use_doorbell) { 248 /* XXX check if swapping is necessary on BE */ 249 wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs])); 250 } else { 251 wptr = RREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR_HI); 252 wptr = wptr << 32; 253 wptr |= RREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR); 254 } 255 256 return wptr >> 2; 257 } 258 259 /** 260 * sdma_v4_4_2_page_ring_set_wptr - commit the write pointer 261 * 262 * @ring: amdgpu ring pointer 263 * 264 * Write the wptr back to the hardware. 265 */ 266 static void sdma_v4_4_2_page_ring_set_wptr(struct amdgpu_ring *ring) 267 { 268 struct amdgpu_device *adev = ring->adev; 269 270 if (ring->use_doorbell) { 271 u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs]; 272 273 /* XXX check if swapping is necessary on BE */ 274 WRITE_ONCE(*wb, (ring->wptr << 2)); 275 WDOORBELL64(ring->doorbell_index, ring->wptr << 2); 276 } else { 277 uint64_t wptr = ring->wptr << 2; 278 279 WREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR, 280 lower_32_bits(wptr)); 281 WREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR_HI, 282 upper_32_bits(wptr)); 283 } 284 } 285 286 static void sdma_v4_4_2_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count) 287 { 288 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); 289 int i; 290 291 for (i = 0; i < count; i++) 292 if (sdma && sdma->burst_nop && (i == 0)) 293 amdgpu_ring_write(ring, ring->funcs->nop | 294 SDMA_PKT_NOP_HEADER_COUNT(count - 1)); 295 else 296 amdgpu_ring_write(ring, ring->funcs->nop); 297 } 298 299 /** 300 * sdma_v4_4_2_ring_emit_ib - Schedule an IB on the DMA engine 301 * 302 * @ring: amdgpu ring pointer 303 * @job: job to retrieve vmid from 304 * @ib: IB object to schedule 305 * @flags: unused 306 * 307 * Schedule an IB in the DMA ring. 308 */ 309 static void sdma_v4_4_2_ring_emit_ib(struct amdgpu_ring *ring, 310 struct amdgpu_job *job, 311 struct amdgpu_ib *ib, 312 uint32_t flags) 313 { 314 unsigned vmid = AMDGPU_JOB_GET_VMID(job); 315 316 /* IB packet must end on a 8 DW boundary */ 317 sdma_v4_4_2_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7); 318 319 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) | 320 SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf)); 321 /* base must be 32 byte aligned */ 322 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0); 323 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr)); 324 amdgpu_ring_write(ring, ib->length_dw); 325 amdgpu_ring_write(ring, 0); 326 amdgpu_ring_write(ring, 0); 327 328 } 329 330 static void sdma_v4_4_2_wait_reg_mem(struct amdgpu_ring *ring, 331 int mem_space, int hdp, 332 uint32_t addr0, uint32_t addr1, 333 uint32_t ref, uint32_t mask, 334 uint32_t inv) 335 { 336 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | 337 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) | 338 SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) | 339 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */ 340 if (mem_space) { 341 /* memory */ 342 amdgpu_ring_write(ring, addr0); 343 amdgpu_ring_write(ring, addr1); 344 } else { 345 /* registers */ 346 amdgpu_ring_write(ring, addr0 << 2); 347 amdgpu_ring_write(ring, addr1 << 2); 348 } 349 amdgpu_ring_write(ring, ref); /* reference */ 350 amdgpu_ring_write(ring, mask); /* mask */ 351 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 352 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */ 353 } 354 355 /** 356 * sdma_v4_4_2_ring_emit_hdp_flush - emit an hdp flush on the DMA ring 357 * 358 * @ring: amdgpu ring pointer 359 * 360 * Emit an hdp flush packet on the requested DMA ring. 361 */ 362 static void sdma_v4_4_2_ring_emit_hdp_flush(struct amdgpu_ring *ring) 363 { 364 struct amdgpu_device *adev = ring->adev; 365 u32 ref_and_mask = 0; 366 const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg; 367 368 ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me; 369 370 sdma_v4_4_2_wait_reg_mem(ring, 0, 1, 371 adev->nbio.funcs->get_hdp_flush_done_offset(adev), 372 adev->nbio.funcs->get_hdp_flush_req_offset(adev), 373 ref_and_mask, ref_and_mask, 10); 374 } 375 376 /** 377 * sdma_v4_4_2_ring_emit_fence - emit a fence on the DMA ring 378 * 379 * @ring: amdgpu ring pointer 380 * @addr: address 381 * @seq: sequence number 382 * @flags: fence related flags 383 * 384 * Add a DMA fence packet to the ring to write 385 * the fence seq number and DMA trap packet to generate 386 * an interrupt if needed. 387 */ 388 static void sdma_v4_4_2_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq, 389 unsigned flags) 390 { 391 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT; 392 /* write the fence */ 393 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); 394 /* zero in first two bits */ 395 BUG_ON(addr & 0x3); 396 amdgpu_ring_write(ring, lower_32_bits(addr)); 397 amdgpu_ring_write(ring, upper_32_bits(addr)); 398 amdgpu_ring_write(ring, lower_32_bits(seq)); 399 400 /* optionally write high bits as well */ 401 if (write64bit) { 402 addr += 4; 403 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); 404 /* zero in first two bits */ 405 BUG_ON(addr & 0x3); 406 amdgpu_ring_write(ring, lower_32_bits(addr)); 407 amdgpu_ring_write(ring, upper_32_bits(addr)); 408 amdgpu_ring_write(ring, upper_32_bits(seq)); 409 } 410 411 /* generate an interrupt */ 412 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP)); 413 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0)); 414 } 415 416 417 /** 418 * sdma_v4_4_2_inst_gfx_stop - stop the gfx async dma engines 419 * 420 * @adev: amdgpu_device pointer 421 * @inst_mask: mask of dma engine instances to be disabled 422 * 423 * Stop the gfx async dma ring buffers. 424 */ 425 static void sdma_v4_4_2_inst_gfx_stop(struct amdgpu_device *adev, 426 uint32_t inst_mask) 427 { 428 struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES]; 429 u32 rb_cntl, ib_cntl; 430 int i, unset = 0; 431 432 for_each_inst(i, inst_mask) { 433 sdma[i] = &adev->sdma.instance[i].ring; 434 435 if ((adev->mman.buffer_funcs_ring == sdma[i]) && unset != 1) { 436 amdgpu_ttm_set_buffer_funcs_status(adev, false); 437 unset = 1; 438 } 439 440 rb_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_CNTL); 441 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_ENABLE, 0); 442 WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl); 443 ib_cntl = RREG32_SDMA(i, regSDMA_GFX_IB_CNTL); 444 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_ENABLE, 0); 445 WREG32_SDMA(i, regSDMA_GFX_IB_CNTL, ib_cntl); 446 } 447 } 448 449 /** 450 * sdma_v4_4_2_inst_rlc_stop - stop the compute async dma engines 451 * 452 * @adev: amdgpu_device pointer 453 * @inst_mask: mask of dma engine instances to be disabled 454 * 455 * Stop the compute async dma queues. 456 */ 457 static void sdma_v4_4_2_inst_rlc_stop(struct amdgpu_device *adev, 458 uint32_t inst_mask) 459 { 460 /* XXX todo */ 461 } 462 463 /** 464 * sdma_v4_4_2_inst_page_stop - stop the page async dma engines 465 * 466 * @adev: amdgpu_device pointer 467 * @inst_mask: mask of dma engine instances to be disabled 468 * 469 * Stop the page async dma ring buffers. 470 */ 471 static void sdma_v4_4_2_inst_page_stop(struct amdgpu_device *adev, 472 uint32_t inst_mask) 473 { 474 struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES]; 475 u32 rb_cntl, ib_cntl; 476 int i; 477 bool unset = false; 478 479 for_each_inst(i, inst_mask) { 480 sdma[i] = &adev->sdma.instance[i].page; 481 482 if ((adev->mman.buffer_funcs_ring == sdma[i]) && 483 (!unset)) { 484 amdgpu_ttm_set_buffer_funcs_status(adev, false); 485 unset = true; 486 } 487 488 rb_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_CNTL); 489 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL, 490 RB_ENABLE, 0); 491 WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl); 492 ib_cntl = RREG32_SDMA(i, regSDMA_PAGE_IB_CNTL); 493 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL, 494 IB_ENABLE, 0); 495 WREG32_SDMA(i, regSDMA_PAGE_IB_CNTL, ib_cntl); 496 } 497 } 498 499 /** 500 * sdma_v4_4_2_inst_ctx_switch_enable - stop the async dma engines context switch 501 * 502 * @adev: amdgpu_device pointer 503 * @enable: enable/disable the DMA MEs context switch. 