1 /* 2 * Copyright 2022 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 24 #include <linux/delay.h> 25 #include <linux/firmware.h> 26 #include <linux/module.h> 27 #include <linux/pci.h> 28 29 #include "amdgpu.h" 30 #include "amdgpu_xcp.h" 31 #include "amdgpu_ucode.h" 32 #include "amdgpu_trace.h" 33 #include "amdgpu_reset.h" 34 35 #include "sdma/sdma_4_4_2_offset.h" 36 #include "sdma/sdma_4_4_2_sh_mask.h" 37 38 #include "soc15_common.h" 39 #include "soc15.h" 40 #include "vega10_sdma_pkt_open.h" 41 42 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h" 43 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h" 44 45 #include "amdgpu_ras.h" 46 47 MODULE_FIRMWARE("amdgpu/sdma_4_4_2.bin"); 48 MODULE_FIRMWARE("amdgpu/sdma_4_4_4.bin"); 49 MODULE_FIRMWARE("amdgpu/sdma_4_4_5.bin"); 50 51 static const struct amdgpu_hwip_reg_entry sdma_reg_list_4_4_2[] = { 52 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_STATUS_REG), 53 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_STATUS1_REG), 54 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_STATUS2_REG), 55 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_STATUS3_REG), 56 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_UCODE_CHECKSUM), 57 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RB_RPTR_FETCH_HI), 58 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RB_RPTR_FETCH), 59 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_UTCL1_RD_STATUS), 60 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_UTCL1_WR_STATUS), 61 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_UTCL1_RD_XNACK0), 62 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_UTCL1_RD_XNACK1), 63 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_UTCL1_WR_XNACK0), 64 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_UTCL1_WR_XNACK1), 65 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_RB_CNTL), 66 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_RB_RPTR), 67 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_RB_RPTR_HI), 68 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_RB_WPTR), 69 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_RB_WPTR_HI), 70 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_IB_OFFSET), 71 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_IB_BASE_LO), 72 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_IB_BASE_HI), 73 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_IB_CNTL), 74 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_IB_RPTR), 75 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_IB_SUB_REMAIN), 76 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_DUMMY_REG), 77 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_RB_CNTL), 78 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_RB_RPTR), 79 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_RB_RPTR_HI), 80 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_RB_WPTR), 81 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_RB_WPTR_HI), 82 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_IB_OFFSET), 83 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_IB_BASE_LO), 84 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_IB_BASE_HI), 85 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_DUMMY_REG), 86 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_RB_CNTL), 87 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_RB_RPTR), 88 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_RB_RPTR_HI), 89 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_RB_WPTR), 90 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_RB_WPTR_HI), 91 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_IB_OFFSET), 92 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_IB_BASE_LO), 93 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_IB_BASE_HI), 94 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_DUMMY_REG), 95 SOC15_REG_ENTRY_STR(GC, 0, regSDMA_VM_CNTL) 96 }; 97 98 #define mmSMNAID_AID0_MCA_SMU 0x03b30400 99 100 #define WREG32_SDMA(instance, offset, value) \ 101 WREG32(sdma_v4_4_2_get_reg_offset(adev, (instance), (offset)), value) 102 #define RREG32_SDMA(instance, offset) \ 103 RREG32(sdma_v4_4_2_get_reg_offset(adev, (instance), (offset))) 104 105 static void sdma_v4_4_2_set_ring_funcs(struct amdgpu_device *adev); 106 static void sdma_v4_4_2_set_buffer_funcs(struct amdgpu_device *adev); 107 static void sdma_v4_4_2_set_vm_pte_funcs(struct amdgpu_device *adev); 108 static void sdma_v4_4_2_set_irq_funcs(struct amdgpu_device *adev); 109 static void sdma_v4_4_2_set_ras_funcs(struct amdgpu_device *adev); 110 static void sdma_v4_4_2_update_reset_mask(struct amdgpu_device *adev); 111 static int sdma_v4_4_2_stop_queue(struct amdgpu_ring *ring); 112 static int sdma_v4_4_2_restore_queue(struct amdgpu_ring *ring); 113 static int sdma_v4_4_2_soft_reset_engine(struct amdgpu_device *adev, 114 u32 instance_id); 115 116 static u32 sdma_v4_4_2_get_reg_offset(struct amdgpu_device *adev, 117 u32 instance, u32 offset) 118 { 119 u32 dev_inst = GET_INST(SDMA0, instance); 120 121 return (adev->reg_offset[SDMA0_HWIP][dev_inst][0] + offset); 122 } 123 124 static unsigned sdma_v4_4_2_seq_to_irq_id(int seq_num) 125 { 126 switch (seq_num) { 127 case 0: 128 return SOC15_IH_CLIENTID_SDMA0; 129 case 1: 130 return SOC15_IH_CLIENTID_SDMA1; 131 case 2: 132 return SOC15_IH_CLIENTID_SDMA2; 133 case 3: 134 return SOC15_IH_CLIENTID_SDMA3; 135 default: 136 return -EINVAL; 137 } 138 } 139 140 static int sdma_v4_4_2_irq_id_to_seq(struct amdgpu_device *adev, unsigned client_id) 141 { 142 switch (client_id) { 143 case SOC15_IH_CLIENTID_SDMA0: 144 return 0; 145 case SOC15_IH_CLIENTID_SDMA1: 146 return 1; 147 case SOC15_IH_CLIENTID_SDMA2: 148 if (amdgpu_sriov_vf(adev) && (adev->gfx.xcc_mask == 0x1)) 149 return 0; 150 else 151 return 2; 152 case SOC15_IH_CLIENTID_SDMA3: 153 if (amdgpu_sriov_vf(adev) && (adev->gfx.xcc_mask == 0x1)) 154 return 1; 155 else 156 return 3; 157 default: 158 return -EINVAL; 159 } 160 } 161 162 static void sdma_v4_4_2_inst_init_golden_registers(struct amdgpu_device *adev, 163 uint32_t inst_mask) 164 { 165 u32 val; 166 int i; 167 168 for (i = 0; i < adev->sdma.num_instances; i++) { 169 val = RREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG); 170 val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG, NUM_BANKS, 4); 171 val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG, 172 PIPE_INTERLEAVE_SIZE, 0); 173 WREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG, val); 174 175 val = RREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG_READ); 176 val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG_READ, NUM_BANKS, 177 4); 178 val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG_READ, 179 PIPE_INTERLEAVE_SIZE, 0); 180 WREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG_READ, val); 181 } 182 } 183 184 /** 185 * sdma_v4_4_2_init_microcode - load ucode images from disk 186 * 187 * @adev: amdgpu_device pointer 188 * 189 * Use the firmware interface to load the ucode images into 190 * the driver (not loaded into hw). 191 * Returns 0 on success, error on failure. 192 */ 193 static int sdma_v4_4_2_init_microcode(struct amdgpu_device *adev) 194 { 195 int ret, i; 196 197 for (i = 0; i < adev->sdma.num_instances; i++) { 198 if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 2) || 199 amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 4) || 200 amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 5)) { 201 ret = amdgpu_sdma_init_microcode(adev, 0, true); 202 break; 203 } else { 204 ret = amdgpu_sdma_init_microcode(adev, i, false); 205 if (ret) 206 return ret; 207 } 208 } 209 210 return ret; 211 } 212 213 /** 214 * sdma_v4_4_2_ring_get_rptr - get the current read pointer 215 * 216 * @ring: amdgpu ring pointer 217 * 218 * Get the current rptr from the hardware. 219 */ 220 static uint64_t sdma_v4_4_2_ring_get_rptr(struct amdgpu_ring *ring) 221 { 222 u64 rptr; 223 224 /* XXX check if swapping is necessary on BE */ 225 rptr = READ_ONCE(*((u64 *)&ring->adev->wb.wb[ring->rptr_offs])); 226 227 DRM_DEBUG("rptr before shift == 0x%016llx\n", rptr); 228 return rptr >> 2; 229 } 230 231 /** 232 * sdma_v4_4_2_ring_get_wptr - get the current write pointer 233 * 234 * @ring: amdgpu ring pointer 235 * 236 * Get the current wptr from the hardware. 237 */ 238 static uint64_t sdma_v4_4_2_ring_get_wptr(struct amdgpu_ring *ring) 239 { 240 struct amdgpu_device *adev = ring->adev; 241 u64 wptr; 242 243 if (ring->use_doorbell) { 244 /* XXX check if swapping is necessary on BE */ 245 wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs])); 246 DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr); 247 } else { 248 wptr = RREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR_HI); 249 wptr = wptr << 32; 250 wptr |= RREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR); 251 DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n", 252 ring->me, wptr); 253 } 254 255 return wptr >> 2; 256 } 257 258 /** 259 * sdma_v4_4_2_ring_set_wptr - commit the write pointer 260 * 261 * @ring: amdgpu ring pointer 262 * 263 * Write the wptr back to the hardware. 264 */ 265 static void sdma_v4_4_2_ring_set_wptr(struct amdgpu_ring *ring) 266 { 267 struct amdgpu_device *adev = ring->adev; 268 269 DRM_DEBUG("Setting write pointer\n"); 270 if (ring->use_doorbell) { 271 u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs]; 272 273 DRM_DEBUG("Using doorbell -- " 274 "wptr_offs == 0x%08x " 275 "lower_32_bits(ring->wptr) << 2 == 0x%08x " 276 "upper_32_bits(ring->wptr) << 2 == 0x%08x\n", 277 ring->wptr_offs, 278 lower_32_bits(ring->wptr << 2), 279 upper_32_bits(ring->wptr << 2)); 280 /* XXX check if swapping is necessary on BE */ 281 WRITE_ONCE(*wb, (ring->wptr << 2)); 282 DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n", 283 ring->doorbell_index, ring->wptr << 2); 284 WDOORBELL64(ring->doorbell_index, ring->wptr << 2); 285 } else { 286 DRM_DEBUG("Not using doorbell -- " 287 "regSDMA%i_GFX_RB_WPTR == 0x%08x " 288 "regSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n", 289 ring->me, 290 lower_32_bits(ring->wptr << 2), 291 ring->me, 292 upper_32_bits(ring->wptr << 2)); 293 WREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR, 294 lower_32_bits(ring->wptr << 2)); 295 WREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR_HI, 296 upper_32_bits(ring->wptr << 2)); 297 } 298 } 299 300 /** 301 * sdma_v4_4_2_page_ring_get_wptr - get the current write pointer 302 * 303 * @ring: amdgpu ring pointer 304 * 305 * Get the current wptr from the hardware. 