504 * @inst_mask: mask of dma engine instances to be enabled 505 * 506 * Halt or unhalt the async dma engines context switch. 507 */ 508 static void sdma_v4_4_2_inst_ctx_switch_enable(struct amdgpu_device *adev, 509 bool enable, uint32_t inst_mask) 510 { 511 u32 f32_cntl, phase_quantum = 0; 512 int i; 513 514 if (amdgpu_sdma_phase_quantum) { 515 unsigned value = amdgpu_sdma_phase_quantum; 516 unsigned unit = 0; 517 518 while (value > (SDMA_PHASE0_QUANTUM__VALUE_MASK >> 519 SDMA_PHASE0_QUANTUM__VALUE__SHIFT)) { 520 value = (value + 1) >> 1; 521 unit++; 522 } 523 if (unit > (SDMA_PHASE0_QUANTUM__UNIT_MASK >> 524 SDMA_PHASE0_QUANTUM__UNIT__SHIFT)) { 525 value = (SDMA_PHASE0_QUANTUM__VALUE_MASK >> 526 SDMA_PHASE0_QUANTUM__VALUE__SHIFT); 527 unit = (SDMA_PHASE0_QUANTUM__UNIT_MASK >> 528 SDMA_PHASE0_QUANTUM__UNIT__SHIFT); 529 WARN_ONCE(1, 530 "clamping sdma_phase_quantum to %uK clock cycles\n", 531 value << unit); 532 } 533 phase_quantum = 534 value << SDMA_PHASE0_QUANTUM__VALUE__SHIFT | 535 unit << SDMA_PHASE0_QUANTUM__UNIT__SHIFT; 536 } 537 538 for_each_inst(i, inst_mask) { 539 f32_cntl = RREG32_SDMA(i, regSDMA_CNTL); 540 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA_CNTL, 541 AUTO_CTXSW_ENABLE, enable ? 1 : 0); 542 if (enable && amdgpu_sdma_phase_quantum) { 543 WREG32_SDMA(i, regSDMA_PHASE0_QUANTUM, phase_quantum); 544 WREG32_SDMA(i, regSDMA_PHASE1_QUANTUM, phase_quantum); 545 WREG32_SDMA(i, regSDMA_PHASE2_QUANTUM, phase_quantum); 546 } 547 WREG32_SDMA(i, regSDMA_CNTL, f32_cntl); 548 549 /* Extend page fault timeout to avoid interrupt storm */ 550 WREG32_SDMA(i, regSDMA_UTCL1_TIMEOUT, 0x00800080); 551 } 552 } 553 554 /** 555 * sdma_v4_4_2_inst_enable - stop the async dma engines 556 * 557 * @adev: amdgpu_device pointer 558 * @enable: enable/disable the DMA MEs. 559 * @inst_mask: mask of dma engine instances to be enabled 560 * 561 * Halt or unhalt the async dma engines. 562 */ 563 static void sdma_v4_4_2_inst_enable(struct amdgpu_device *adev, bool enable, 564 uint32_t inst_mask) 565 { 566 u32 f32_cntl; 567 int i; 568 569 if (!enable) { 570 sdma_v4_4_2_inst_gfx_stop(adev, inst_mask); 571 sdma_v4_4_2_inst_rlc_stop(adev, inst_mask); 572 if (adev->sdma.has_page_queue) 573 sdma_v4_4_2_inst_page_stop(adev, inst_mask); 574 575 /* SDMA FW needs to respond to FREEZE requests during reset. 576 * Keep it running during reset */ 577 if (!amdgpu_sriov_vf(adev) && amdgpu_in_reset(adev)) 578 return; 579 } 580 581 if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) 582 return; 583 584 for_each_inst(i, inst_mask) { 585 f32_cntl = RREG32_SDMA(i, regSDMA_F32_CNTL); 586 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA_F32_CNTL, HALT, enable ? 0 : 1); 587 WREG32_SDMA(i, regSDMA_F32_CNTL, f32_cntl); 588 } 589 } 590 591 /* 592 * sdma_v4_4_2_rb_cntl - get parameters for rb_cntl 593 */ 594 static uint32_t sdma_v4_4_2_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl) 595 { 596 /* Set ring buffer size in dwords */ 597 uint32_t rb_bufsz = order_base_2(ring->ring_size / 4); 598 599 barrier(); /* work around https://bugs.llvm.org/show_bug.cgi?id=42576 */ 600 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_SIZE, rb_bufsz); 601 #ifdef __BIG_ENDIAN 602 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_SWAP_ENABLE, 1); 603 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, 604 RPTR_WRITEBACK_SWAP_ENABLE, 1); 605 #endif 606 return rb_cntl; 607 } 608 609 /** 610 * sdma_v4_4_2_gfx_resume - setup and start the async dma engines 611 * 612 * @adev: amdgpu_device pointer 613 * @i: instance to resume 614 * 615 * Set up the gfx DMA ring buffers and enable them. 616 * Returns 0 for success, error for failure. 617 */ 618 static void sdma_v4_4_2_gfx_resume(struct amdgpu_device *adev, unsigned int i) 619 { 620 struct amdgpu_ring *ring = &adev->sdma.instance[i].ring; 621 u32 rb_cntl, ib_cntl, wptr_poll_cntl; 622 u32 wb_offset; 623 u32 doorbell; 624 u32 doorbell_offset; 625 u64 wptr_gpu_addr; 626 627 wb_offset = (ring->rptr_offs * 4); 628 629 rb_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_CNTL); 630 rb_cntl = sdma_v4_4_2_rb_cntl(ring, rb_cntl); 631 WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl); 632 633 /* Initialize the ring buffer's read and write pointers */ 634 WREG32_SDMA(i, regSDMA_GFX_RB_RPTR, 0); 635 WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_HI, 0); 636 WREG32_SDMA(i, regSDMA_GFX_RB_WPTR, 0); 637 WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_HI, 0); 638 639 /* set the wb address whether it's enabled or not */ 640 WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_ADDR_HI, 641 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF); 642 WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_ADDR_LO, 643 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC); 644 645 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, 646 RPTR_WRITEBACK_ENABLE, 1); 647 648 WREG32_SDMA(i, regSDMA_GFX_RB_BASE, ring->gpu_addr >> 8); 649 WREG32_SDMA(i, regSDMA_GFX_RB_BASE_HI, ring->gpu_addr >> 40); 650 651 ring->wptr = 0; 652 653 /* before programing wptr to a less value, need set minor_ptr_update first */ 654 WREG32_SDMA(i, regSDMA_GFX_MINOR_PTR_UPDATE, 1); 655 656 doorbell = RREG32_SDMA(i, regSDMA_GFX_DOORBELL); 657 doorbell_offset = RREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET); 658 659 doorbell = REG_SET_FIELD(doorbell, SDMA_GFX_DOORBELL, ENABLE, 660 ring->use_doorbell); 661 doorbell_offset = REG_SET_FIELD(doorbell_offset, 662 SDMA_GFX_DOORBELL_OFFSET, 663 OFFSET, ring->doorbell_index); 664 WREG32_SDMA(i, regSDMA_GFX_DOORBELL, doorbell); 665 WREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET, doorbell_offset); 666 667 sdma_v4_4_2_ring_set_wptr(ring); 668 669 /* set minor_ptr_update to 0 after wptr programed */ 670 WREG32_SDMA(i, regSDMA_GFX_MINOR_PTR_UPDATE, 0); 671 672 /* setup the wptr shadow polling */ 673 wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4); 674 WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_ADDR_LO, 675 lower_32_bits(wptr_gpu_addr)); 676 WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_ADDR_HI, 677 upper_32_bits(wptr_gpu_addr)); 678 wptr_poll_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_CNTL); 679 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, 680 SDMA_GFX_RB_WPTR_POLL_CNTL, 681 F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0); 682 WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl); 683 684 /* enable DMA RB */ 685 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_ENABLE, 1); 686 WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl); 687 688 ib_cntl = RREG32_SDMA(i, regSDMA_GFX_IB_CNTL); 689 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_ENABLE, 1); 690 #ifdef __BIG_ENDIAN 691 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_SWAP_ENABLE, 1); 692 #endif 693 /* enable DMA IBs */ 694 WREG32_SDMA(i, regSDMA_GFX_IB_CNTL, ib_cntl); 695 } 696 697 /** 698 * sdma_v4_4_2_page_resume - setup and start the async dma engines 699 * 700 * @adev: amdgpu_device pointer 701 * @i: instance to resume 702 * 703 * Set up the page DMA ring buffers and enable them. 704 * Returns 0 for success, error for failure. 