306 */ 307 static uint64_t sdma_v4_4_2_page_ring_get_wptr(struct amdgpu_ring *ring) 308 { 309 struct amdgpu_device *adev = ring->adev; 310 u64 wptr; 311 312 if (ring->use_doorbell) { 313 /* XXX check if swapping is necessary on BE */ 314 wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs])); 315 } else { 316 wptr = RREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR_HI); 317 wptr = wptr << 32; 318 wptr |= RREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR); 319 } 320 321 return wptr >> 2; 322 } 323 324 /** 325 * sdma_v4_4_2_page_ring_set_wptr - commit the write pointer 326 * 327 * @ring: amdgpu ring pointer 328 * 329 * Write the wptr back to the hardware. 330 */ 331 static void sdma_v4_4_2_page_ring_set_wptr(struct amdgpu_ring *ring) 332 { 333 struct amdgpu_device *adev = ring->adev; 334 335 if (ring->use_doorbell) { 336 u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs]; 337 338 /* XXX check if swapping is necessary on BE */ 339 WRITE_ONCE(*wb, (ring->wptr << 2)); 340 WDOORBELL64(ring->doorbell_index, ring->wptr << 2); 341 } else { 342 uint64_t wptr = ring->wptr << 2; 343 344 WREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR, 345 lower_32_bits(wptr)); 346 WREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR_HI, 347 upper_32_bits(wptr)); 348 } 349 } 350 351 static void sdma_v4_4_2_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count) 352 { 353 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); 354 int i; 355 356 for (i = 0; i < count; i++) 357 if (sdma && sdma->burst_nop && (i == 0)) 358 amdgpu_ring_write(ring, ring->funcs->nop | 359 SDMA_PKT_NOP_HEADER_COUNT(count - 1)); 360 else 361 amdgpu_ring_write(ring, ring->funcs->nop); 362 } 363 364 /** 365 * sdma_v4_4_2_ring_emit_ib - Schedule an IB on the DMA engine 366 * 367 * @ring: amdgpu ring pointer 368 * @job: job to retrieve vmid from 369 * @ib: IB object to schedule 370 * @flags: unused 371 * 372 * Schedule an IB in the DMA ring. 373 */ 374 static void sdma_v4_4_2_ring_emit_ib(struct amdgpu_ring *ring, 375 struct amdgpu_job *job, 376 struct amdgpu_ib *ib, 377 uint32_t flags) 378 { 379 unsigned vmid = AMDGPU_JOB_GET_VMID(job); 380 381 /* IB packet must end on a 8 DW boundary */ 382 sdma_v4_4_2_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7); 383 384 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) | 385 SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf)); 386 /* base must be 32 byte aligned */ 387 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0); 388 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr)); 389 amdgpu_ring_write(ring, ib->length_dw); 390 amdgpu_ring_write(ring, 0); 391 amdgpu_ring_write(ring, 0); 392 393 } 394 395 static void sdma_v4_4_2_wait_reg_mem(struct amdgpu_ring *ring, 396 int mem_space, int hdp, 397 uint32_t addr0, uint32_t addr1, 398 uint32_t ref, uint32_t mask, 399 uint32_t inv) 400 { 401 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | 402 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) | 403 SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) | 404 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */ 405 if (mem_space) { 406 /* memory */ 407 amdgpu_ring_write(ring, addr0); 408 amdgpu_ring_write(ring, addr1); 409 } else { 410 /* registers */ 411 amdgpu_ring_write(ring, addr0 << 2); 412 amdgpu_ring_write(ring, addr1 << 2); 413 } 414 amdgpu_ring_write(ring, ref); /* reference */ 415 amdgpu_ring_write(ring, mask); /* mask */ 416 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 417 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */ 418 } 419 420 /** 421 * sdma_v4_4_2_ring_emit_hdp_flush - emit an hdp flush on the DMA ring 422 * 423 * @ring: amdgpu ring pointer 424 * 425 * Emit an hdp flush packet on the requested DMA ring. 426 */ 427 static void sdma_v4_4_2_ring_emit_hdp_flush(struct amdgpu_ring *ring) 428 { 429 struct amdgpu_device *adev = ring->adev; 430 u32 ref_and_mask = 0; 431 const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg; 432 433 ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 434 << (ring->me % adev->sdma.num_inst_per_aid); 435 436 sdma_v4_4_2_wait_reg_mem(ring, 0, 1, 437 adev->nbio.funcs->get_hdp_flush_done_offset(adev), 438 adev->nbio.funcs->get_hdp_flush_req_offset(adev), 439 ref_and_mask, ref_and_mask, 10); 440 } 441 442 /** 443 * sdma_v4_4_2_ring_emit_fence - emit a fence on the DMA ring 444 * 445 * @ring: amdgpu ring pointer 446 * @addr: address 447 * @seq: sequence number 448 * @flags: fence related flags 449 * 450 * Add a DMA fence packet to the ring to write 451 * the fence seq number and DMA trap packet to generate 452 * an interrupt if needed. 453 */ 454 static void sdma_v4_4_2_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq, 455 unsigned flags) 456 { 457 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT; 458 /* write the fence */ 459 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); 460 /* zero in first two bits */ 461 BUG_ON(addr & 0x3); 462 amdgpu_ring_write(ring, lower_32_bits(addr)); 463 amdgpu_ring_write(ring, upper_32_bits(addr)); 464 amdgpu_ring_write(ring, lower_32_bits(seq)); 465 466 /* optionally write high bits as well */ 467 if (write64bit) { 468 addr += 4; 469 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); 470 /* zero in first two bits */ 471 BUG_ON(addr & 0x3); 472 amdgpu_ring_write(ring, lower_32_bits(addr)); 473 amdgpu_ring_write(ring, upper_32_bits(addr)); 474 amdgpu_ring_write(ring, upper_32_bits(seq)); 475 } 476 477 /* generate an interrupt */ 478 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP)); 479 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0)); 480 } 481 482 483 /** 484 * sdma_v4_4_2_inst_gfx_stop - stop the gfx async dma engines 485 * 486 * @adev: amdgpu_device pointer 487 * @inst_mask: mask of dma engine instances to be disabled 488 * 489 * Stop the gfx async dma ring buffers. 490 */ 491 static void sdma_v4_4_2_inst_gfx_stop(struct amdgpu_device *adev, 492 uint32_t inst_mask) 493 { 494 struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES]; 495 u32 doorbell_offset, doorbell; 496 u32 rb_cntl, ib_cntl, sdma_cntl; 497 int i; 498 499 for_each_inst(i, inst_mask) { 500 sdma[i] = &adev->sdma.instance[i].ring; 501 502 rb_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_CNTL); 503 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_ENABLE, 0); 504 WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl); 505 ib_cntl = RREG32_SDMA(i, regSDMA_GFX_IB_CNTL); 506 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_ENABLE, 0); 507 WREG32_SDMA(i, regSDMA_GFX_IB_CNTL, ib_cntl); 508 sdma_cntl = RREG32_SDMA(i, regSDMA_CNTL); 509 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA_CNTL, UTC_L1_ENABLE, 0); 510 WREG32_SDMA(i, regSDMA_CNTL, sdma_cntl); 511 512 if (sdma[i]->use_doorbell) { 513 doorbell = RREG32_SDMA(i, regSDMA_GFX_DOORBELL); 514 doorbell_offset = RREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET); 515 516 doorbell = REG_SET_FIELD(doorbell, SDMA_GFX_DOORBELL, ENABLE, 0); 517 doorbell_offset = REG_SET_FIELD(doorbell_offset, 518 SDMA_GFX_DOORBELL_OFFSET, 519 OFFSET, 0); 520 WREG32_SDMA(i, regSDMA_GFX_DOORBELL, doorbell); 521 WREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET, doorbell_offset); 522 } 523 } 524 } 525 526 /** 527 * sdma_v4_4_2_inst_rlc_stop - stop the compute async dma engines 528 * 529 * @adev: amdgpu_device pointer 530 * @inst_mask: mask of dma engine instances to be disabled 531 * 532 * Stop the compute async dma queues. 533 */ 534 static void sdma_v4_4_2_inst_rlc_stop(struct amdgpu_device *adev, 535 uint32_t inst_mask) 536 { 537 /* XXX todo */ 538 } 539 540 /** 541 * sdma_v4_4_2_inst_page_stop - stop the page async dma engines 542 * 543 * @adev: amdgpu_device pointer 544 * @inst_mask: mask of dma engine instances to be disabled 545 * 546 * Stop the page async dma ring buffers. 547 */ 548 static void sdma_v4_4_2_inst_page_stop(struct amdgpu_device *adev, 549 uint32_t inst_mask) 550 { 551 u32 rb_cntl, ib_cntl; 552 int i; 553 554 for_each_inst(i, inst_mask) { 555 rb_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_CNTL); 556 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL, 557 RB_ENABLE, 0); 558 WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl); 559 ib_cntl = RREG32_SDMA(i, regSDMA_PAGE_IB_CNTL); 560 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL, 561 IB_ENABLE, 0); 562 WREG32_SDMA(i, regSDMA_PAGE_IB_CNTL, ib_cntl); 563 } 564 } 565 566 /** 567 * sdma_v4_4_2_inst_ctx_switch_enable - stop the async dma engines context switch 568 * 569 * @adev: amdgpu_device pointer 570 * @enable: enable/disable the DMA MEs context switch. 571 * @inst_mask: mask of dma engine instances to be enabled 572 * 573 * Halt or unhalt the async dma engines context switch. 574 */ 575 static void sdma_v4_4_2_inst_ctx_switch_enable(struct amdgpu_device *adev, 576 bool enable, uint32_t inst_mask) 577 { 578 u32 f32_cntl, phase_quantum = 0; 579 int i; 580 581 if (amdgpu_sdma_phase_quantum) { 582 unsigned value = amdgpu_sdma_phase_quantum; 583 unsigned unit = 0; 584 585 while (value > (SDMA_PHASE0_QUANTUM__VALUE_MASK >> 586 SDMA_PHASE0_QUANTUM__VALUE__SHIFT)) { 587 value = (value + 1) >> 1; 588 unit++; 589 } 590 if (unit > (SDMA_PHASE0_QUANTUM__UNIT_MASK >> 591 SDMA_PHASE0_QUANTUM__UNIT__SHIFT)) { 592 value = (SDMA_PHASE0_QUANTUM__VALUE_MASK >> 593 SDMA_PHASE0_QUANTUM__VALUE__SHIFT); 594 unit = (SDMA_PHASE0_QUANTUM__UNIT_MASK >> 595 SDMA_PHASE0_QUANTUM__UNIT__SHIFT); 596 WARN_ONCE(1, 597 "clamping sdma_phase_quantum to %uK clock cycles\n", 598 value << unit); 599 } 600 phase_quantum = 601 value << SDMA_PHASE0_QUANTUM__VALUE__SHIFT | 602 unit << SDMA_PHASE0_QUANTUM__UNIT__SHIFT; 603 } 604 605 for_each_inst(i, inst_mask) { 606 f32_cntl = RREG32_SDMA(i, regSDMA_CNTL); 607 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA_CNTL, 608 AUTO_CTXSW_ENABLE, enable ? 