705 */ 706 static void sdma_v4_4_2_page_resume(struct amdgpu_device *adev, unsigned int i) 707 { 708 struct amdgpu_ring *ring = &adev->sdma.instance[i].page; 709 u32 rb_cntl, ib_cntl, wptr_poll_cntl; 710 u32 wb_offset; 711 u32 doorbell; 712 u32 doorbell_offset; 713 u64 wptr_gpu_addr; 714 715 wb_offset = (ring->rptr_offs * 4); 716 717 rb_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_CNTL); 718 rb_cntl = sdma_v4_4_2_rb_cntl(ring, rb_cntl); 719 WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl); 720 721 /* Initialize the ring buffer's read and write pointers */ 722 WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR, 0); 723 WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_HI, 0); 724 WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR, 0); 725 WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_HI, 0); 726 727 /* set the wb address whether it's enabled or not */ 728 WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_ADDR_HI, 729 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF); 730 WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_ADDR_LO, 731 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC); 732 733 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL, 734 RPTR_WRITEBACK_ENABLE, 1); 735 736 WREG32_SDMA(i, regSDMA_PAGE_RB_BASE, ring->gpu_addr >> 8); 737 WREG32_SDMA(i, regSDMA_PAGE_RB_BASE_HI, ring->gpu_addr >> 40); 738 739 ring->wptr = 0; 740 741 /* before programing wptr to a less value, need set minor_ptr_update first */ 742 WREG32_SDMA(i, regSDMA_PAGE_MINOR_PTR_UPDATE, 1); 743 744 doorbell = RREG32_SDMA(i, regSDMA_PAGE_DOORBELL); 745 doorbell_offset = RREG32_SDMA(i, regSDMA_PAGE_DOORBELL_OFFSET); 746 747 doorbell = REG_SET_FIELD(doorbell, SDMA_PAGE_DOORBELL, ENABLE, 748 ring->use_doorbell); 749 doorbell_offset = REG_SET_FIELD(doorbell_offset, 750 SDMA_PAGE_DOORBELL_OFFSET, 751 OFFSET, ring->doorbell_index); 752 WREG32_SDMA(i, regSDMA_PAGE_DOORBELL, doorbell); 753 WREG32_SDMA(i, regSDMA_PAGE_DOORBELL_OFFSET, doorbell_offset); 754 755 /* paging queue doorbell range is setup at sdma_v4_4_2_gfx_resume */ 756 sdma_v4_4_2_page_ring_set_wptr(ring); 757 758 /* set minor_ptr_update to 0 after wptr programed */ 759 WREG32_SDMA(i, regSDMA_PAGE_MINOR_PTR_UPDATE, 0); 760 761 /* setup the wptr shadow polling */ 762 wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4); 763 WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_ADDR_LO, 764 lower_32_bits(wptr_gpu_addr)); 765 WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_ADDR_HI, 766 upper_32_bits(wptr_gpu_addr)); 767 wptr_poll_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_CNTL); 768 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, 769 SDMA_PAGE_RB_WPTR_POLL_CNTL, 770 F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0); 771 WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl); 772 773 /* enable DMA RB */ 774 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL, RB_ENABLE, 1); 775 WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl); 776 777 ib_cntl = RREG32_SDMA(i, regSDMA_PAGE_IB_CNTL); 778 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL, IB_ENABLE, 1); 779 #ifdef __BIG_ENDIAN 780 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1); 781 #endif 782 /* enable DMA IBs */ 783 WREG32_SDMA(i, regSDMA_PAGE_IB_CNTL, ib_cntl); 784 } 785 786 static void sdma_v4_4_2_init_pg(struct amdgpu_device *adev) 787 { 788 789 } 790 791 /** 792 * sdma_v4_4_2_inst_rlc_resume - setup and start the async dma engines 793 * 794 * @adev: amdgpu_device pointer 795 * @inst_mask: mask of dma engine instances to be enabled 796 * 797 * Set up the compute DMA queues and enable them. 798 * Returns 0 for success, error for failure. 799 */ 800 static int sdma_v4_4_2_inst_rlc_resume(struct amdgpu_device *adev, 801 uint32_t inst_mask) 802 { 803 sdma_v4_4_2_init_pg(adev); 804 805 return 0; 806 } 807 808 /** 809 * sdma_v4_4_2_inst_load_microcode - load the sDMA ME ucode 810 * 811 * @adev: amdgpu_device pointer 812 * @inst_mask: mask of dma engine instances to be enabled 813 * 814 * Loads the sDMA0/1 ucode. 815 * Returns 0 for success, -EINVAL if the ucode is not available. 816 */ 817 static int sdma_v4_4_2_inst_load_microcode(struct amdgpu_device *adev, 818 uint32_t inst_mask) 819 { 820 const struct sdma_firmware_header_v1_0 *hdr; 821 const __le32 *fw_data; 822 u32 fw_size; 823 int i, j; 824 825 /* halt the MEs */ 826 sdma_v4_4_2_inst_enable(adev, false, inst_mask); 827 828 for_each_inst(i, inst_mask) { 829 if (!adev->sdma.instance[i].fw) 830 return -EINVAL; 831 832 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data; 833 amdgpu_ucode_print_sdma_hdr(&hdr->header); 834 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4; 835 836 fw_data = (const __le32 *) 837 (adev->sdma.instance[i].fw->data + 838 le32_to_cpu(hdr->header.ucode_array_offset_bytes)); 839 840 WREG32_SDMA(i, regSDMA_UCODE_ADDR, 0); 841 842 for (j = 0; j < fw_size; j++) 843 WREG32_SDMA(i, regSDMA_UCODE_DATA, 844 le32_to_cpup(fw_data++)); 845 846 WREG32_SDMA(i, regSDMA_UCODE_ADDR, 847 adev->sdma.instance[i].fw_version); 848 } 849 850 return 0; 851 } 852 853 /** 854 * sdma_v4_4_2_inst_start - setup and start the async dma engines 855 * 856 * @adev: amdgpu_device pointer 857 * @inst_mask: mask of dma engine instances to be enabled 858 * 859 * Set up the DMA engines and enable them. 860 * Returns 0 for success, error for failure. 861 */ 862 static int sdma_v4_4_2_inst_start(struct amdgpu_device *adev, 863 uint32_t inst_mask) 864 { 865 struct amdgpu_ring *ring; 866 uint32_t tmp_mask; 867 int i, r = 0; 868 869 if (amdgpu_sriov_vf(adev)) { 870 sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask); 871 sdma_v4_4_2_inst_enable(adev, false, inst_mask); 872 } else { 873 /* bypass sdma microcode loading on Gopher */ 874 if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP && 875 adev->sdma.instance[0].fw) { 876 r = sdma_v4_4_2_inst_load_microcode(adev, inst_mask); 877 if (r) 878 return r; 879 } 880 881 /* unhalt the MEs */ 882 sdma_v4_4_2_inst_enable(adev, true, inst_mask); 883 /* enable sdma ring preemption */ 884 sdma_v4_4_2_inst_ctx_switch_enable(adev, true, inst_mask); 885 } 886 887 /* start the gfx rings and rlc compute queues */ 888 tmp_mask = inst_mask; 889 for_each_inst(i, tmp_mask) { 890 uint32_t temp; 891 892 WREG32_SDMA(i, regSDMA_SEM_WAIT_FAIL_TIMER_CNTL, 0); 893 sdma_v4_4_2_gfx_resume(adev, i); 894 if (adev->sdma.has_page_queue) 895 sdma_v4_4_2_page_resume(adev, i); 896 897 /* set utc l1 enable flag always to 1 */ 898 temp = RREG32_SDMA(i, regSDMA_CNTL); 899 temp = REG_SET_FIELD(temp, SDMA_CNTL, UTC_L1_ENABLE, 1); 900 /* enable context empty interrupt during initialization */ 901 temp = REG_SET_FIELD(temp, SDMA_CNTL, CTXEMPTY_INT_ENABLE, 1); 902 WREG32_SDMA(i, regSDMA_CNTL, temp); 903 904 if (!amdgpu_sriov_vf(adev)) { 905 if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) { 906 /* unhalt engine */ 907 temp = RREG32_SDMA(i, regSDMA_F32_CNTL); 908 temp = REG_SET_FIELD(temp, SDMA_F32_CNTL, HALT, 0); 909 WREG32_SDMA(i, regSDMA_F32_CNTL, temp); 910 } 911 } 912 } 913 914 if (amdgpu_sriov_vf(adev)) { 915 sdma_v4_4_2_inst_ctx_switch_enable(adev, true, inst_mask); 916 sdma_v4_4_2_inst_enable(adev, true, inst_mask); 917 } else { 918 r = sdma_v4_4_2_inst_rlc_resume(adev, inst_mask); 919 if (r) 920 return r; 921 } 922 923 tmp_mask = inst_mask; 924 for_each_inst(i, tmp_mask) { 925 ring = &adev->sdma.instance[i].ring; 926 927 r = amdgpu_ring_test_helper(ring); 928 if (r) 929 return r; 930 931 if (adev->sdma.has_page_queue) { 932 struct amdgpu_ring *page = &adev->sdma.instance[i].page; 933 934 r = amdgpu_ring_test_helper(page); 935 if (r) 936 return r; 937 938 if (adev->mman.buffer_funcs_ring == page) 939 amdgpu_ttm_set_buffer_funcs_status(adev, true); 940 } 941 942 if (adev->mman.buffer_funcs_ring == ring) 943 amdgpu_ttm_set_buffer_funcs_status(adev, true); 944 } 945 946 return r; 947 } 948 949 /** 950 * sdma_v4_4_2_ring_test_ring - simple async dma engine test 951 * 952 * @ring: amdgpu_ring structure holding ring information 953 * 954 * Test the DMA engine by writing using it to write an 955 * value to memory. 956 * Returns 0 for success, error for failure. 957 */ 958 static int sdma_v4_4_2_ring_test_ring(struct amdgpu_ring *ring) 959 { 960 struct amdgpu_device *adev = ring->adev; 961 unsigned i; 962 unsigned index; 963 int r; 964 u32 tmp; 965 u64 gpu_addr; 966 967 r = amdgpu_device_wb_get(adev, &index); 968 if (r) 969 return r; 970 971 gpu_addr = adev->wb.gpu_addr + (index * 4); 972 tmp = 0xCAFEDEAD; 973 adev->wb.wb[index] = cpu_to_le32(tmp); 974 975 r = amdgpu_ring_alloc(ring, 5); 976 if (r) 977 goto error_free_wb; 978 979 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 980 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR)); 981 amdgpu_ring_write(ring, lower_32_bits(gpu_addr)); 982 amdgpu_ring_write(ring, upper_32_bits(gpu_addr)); 983 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0)); 984 amdgpu_ring_write(ring, 0xDEADBEEF); 985 amdgpu_ring_commit(ring); 986 987 for (i = 0; i < adev->usec_timeout; i++) { 988 tmp = le32_to_cpu(adev->wb.wb[index]); 989 if (tmp == 0xDEADBEEF) 990 break; 991 udelay(1); 992 } 993 994 if (i >= adev->usec_timeout) 995 r = -ETIMEDOUT; 996 997 error_free_wb: 998 amdgpu_device_wb_free(adev, index); 999 return r; 1000 } 1001 1002 /** 1003 * sdma_v4_4_2_ring_test_ib - test an IB on the DMA engine 1004 * 1005 * @ring: amdgpu_ring structure holding ring information 1006 * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT 1007 * 1008 * Test a simple IB in the DMA ring. 1009 * Returns 0 on success, error on failure. 1010 */ 1011 static int sdma_v4_4_2_ring_test_ib(struct amdgpu_ring *ring, long timeout) 1012 { 1013 struct amdgpu_device *adev = ring->adev; 1014 struct amdgpu_ib ib; 1015 struct dma_fence *f = NULL; 1016 unsigned index; 1017 long r; 1018 u32 tmp = 0; 1019 u64 gpu_addr; 1020 1021 r = amdgpu_device_wb_get(adev, &index); 1022 if (r) 1023 return r; 1024 1025 gpu_addr = adev->wb.gpu_addr + (index * 4); 1026 tmp = 0xCAFEDEAD; 1027 adev->wb.wb[index] = cpu_to_le32(tmp); 1028 memset(&ib, 0, sizeof(ib)); 1029 r = amdgpu_ib_get(adev, NULL, 256, 1030 AMDGPU_IB_POOL_DIRECT, &ib); 1031 if (r) 1032 goto err0; 1033 1034 ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 1035 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); 1036 ib.ptr[1] = lower_32_bits(gpu_addr); 1037 ib.ptr[2] = upper_32_bits(gpu_addr); 1038 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0); 1039 ib.ptr[4] = 0xDEADBEEF; 1040 ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 1041 ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 1042 ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 1043 ib.length_dw = 8; 1044 1045 r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f); 1046 if (r) 1047 goto err1; 1048 1049 r = dma_fence_wait_timeout(f, false, timeout); 1050 if (r == 0) { 1051 r = -ETIMEDOUT; 1052 goto err1; 1053 } else if (r < 0) { 1054 goto err1; 1055 } 1056 tmp = le32_to_cpu(adev->wb.wb[index]); 1057 if (tmp == 0xDEADBEEF) 1058 r = 0; 1059 else 1060 r = -EINVAL; 1061 1062 err1: 1063 amdgpu_ib_free(adev, &ib, NULL); 1064 dma_fence_put(f); 1065 err0: 1066 amdgpu_device_wb_free(adev, index); 1067 return r; 1068 } 1069 1070 1071 /** 1072 * sdma_v4_4_2_vm_copy_pte - update PTEs by copying them from the GART 1073 * 1074 * @ib: indirect buffer to fill with commands 1075 * @pe: addr of the page entry 1076 * @src: src addr to copy from 1077 * @count: number of page entries to update 1078 * 1079 * Update PTEs by copying them from the GART using sDMA. 1080 */ 1081 static void sdma_v4_4_2_vm_copy_pte(struct amdgpu_ib *ib, 1082 uint64_t pe, uint64_t src, 1083 unsigned count) 1084 { 1085 unsigned bytes = count * 8; 1086 1087 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | 1088 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); 1089 ib->ptr[ib->length_dw++] = bytes - 1; 1090 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 1091 ib->ptr[ib->length_dw++] = lower_32_bits(src); 1092 ib->ptr[ib->length_dw++] = upper_32_bits(src); 1093 ib->ptr[ib->length_dw++] = lower_32_bits(pe); 1094 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1095 1096 } 1097 1098 /** 1099 * sdma_v4_4_2_vm_write_pte - update PTEs by writing them manually 1100 * 1101 * @ib: indirect buffer to fill with commands 1102 * @pe: addr of the page entry 1103 * @value: dst addr to write into pe 1104 * @count: number of page entries to update 1105 * @incr: increase next addr by incr bytes 1106 * 1107 * Update PTEs by writing them manually using sDMA. 1108 */ 1109 static void sdma_v4_4_2_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe, 1110 uint64_t value, unsigned count, 1111 uint32_t incr) 1112 { 1113 unsigned ndw = count * 2; 1114 1115 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 1116 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); 1117 ib->ptr[ib->length_dw++] = lower_32_bits(pe); 1118 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1119 ib->ptr[ib->length_dw++] = ndw - 1; 1120 for (; ndw > 0; ndw -= 2) { 1121 ib->ptr[ib->length_dw++] = lower_32_bits(value); 1122 ib->ptr[ib->length_dw++] = upper_32_bits(value); 1123 value += incr; 1124 } 1125 } 1126 1127 /** 1128 * sdma_v4_4_2_vm_set_pte_pde - update the page tables using sDMA 1129 * 1130 * @ib: indirect buffer to fill with commands 1131 * @pe: addr of the page entry 1132 * @addr: dst addr to write into pe 1133 * @count: number of page entries to update 1134 * @incr: increase next addr by incr bytes 1135 * @flags: access flags 1136 * 1137 * Update the page tables using sDMA. 1138 */ 1139 static void sdma_v4_4_2_vm_set_pte_pde(struct amdgpu_ib *ib, 1140 uint64_t pe, 1141 uint64_t addr, unsigned count, 1142 uint32_t incr, uint64_t flags) 1143 { 1144 /* for physically contiguous pages (vram) */ 1145 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE); 1146 ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */ 1147 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1148 ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */ 1149 ib->ptr[ib->length_dw++] = upper_32_bits(flags); 1150 ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */ 1151 ib->ptr[ib->length_dw++] = upper_32_bits(addr); 1152 ib->ptr[ib->length_dw++] = incr; /* increment size */ 1153 ib->ptr[ib->length_dw++] = 0; 1154 ib->ptr[ib->length_dw++] = count - 1; /* number of entries */ 1155 } 1156 1157 /** 1158 * sdma_v4_4_2_ring_pad_ib - pad the IB to the required number of dw 1159 * 1160 * @ring: amdgpu_ring structure holding ring information 1161 * @ib: indirect buffer to fill with padding 1162 */ 1163 static void sdma_v4_4_2_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib) 1164 { 1165 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); 1166 u32 pad_count; 1167 int i; 1168 1169 pad_count = (-ib->length_dw) & 7; 1170 for (i = 0; i < pad_count; i++) 1171 if (sdma && sdma->burst_nop && (i == 0)) 1172 ib->ptr[ib->length_dw++] = 1173 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) | 1174 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1); 1175 else 1176 ib->ptr[ib->length_dw++] = 1177 SDMA_PKT_HEADER_OP(SDMA_OP_NOP); 1178 } 1179 1180 1181 /** 1182 * sdma_v4_4_2_ring_emit_pipeline_sync - sync the pipeline 1183 * 1184 * @ring: amdgpu_ring pointer 1185 * 1186 * Make sure all previous operations are completed (CIK). 1187 */ 1188 static void sdma_v4_4_2_ring_emit_pipeline_sync(struct amdgpu_ring *ring) 1189 { 1190 uint32_t seq = ring->fence_drv.sync_seq; 1191 uint64_t addr = ring->fence_drv.gpu_addr; 1192 1193 /* wait for idle */ 1194 sdma_v4_4_2_wait_reg_mem(ring, 1, 0, 1195 addr & 0xfffffffc, 1196 upper_32_bits(addr) & 0xffffffff, 1197 seq, 0xffffffff, 4); 1198 } 1199 1200 1201 /** 1202 * sdma_v4_4_2_ring_emit_vm_flush - vm flush using sDMA 1203 * 1204 * @ring: amdgpu_ring pointer 1205 * @vmid: vmid number to use 1206 * @pd_addr: address 1207 * 1208 * Update the page table base and flush the VM TLB 1209 * using sDMA. 1210 */ 1211 static void sdma_v4_4_2_ring_emit_vm_flush(struct amdgpu_ring *ring, 1212 unsigned vmid, uint64_t pd_addr) 1213 { 1214 amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr); 1215 } 1216 1217 static void sdma_v4_4_2_ring_emit_wreg(struct amdgpu_ring *ring, 1218 uint32_t reg, uint32_t val) 1219 { 1220 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) | 1221 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf)); 1222 amdgpu_ring_write(ring, reg); 1223 amdgpu_ring_write(ring, val); 1224 } 1225 1226 static void sdma_v4_4_2_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg, 1227 uint32_t val, uint32_t mask) 1228 { 1229 sdma_v4_4_2_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10); 1230 } 1231 1232 static bool sdma_v4_4_2_fw_support_paging_queue(struct amdgpu_device *adev) 1233 { 1234 switch (adev->ip_versions[SDMA0_HWIP][0]) { 1235 case IP_VERSION(4, 4, 2): 1236 return false; 1237 default: 1238 return false; 1239 } 1240 } 1241 1242 static int sdma_v4_4_2_early_init(void *handle) 1243 { 1244 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1245 int r; 1246 1247 r = sdma_v4_4_2_init_microcode(adev); 1248 if (r) { 1249 DRM_ERROR("Failed to load sdma firmware!