1 : 0); 609 if (enable && amdgpu_sdma_phase_quantum) { 610 WREG32_SDMA(i, regSDMA_PHASE0_QUANTUM, phase_quantum); 611 WREG32_SDMA(i, regSDMA_PHASE1_QUANTUM, phase_quantum); 612 WREG32_SDMA(i, regSDMA_PHASE2_QUANTUM, phase_quantum); 613 } 614 WREG32_SDMA(i, regSDMA_CNTL, f32_cntl); 615 616 /* Extend page fault timeout to avoid interrupt storm */ 617 WREG32_SDMA(i, regSDMA_UTCL1_TIMEOUT, 0x00800080); 618 } 619 } 620 621 /** 622 * sdma_v4_4_2_inst_enable - stop the async dma engines 623 * 624 * @adev: amdgpu_device pointer 625 * @enable: enable/disable the DMA MEs. 626 * @inst_mask: mask of dma engine instances to be enabled 627 * 628 * Halt or unhalt the async dma engines. 629 */ 630 static void sdma_v4_4_2_inst_enable(struct amdgpu_device *adev, bool enable, 631 uint32_t inst_mask) 632 { 633 u32 f32_cntl; 634 int i; 635 636 if (!enable) { 637 sdma_v4_4_2_inst_gfx_stop(adev, inst_mask); 638 sdma_v4_4_2_inst_rlc_stop(adev, inst_mask); 639 if (adev->sdma.has_page_queue) 640 sdma_v4_4_2_inst_page_stop(adev, inst_mask); 641 642 /* SDMA FW needs to respond to FREEZE requests during reset. 643 * Keep it running during reset */ 644 if (!amdgpu_sriov_vf(adev) && amdgpu_in_reset(adev)) 645 return; 646 } 647 648 if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) 649 return; 650 651 for_each_inst(i, inst_mask) { 652 f32_cntl = RREG32_SDMA(i, regSDMA_F32_CNTL); 653 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA_F32_CNTL, HALT, enable ? 0 : 1); 654 WREG32_SDMA(i, regSDMA_F32_CNTL, f32_cntl); 655 } 656 } 657 658 /* 659 * sdma_v4_4_2_rb_cntl - get parameters for rb_cntl 660 */ 661 static uint32_t sdma_v4_4_2_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl) 662 { 663 /* Set ring buffer size in dwords */ 664 uint32_t rb_bufsz = order_base_2(ring->ring_size / 4); 665 666 barrier(); /* work around https://llvm.org/pr42576 */ 667 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_SIZE, rb_bufsz); 668 #ifdef __BIG_ENDIAN 669 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_SWAP_ENABLE, 1); 670 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, 671 RPTR_WRITEBACK_SWAP_ENABLE, 1); 672 #endif 673 return rb_cntl; 674 } 675 676 /** 677 * sdma_v4_4_2_gfx_resume - setup and start the async dma engines 678 * 679 * @adev: amdgpu_device pointer 680 * @i: instance to resume 681 * @restore: used to restore wptr when restart 682 * 683 * Set up the gfx DMA ring buffers and enable them. 684 * Returns 0 for success, error for failure. 685 */ 686 static void sdma_v4_4_2_gfx_resume(struct amdgpu_device *adev, unsigned int i, bool restore) 687 { 688 struct amdgpu_ring *ring = &adev->sdma.instance[i].ring; 689 u32 rb_cntl, ib_cntl, wptr_poll_cntl; 690 u32 wb_offset; 691 u32 doorbell; 692 u32 doorbell_offset; 693 u64 wptr_gpu_addr; 694 u64 rwptr; 695 696 wb_offset = (ring->rptr_offs * 4); 697 698 rb_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_CNTL); 699 rb_cntl = sdma_v4_4_2_rb_cntl(ring, rb_cntl); 700 WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl); 701 702 /* set the wb address whether it's enabled or not */ 703 WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_ADDR_HI, 704 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF); 705 WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_ADDR_LO, 706 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC); 707 708 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, 709 RPTR_WRITEBACK_ENABLE, 1); 710 711 WREG32_SDMA(i, regSDMA_GFX_RB_BASE, ring->gpu_addr >> 8); 712 WREG32_SDMA(i, regSDMA_GFX_RB_BASE_HI, ring->gpu_addr >> 40); 713 714 if (!restore) 715 ring->wptr = 0; 716 717 /* before programing wptr to a less value, need set minor_ptr_update first */ 718 WREG32_SDMA(i, regSDMA_GFX_MINOR_PTR_UPDATE, 1); 719 720 /* For the guilty queue, set RPTR to the current wptr to skip bad commands, 721 * It is not a guilty queue, restore cache_rptr and continue execution. 722 */ 723 if (adev->sdma.instance[i].gfx_guilty) 724 rwptr = ring->wptr; 725 else 726 rwptr = ring->cached_rptr; 727 728 /* Initialize the ring buffer's read and write pointers */ 729 if (restore) { 730 WREG32_SDMA(i, regSDMA_GFX_RB_RPTR, lower_32_bits(rwptr << 2)); 731 WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_HI, upper_32_bits(rwptr << 2)); 732 WREG32_SDMA(i, regSDMA_GFX_RB_WPTR, lower_32_bits(rwptr << 2)); 733 WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_HI, upper_32_bits(rwptr << 2)); 734 } else { 735 WREG32_SDMA(i, regSDMA_GFX_RB_RPTR, 0); 736 WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_HI, 0); 737 WREG32_SDMA(i, regSDMA_GFX_RB_WPTR, 0); 738 WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_HI, 0); 739 } 740 741 doorbell = RREG32_SDMA(i, regSDMA_GFX_DOORBELL); 742 doorbell_offset = RREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET); 743 744 doorbell = REG_SET_FIELD(doorbell, SDMA_GFX_DOORBELL, ENABLE, 745 ring->use_doorbell); 746 doorbell_offset = REG_SET_FIELD(doorbell_offset, 747 SDMA_GFX_DOORBELL_OFFSET, 748 OFFSET, ring->doorbell_index); 749 WREG32_SDMA(i, regSDMA_GFX_DOORBELL, doorbell); 750 WREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET, doorbell_offset); 751 752 sdma_v4_4_2_ring_set_wptr(ring); 753 754 /* set minor_ptr_update to 0 after wptr programed */ 755 WREG32_SDMA(i, regSDMA_GFX_MINOR_PTR_UPDATE, 0); 756 757 /* setup the wptr shadow polling */ 758 wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4); 759 WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_ADDR_LO, 760 lower_32_bits(wptr_gpu_addr)); 761 WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_ADDR_HI, 762 upper_32_bits(wptr_gpu_addr)); 763 wptr_poll_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_CNTL); 764 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, 765 SDMA_GFX_RB_WPTR_POLL_CNTL, 766 F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0); 767 WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl); 768 769 /* enable DMA RB */ 770 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_ENABLE, 1); 771 WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl); 772 773 ib_cntl = RREG32_SDMA(i, regSDMA_GFX_IB_CNTL); 774 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_ENABLE, 1); 775 #ifdef __BIG_ENDIAN 776 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_SWAP_ENABLE, 1); 777 #endif 778 /* enable DMA IBs */ 779 WREG32_SDMA(i, regSDMA_GFX_IB_CNTL, ib_cntl); 780 } 781 782 /** 783 * sdma_v4_4_2_page_resume - setup and start the async dma engines 784 * 785 * @adev: amdgpu_device pointer 786 * @i: instance to resume 787 * @restore: boolean to say restore needed or not 788 * 789 * Set up the page DMA ring buffers and enable them. 790 * Returns 0 for success, error for failure. 791 */ 792 static void sdma_v4_4_2_page_resume(struct amdgpu_device *adev, unsigned int i, bool restore) 793 { 794 struct amdgpu_ring *ring = &adev->sdma.instance[i].page; 795 u32 rb_cntl, ib_cntl, wptr_poll_cntl; 796 u32 wb_offset; 797 u32 doorbell; 798 u32 doorbell_offset; 799 u64 wptr_gpu_addr; 800 u64 rwptr; 801 802 wb_offset = (ring->rptr_offs * 4); 803 804 rb_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_CNTL); 805 rb_cntl = sdma_v4_4_2_rb_cntl(ring, rb_cntl); 806 WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl); 807 808 /* For the guilty queue, set RPTR to the current wptr to skip bad commands, 809 * It is not a guilty queue, restore cache_rptr and continue execution. 810 */ 811 if (adev->sdma.instance[i].page_guilty) 812 rwptr = ring->wptr; 813 else 814 rwptr = ring->cached_rptr; 815 816 /* Initialize the ring buffer's read and write pointers */ 817 if (restore) { 818 WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR, lower_32_bits(rwptr << 2)); 819 WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_HI, upper_32_bits(rwptr << 2)); 820 WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR, lower_32_bits(rwptr << 2)); 821 WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_HI, upper_32_bits(rwptr << 2)); 822 } else { 823 WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR, 0); 824 WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_HI, 0); 825 WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR, 0); 826 WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_HI, 0); 827 } 828 829 /* set the wb address whether it's enabled or not */ 830 WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_ADDR_HI, 831 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF); 832 WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_ADDR_LO, 833 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC); 834 835 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL, 836 RPTR_WRITEBACK_ENABLE, 1); 837 838 WREG32_SDMA(i, regSDMA_PAGE_RB_BASE, ring->gpu_addr >> 8); 839 WREG32_SDMA(i, regSDMA_PAGE_RB_BASE_HI, ring->gpu_addr >> 40); 840 841 if (!restore) 842 ring->wptr = 0; 843 844 /* before programing wptr to a less value, need set minor_ptr_update first */ 845 WREG32_SDMA(i, regSDMA_PAGE_MINOR_PTR_UPDATE, 1); 846 847 doorbell = RREG32_SDMA(i, regSDMA_PAGE_DOORBELL); 848 doorbell_offset = RREG32_SDMA(i, regSDMA_PAGE_DOORBELL_OFFSET); 849 850 doorbell = REG_SET_FIELD(doorbell, SDMA_PAGE_DOORBELL, ENABLE, 851 ring->use_doorbell); 852 doorbell_offset = REG_SET_FIELD(doorbell_offset, 853 SDMA_PAGE_DOORBELL_OFFSET, 854 OFFSET, ring->doorbell_index); 855 WREG32_SDMA(i, regSDMA_PAGE_DOORBELL, doorbell); 856 WREG32_SDMA(i, regSDMA_PAGE_DOORBELL_OFFSET, doorbell_offset); 857 858 /* paging queue doorbell range is setup at sdma_v4_4_2_gfx_resume */ 859 sdma_v4_4_2_page_ring_set_wptr(ring); 860 861 /* set minor_ptr_update to 0 after wptr programed */ 862 WREG32_SDMA(i, regSDMA_PAGE_MINOR_PTR_UPDATE, 0); 863 864 /* setup the wptr shadow polling */ 865 wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4); 866 WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_ADDR_LO, 867 lower_32_bits(wptr_gpu_addr)); 868 WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_ADDR_HI, 869 upper_32_bits(wptr_gpu_addr)); 870 wptr_poll_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_CNTL); 871 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, 872 SDMA_PAGE_RB_WPTR_POLL_CNTL, 873 F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0); 874 WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl); 875 876 /* enable DMA RB */ 877 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL, RB_ENABLE, 1); 878 WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl); 879 880 ib_cntl = RREG32_SDMA(i, regSDMA_PAGE_IB_CNTL); 881 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL, IB_ENABLE, 1); 882 #ifdef __BIG_ENDIAN 883 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1); 884 #endif 885 /* enable DMA IBs */ 886 WREG32_SDMA(i, regSDMA_PAGE_IB_CNTL, ib_cntl); 887 } 888 889 static void sdma_v4_4_2_init_pg(struct amdgpu_device *adev) 890 { 891 892 } 893 894 /** 895 * sdma_v4_4_2_inst_rlc_resume - setup and start the async dma engines 896 * 897 * @adev: amdgpu_device pointer 898 * @inst_mask: mask of dma engine instances to be enabled 899 * 900 * Set up the compute DMA queues and enable them. 901 * Returns 0 for success, error for failure. 