\n"); 1250 return r; 1251 } 1252 1253 /* TODO: Page queue breaks driver reload under SRIOV */ 1254 if (sdma_v4_4_2_fw_support_paging_queue(adev)) 1255 adev->sdma.has_page_queue = true; 1256 1257 sdma_v4_4_2_set_ring_funcs(adev); 1258 sdma_v4_4_2_set_buffer_funcs(adev); 1259 sdma_v4_4_2_set_vm_pte_funcs(adev); 1260 sdma_v4_4_2_set_irq_funcs(adev); 1261 sdma_v4_4_2_set_ras_funcs(adev); 1262 1263 return 0; 1264 } 1265 1266 #if 0 1267 static int sdma_v4_4_2_process_ras_data_cb(struct amdgpu_device *adev, 1268 void *err_data, 1269 struct amdgpu_iv_entry *entry); 1270 #endif 1271 1272 static int sdma_v4_4_2_late_init(void *handle) 1273 { 1274 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1275 #if 0 1276 struct ras_ih_if ih_info = { 1277 .cb = sdma_v4_4_2_process_ras_data_cb, 1278 }; 1279 #endif 1280 if (!amdgpu_persistent_edc_harvesting_supported(adev)) { 1281 if (adev->sdma.ras && adev->sdma.ras->ras_block.hw_ops && 1282 adev->sdma.ras->ras_block.hw_ops->reset_ras_error_count) 1283 adev->sdma.ras->ras_block.hw_ops->reset_ras_error_count(adev); 1284 } 1285 1286 return 0; 1287 } 1288 1289 static int sdma_v4_4_2_sw_init(void *handle) 1290 { 1291 struct amdgpu_ring *ring; 1292 int r, i; 1293 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1294 u32 aid_id; 1295 1296 /* SDMA trap event */ 1297 for (i = 0; i < adev->sdma.num_inst_per_aid; i++) { 1298 r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i), 1299 SDMA0_4_0__SRCID__SDMA_TRAP, 1300 &adev->sdma.trap_irq); 1301 if (r) 1302 return r; 1303 } 1304 1305 /* SDMA SRAM ECC event */ 1306 for (i = 0; i < adev->sdma.num_inst_per_aid; i++) { 1307 r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i), 1308 SDMA0_4_0__SRCID__SDMA_SRAM_ECC, 1309 &adev->sdma.ecc_irq); 1310 if (r) 1311 return r; 1312 } 1313 1314 /* SDMA VM_HOLE/DOORBELL_INV/POLL_TIMEOUT/SRBM_WRITE_PROTECTION event*/ 1315 for (i = 0; i < adev->sdma.num_inst_per_aid; i++) { 1316 r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i), 1317 SDMA0_4_0__SRCID__SDMA_VM_HOLE, 1318 &adev->sdma.vm_hole_irq); 1319 if (r) 1320 return r; 1321 1322 r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i), 1323 SDMA0_4_0__SRCID__SDMA_DOORBELL_INVALID, 1324 &adev->sdma.doorbell_invalid_irq); 1325 if (r) 1326 return r; 1327 1328 r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i), 1329 SDMA0_4_0__SRCID__SDMA_POLL_TIMEOUT, 1330 &adev->sdma.pool_timeout_irq); 1331 if (r) 1332 return r; 1333 1334 r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i), 1335 SDMA0_4_0__SRCID__SDMA_SRBMWRITE, 1336 &adev->sdma.srbm_write_irq); 1337 if (r) 1338 return r; 1339 } 1340 1341 for (i = 0; i < adev->sdma.num_instances; i++) { 1342 ring = &adev->sdma.instance[i].ring; 1343 ring->ring_obj = NULL; 1344 ring->use_doorbell = true; 1345 aid_id = adev->sdma.instance[i].aid_id; 1346 1347 DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i, 1348 ring->use_doorbell?"true":"false"); 1349 1350 /* doorbell size is 2 dwords, get DWORD offset */ 1351 ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1; 1352 ring->vm_hub = AMDGPU_MMHUB0(aid_id); 1353 1354 sprintf(ring->name, "sdma%d.%d", aid_id, 1355 i % adev->sdma.num_inst_per_aid); 1356 r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq, 1357 AMDGPU_SDMA_IRQ_INSTANCE0 + i, 1358 AMDGPU_RING_PRIO_DEFAULT, NULL); 1359 if (r) 1360 return r; 1361 1362 if (adev->sdma.has_page_queue) { 1363 ring = &adev->sdma.instance[i].page; 1364 ring->ring_obj = NULL; 1365 ring->use_doorbell = true; 1366 1367 /* doorbell index of page queue is assigned right after 1368 * gfx queue on the same instance 1369 */ 1370 ring->doorbell_index = 1371 (adev->doorbell_index.sdma_engine[i] + 1) << 1; 1372 ring->vm_hub = AMDGPU_MMHUB0(aid_id); 1373 1374 sprintf(ring->name, "page%d.%d", aid_id, 1375 i % adev->sdma.num_inst_per_aid); 1376 r = amdgpu_ring_init(adev, ring, 1024, 1377 &adev->sdma.trap_irq, 1378 AMDGPU_SDMA_IRQ_INSTANCE0 + i, 1379 AMDGPU_RING_PRIO_DEFAULT, NULL); 1380 if (r) 1381 return r; 1382 } 1383 } 1384 1385 if (amdgpu_sdma_ras_sw_init(adev)) { 1386 dev_err(adev->dev, "fail to initialize sdma ras block\n"); 1387 return -EINVAL; 1388 } 1389 1390 return r; 1391 } 1392 1393 static int sdma_v4_4_2_sw_fini(void *handle) 1394 { 1395 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1396 int i; 1397 1398 for (i = 0; i < adev->sdma.num_instances; i++) { 1399 amdgpu_ring_fini(&adev->sdma.instance[i].ring); 1400 if (adev->sdma.has_page_queue) 1401 amdgpu_ring_fini(&adev->sdma.instance[i].page); 1402 } 1403 1404 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 4, 2)) 1405 amdgpu_sdma_destroy_inst_ctx(adev, true); 1406 else 1407 amdgpu_sdma_destroy_inst_ctx(adev, false); 1408 1409 return 0; 1410 } 1411 1412 static int sdma_v4_4_2_hw_init(void *handle) 1413 { 1414 int r; 1415 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1416 uint32_t inst_mask; 1417 1418 inst_mask = GENMASK(adev->sdma.num_instances - 1, 0); 1419 if (!amdgpu_sriov_vf(adev)) 1420 sdma_v4_4_2_inst_init_golden_registers(adev, inst_mask); 1421 1422 r = sdma_v4_4_2_inst_start(adev, inst_mask); 1423 1424 return r; 1425 } 1426 1427 static int sdma_v4_4_2_hw_fini(void *handle) 1428 { 1429 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1430 uint32_t inst_mask; 1431 int i; 1432 1433 if (amdgpu_sriov_vf(adev)) 1434 return 0; 1435 1436 inst_mask = GENMASK(adev->sdma.num_instances - 1, 0); 1437 if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) { 1438 for (i = 0; i < adev->sdma.num_instances; i++) { 1439 amdgpu_irq_put(adev, &adev->sdma.ecc_irq, 1440 AMDGPU_SDMA_IRQ_INSTANCE0 + i); 1441 } 1442 } 1443 1444 sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask); 1445 sdma_v4_4_2_inst_enable(adev, false, inst_mask); 1446 1447 return 0; 1448 } 1449 1450 static int sdma_v4_4_2_set_clockgating_state(void *handle, 1451 enum amd_clockgating_state state); 1452 1453 static int sdma_v4_4_2_suspend(void *handle) 1454 { 1455 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1456 1457 if (amdgpu_in_reset(adev)) 1458 sdma_v4_4_2_set_clockgating_state(adev, AMD_CG_STATE_UNGATE); 1459 1460 return sdma_v4_4_2_hw_fini(adev); 1461 } 1462 1463 static int sdma_v4_4_2_resume(void *handle) 1464 { 1465 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1466 1467 return sdma_v4_4_2_hw_init(adev); 1468 } 1469 1470 static bool sdma_v4_4_2_is_idle(void *handle) 1471 { 1472 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1473 u32 i; 1474 1475 for (i = 0; i < adev->sdma.num_instances; i++) { 1476 u32 tmp = RREG32_SDMA(i, regSDMA_STATUS_REG); 1477 1478 if (!(tmp & SDMA_STATUS_REG__IDLE_MASK)) 1479 return false; 1480 } 1481 1482 return true; 1483 } 1484 1485 static int sdma_v4_4_2_wait_for_idle(void *handle) 1486 { 1487 unsigned i, j; 1488 u32 sdma[AMDGPU_MAX_SDMA_INSTANCES]; 1489 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1490 1491 for (i = 0; i < adev->usec_timeout; i++) { 1492 for (j = 0; j < adev->sdma.num_instances; j++) { 1493 sdma[j] = RREG32_SDMA(j, regSDMA_STATUS_REG); 1494 if (!(sdma[j] & SDMA_STATUS_REG__IDLE_MASK)) 1495 break; 1496 } 1497 if (j == adev->sdma.num_instances) 1498 return 0; 1499 udelay(1); 1500 } 1501 return -ETIMEDOUT; 1502 } 1503 1504 static int sdma_v4_4_2_soft_reset(void *handle) 1505 { 1506 /* todo */ 1507 1508 return 0; 1509 } 1510 1511 static int sdma_v4_4_2_set_trap_irq_state(struct amdgpu_device *adev, 1512 struct amdgpu_irq_src *source, 1513 unsigned type, 1514 enum amdgpu_interrupt_state state) 1515 { 1516 u32 sdma_cntl; 1517 1518 sdma_cntl = RREG32_SDMA(type, regSDMA_CNTL); 1519 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA_CNTL, TRAP_ENABLE, 1520 state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0); 1521 WREG32_SDMA(type, regSDMA_CNTL, sdma_cntl); 1522 1523 return 0; 1524 } 1525 1526 static int sdma_v4_4_2_process_trap_irq(struct amdgpu_device *adev, 1527 struct amdgpu_irq_src *source, 1528 struct amdgpu_iv_entry *entry) 1529 { 1530 uint32_t instance, i; 1531 1532 DRM_DEBUG("IH: SDMA trap\n"); 1533 instance = sdma_v4_4_2_irq_id_to_seq(entry->client_id); 1534 1535 /* Client id gives the SDMA instance in AID. To know the exact SDMA 1536 * instance, interrupt entry gives the node id which corresponds to the AID instance. 1537 * Match node id with the AID id associated with the SDMA instance. */ 1538 for (i = instance; i < adev->sdma.num_instances; 1539 i += adev->sdma.num_inst_per_aid) { 1540 if (adev->sdma.instance[i].aid_id == 1541 node_id_to_phys_map[entry->node_id]) 1542 break; 1543 } 1544 1545 if (i >= adev->sdma.num_instances) { 1546 dev_WARN_ONCE( 1547 adev->dev, 1, 1548 "Couldn't find the right sdma instance in trap handler"); 1549 return 0; 1550 } 1551 1552 switch (entry->ring_id) { 1553 case 0: 1554 amdgpu_fence_process(&adev->sdma.instance[i].ring); 1555 break; 1556 default: 1557 break; 1558 } 1559 return 0; 1560 } 1561 1562 #if 0 1563 static int sdma_v4_4_2_process_ras_data_cb(struct amdgpu_device *adev, 1564 void *err_data, 1565 struct amdgpu_iv_entry *entry) 1566 { 1567 int instance; 1568 1569 /* When “Full RAS” is enabled, the per-IP interrupt sources should 1570 * be disabled and the driver should only look for the aggregated 1571 * interrupt via sync flood 1572 */ 1573 if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) 1574 goto out; 1575 1576 instance = sdma_v4_4_2_irq_id_to_seq(entry->client_id); 1577 if (instance < 0) 1578 goto out; 1579 1580 amdgpu_sdma_process_ras_data_cb(adev, err_data, entry); 1581 1582 out: 1583 return AMDGPU_RAS_SUCCESS; 1584 } 1585 #endif 1586 1587 static int sdma_v4_4_2_process_illegal_inst_irq(struct amdgpu_device *adev, 1588 struct amdgpu_irq_src *source, 1589 struct amdgpu_iv_entry *entry) 1590 { 1591 int instance; 1592 1593 DRM_ERROR("Illegal instruction in SDMA command stream\n"); 1594 1595 instance = sdma_v4_4_2_irq_id_to_seq(entry->client_id); 1596 if (instance < 0) 1597 return 0; 1598 1599 switch (entry->ring_id) { 1600 case 0: 1601 drm_sched_fault(&adev->sdma.instance[instance].ring.sched); 1602 break; 1603 } 1604 return 0; 1605 } 1606 1607 static int sdma_v4_4_2_set_ecc_irq_state(struct amdgpu_device *adev, 1608 struct amdgpu_irq_src *source, 1609 unsigned type, 1610 enum amdgpu_interrupt_state state) 1611 { 1612 u32 sdma_cntl; 1613 1614 sdma_cntl = RREG32_SDMA(type, regSDMA_CNTL); 1615 switch (state) { 1616 case AMDGPU_IRQ_STATE_DISABLE: 1617 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA_CNTL, 1618 DRAM_ECC_INT_ENABLE, 0); 1619 WREG32_SDMA(type, regSDMA_CNTL, sdma_cntl); 1620 break; 1621 /* sdma ecc interrupt is enabled by default 1622 * driver doesn't need to do anything to 1623 * enable the interrupt */ 1624 case AMDGPU_IRQ_STATE_ENABLE: 1625 default: 1626 break; 1627 } 1628 1629 return 0; 1630 } 1631 1632 static int sdma_v4_4_2_print_iv_entry(struct amdgpu_device *adev, 1633 struct amdgpu_iv_entry *entry) 1634 { 1635 int instance; 1636 struct amdgpu_task_info task_info; 1637 u64 addr; 1638 1639 instance = sdma_v4_4_2_irq_id_to_seq(entry->client_id); 1640 if (instance < 0 || instance >= adev->sdma.num_instances) { 1641 dev_err(adev->dev, "sdma instance invalid %d\n", instance); 1642 return -EINVAL; 1643 } 1644 1645 addr = (u64)entry->src_data[0] << 12; 1646 addr |= ((u64)entry->src_data[1] & 0xf) << 44; 1647 1648 memset(&task_info, 0, sizeof(struct amdgpu_task_info)); 1649 amdgpu_vm_get_task_info(adev, entry->pasid, &task_info); 1650 1651 dev_dbg_ratelimited(adev->dev, 1652 "[sdma%d] address:0x%016llx src_id:%u ring:%u vmid:%u " 1653 "pasid:%u, for process %s pid %d thread %s pid %d\n", 1654 instance, addr, entry->src_id, entry->ring_id, entry->vmid, 1655 entry->pasid, task_info.process_name, task_info.tgid, 1656 task_info.task_name, task_info.pid); 1657 return 0; 1658 } 1659 1660 static int sdma_v4_4_2_process_vm_hole_irq(struct amdgpu_device *adev, 1661 struct amdgpu_irq_src *source, 1662 struct amdgpu_iv_entry *entry) 1663 { 1664 dev_dbg_ratelimited(adev->dev, "MC or SEM address in VM hole\n"); 1665 sdma_v4_4_2_print_iv_entry(adev, entry); 1666 return 0; 1667 } 1668 1669 static int sdma_v4_4_2_process_doorbell_invalid_irq(struct amdgpu_device *adev, 1670 struct amdgpu_irq_src *source, 1671 struct amdgpu_iv_entry *entry) 1672 { 1673 1674 dev_dbg_ratelimited(adev->dev, "SDMA received a doorbell from BIF with byte_enable !=0xff\n"); 1675 sdma_v4_4_2_print_iv_entry(adev, entry); 1676 return 0; 1677 } 1678 1679 static int sdma_v4_4_2_process_pool_timeout_irq(struct amdgpu_device *adev, 1680 struct amdgpu_irq_src *source, 1681 struct amdgpu_iv_entry *entry) 1682 { 1683 dev_dbg_ratelimited(adev->dev, 1684 "Polling register/memory timeout executing POLL_REG/MEM with finite timer\n"); 1685 sdma_v4_4_2_print_iv_entry(adev, entry); 1686 return 0; 1687 } 1688 1689 static int sdma_v4_4_2_process_srbm_write_irq(struct amdgpu_device *adev, 1690 struct amdgpu_irq_src *source, 1691 struct amdgpu_iv_entry *entry) 1692 { 1693 dev_dbg_ratelimited(adev->dev, 1694 "SDMA gets an Register Write SRBM_WRITE command in non-privilege command buffer\n"); 1695 sdma_v4_4_2_print_iv_entry(adev, entry); 1696 return 0; 1697 } 1698 1699 static void sdma_v4_4_2_inst_update_medium_grain_light_sleep( 1700 struct amdgpu_device *adev, bool enable, uint32_t inst_mask) 1701 { 1702 uint32_t data, def; 1703 int i; 1704 1705 /* leave as default if it is not driver controlled */ 1706 if (!(adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) 1707 return; 1708 1709 if (enable) { 1710 for_each_inst(i, inst_mask) { 1711 /* 1-not override: enable sdma mem light sleep */ 1712 def = data = RREG32_SDMA(i, regSDMA_POWER_CNTL); 1713 data |= SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; 1714 if (def != data) 1715 WREG32_SDMA(i, regSDMA_POWER_CNTL, data); 1716 } 1717 } else { 1718 for_each_inst(i, inst_mask) { 1719 /* 0-override:disable sdma mem light sleep */ 1720 def = data = RREG32_SDMA(i, regSDMA_POWER_CNTL); 1721 data &= ~SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; 1722 if (def != data) 1723 WREG32_SDMA(i, regSDMA_POWER_CNTL, data); 1724 } 1725 } 1726 } 1727 1728 static void sdma_v4_4_2_inst_update_medium_grain_clock_gating( 1729 struct amdgpu_device *adev, bool enable, uint32_t inst_mask) 1730 { 1731 uint32_t data, def; 1732 int i; 1733 1734 /* leave as default if it is not driver controlled */ 1735 if (!(adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) 1736 return; 1737 1738 if (enable) { 1739 for_each_inst(i, inst_mask) { 1740 def = data = RREG32_SDMA(i, regSDMA_CLK_CTRL); 1741 data &= ~(SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK | 1742 SDMA_CLK_CTRL__SOFT_OVERRIDE4_MASK | 1743 SDMA_CLK_CTRL__SOFT_OVERRIDE3_MASK | 1744 SDMA_CLK_CTRL__SOFT_OVERRIDE2_MASK | 1745 SDMA_CLK_CTRL__SOFT_OVERRIDE1_MASK | 1746 SDMA_CLK_CTRL__SOFT_OVERRIDE0_MASK); 1747 if (def != data) 1748 WREG32_SDMA(i, regSDMA_CLK_CTRL, data); 1749 } 1750 } else { 1751 for_each_inst(i, inst_mask) { 1752 def = data = RREG32_SDMA(i, regSDMA_CLK_CTRL); 1753 data |= (SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK | 1754 SDMA_CLK_CTRL__SOFT_OVERRIDE4_MASK | 1755 SDMA_CLK_CTRL__SOFT_OVERRIDE3_MASK | 1756 SDMA_CLK_CTRL__SOFT_OVERRIDE2_MASK | 1757 SDMA_CLK_CTRL__SOFT_OVERRIDE1_MASK | 1758 SDMA_CLK_CTRL__SOFT_OVERRIDE0_MASK); 1759 if (def != data) 1760 WREG32_SDMA(i, regSDMA_CLK_CTRL, data); 1761 } 1762 } 1763 } 1764 1765 static int sdma_v4_4_2_set_clockgating_state(void *handle, 1766 enum amd_clockgating_state state) 1767 { 1768 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1769 uint32_t inst_mask; 1770 1771 if (amdgpu_sriov_vf(adev)) 1772 return 0; 1773 1774 inst_mask = GENMASK(adev->sdma.num_instances - 1, 0); 1775 1776 sdma_v4_4_2_inst_update_medium_grain_clock_gating( 1777 adev, state == AMD_CG_STATE_GATE, inst_mask); 1778 sdma_v4_4_2_inst_update_medium_grain_light_sleep( 1779 adev, state == AMD_CG_STATE_GATE, inst_mask); 1780 return 0; 1781 } 1782 1783 static int sdma_v4_4_2_set_powergating_state(void *handle, 1784 enum amd_powergating_state state) 1785 { 1786 return 0; 1787 } 1788 1789 static void sdma_v4_4_2_get_clockgating_state(void *handle, u64 *flags) 1790 { 1791 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1792 int data; 1793 1794 if (amdgpu_sriov_vf(adev)) 1795 *flags = 0; 1796 1797 /* AMD_CG_SUPPORT_SDMA_MGCG */ 1798 data = RREG32(SOC15_REG_OFFSET(SDMA0, GET_INST(SDMA0, 0), regSDMA_CLK_CTRL)); 1799 if (!