902 */ 903 static int sdma_v4_4_2_inst_rlc_resume(struct amdgpu_device *adev, 904 uint32_t inst_mask) 905 { 906 sdma_v4_4_2_init_pg(adev); 907 908 return 0; 909 } 910 911 /** 912 * sdma_v4_4_2_inst_load_microcode - load the sDMA ME ucode 913 * 914 * @adev: amdgpu_device pointer 915 * @inst_mask: mask of dma engine instances to be enabled 916 * 917 * Loads the sDMA0/1 ucode. 918 * Returns 0 for success, -EINVAL if the ucode is not available. 919 */ 920 static int sdma_v4_4_2_inst_load_microcode(struct amdgpu_device *adev, 921 uint32_t inst_mask) 922 { 923 const struct sdma_firmware_header_v1_0 *hdr; 924 const __le32 *fw_data; 925 u32 fw_size; 926 int i, j; 927 928 /* halt the MEs */ 929 sdma_v4_4_2_inst_enable(adev, false, inst_mask); 930 931 for_each_inst(i, inst_mask) { 932 if (!adev->sdma.instance[i].fw) 933 return -EINVAL; 934 935 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data; 936 amdgpu_ucode_print_sdma_hdr(&hdr->header); 937 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4; 938 939 fw_data = (const __le32 *) 940 (adev->sdma.instance[i].fw->data + 941 le32_to_cpu(hdr->header.ucode_array_offset_bytes)); 942 943 WREG32_SDMA(i, regSDMA_UCODE_ADDR, 0); 944 945 for (j = 0; j < fw_size; j++) 946 WREG32_SDMA(i, regSDMA_UCODE_DATA, 947 le32_to_cpup(fw_data++)); 948 949 WREG32_SDMA(i, regSDMA_UCODE_ADDR, 950 adev->sdma.instance[i].fw_version); 951 } 952 953 return 0; 954 } 955 956 /** 957 * sdma_v4_4_2_inst_start - setup and start the async dma engines 958 * 959 * @adev: amdgpu_device pointer 960 * @inst_mask: mask of dma engine instances to be enabled 961 * @restore: boolean to say restore needed or not 962 * 963 * Set up the DMA engines and enable them. 964 * Returns 0 for success, error for failure. 965 */ 966 static int sdma_v4_4_2_inst_start(struct amdgpu_device *adev, 967 uint32_t inst_mask, bool restore) 968 { 969 struct amdgpu_ring *ring; 970 uint32_t tmp_mask; 971 int i, r = 0; 972 973 if (amdgpu_sriov_vf(adev)) { 974 sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask); 975 sdma_v4_4_2_inst_enable(adev, false, inst_mask); 976 } else { 977 /* bypass sdma microcode loading on Gopher */ 978 if (!restore && adev->firmware.load_type != AMDGPU_FW_LOAD_PSP && 979 adev->sdma.instance[0].fw) { 980 r = sdma_v4_4_2_inst_load_microcode(adev, inst_mask); 981 if (r) 982 return r; 983 } 984 985 /* unhalt the MEs */ 986 sdma_v4_4_2_inst_enable(adev, true, inst_mask); 987 /* enable sdma ring preemption */ 988 sdma_v4_4_2_inst_ctx_switch_enable(adev, true, inst_mask); 989 } 990 991 /* start the gfx rings and rlc compute queues */ 992 tmp_mask = inst_mask; 993 for_each_inst(i, tmp_mask) { 994 uint32_t temp; 995 996 WREG32_SDMA(i, regSDMA_SEM_WAIT_FAIL_TIMER_CNTL, 0); 997 sdma_v4_4_2_gfx_resume(adev, i, restore); 998 if (adev->sdma.has_page_queue) 999 sdma_v4_4_2_page_resume(adev, i, restore); 1000 1001 /* set utc l1 enable flag always to 1 */ 1002 temp = RREG32_SDMA(i, regSDMA_CNTL); 1003 temp = REG_SET_FIELD(temp, SDMA_CNTL, UTC_L1_ENABLE, 1); 1004 WREG32_SDMA(i, regSDMA_CNTL, temp); 1005 1006 if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) < IP_VERSION(4, 4, 5)) { 1007 /* enable context empty interrupt during initialization */ 1008 temp = REG_SET_FIELD(temp, SDMA_CNTL, CTXEMPTY_INT_ENABLE, 1); 1009 WREG32_SDMA(i, regSDMA_CNTL, temp); 1010 } 1011 if (!amdgpu_sriov_vf(adev)) { 1012 if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) { 1013 /* unhalt engine */ 1014 temp = RREG32_SDMA(i, regSDMA_F32_CNTL); 1015 temp = REG_SET_FIELD(temp, SDMA_F32_CNTL, HALT, 0); 1016 WREG32_SDMA(i, regSDMA_F32_CNTL, temp); 1017 } 1018 } 1019 } 1020 1021 if (amdgpu_sriov_vf(adev)) { 1022 sdma_v4_4_2_inst_ctx_switch_enable(adev, true, inst_mask); 1023 sdma_v4_4_2_inst_enable(adev, true, inst_mask); 1024 } else { 1025 r = sdma_v4_4_2_inst_rlc_resume(adev, inst_mask); 1026 if (r) 1027 return r; 1028 } 1029 1030 tmp_mask = inst_mask; 1031 for_each_inst(i, tmp_mask) { 1032 ring = &adev->sdma.instance[i].ring; 1033 1034 r = amdgpu_ring_test_helper(ring); 1035 if (r) 1036 return r; 1037 1038 if (adev->sdma.has_page_queue) { 1039 struct amdgpu_ring *page = &adev->sdma.instance[i].page; 1040 1041 r = amdgpu_ring_test_helper(page); 1042 if (r) 1043 return r; 1044 } 1045 } 1046 1047 return r; 1048 } 1049 1050 /** 1051 * sdma_v4_4_2_ring_test_ring - simple async dma engine test 1052 * 1053 * @ring: amdgpu_ring structure holding ring information 1054 * 1055 * Test the DMA engine by writing using it to write an 1056 * value to memory. 1057 * Returns 0 for success, error for failure. 1058 */ 1059 static int sdma_v4_4_2_ring_test_ring(struct amdgpu_ring *ring) 1060 { 1061 struct amdgpu_device *adev = ring->adev; 1062 unsigned i; 1063 unsigned index; 1064 int r; 1065 u32 tmp; 1066 u64 gpu_addr; 1067 1068 r = amdgpu_device_wb_get(adev, &index); 1069 if (r) 1070 return r; 1071 1072 gpu_addr = adev->wb.gpu_addr + (index * 4); 1073 tmp = 0xCAFEDEAD; 1074 adev->wb.wb[index] = cpu_to_le32(tmp); 1075 1076 r = amdgpu_ring_alloc(ring, 5); 1077 if (r) 1078 goto error_free_wb; 1079 1080 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 1081 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR)); 1082 amdgpu_ring_write(ring, lower_32_bits(gpu_addr)); 1083 amdgpu_ring_write(ring, upper_32_bits(gpu_addr)); 1084 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0)); 1085 amdgpu_ring_write(ring, 0xDEADBEEF); 1086 amdgpu_ring_commit(ring); 1087 1088 for (i = 0; i < adev->usec_timeout; i++) { 1089 tmp = le32_to_cpu(adev->wb.wb[index]); 1090 if (tmp == 0xDEADBEEF) 1091 break; 1092 udelay(1); 1093 } 1094 1095 if (i >= adev->usec_timeout) 1096 r = -ETIMEDOUT; 1097 1098 error_free_wb: 1099 amdgpu_device_wb_free(adev, index); 1100 return r; 1101 } 1102 1103 /** 1104 * sdma_v4_4_2_ring_test_ib - test an IB on the DMA engine 1105 * 1106 * @ring: amdgpu_ring structure holding ring information 1107 * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT 1108 * 1109 * Test a simple IB in the DMA ring. 1110 * Returns 0 on success, error on failure. 1111 */ 1112 static int sdma_v4_4_2_ring_test_ib(struct amdgpu_ring *ring, long timeout) 1113 { 1114 struct amdgpu_device *adev = ring->adev; 1115 struct amdgpu_ib ib; 1116 struct dma_fence *f = NULL; 1117 unsigned index; 1118 long r; 1119 u32 tmp = 0; 1120 u64 gpu_addr; 1121 1122 r = amdgpu_device_wb_get(adev, &index); 1123 if (r) 1124 return r; 1125 1126 gpu_addr = adev->wb.gpu_addr + (index * 4); 1127 tmp = 0xCAFEDEAD; 1128 adev->wb.wb[index] = cpu_to_le32(tmp); 1129 memset(&ib, 0, sizeof(ib)); 1130 r = amdgpu_ib_get(adev, NULL, 256, 1131 AMDGPU_IB_POOL_DIRECT, &ib); 1132 if (r) 1133 goto err0; 1134 1135 ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 1136 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); 1137 ib.ptr[1] = lower_32_bits(gpu_addr); 1138 ib.ptr[2] = upper_32_bits(gpu_addr); 1139 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0); 1140 ib.ptr[4] = 0xDEADBEEF; 1141 ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 1142 ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 1143 ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 1144 ib.length_dw = 8; 1145 1146 r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f); 1147 if (r) 1148 goto err1; 1149 1150 r = dma_fence_wait_timeout(f, false, timeout); 1151 if (r == 0) { 1152 r = -ETIMEDOUT; 1153 goto err1; 1154 } else if (r < 0) { 1155 goto err1; 1156 } 1157 tmp = le32_to_cpu(adev->wb.wb[index]); 1158 if (tmp == 0xDEADBEEF) 1159 r = 0; 1160 else 1161 r = -EINVAL; 1162 1163 err1: 1164 amdgpu_ib_free(&ib, NULL); 1165 dma_fence_put(f); 1166 err0: 1167 amdgpu_device_wb_free(adev, index); 1168 return r; 1169 } 1170 1171 1172 /** 1173 * sdma_v4_4_2_vm_copy_pte - update PTEs by copying them from the GART 1174 * 1175 * @ib: indirect buffer to fill with commands 1176 * @pe: addr of the page entry 1177 * @src: src addr to copy from 1178 * @count: number of page entries to update 1179 * 1180 * Update PTEs by copying them from the GART using sDMA. 1181 */ 1182 static void sdma_v4_4_2_vm_copy_pte(struct amdgpu_ib *ib, 1183 uint64_t pe, uint64_t src, 1184 unsigned count) 1185 { 1186 unsigned bytes = count * 8; 1187 1188 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | 1189 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); 1190 ib->ptr[ib->length_dw++] = bytes - 1; 1191 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 1192 ib->ptr[ib->length_dw++] = lower_32_bits(src); 1193 ib->ptr[ib->length_dw++] = upper_32_bits(src); 1194 ib->ptr[ib->length_dw++] = lower_32_bits(pe); 1195 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1196 1197 } 1198 1199 /** 1200 * sdma_v4_4_2_vm_write_pte - update PTEs by writing them manually 1201 * 1202 * @ib: indirect buffer to fill with commands 1203 * @pe: addr of the page entry 1204 * @value: dst addr to write into pe 1205 * @count: number of page entries to update 1206 * @incr: increase next addr by incr bytes 1207 * 1208 * Update PTEs by writing them manually using sDMA. 1209 */ 1210 static void sdma_v4_4_2_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe, 1211 uint64_t value, unsigned count, 1212 uint32_t incr) 1213 { 1214 unsigned ndw = count * 2; 1215 1216 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 1217 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); 1218 ib->ptr[ib->length_dw++] = lower_32_bits(pe); 1219 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1220 ib->ptr[ib->length_dw++] = ndw - 1; 1221 for (; ndw > 0; ndw -= 2) { 1222 