(data & SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK)) 1800 *flags |= AMD_CG_SUPPORT_SDMA_MGCG; 1801 1802 /* AMD_CG_SUPPORT_SDMA_LS */ 1803 data = RREG32(SOC15_REG_OFFSET(SDMA0, GET_INST(SDMA0, 0), regSDMA_POWER_CNTL)); 1804 if (data & SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK) 1805 *flags |= AMD_CG_SUPPORT_SDMA_LS; 1806 } 1807 1808 const struct amd_ip_funcs sdma_v4_4_2_ip_funcs = { 1809 .name = "sdma_v4_4_2", 1810 .early_init = sdma_v4_4_2_early_init, 1811 .late_init = sdma_v4_4_2_late_init, 1812 .sw_init = sdma_v4_4_2_sw_init, 1813 .sw_fini = sdma_v4_4_2_sw_fini, 1814 .hw_init = sdma_v4_4_2_hw_init, 1815 .hw_fini = sdma_v4_4_2_hw_fini, 1816 .suspend = sdma_v4_4_2_suspend, 1817 .resume = sdma_v4_4_2_resume, 1818 .is_idle = sdma_v4_4_2_is_idle, 1819 .wait_for_idle = sdma_v4_4_2_wait_for_idle, 1820 .soft_reset = sdma_v4_4_2_soft_reset, 1821 .set_clockgating_state = sdma_v4_4_2_set_clockgating_state, 1822 .set_powergating_state = sdma_v4_4_2_set_powergating_state, 1823 .get_clockgating_state = sdma_v4_4_2_get_clockgating_state, 1824 }; 1825 1826 static const struct amdgpu_ring_funcs sdma_v4_4_2_ring_funcs = { 1827 .type = AMDGPU_RING_TYPE_SDMA, 1828 .align_mask = 0xff, 1829 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 1830 .support_64bit_ptrs = true, 1831 .get_rptr = sdma_v4_4_2_ring_get_rptr, 1832 .get_wptr = sdma_v4_4_2_ring_get_wptr, 1833 .set_wptr = sdma_v4_4_2_ring_set_wptr, 1834 .emit_frame_size = 1835 6 + /* sdma_v4_4_2_ring_emit_hdp_flush */ 1836 3 + /* hdp invalidate */ 1837 6 + /* sdma_v4_4_2_ring_emit_pipeline_sync */ 1838 /* sdma_v4_4_2_ring_emit_vm_flush */ 1839 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + 1840 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 + 1841 10 + 10 + 10, /* sdma_v4_4_2_ring_emit_fence x3 for user fence, vm fence */ 1842 .emit_ib_size = 7 + 6, /* sdma_v4_4_2_ring_emit_ib */ 1843 .emit_ib = sdma_v4_4_2_ring_emit_ib, 1844 .emit_fence = sdma_v4_4_2_ring_emit_fence, 1845 .emit_pipeline_sync = sdma_v4_4_2_ring_emit_pipeline_sync, 1846 .emit_vm_flush = sdma_v4_4_2_ring_emit_vm_flush, 1847 .emit_hdp_flush = sdma_v4_4_2_ring_emit_hdp_flush, 1848 .test_ring = sdma_v4_4_2_ring_test_ring, 1849 .test_ib = sdma_v4_4_2_ring_test_ib, 1850 .insert_nop = sdma_v4_4_2_ring_insert_nop, 1851 .pad_ib = sdma_v4_4_2_ring_pad_ib, 1852 .emit_wreg = sdma_v4_4_2_ring_emit_wreg, 1853 .emit_reg_wait = sdma_v4_4_2_ring_emit_reg_wait, 1854 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper, 1855 }; 1856 1857 static const struct amdgpu_ring_funcs sdma_v4_4_2_page_ring_funcs = { 1858 .type = AMDGPU_RING_TYPE_SDMA, 1859 .align_mask = 0xff, 1860 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 1861 .support_64bit_ptrs = true, 1862 .get_rptr = sdma_v4_4_2_ring_get_rptr, 1863 .get_wptr = sdma_v4_4_2_page_ring_get_wptr, 1864 .set_wptr = sdma_v4_4_2_page_ring_set_wptr, 1865 .emit_frame_size = 1866 6 + /* sdma_v4_4_2_ring_emit_hdp_flush */ 1867 3 + /* hdp invalidate */ 1868 6 + /* sdma_v4_4_2_ring_emit_pipeline_sync */ 1869 /* sdma_v4_4_2_ring_emit_vm_flush */ 1870 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + 1871 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 + 1872 10 + 10 + 10, /* sdma_v4_4_2_ring_emit_fence x3 for user fence, vm fence */ 1873 .emit_ib_size = 7 + 6, /* sdma_v4_4_2_ring_emit_ib */ 1874 .emit_ib = sdma_v4_4_2_ring_emit_ib, 1875 .emit_fence = sdma_v4_4_2_ring_emit_fence, 1876 .emit_pipeline_sync = sdma_v4_4_2_ring_emit_pipeline_sync, 1877 .emit_vm_flush = sdma_v4_4_2_ring_emit_vm_flush, 1878 .emit_hdp_flush = sdma_v4_4_2_ring_emit_hdp_flush, 1879 .test_ring = sdma_v4_4_2_ring_test_ring, 1880 .test_ib = sdma_v4_4_2_ring_test_ib, 1881 .insert_nop = sdma_v4_4_2_ring_insert_nop, 1882 .pad_ib = sdma_v4_4_2_ring_pad_ib, 1883 .emit_wreg = sdma_v4_4_2_ring_emit_wreg, 1884 .emit_reg_wait = sdma_v4_4_2_ring_emit_reg_wait, 1885 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper, 1886 }; 1887 1888 static void sdma_v4_4_2_set_ring_funcs(struct amdgpu_device *adev) 1889 { 1890 int i, dev_inst; 1891 1892 for (i = 0; i < adev->sdma.num_instances; i++) { 1893 adev->sdma.instance[i].ring.funcs = &sdma_v4_4_2_ring_funcs; 1894 adev->sdma.instance[i].ring.me = i; 1895 if (adev->sdma.has_page_queue) { 1896 adev->sdma.instance[i].page.funcs = 1897 &sdma_v4_4_2_page_ring_funcs; 1898 adev->sdma.instance[i].page.me = i; 1899 } 1900 1901 dev_inst = GET_INST(SDMA0, i); 1902 /* AID to which SDMA belongs depends on physical instance */ 1903 adev->sdma.instance[i].aid_id = 1904 dev_inst / adev->sdma.num_inst_per_aid; 1905 } 1906 } 1907 1908 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_trap_irq_funcs = { 1909 .set = sdma_v4_4_2_set_trap_irq_state, 1910 .process = sdma_v4_4_2_process_trap_irq, 1911 }; 1912 1913 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_illegal_inst_irq_funcs = { 1914 .process = sdma_v4_4_2_process_illegal_inst_irq, 1915 }; 1916 1917 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_ecc_irq_funcs = { 1918 .set = sdma_v4_4_2_set_ecc_irq_state, 1919 .process = amdgpu_sdma_process_ecc_irq, 1920 }; 1921 1922 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_vm_hole_irq_funcs = { 1923 .process = sdma_v4_4_2_process_vm_hole_irq, 1924 }; 1925 1926 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_doorbell_invalid_irq_funcs = { 1927 .process = sdma_v4_4_2_process_doorbell_invalid_irq, 1928 }; 1929 1930 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_pool_timeout_irq_funcs = { 1931 .process = sdma_v4_4_2_process_pool_timeout_irq, 1932 }; 1933 1934 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_srbm_write_irq_funcs = { 1935 .process = sdma_v4_4_2_process_srbm_write_irq, 1936 }; 1937 1938 static void sdma_v4_4_2_set_irq_funcs(struct amdgpu_device *adev) 1939 { 1940 adev->sdma.trap_irq.num_types = adev->sdma.num_instances; 1941 adev->sdma.ecc_irq.num_types = adev->sdma.num_instances; 1942 adev->sdma.vm_hole_irq.num_types = adev->sdma.num_instances; 1943 adev->sdma.doorbell_invalid_irq.num_types = adev->sdma.num_instances; 1944 adev->sdma.pool_timeout_irq.num_types = adev->sdma.num_instances; 1945 adev->sdma.srbm_write_irq.num_types = adev->sdma.num_instances; 1946 1947 adev->sdma.trap_irq.funcs = &sdma_v4_4_2_trap_irq_funcs; 1948 adev->sdma.illegal_inst_irq.funcs = &sdma_v4_4_2_illegal_inst_irq_funcs; 1949 adev->sdma.ecc_irq.funcs = &sdma_v4_4_2_ecc_irq_funcs; 1950 adev->sdma.vm_hole_irq.funcs = &sdma_v4_4_2_vm_hole_irq_funcs; 1951 adev->sdma.doorbell_invalid_irq.funcs = &sdma_v4_4_2_doorbell_invalid_irq_funcs; 1952 adev->sdma.pool_timeout_irq.funcs = &sdma_v4_4_2_pool_timeout_irq_funcs; 1953 adev->sdma.srbm_write_irq.funcs = &sdma_v4_4_2_srbm_write_irq_funcs; 1954 } 1955 1956 /** 1957 * sdma_v4_4_2_emit_copy_buffer - copy buffer using the sDMA engine 1958 * 1959 * @ib: indirect buffer to copy to 1960 * @src_offset: src GPU address 1961 * @dst_offset: dst GPU address 1962 * @byte_count: number of bytes to xfer 1963 * @tmz: if a secure copy should be used 1964 * 1965 * Copy GPU buffers using the DMA engine. 1966 * Used by the amdgpu ttm implementation to move pages if 1967 * registered as the asic copy callback. 1968 */ 1969 static void sdma_v4_4_2_emit_copy_buffer(struct amdgpu_ib *ib, 1970 uint64_t src_offset, 1971 uint64_t dst_offset, 1972 uint32_t byte_count, 1973 bool tmz) 1974 { 1975 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | 1976 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) | 1977 SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0); 1978 ib->ptr[ib->length_dw++] = byte_count - 1; 1979 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 1980 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset); 1981 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset); 1982 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 1983 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 1984 } 1985 1986 /** 1987 * sdma_v4_4_2_emit_fill_buffer - fill buffer using the sDMA engine 1988 * 1989 * @ib: indirect buffer to copy to 1990 * @src_data: value to write to buffer 1991 * @dst_offset: dst GPU address 1992 * @byte_count: number of bytes to xfer 1993 * 1994 * Fill GPU buffers using the DMA engine. 1995 */ 1996 static void sdma_v4_4_2_emit_fill_buffer(struct amdgpu_ib *ib, 1997 uint32_t src_data, 1998 uint64_t dst_offset, 1999 uint32_t byte_count) 2000 { 2001 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL); 2002 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 2003 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 2004 ib->ptr[ib->length_dw++] = src_data; 2005 ib->ptr[ib->length_dw++] = byte_count - 1; 2006 } 2007 2008 static const struct amdgpu_buffer_funcs sdma_v4_4_2_buffer_funcs = { 2009 .copy_max_bytes = 0x400000, 2010 .copy_num_dw = 7, 2011 .emit_copy_buffer = sdma_v4_4_2_emit_copy_buffer, 2012 2013 .fill_max_bytes = 0x400000, 2014 .fill_num_dw = 5, 2015 .emit_fill_buffer = sdma_v4_4_2_emit_fill_buffer, 2016 }; 2017 2018 static void sdma_v4_4_2_set_buffer_funcs(struct amdgpu_device *adev) 2019 { 2020 adev->mman.buffer_funcs = &sdma_v4_4_2_buffer_funcs; 2021 if (adev->sdma.has_page_queue) 2022 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page; 2023 else 2024 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring; 2025 } 2026 2027 static const struct amdgpu_vm_pte_funcs sdma_v4_4_2_vm_pte_funcs = { 2028 .copy_pte_num_dw = 7, 2029 .copy_pte = sdma_v4_4_2_vm_copy_pte, 2030 2031 .write_pte = sdma_v4_4_2_vm_write_pte, 2032 .set_pte_pde = sdma_v4_4_2_vm_set_pte_pde, 2033 }; 2034 2035 static void sdma_v4_4_2_set_vm_pte_funcs(struct amdgpu_device *adev) 2036 { 2037 struct drm_gpu_scheduler *sched; 2038 unsigned i; 2039 2040 adev->vm_manager.vm_pte_funcs = &sdma_v4_4_2_vm_pte_funcs; 2041 for (i = 0; i < adev->sdma.num_instances; i++) { 2042 if (adev->sdma.has_page_queue) 2043 sched = &adev->sdma.instance[i].page.sched; 2044 else 2045 sched = &adev->sdma.instance[i].ring.sched; 2046 adev->vm_manager.vm_pte_scheds[i] = sched; 2047 } 2048 adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances; 2049 } 2050 2051 const struct amdgpu_ip_block_version sdma_v4_4_2_ip_block = { 2052 .type = AMD_IP_BLOCK_TYPE_SDMA, 2053 .major = 4, 2054 .minor = 4, 2055 .rev = 0, 2056 .funcs = &sdma_v4_4_2_ip_funcs, 2057 }; 2058 2059 static int sdma_v4_4_2_xcp_resume(void *handle, uint32_t inst_mask) 2060 { 2061 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2062 int r; 2063 2064 if (!amdgpu_sriov_vf(adev)) 2065 sdma_v4_4_2_inst_init_golden_registers(adev, inst_mask); 2066 2067 r = sdma_v4_4_2_inst_start(adev, inst_mask); 2068 2069 return r; 2070 } 2071 2072 static int sdma_v4_4_2_xcp_suspend(void *handle, uint32_t inst_mask) 2073 { 2074 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2075 uint32_t tmp_mask = inst_mask; 2076 int i; 2077 2078 if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) { 2079 for_each_inst(i, tmp_mask) { 2080 amdgpu_irq_put(adev, &adev->sdma.ecc_irq, 2081 AMDGPU_SDMA_IRQ_INSTANCE0 + i); 2082 } 2083 } 2084 2085 sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask); 2086 sdma_v4_4_2_inst_enable(adev, false, inst_mask); 2087 2088 return 0; 2089 } 2090 2091 struct amdgpu_xcp_ip_funcs sdma_v4_4_2_xcp_funcs = { 2092 .suspend = &sdma_v4_4_2_xcp_suspend, 2093 .resume = &sdma_v4_4_2_xcp_resume 2094 }; 2095 2096 static const struct amdgpu_ras_err_status_reg_entry sdma_v4_2_2_ue_reg_list[] = { 2097 {AMDGPU_RAS_REG_ENTRY(SDMA0, 0, regSDMA_UE_ERR_STATUS_LO, regSDMA_UE_ERR_STATUS_HI), 2098 1, (AMDGPU_RAS_ERR_INFO_VALID | AMDGPU_RAS_ERR_STATUS_VALID), "SDMA"}, 2099 }; 2100 2101 static const struct amdgpu_ras_memory_id_entry sdma_v4_4_2_ras_memory_list[] = { 2102 {AMDGPU_SDMA_MBANK_DATA_BUF0, "SDMA_MBANK_DATA_BUF0"}, 2103 {AMDGPU_SDMA_MBANK_DATA_BUF1, "SDMA_MBANK_DATA_BUF1"}, 2104 {AMDGPU_SDMA_MBANK_DATA_BUF2, "SDMA_MBANK_DATA_BUF2"}, 2105 {AMDGPU_SDMA_MBANK_DATA_BUF3, "SDMA_MBANK_DATA_BUF3"}, 2106 {AMDGPU_SDMA_MBANK_DATA_BUF4, "SDMA_MBANK_DATA_BUF4"}, 2107 {AMDGPU_SDMA_MBANK_DATA_BUF5, "SDMA_MBANK_DATA_BUF5"}, 2108 {AMDGPU_SDMA_MBANK_DATA_BUF6, "SDMA_MBANK_DATA_BUF6"}, 2109 {AMDGPU_SDMA_MBANK_DATA_BUF7, "SDMA_MBANK_DATA_BUF7"}, 2110 {AMDGPU_SDMA_MBANK_DATA_BUF8, "SDMA_MBANK_DATA_BUF8"}, 2111 {AMDGPU_SDMA_MBANK_DATA_BUF9, "SDMA_MBANK_DATA_BUF9"}, 2112 {AMDGPU_SDMA_MBANK_DATA_BUF10, "SDMA_MBANK_DATA_BUF10"}, 2113 {AMDGPU_SDMA_MBANK_DATA_BUF11, "SDMA_MBANK_DATA_BUF11"}, 2114 {AMDGPU_SDMA_MBANK_DATA_BUF12, "SDMA_MBANK_DATA_BUF12"}, 2115 {AMDGPU_SDMA_MBANK_DATA_BUF13, "SDMA_MBANK_DATA_BUF13"}, 2116 {AMDGPU_SDMA_MBANK_DATA_BUF14, "SDMA_MBANK_DATA_BUF14"}, 2117 {AMDGPU_SDMA_MBANK_DATA_BUF15, "SDMA_MBANK_DATA_BUF15"}, 2118 {AMDGPU_SDMA_UCODE_BUF, "SDMA_UCODE_BUF"}, 2119 {AMDGPU_SDMA_RB_CMD_BUF, "SDMA_RB_CMD_BUF"}, 2120 {AMDGPU_SDMA_IB_CMD_BUF, "SDMA_IB_CMD_BUF"}, 2121 {AMDGPU_SDMA_UTCL1_RD_FIFO, "SDMA_UTCL1_RD_FIFO"}, 2122 {AMDGPU_SDMA_UTCL1_RDBST_FIFO, "SDMA_UTCL1_RDBST_FIFO"}, 2123 {AMDGPU_SDMA_UTCL1_WR_FIFO, "SDMA_UTCL1_WR_FIFO"}, 2124 {AMDGPU_SDMA_DATA_LUT_FIFO, "SDMA_DATA_LUT_FIFO"}, 2125 {AMDGPU_SDMA_SPLIT_DAT_BUF, "SDMA_SPLIT_DAT_BUF"}, 2126 }; 2127 2128 static void sdma_v4_4_2_inst_query_ras_error_count(struct amdgpu_device *adev, 2129 uint32_t sdma_inst, 2130 void *ras_err_status) 2131 { 2132 struct ras_err_data *err_data = (struct ras_err_data *)ras_err_status; 2133 uint32_t sdma_dev_inst = GET_INST(SDMA0, sdma_inst); 2134 2135 /* sdma v4_4_2 doesn't support query ce counts */ 2136 amdgpu_ras_inst_query_ras_error_count(adev, 2137 sdma_v4_2_2_ue_reg_list, 2138 ARRAY_SIZE(sdma_v4_2_2_ue_reg_list), 2139 sdma_v4_4_2_ras_memory_list, 2140 ARRAY_SIZE(sdma_v4_4_2_ras_memory_list), 2141 sdma_dev_inst, 2142 AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE, 2143 &err_data->ue_count); 2144 } 2145 2146 static void sdma_v4_4_2_query_ras_error_count(struct amdgpu_device *adev, 2147 void *ras_err_status) 2148 { 2149 uint32_t inst_mask; 2150 int i = 0; 2151 2152 inst_mask = GENMASK(adev->sdma.num_instances - 1, 0); 2153 if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) { 2154 for_each_inst(i, inst_mask) 2155 sdma_v4_4_2_inst_query_ras_error_count(adev, i, ras_err_status); 2156 } else { 2157 dev_warn(adev->dev, "SDMA RAS is not supported\n"); 2158 } 2159 } 2160 2161 static void sdma_v4_4_2_inst_reset_ras_error_count(struct amdgpu_device *adev, 2162 uint32_t sdma_inst) 2163 { 2164 uint32_t sdma_dev_inst = GET_INST(SDMA0, sdma_inst); 2165 2166 amdgpu_ras_inst_reset_ras_error_count(adev, 2167 sdma_v4_2_2_ue_reg_list, 2168 ARRAY_SIZE(sdma_v4_2_2_ue_reg_list), 2169 sdma_dev_inst); 2170 } 2171 2172 static void sdma_v4_4_2_reset_ras_error_count(struct amdgpu_device *adev) 2173 { 2174 uint32_t inst_mask; 2175 int i = 0; 2176 2177 inst_mask = GENMASK(adev->sdma.num_instances - 1, 0); 2178 if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) { 2179 for_each_inst(i, inst_mask) 2180 sdma_v4_4_2_inst_reset_ras_error_count(adev, i); 2181 } else { 2182 dev_warn(adev->dev, "SDMA RAS is not supported\n"); 2183 } 2184 } 2185 2186 static const struct amdgpu_ras_block_hw_ops sdma_v4_4_2_ras_hw_ops = { 2187 .query_ras_error_count = sdma_v4_4_2_query_ras_error_count, 2188 .reset_ras_error_count = sdma_v4_4_2_reset_ras_error_count, 2189 }; 2190 2191 static struct amdgpu_sdma_ras sdma_v4_4_2_ras = { 2192 .ras_block = { 2193 .hw_ops = &sdma_v4_4_2_ras_hw_ops, 2194 }, 2195 }; 2196 2197 static void sdma_v4_4_2_set_ras_funcs(struct amdgpu_device *adev) 2198 { 2199 adev->sdma.ras = &sdma_v4_4_2_ras; 2200 } 2201