ib->ptr[ib->length_dw++] = lower_32_bits(value); 1223 ib->ptr[ib->length_dw++] = upper_32_bits(value); 1224 value += incr; 1225 } 1226 } 1227 1228 /** 1229 * sdma_v4_4_2_vm_set_pte_pde - update the page tables using sDMA 1230 * 1231 * @ib: indirect buffer to fill with commands 1232 * @pe: addr of the page entry 1233 * @addr: dst addr to write into pe 1234 * @count: number of page entries to update 1235 * @incr: increase next addr by incr bytes 1236 * @flags: access flags 1237 * 1238 * Update the page tables using sDMA. 1239 */ 1240 static void sdma_v4_4_2_vm_set_pte_pde(struct amdgpu_ib *ib, 1241 uint64_t pe, 1242 uint64_t addr, unsigned count, 1243 uint32_t incr, uint64_t flags) 1244 { 1245 /* for physically contiguous pages (vram) */ 1246 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE); 1247 ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */ 1248 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1249 ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */ 1250 ib->ptr[ib->length_dw++] = upper_32_bits(flags); 1251 ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */ 1252 ib->ptr[ib->length_dw++] = upper_32_bits(addr); 1253 ib->ptr[ib->length_dw++] = incr; /* increment size */ 1254 ib->ptr[ib->length_dw++] = 0; 1255 ib->ptr[ib->length_dw++] = count - 1; /* number of entries */ 1256 } 1257 1258 /** 1259 * sdma_v4_4_2_ring_pad_ib - pad the IB to the required number of dw 1260 * 1261 * @ring: amdgpu_ring structure holding ring information 1262 * @ib: indirect buffer to fill with padding 1263 */ 1264 static void sdma_v4_4_2_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib) 1265 { 1266 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); 1267 u32 pad_count; 1268 int i; 1269 1270 pad_count = (-ib->length_dw) & 7; 1271 for (i = 0; i < pad_count; i++) 1272 if (sdma && sdma->burst_nop && (i == 0)) 1273 ib->ptr[ib->length_dw++] = 1274 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) | 1275 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1); 1276 else 1277 ib->ptr[ib->length_dw++] = 1278 SDMA_PKT_HEADER_OP(SDMA_OP_NOP); 1279 } 1280 1281 1282 /** 1283 * sdma_v4_4_2_ring_emit_pipeline_sync - sync the pipeline 1284 * 1285 * @ring: amdgpu_ring pointer 1286 * 1287 * Make sure all previous operations are completed (CIK). 1288 */ 1289 static void sdma_v4_4_2_ring_emit_pipeline_sync(struct amdgpu_ring *ring) 1290 { 1291 uint32_t seq = ring->fence_drv.sync_seq; 1292 uint64_t addr = ring->fence_drv.gpu_addr; 1293 1294 /* wait for idle */ 1295 sdma_v4_4_2_wait_reg_mem(ring, 1, 0, 1296 addr & 0xfffffffc, 1297 upper_32_bits(addr) & 0xffffffff, 1298 seq, 0xffffffff, 4); 1299 } 1300 1301 1302 /** 1303 * sdma_v4_4_2_ring_emit_vm_flush - vm flush using sDMA 1304 * 1305 * @ring: amdgpu_ring pointer 1306 * @vmid: vmid number to use 1307 * @pd_addr: address 1308 * 1309 * Update the page table base and flush the VM TLB 1310 * using sDMA. 1311 */ 1312 static void sdma_v4_4_2_ring_emit_vm_flush(struct amdgpu_ring *ring, 1313 unsigned vmid, uint64_t pd_addr) 1314 { 1315 amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr); 1316 } 1317 1318 static void sdma_v4_4_2_ring_emit_wreg(struct amdgpu_ring *ring, 1319 uint32_t reg, uint32_t val) 1320 { 1321 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) | 1322 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf)); 1323 amdgpu_ring_write(ring, reg); 1324 amdgpu_ring_write(ring, val); 1325 } 1326 1327 static void sdma_v4_4_2_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg, 1328 uint32_t val, uint32_t mask) 1329 { 1330 sdma_v4_4_2_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10); 1331 } 1332 1333 static bool sdma_v4_4_2_fw_support_paging_queue(struct amdgpu_device *adev) 1334 { 1335 switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) { 1336 case IP_VERSION(4, 4, 2): 1337 case IP_VERSION(4, 4, 5): 1338 return false; 1339 default: 1340 return false; 1341 } 1342 } 1343 1344 static const struct amdgpu_sdma_funcs sdma_v4_4_2_sdma_funcs = { 1345 .stop_kernel_queue = &sdma_v4_4_2_stop_queue, 1346 .start_kernel_queue = &sdma_v4_4_2_restore_queue, 1347 .soft_reset_kernel_queue = &sdma_v4_4_2_soft_reset_engine, 1348 }; 1349 1350 static int sdma_v4_4_2_early_init(struct amdgpu_ip_block *ip_block) 1351 { 1352 struct amdgpu_device *adev = ip_block->adev; 1353 int r; 1354 1355 r = sdma_v4_4_2_init_microcode(adev); 1356 if (r) 1357 return r; 1358 1359 /* TODO: Page queue breaks driver reload under SRIOV */ 1360 if (sdma_v4_4_2_fw_support_paging_queue(adev)) 1361 adev->sdma.has_page_queue = true; 1362 1363 sdma_v4_4_2_set_ring_funcs(adev); 1364 sdma_v4_4_2_set_buffer_funcs(adev); 1365 sdma_v4_4_2_set_vm_pte_funcs(adev); 1366 sdma_v4_4_2_set_irq_funcs(adev); 1367 sdma_v4_4_2_set_ras_funcs(adev); 1368 return 0; 1369 } 1370 1371 #if 0 1372 static int sdma_v4_4_2_process_ras_data_cb(struct amdgpu_device *adev, 1373 void *err_data, 1374 struct amdgpu_iv_entry *entry); 1375 #endif 1376 1377 static int sdma_v4_4_2_late_init(struct amdgpu_ip_block *ip_block) 1378 { 1379 struct amdgpu_device *adev = ip_block->adev; 1380 #if 0 1381 struct ras_ih_if ih_info = { 1382 .cb = sdma_v4_4_2_process_ras_data_cb, 1383 }; 1384 #endif 1385 if (!amdgpu_persistent_edc_harvesting_supported(adev)) 1386 amdgpu_ras_reset_error_count(adev, AMDGPU_RAS_BLOCK__SDMA); 1387 1388 /* The initialization is done in the late_init stage to ensure that the SMU 1389 * initialization and capability setup are completed before we check the SDMA 1390 * reset capability 1391 */ 1392 sdma_v4_4_2_update_reset_mask(adev); 1393 1394 return 0; 1395 } 1396 1397 static int sdma_v4_4_2_sw_init(struct amdgpu_ip_block *ip_block) 1398 { 1399 struct amdgpu_ring *ring; 1400 int r, i; 1401 struct amdgpu_device *adev = ip_block->adev; 1402 u32 aid_id; 1403 uint32_t reg_count = ARRAY_SIZE(sdma_reg_list_4_4_2); 1404 uint32_t *ptr; 1405 1406 /* SDMA trap event */ 1407 for (i = 0; i < adev->sdma.num_inst_per_aid; i++) { 1408 r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i), 1409 SDMA0_4_0__SRCID__SDMA_TRAP, 1410 &adev->sdma.trap_irq); 1411 if (r) 1412 return r; 1413 } 1414 1415 /* SDMA SRAM ECC event */ 1416 for (i = 0; i < adev->sdma.num_inst_per_aid; i++) { 1417 r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i), 1418 SDMA0_4_0__SRCID__SDMA_SRAM_ECC, 1419 &adev->sdma.ecc_irq); 1420 if (r) 1421 return r; 1422 } 1423 1424 /* SDMA VM_HOLE/DOORBELL_INV/POLL_TIMEOUT/SRBM_WRITE_PROTECTION event*/ 1425 for (i = 0; i < adev->sdma.num_inst_per_aid; i++) { 1426 r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i), 1427 SDMA0_4_0__SRCID__SDMA_VM_HOLE, 1428 &adev->sdma.vm_hole_irq); 1429 if (r) 1430 return r; 1431 1432 r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i), 1433 SDMA0_4_0__SRCID__SDMA_DOORBELL_INVALID, 1434 &adev->sdma.doorbell_invalid_irq); 1435 if (r) 1436 return r; 1437 1438 r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i), 1439 SDMA0_4_0__SRCID__SDMA_POLL_TIMEOUT, 1440 &adev->sdma.pool_timeout_irq); 1441 if (r) 1442 return r; 1443 1444 r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i), 1445 SDMA0_4_0__SRCID__SDMA_SRBMWRITE, 1446 &adev->sdma.srbm_write_irq); 1447 if (r) 1448 return r; 1449 1450 r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i), 1451 SDMA0_4_0__SRCID__SDMA_CTXEMPTY, 1452 &adev->sdma.ctxt_empty_irq); 1453 if (r) 1454 return r; 1455 } 1456 1457 for (i = 0; i < adev->sdma.num_instances; i++) { 1458 mutex_init(&adev->sdma.instance[i].engine_reset_mutex); 1459 /* Initialize guilty flags for GFX and PAGE queues */ 1460 adev->sdma.instance[i].gfx_guilty = false; 1461 adev->sdma.instance[i].page_guilty = false; 1462 adev->sdma.instance[i].funcs = &sdma_v4_4_2_sdma_funcs; 1463 1464 ring = &adev->sdma.instance[i].ring; 1465 ring->ring_obj = NULL; 1466 ring->use_doorbell = true; 1467 aid_id = adev->sdma.instance[i].aid_id; 1468 1469 DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i, 1470 ring->use_doorbell?"true":"false"); 1471 1472 /* doorbell size is 2 dwords, get DWORD offset */ 1473 ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1; 1474 ring->vm_hub = AMDGPU_MMHUB0(aid_id); 1475 1476 sprintf(ring->name, "sdma%d.%d", aid_id, 1477 i % adev->sdma.num_inst_per_aid); 1478 r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq, 1479 AMDGPU_SDMA_IRQ_INSTANCE0 + i, 1480 AMDGPU_RING_PRIO_DEFAULT, NULL); 1481 if (r) 1482 return r; 1483 1484 if (adev->sdma.has_page_queue) { 1485 ring = &adev->sdma.instance[i].page; 1486 ring->ring_obj = NULL; 1487 ring->use_doorbell = true; 1488 1489 /* doorbell index of page queue is assigned right after 1490 * gfx queue on the same instance 1491 */ 1492 ring->doorbell_index = 1493 (adev->doorbell_index.sdma_engine[i] + 1) << 1; 1494 ring->vm_hub = AMDGPU_MMHUB0(aid_id); 1495 1496 sprintf(ring->name, "page%d.%d", aid_id, 1497 i % adev->sdma.num_inst_per_aid); 1498 r = amdgpu_ring_init(adev, ring, 1024, 1499 &adev->sdma.trap_irq, 1500 AMDGPU_SDMA_IRQ_INSTANCE0 + i, 1501 AMDGPU_RING_PRIO_DEFAULT, NULL); 1502 if (r) 1503 return r; 1504 } 1505 } 1506 1507 adev->sdma.supported_reset = 1508 amdgpu_get_soft_full_reset_mask(&adev->sdma.instance[0].ring); 1509 1510 if (amdgpu_sdma_ras_sw_init(adev)) { 1511 dev_err(adev->dev, "fail to initialize sdma ras block\n"); 1512 return -EINVAL; 1513 } 1514 1515 /* Allocate memory for SDMA IP Dump buffer */ 1516 ptr = kcalloc(adev->sdma.num_instances * reg_count, sizeof(uint32_t), GFP_KERNEL); 1517 if (ptr) 1518 adev->sdma.ip_dump = ptr; 1519 else 1520 DRM_ERROR("Failed to allocated memory for SDMA IP Dump\n"); 1521 1522 r = amdgpu_sdma_sysfs_reset_mask_init(adev); 1523 if (r) 1524 return r; 1525 1526 return r; 1527 } 1528 1529 static int sdma_v4_4_2_sw_fini(struct amdgpu_ip_block *ip_block) 1530 { 1531 struct amdgpu_device *adev = ip_block->adev; 1532 int i; 1533 1534 for (i = 0; i < adev->sdma.num_instances; i++) { 1535 amdgpu_ring_fini(&adev->sdma.instance[i].ring); 1536 if (adev->sdma.has_page_queue) 1537 amdgpu_ring_fini(&adev->sdma.instance[i].page); 1538 } 1539 1540 amdgpu_sdma_sysfs_reset_mask_fini(adev); 1541 if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 2) || 1542 amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 4) || 1543 amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 5)) 1544 amdgpu_sdma_destroy_inst_ctx(adev, true); 1545 else 1546 amdgpu_sdma_destroy_inst_ctx(adev, false); 1547 1548 kfree(adev->sdma.ip_dump); 1549 1550 return 0; 1551 } 1552 1553 static int sdma_v4_4_2_hw_init(struct amdgpu_ip_block *ip_block) 1554 { 1555 int r; 1556 struct amdgpu_device *adev = ip_block->adev; 1557 uint32_t inst_mask; 1558 1559 inst_mask = GENMASK(adev->sdma.num_instances - 1, 0); 1560 if (!amdgpu_sriov_vf(adev)) 1561 sdma_v4_4_2_inst_init_golden_registers(adev, inst_mask); 1562 1563 r = sdma_v4_4_2_inst_start(adev, inst_mask, false); 1564 1565 return r; 1566 } 1567 1568 static int sdma_v4_4_2_hw_fini(struct amdgpu_ip_block *ip_block) 1569 { 1570 struct amdgpu_device *adev = ip_block->adev; 1571 uint32_t inst_mask; 1572 int i; 1573 1574 if (amdgpu_sriov_vf(adev)) 1575 return 0; 1576 1577 inst_mask = GENMASK(adev->sdma.num_instances - 1, 0); 1578 if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) { 1579 for (i = 0; i < adev->sdma.num_instances; i++) { 1580 amdgpu_irq_put(adev, &adev->sdma.ecc_irq, 1581 AMDGPU_SDMA_IRQ_INSTANCE0 + i); 1582 } 1583 } 1584 1585 sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask); 1586 sdma_v4_4_2_inst_enable(adev, false, inst_mask); 1587 1588 return 0; 1589 } 1590 1591 static int sdma_v4_4_2_set_clockgating_state(struct amdgpu_ip_block *ip_block, 1592 enum amd_clockgating_state state); 1593 1594 static int sdma_v4_4_2_suspend(struct amdgpu_ip_block *ip_block) 1595 { 1596 struct amdgpu_device *adev = ip_block->adev; 1597 1598 if (amdgpu_in_reset(adev)) 1599 sdma_v4_4_2_set_clockgating_state(ip_block, AMD_CG_STATE_UNGATE); 1600 1601 return sdma_v4_4_2_hw_fini(ip_block); 1602 } 1603 1604 static int sdma_v4_4_2_resume(struct amdgpu_ip_block *ip_block) 1605 { 1606 return sdma_v4_4_2_hw_init(ip_block); 1607 } 1608 1609 static bool sdma_v4_4_2_is_idle(struct amdgpu_ip_block *ip_block) 1610 { 1611 struct amdgpu_device *adev = ip_block->adev; 1612 u32 i; 1613 1614 for (i = 0; i < adev->sdma.num_instances; i++) { 1615 u32 tmp = RREG32_SDMA(i, regSDMA_STATUS_REG); 1616 1617 if (!(tmp & SDMA_STATUS_REG__IDLE_MASK)) 1618 return false; 1619 } 1620 1621 return true; 1622 } 1623 1624 static int sdma_v4_4_2_wait_for_idle(struct amdgpu_ip_block *ip_block) 1625 { 1626 unsigned i, j; 1627 u32 sdma[AMDGPU_MAX_SDMA_INSTANCES]; 1628 struct amdgpu_device *adev = ip_block->adev; 1629 1630 for (i = 0; i < adev->usec_timeout; i++) { 1631 for (j = 0; j < adev->sdma.num_instances; j++) { 1632 sdma[j] = RREG32_SDMA(j, regSDMA_STATUS_REG); 1633 if (!(sdma[j] & SDMA_STATUS_REG__IDLE_MASK)) 1634 break; 1635 } 1636 if (j == adev->sdma.num_instances) 1637 return 0; 1638 udelay(1); 1639 } 1640 return -ETIMEDOUT; 1641 } 1642 1643 static int sdma_v4_4_2_soft_reset(struct amdgpu_ip_block *ip_block) 1644 { 1645 /* todo */ 1646 1647 return 0; 1648 } 1649 1650 static bool sdma_v4_4_2_is_queue_selected(struct amdgpu_device *adev, uint32_t instance_id, bool is_page_queue) 1651 { 1652 uint32_t reg_offset = is_page_queue ? regSDMA_PAGE_CONTEXT_STATUS : regSDMA_GFX_CONTEXT_STATUS; 1653 uint32_t context_status = RREG32(sdma_v4_4_2_get_reg_offset(adev, instance_id, reg_offset)); 1654 1655 /* Check if the SELECTED bit is set */ 1656 return (context_status & SDMA_GFX_CONTEXT_STATUS__SELECTED_MASK) != 0; 1657 } 1658 1659 static int sdma_v4_4_2_reset_queue(struct amdgpu_ring *ring, 1660 unsigned int vmid, 1661 struct amdgpu_fence *timedout_fence) 1662 { 1663 struct amdgpu_device *adev = ring->adev; 1664 u32 id = ring->me; 1665 int r; 1666 1667 amdgpu_amdkfd_suspend(adev, true); 1668 r = amdgpu_sdma_reset_engine(adev, id, false); 1669 amdgpu_amdkfd_resume(adev, true); 1670 return r; 1671 } 1672 1673 static int sdma_v4_4_2_stop_queue(struct amdgpu_ring *ring) 1674 { 1675 struct amdgpu_device *adev = ring->adev; 1676 u32 instance_id = ring->me; 1677 u32 inst_mask; 1678 uint64_t rptr; 1679 1680 if (amdgpu_sriov_vf(adev)) 1681 return -EINVAL; 1682 1683 /* Check if this queue is the guilty one */ 1684 adev->sdma.instance[instance_id].gfx_guilty = 1685 sdma_v4_4_2_is_queue_selected(adev, instance_id, false); 1686 if (adev->sdma.has_page_queue) 1687 adev->sdma.instance[instance_id].page_guilty = 1688 sdma_v4_4_2_is_queue_selected(adev, instance_id, true); 1689 1690 /* Cache the rptr before reset, after the reset, 1691 * all of the registers will be reset to 0 1692 */ 1693 rptr = amdgpu_ring_get_rptr(ring); 1694 ring->cached_rptr = rptr; 1695 /* Cache the rptr for the page queue if it exists */ 1696 if (adev->sdma.has_page_queue) { 1697 struct amdgpu_ring *page_ring = &adev->sdma.instance[instance_id].page; 1698 rptr = amdgpu_ring_get_rptr(page_ring); 1699 page_ring->cached_rptr = rptr; 1700 } 1701 1702 /* stop queue */ 1703 inst_mask = 1 << ring->me; 1704 sdma_v4_4_2_inst_gfx_stop(adev, inst_mask); 1705 if (adev->sdma.has_page_queue) 1706 sdma_v4_4_2_inst_page_stop(adev, inst_mask); 1707 1708 return 0; 1709 } 1710 1711 static int sdma_v4_4_2_restore_queue(struct amdgpu_ring *ring) 1712 { 1713 struct amdgpu_device *adev = ring->adev; 1714 u32 inst_mask; 1715 int i, r; 1716 1717 inst_mask = 1 << ring->me; 1718 udelay(50); 1719 1720 for (i = 0; i < adev->usec_timeout; i++) { 1721 if (!REG_GET_FIELD(RREG32_SDMA(ring->me, regSDMA_F32_CNTL), SDMA_F32_CNTL, HALT)) 1722 break; 1723 udelay(1); 1724 } 1725 1726 if (i == adev->usec_timeout) { 1727 dev_err(adev->dev, "timed out waiting for SDMA%d unhalt after reset\n", 1728 ring->me); 1729 return -ETIMEDOUT; 1730 } 1731 1732 r = sdma_v4_4_2_inst_start(adev, inst_mask, true); 1733 1734 return r; 1735 } 1736 1737 static int sdma_v4_4_2_soft_reset_engine(struct amdgpu_device *adev, 1738 u32 instance_id) 1739 { 1740 /* For SDMA 4.x, use the existing DPM interface for backward compatibility 1741 * we need to convert the logical instance ID to physical instance ID before reset. 1742 */ 1743 return amdgpu_dpm_reset_sdma(adev, 1 << GET_INST(SDMA0, instance_id)); 1744 } 1745 1746 static int sdma_v4_4_2_set_trap_irq_state(struct amdgpu_device *adev, 1747 struct amdgpu_irq_src *source, 1748 unsigned type, 1749 enum amdgpu_interrupt_state state) 1750 { 1751 u32 sdma_cntl; 1752 1753 sdma_cntl = RREG32_SDMA(type, regSDMA_CNTL); 1754 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA_CNTL, TRAP_ENABLE, 1755 state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0); 1756 WREG32_SDMA(type, regSDMA_CNTL, sdma_cntl); 1757 1758 return 0; 1759 } 1760 1761 static int sdma_v4_4_2_process_trap_irq(struct amdgpu_device *adev, 1762 struct amdgpu_irq_src *source, 1763 struct amdgpu_iv_entry *entry) 1764 { 1765 uint32_t instance, i; 1766 1767 DRM_DEBUG("IH: SDMA trap\n"); 1768 instance = sdma_v4_4_2_irq_id_to_seq(adev, entry->client_id); 1769 1770 /* Client id gives the SDMA instance in AID. To know the exact SDMA 1771 * instance, interrupt entry gives the node id which corresponds to the AID instance. 1772 * Match node id with the AID id associated with the SDMA instance. */ 1773 for (i = instance; i < adev->sdma.num_instances; 1774 i += adev->sdma.num_inst_per_aid) { 1775 if (adev->sdma.instance[i].aid_id == 1776 node_id_to_phys_map[entry->node_id]) 1777 break; 1778 } 1779 1780 if (i >= adev->sdma.num_instances) { 1781 dev_WARN_ONCE( 1782 adev->dev, 1, 1783 "Couldn't find the right sdma instance in trap handler"); 1784 return 0; 1785 } 1786 1787 switch (entry->ring_id) { 1788 case 0: 1789 amdgpu_fence_process(&adev->sdma.instance[i].ring); 1790 break; 1791 case 1: 1792 amdgpu_fence_process(&adev->sdma.instance[i].page); 1793 break; 1794 default: 1795 break; 1796 } 1797 return 0; 1798 } 1799 1800 #if 0 1801 static int sdma_v4_4_2_process_ras_data_cb(struct amdgpu_device *adev, 1802 void *err_data, 1803 struct amdgpu_iv_entry *entry) 1804 { 1805 int instance; 1806 1807 /* When “Full RAS” is enabled, the per-IP interrupt sources should 1808 * be disabled and the driver should only look for the aggregated 1809 * interrupt via sync flood 1810 */ 1811 if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) 1812 goto out; 1813 1814 instance = sdma_v4_4_2_irq_id_to_seq(adev, entry->client_id); 1815 if (instance < 0) 1816 goto out; 1817 1818 amdgpu_sdma_process_ras_data_cb(adev, err_data, entry); 1819 1820 out: 1821 return AMDGPU_RAS_SUCCESS; 1822 } 1823 #endif 1824 1825 static int sdma_v4_4_2_process_illegal_inst_irq(struct amdgpu_device *adev, 1826 struct amdgpu_irq_src *source, 1827 struct amdgpu_iv_entry *entry) 1828 { 1829 int instance; 1830 1831 DRM_ERROR("Illegal instruction in SDMA command stream\n"); 1832 1833 instance = sdma_v4_4_2_irq_id_to_seq(adev, entry->client_id); 1834 if (instance < 0) 1835 return 0; 1836 1837 switch (entry->ring_id) { 1838 case 0: 1839 drm_sched_fault(&adev->sdma.instance[instance].ring.sched); 1840 break; 1841 } 1842 return 0; 1843 } 1844 1845 static int sdma_v4_4_2_set_ecc_irq_state(struct amdgpu_device *adev, 1846 struct amdgpu_irq_src *source, 1847 unsigned type, 1848 enum amdgpu_interrupt_state state) 1849 { 1850 u32 sdma_cntl; 1851 1852 sdma_cntl = RREG32_SDMA(type, regSDMA_CNTL); 1853 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA_CNTL, DRAM_ECC_INT_ENABLE, 1854 state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0); 1855 WREG32_SDMA(type, regSDMA_CNTL, sdma_cntl); 1856 1857 return 0; 1858 } 1859 1860 static int sdma_v4_4_2_print_iv_entry(struct amdgpu_device *adev, 1861 struct amdgpu_iv_entry *entry) 1862 { 1863 int instance; 1864 struct amdgpu_task_info *task_info; 1865 u64 addr; 1866 1867 instance = sdma_v4_4_2_irq_id_to_seq(adev, entry->client_id); 1868 if (instance < 0 || instance >= adev->sdma.num_instances) { 1869 dev_err(adev->dev, "sdma instance invalid %d\n", instance); 1870 return -EINVAL; 1871 } 1872 1873 addr = (u64)entry->src_data[0] << 12; 1874 addr |= ((u64)entry->src_data[1] & 0xf) << 44; 1875 1876 dev_dbg_ratelimited(adev->dev, 1877 "[sdma%d] address:0x%016llx src_id:%u ring:%u vmid:%u pasid:%u\n", 1878 instance, addr, entry->src_id, entry->ring_id, entry->vmid, 1879 entry->pasid); 1880 1881 task_info = amdgpu_vm_get_task_info_pasid(adev, entry->pasid); 1882 if (task_info) { 1883 dev_dbg_ratelimited(adev->dev, " for process %s pid %d thread %s pid %d\n", 1884 task_info->process_name, task_info->tgid, 1885 task_info->task.comm, task_info->task.pid); 1886 amdgpu_vm_put_task_info(task_info); 1887 } 1888 1889 return 0; 1890 } 1891 1892 static int sdma_v4_4_2_process_vm_hole_irq(struct amdgpu_device *adev, 1893 struct amdgpu_irq_src *source, 1894 struct amdgpu_iv_entry *entry) 1895 { 1896 dev_dbg_ratelimited(adev->dev, "MC or SEM address in VM hole\n"); 1897 sdma_v4_4_2_print_iv_entry(adev, entry); 1898 return 0; 1899 } 1900 1901 static int sdma_v4_4_2_process_doorbell_invalid_irq(struct amdgpu_device *adev, 1902 struct amdgpu_irq_src *source, 1903 struct amdgpu_iv_entry *entry) 1904 { 1905 1906 dev_dbg_ratelimited(adev->dev, "SDMA received a doorbell from BIF with byte_enable !=0xff\n"); 1907 sdma_v4_4_2_print_iv_entry(adev, entry); 1908 return 0; 1909 } 1910 1911 static int sdma_v4_4_2_process_pool_timeout_irq(struct amdgpu_device *adev, 1912 struct amdgpu_irq_src *source, 1913 struct amdgpu_iv_entry *entry) 1914 { 1915 dev_dbg_ratelimited(adev->dev, 1916 "Polling register/memory timeout executing POLL_REG/MEM with finite timer\n"); 1917 sdma_v4_4_2_print_iv_entry(adev, entry); 1918 return 0; 1919 } 1920 1921 static int sdma_v4_4_2_process_srbm_write_irq(struct amdgpu_device *adev, 1922 struct amdgpu_irq_src *source, 1923 struct amdgpu_iv_entry *entry) 1924 { 1925 dev_dbg_ratelimited(adev->dev, 1926 "SDMA gets an Register Write SRBM_WRITE command in non-privilege command buffer\n"); 1927 sdma_v4_4_2_print_iv_entry(adev, entry); 1928 return 0; 1929 } 1930 1931 static int sdma_v4_4_2_process_ctxt_empty_irq(struct amdgpu_device *adev, 1932 struct amdgpu_irq_src *source, 1933 struct amdgpu_iv_entry *entry) 1934 { 1935 /* There is nothing useful to be done here, only kept for debug */ 1936 dev_dbg_ratelimited(adev->dev, "SDMA context empty interrupt"); 1937 sdma_v4_4_2_print_iv_entry(adev, entry); 1938 return 0; 1939 } 1940 1941 static void sdma_v4_4_2_inst_update_medium_grain_light_sleep( 1942 struct amdgpu_device *adev, bool enable, uint32_t inst_mask) 1943 { 1944 uint32_t data, def; 1945 int i; 1946 1947 /* leave as default if it is not driver controlled */ 1948 if (!(adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) 1949 return; 1950 1951 if (enable) { 1952 for_each_inst(i, inst_mask) { 1953 /* 1-not override: enable sdma mem light sleep */ 1954 def = data = RREG32_SDMA(i, regSDMA_POWER_CNTL); 1955 data |= SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; 1956 if (def != data) 1957 WREG32_SDMA(i, regSDMA_POWER_CNTL, data); 1958 } 1959 } else { 1960 for_each_inst(i, inst_mask) { 1961 /* 0-override:disable sdma mem light sleep */ 1962 def = data = RREG32_SDMA(i, regSDMA_POWER_CNTL); 1963 data &= ~SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; 1964 if (def != data) 1965 WREG32_SDMA(i, regSDMA_POWER_CNTL, data); 1966 } 1967 } 1968 } 1969 1970 static void sdma_v4_4_2_inst_update_medium_grain_clock_gating( 1971 struct amdgpu_device *adev, bool enable, uint32_t inst_mask) 1972 { 1973 uint32_t data, def; 1974 int i; 1975 1976 /* leave as default if it is not driver controlled */ 1977 if (!(adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) 1978 return; 1979 1980 if (enable) { 1981 for_each_inst(i, inst_mask) { 1982 def = data = RREG32_SDMA(i, regSDMA_CLK_CTRL); 1983 data &= ~(SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK | 1984 SDMA_CLK_CTRL__SOFT_OVERRIDE4_MASK | 1985 SDMA_CLK_CTRL__SOFT_OVERRIDE3_MASK | 1986 SDMA_CLK_CTRL__SOFT_OVERRIDE2_MASK | 1987 SDMA_CLK_CTRL__SOFT_OVERRIDE1_MASK | 1988 SDMA_CLK_CTRL__SOFT_OVERRIDE0_MASK); 1989 if (def != data) 1990 WREG32_SDMA(i, regSDMA_CLK_CTRL, data); 1991 } 1992 } else { 1993 for_each_inst(i, inst_mask) { 1994 def = data = RREG32_SDMA(i, regSDMA_CLK_CTRL); 1995 data |= (SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK | 1996 SDMA_CLK_CTRL__SOFT_OVERRIDE4_MASK | 1997 SDMA_CLK_CTRL__SOFT_OVERRIDE3_MASK | 1998 SDMA_CLK_CTRL__SOFT_OVERRIDE2_MASK | 1999 SDMA_CLK_CTRL__SOFT_OVERRIDE1_MASK | 2000 SDMA_CLK_CTRL__SOFT_OVERRIDE0_MASK); 2001 if (def != data) 2002 WREG32_SDMA(i, regSDMA_CLK_CTRL, data); 2003 } 2004 } 2005 } 2006 2007 static int sdma_v4_4_2_set_clockgating_state(struct amdgpu_ip_block *ip_block, 2008 enum amd_clockgating_state state) 2009 { 2010 struct amdgpu_device *adev = ip_block->adev; 2011 uint32_t inst_mask; 2012 2013 if (amdgpu_sriov_vf(adev)) 2014 return 0; 2015 2016 inst_mask = GENMASK(adev->sdma.num_instances - 1, 0); 2017 2018 sdma_v4_4_2_inst_update_medium_grain_clock_gating( 2019 adev, state == AMD_CG_STATE_GATE, inst_mask); 2020 sdma_v4_4_2_inst_update_medium_grain_light_sleep( 2021 adev, state == AMD_CG_STATE_GATE, inst_mask); 2022 return 0; 2023 } 2024 2025 static int sdma_v4_4_2_set_powergating_state(struct amdgpu_ip_block *ip_block, 2026 enum amd_powergating_state state) 2027 { 2028 return 0; 2029 } 2030 2031 static void sdma_v4_4_2_get_clockgating_state(struct amdgpu_ip_block *ip_block, u64 *flags) 2032 { 2033 struct amdgpu_device *adev = ip_block->adev; 2034 int data; 2035 2036 if (amdgpu_sriov_vf(adev)) 2037 *flags = 0; 2038 2039 /* AMD_CG_SUPPORT_SDMA_MGCG */ 2040 data = RREG32(SOC15_REG_OFFSET(SDMA0, GET_INST(SDMA0, 0), regSDMA_CLK_CTRL)); 2041 if (!(data & SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK)) 2042 *flags |= AMD_CG_SUPPORT_SDMA_MGCG; 2043 2044 /* AMD_CG_SUPPORT_SDMA_LS */ 2045 data = RREG32(SOC15_REG_OFFSET(SDMA0, GET_INST(SDMA0, 0), regSDMA_POWER_CNTL)); 2046 if (data & SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK) 2047 *flags |= AMD_CG_SUPPORT_SDMA_LS; 2048 } 2049 2050 static void sdma_v4_4_2_print_ip_state(struct amdgpu_ip_block *ip_block, struct drm_printer *p) 2051 { 2052 struct amdgpu_device *adev = ip_block->adev; 2053 int i, j; 2054 uint32_t reg_count = ARRAY_SIZE(sdma_reg_list_4_4_2); 2055 uint32_t instance_offset; 2056 2057 if (!adev->sdma.ip_dump) 2058 return; 2059 2060 drm_printf(p, "num_instances:%d\n", adev->sdma.num_instances); 2061 for (i = 0; i < adev->sdma.num_instances; i++) { 2062 instance_offset = i * reg_count; 2063 drm_printf(p, "\nInstance:%d\n", i); 2064 2065 for (j = 0; j < reg_count; j++) 2066 drm_printf(p, "%-50s \t 0x%08x\n", sdma_reg_list_4_4_2[j].reg_name, 2067 adev->sdma.ip_dump[instance_offset + j]); 2068 } 2069 } 2070 2071 static void sdma_v4_4_2_dump_ip_state(struct amdgpu_ip_block *ip_block) 2072 { 2073 struct amdgpu_device *adev = ip_block->adev; 2074 int i, j; 2075 uint32_t instance_offset; 2076 uint32_t reg_count = ARRAY_SIZE(sdma_reg_list_4_4_2); 2077 2078 if (!adev->sdma.ip_dump) 2079 return; 2080 2081 for (i = 0; i < adev->sdma.num_instances; i++) { 2082 instance_offset = i * reg_count; 2083 for (j = 0; j < reg_count; j++) 2084 adev->sdma.ip_dump[instance_offset + j] = 2085 RREG32(sdma_v4_4_2_get_reg_offset(adev, i, 2086 sdma_reg_list_4_4_2[j].reg_offset)); 2087 } 2088 } 2089 2090 const struct amd_ip_funcs sdma_v4_4_2_ip_funcs = { 2091 .name = "sdma_v4_4_2", 2092 .early_init = sdma_v4_4_2_early_init, 2093 .late_init = sdma_v4_4_2_late_init, 2094 .sw_init = sdma_v4_4_2_sw_init, 2095 .sw_fini = sdma_v4_4_2_sw_fini, 2096 .hw_init = sdma_v4_4_2_hw_init, 2097 .hw_fini = sdma_v4_4_2_hw_fini, 2098 .suspend = sdma_v4_4_2_suspend, 2099 .resume = sdma_v4_4_2_resume, 2100 .is_idle = sdma_v4_4_2_is_idle, 2101 .wait_for_idle = sdma_v4_4_2_wait_for_idle, 2102 .soft_reset = sdma_v4_4_2_soft_reset, 2103 .set_clockgating_state = sdma_v4_4_2_set_clockgating_state, 2104 .set_powergating_state = sdma_v4_4_2_set_powergating_state, 2105 .get_clockgating_state = sdma_v4_4_2_get_clockgating_state, 2106 .dump_ip_state = sdma_v4_4_2_dump_ip_state, 2107 .print_ip_state = sdma_v4_4_2_print_ip_state, 2108 }; 2109 2110 static const struct amdgpu_ring_funcs sdma_v4_4_2_ring_funcs = { 2111 .type = AMDGPU_RING_TYPE_SDMA, 2112 .align_mask = 0xff, 2113 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 2114 .support_64bit_ptrs = true, 2115 .get_rptr = sdma_v4_4_2_ring_get_rptr, 2116 .get_wptr = sdma_v4_4_2_ring_get_wptr, 2117 .set_wptr = sdma_v4_4_2_ring_set_wptr, 2118 .emit_frame_size = 2119 6 + /* sdma_v4_4_2_ring_emit_hdp_flush */ 2120 3 + /* hdp invalidate */ 2121 6 + /* sdma_v4_4_2_ring_emit_pipeline_sync */ 2122 /* sdma_v4_4_2_ring_emit_vm_flush */ 2123 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + 2124 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 + 2125 10 + 10 + 10, /* sdma_v4_4_2_ring_emit_fence x3 for user fence, vm fence */ 2126 .emit_ib_size = 7 + 6, /* sdma_v4_4_2_ring_emit_ib */ 2127 .emit_ib = sdma_v4_4_2_ring_emit_ib, 2128 .emit_fence = sdma_v4_4_2_ring_emit_fence, 2129 .emit_pipeline_sync = sdma_v4_4_2_ring_emit_pipeline_sync, 2130 .emit_vm_flush = sdma_v4_4_2_ring_emit_vm_flush, 2131 .emit_hdp_flush = sdma_v4_4_2_ring_emit_hdp_flush, 2132 .test_ring = sdma_v4_4_2_ring_test_ring, 2133 .test_ib = sdma_v4_4_2_ring_test_ib, 2134 .insert_nop = sdma_v4_4_2_ring_insert_nop, 2135 .pad_ib = sdma_v4_4_2_ring_pad_ib, 2136 .emit_wreg = sdma_v4_4_2_ring_emit_wreg, 2137 .emit_reg_wait = sdma_v4_4_2_ring_emit_reg_wait, 2138 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper, 2139 .reset = sdma_v4_4_2_reset_queue, 2140 }; 2141 2142 static const struct amdgpu_ring_funcs sdma_v4_4_2_page_ring_funcs = { 2143 .type = AMDGPU_RING_TYPE_SDMA, 2144 .align_mask = 0xff, 2145 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 2146 .support_64bit_ptrs = true, 2147 .get_rptr = sdma_v4_4_2_ring_get_rptr, 2148 .get_wptr = sdma_v4_4_2_page_ring_get_wptr, 2149 .set_wptr = sdma_v4_4_2_page_ring_set_wptr, 2150 .emit_frame_size = 2151 6 + /* sdma_v4_4_2_ring_emit_hdp_flush */ 2152 3 + /* hdp invalidate */ 2153 6 + /* sdma_v4_4_2_ring_emit_pipeline_sync */ 2154 /* sdma_v4_4_2_ring_emit_vm_flush */ 2155 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + 2156 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 + 2157 10 + 10 + 10, /* sdma_v4_4_2_ring_emit_fence x3 for user fence, vm fence */ 2158 .emit_ib_size = 7 + 6, /* sdma_v4_4_2_ring_emit_ib */ 2159 .emit_ib = sdma_v4_4_2_ring_emit_ib, 2160 .emit_fence = sdma_v4_4_2_ring_emit_fence, 2161 .emit_pipeline_sync = sdma_v4_4_2_ring_emit_pipeline_sync, 2162 .emit_vm_flush = sdma_v4_4_2_ring_emit_vm_flush, 2163 .emit_hdp_flush = sdma_v4_4_2_ring_emit_hdp_flush, 2164 .test_ring = sdma_v4_4_2_ring_test_ring, 2165 .test_ib = sdma_v4_4_2_ring_test_ib, 2166 .insert_nop = sdma_v4_4_2_ring_insert_nop, 2167 .pad_ib = sdma_v4_4_2_ring_pad_ib, 2168 .emit_wreg = sdma_v4_4_2_ring_emit_wreg, 2169 .emit_reg_wait = sdma_v4_4_2_ring_emit_reg_wait, 2170 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper, 2171 .reset = sdma_v4_4_2_reset_queue, 2172 }; 2173 2174 static void sdma_v4_4_2_set_ring_funcs(struct amdgpu_device *adev) 2175 { 2176 int i, dev_inst; 2177 2178 for (i = 0; i < adev->sdma.num_instances; i++) { 2179 adev->sdma.instance[i].ring.funcs = &sdma_v4_4_2_ring_funcs; 2180 adev->sdma.instance[i].ring.me = i; 2181 if (adev->sdma.has_page_queue) { 2182 adev->sdma.instance[i].page.funcs = 2183 &sdma_v4_4_2_page_ring_funcs; 2184 adev->sdma.instance[i].page.me = i; 2185 } 2186 2187 dev_inst = GET_INST(SDMA0, i); 2188 /* AID to which SDMA belongs depends on physical instance */ 2189 adev->sdma.instance[i].aid_id = 2190 dev_inst / adev->sdma.num_inst_per_aid; 2191 } 2192 } 2193 2194 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_trap_irq_funcs = { 2195 .set = sdma_v4_4_2_set_trap_irq_state, 2196 .process = sdma_v4_4_2_process_trap_irq, 2197 }; 2198 2199 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_illegal_inst_irq_funcs = { 2200 .process = sdma_v4_4_2_process_illegal_inst_irq, 2201 }; 2202 2203 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_ecc_irq_funcs = { 2204 .set = sdma_v4_4_2_set_ecc_irq_state, 2205 .process = amdgpu_sdma_process_ecc_irq, 2206 }; 2207 2208 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_vm_hole_irq_funcs = { 2209 .process = sdma_v4_4_2_process_vm_hole_irq, 2210 }; 2211 2212 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_doorbell_invalid_irq_funcs = { 2213 .process = sdma_v4_4_2_process_doorbell_invalid_irq, 2214 }; 2215 2216 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_pool_timeout_irq_funcs = { 2217 .process = sdma_v4_4_2_process_pool_timeout_irq, 2218 }; 2219 2220 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_srbm_write_irq_funcs = { 2221 .process = sdma_v4_4_2_process_srbm_write_irq, 2222 }; 2223 2224 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_ctxt_empty_irq_funcs = { 2225 .process = sdma_v4_4_2_process_ctxt_empty_irq, 2226 }; 2227 2228 static void sdma_v4_4_2_set_irq_funcs(struct amdgpu_device *adev) 2229 { 2230 adev->sdma.trap_irq.num_types = adev->sdma.num_instances; 2231 adev->sdma.ecc_irq.num_types = adev->sdma.num_instances; 2232 adev->sdma.vm_hole_irq.num_types = adev->sdma.num_instances; 2233 adev->sdma.doorbell_invalid_irq.num_types = adev->sdma.num_instances; 2234 adev->sdma.pool_timeout_irq.num_types = adev->sdma.num_instances; 2235 adev->sdma.srbm_write_irq.num_types = adev->sdma.num_instances; 2236 adev->sdma.ctxt_empty_irq.num_types = adev->sdma.num_instances; 2237 2238 adev->sdma.trap_irq.funcs = &sdma_v4_4_2_trap_irq_funcs; 2239 adev->sdma.illegal_inst_irq.funcs = &sdma_v4_4_2_illegal_inst_irq_funcs; 2240 adev->sdma.ecc_irq.funcs = &sdma_v4_4_2_ecc_irq_funcs; 2241 adev->sdma.vm_hole_irq.funcs = &sdma_v4_4_2_vm_hole_irq_funcs; 2242 adev->sdma.doorbell_invalid_irq.funcs = &sdma_v4_4_2_doorbell_invalid_irq_funcs; 2243 adev->sdma.pool_timeout_irq.funcs = &sdma_v4_4_2_pool_timeout_irq_funcs; 2244 adev->sdma.srbm_write_irq.funcs = &sdma_v4_4_2_srbm_write_irq_funcs; 2245 adev->sdma.ctxt_empty_irq.funcs = &sdma_v4_4_2_ctxt_empty_irq_funcs; 2246 } 2247 2248 /** 2249 * sdma_v4_4_2_emit_copy_buffer - copy buffer using the sDMA engine 2250 * 2251 * @ib: indirect buffer to copy to 2252 * @src_offset: src GPU address 2253 * @dst_offset: dst GPU address 2254 * @byte_count: number of bytes to xfer 2255 * @copy_flags: copy flags for the buffers 2256 * 2257 * Copy GPU buffers using the DMA engine. 2258 * Used by the amdgpu ttm implementation to move pages if 2259 * registered as the asic copy callback. 2260 */ 2261 static void sdma_v4_4_2_emit_copy_buffer(struct amdgpu_ib *ib, 2262 uint64_t src_offset, 2263 uint64_t dst_offset, 2264 uint32_t byte_count, 2265 uint32_t copy_flags) 2266 { 2267 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | 2268 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) | 2269 SDMA_PKT_COPY_LINEAR_HEADER_TMZ((copy_flags & AMDGPU_COPY_FLAGS_TMZ) ? 1 : 0); 2270 ib->ptr[ib->length_dw++] = byte_count - 1; 2271 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 2272 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset); 2273 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset); 2274 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 2275 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 2276 } 2277 2278 /** 2279 * sdma_v4_4_2_emit_fill_buffer - fill buffer using the sDMA engine 2280 * 2281 * @ib: indirect buffer to copy to 2282 * @src_data: value to write to buffer 2283 * @dst_offset: dst GPU address 2284 * @byte_count: number of bytes to xfer 2285 * 2286 * Fill GPU buffers using the DMA engine. 2287 */ 2288 static void sdma_v4_4_2_emit_fill_buffer(struct amdgpu_ib *ib, 2289 uint32_t src_data, 2290 uint64_t dst_offset, 2291 uint32_t byte_count) 2292 { 2293 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL); 2294 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 2295 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 2296 ib->ptr[ib->length_dw++] = src_data; 2297 ib->ptr[ib->length_dw++] = byte_count - 1; 2298 } 2299 2300 static const struct amdgpu_buffer_funcs sdma_v4_4_2_buffer_funcs = { 2301 .copy_max_bytes = 0x400000, 2302 .copy_num_dw = 7, 2303 .emit_copy_buffer = sdma_v4_4_2_emit_copy_buffer, 2304 2305 .fill_max_bytes = 0x400000, 2306 .fill_num_dw = 5, 2307 .emit_fill_buffer = sdma_v4_4_2_emit_fill_buffer, 2308 }; 2309 2310 static void sdma_v4_4_2_set_buffer_funcs(struct amdgpu_device *adev) 2311 { 2312 adev->mman.buffer_funcs = &sdma_v4_4_2_buffer_funcs; 2313 if (adev->sdma.has_page_queue) 2314 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page; 2315 else 2316 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring; 2317 } 2318 2319 static const struct amdgpu_vm_pte_funcs sdma_v4_4_2_vm_pte_funcs = { 2320 .copy_pte_num_dw = 7, 2321 .copy_pte = sdma_v4_4_2_vm_copy_pte, 2322 2323 .write_pte = sdma_v4_4_2_vm_write_pte, 2324 .set_pte_pde = sdma_v4_4_2_vm_set_pte_pde, 2325 }; 2326 2327 static void sdma_v4_4_2_set_vm_pte_funcs(struct amdgpu_device *adev) 2328 { 2329 struct drm_gpu_scheduler *sched; 2330 unsigned i; 2331 2332 adev->vm_manager.vm_pte_funcs = &sdma_v4_4_2_vm_pte_funcs; 2333 for (i = 0; i < adev->sdma.num_instances; i++) { 2334 if (adev->sdma.has_page_queue) 2335 sched = &adev->sdma.instance[i].page.sched; 2336 else 2337 sched = &adev->sdma.instance[i].ring.sched; 2338 adev->vm_manager.vm_pte_scheds[i] = sched; 2339 } 2340 adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances; 2341 } 2342 2343 /** 2344 * sdma_v4_4_2_update_reset_mask - update reset mask for SDMA 2345 * @adev: Pointer to the AMDGPU device structure 2346 * 2347 * This function update reset mask for SDMA and sets the supported 2348 * reset types based on the IP version and firmware versions. 2349 * 2350 */ 2351 static void sdma_v4_4_2_update_reset_mask(struct amdgpu_device *adev) 2352 { 2353 /* per queue reset not supported for SRIOV */ 2354 if (amdgpu_sriov_vf(adev)) 2355 return; 2356 2357 /* 2358 * the user queue relies on MEC fw and pmfw when the sdma queue do reset. 2359 * it needs to check both of them at here to skip old mec and pmfw. 2360 */ 2361 switch (amdgpu_ip_version(adev, GC_HWIP, 0)) { 2362 case IP_VERSION(9, 4, 3): 2363 case IP_VERSION(9, 4, 4): 2364 if ((adev->gfx.mec_fw_version >= 0xb0) && amdgpu_dpm_reset_sdma_is_supported(adev)) 2365 adev->sdma.supported_reset |= AMDGPU_RESET_TYPE_PER_QUEUE; 2366 break; 2367 case IP_VERSION(9, 5, 0): 2368 if ((adev->gfx.mec_fw_version >= 0xf) && amdgpu_dpm_reset_sdma_is_supported(adev)) 2369 adev->sdma.supported_reset |= AMDGPU_RESET_TYPE_PER_QUEUE; 2370 break; 2371 default: 2372 break; 2373 } 2374 2375 } 2376 2377 const struct amdgpu_ip_block_version sdma_v4_4_2_ip_block = { 2378 .type = AMD_IP_BLOCK_TYPE_SDMA, 2379 .major = 4, 2380 .minor = 4, 2381 .rev = 2, 2382 .funcs = &sdma_v4_4_2_ip_funcs, 2383 }; 2384 2385 static int sdma_v4_4_2_xcp_resume(void *handle, uint32_t inst_mask) 2386 { 2387 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2388 int r; 2389 2390 if (!amdgpu_sriov_vf(adev)) 2391 sdma_v4_4_2_inst_init_golden_registers(adev, inst_mask); 2392 2393 r = sdma_v4_4_2_inst_start(adev, inst_mask, false); 2394 2395 return r; 2396 } 2397 2398 static int sdma_v4_4_2_xcp_suspend(void *handle, uint32_t inst_mask) 2399 { 2400 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2401 uint32_t tmp_mask = inst_mask; 2402 int i; 2403 2404 if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) { 2405 for_each_inst(i, tmp_mask) { 2406 amdgpu_irq_put(adev, &adev->sdma.ecc_irq, 2407 AMDGPU_SDMA_IRQ_INSTANCE0 + i); 2408 } 2409 } 2410 2411 sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask); 2412 sdma_v4_4_2_inst_enable(adev, false, inst_mask); 2413 2414 return 0; 2415 } 2416 2417 struct amdgpu_xcp_ip_funcs sdma_v4_4_2_xcp_funcs = { 2418 .suspend = &sdma_v4_4_2_xcp_suspend, 2419 .resume = &sdma_v4_4_2_xcp_resume 2420 }; 2421 2422 static const struct amdgpu_ras_err_status_reg_entry sdma_v4_2_2_ue_reg_list[] = { 2423 {AMDGPU_RAS_REG_ENTRY(SDMA0, 0, regSDMA_UE_ERR_STATUS_LO, regSDMA_UE_ERR_STATUS_HI), 2424 1, (AMDGPU_RAS_ERR_INFO_VALID | AMDGPU_RAS_ERR_STATUS_VALID), "SDMA"}, 2425 }; 2426 2427 static const struct amdgpu_ras_memory_id_entry sdma_v4_4_2_ras_memory_list[] = { 2428 {AMDGPU_SDMA_MBANK_DATA_BUF0, "SDMA_MBANK_DATA_BUF0"}, 2429 {AMDGPU_SDMA_MBANK_DATA_BUF1, "SDMA_MBANK_DATA_BUF1"}, 2430 {AMDGPU_SDMA_MBANK_DATA_BUF2, "SDMA_MBANK_DATA_BUF2"}, 2431 {AMDGPU_SDMA_MBANK_DATA_BUF3, "SDMA_MBANK_DATA_BUF3"}, 2432 {AMDGPU_SDMA_MBANK_DATA_BUF4, "SDMA_MBANK_DATA_BUF4"}, 2433 {AMDGPU_SDMA_MBANK_DATA_BUF5, "SDMA_MBANK_DATA_BUF5"}, 2434 {AMDGPU_SDMA_MBANK_DATA_BUF6, "SDMA_MBANK_DATA_BUF6"}, 2435 {AMDGPU_SDMA_MBANK_DATA_BUF7, "SDMA_MBANK_DATA_BUF7"}, 2436 {AMDGPU_SDMA_MBANK_DATA_BUF8, "SDMA_MBANK_DATA_BUF8"}, 2437 {AMDGPU_SDMA_MBANK_DATA_BUF9, "SDMA_MBANK_DATA_BUF9"}, 2438 {AMDGPU_SDMA_MBANK_DATA_BUF10, "SDMA_MBANK_DATA_BUF10"}, 2439 {AMDGPU_SDMA_MBANK_DATA_BUF11, "SDMA_MBANK_DATA_BUF11"}, 2440 {AMDGPU_SDMA_MBANK_DATA_BUF12, "SDMA_MBANK_DATA_BUF12"}, 2441 {AMDGPU_SDMA_MBANK_DATA_BUF13, "SDMA_MBANK_DATA_BUF13"}, 2442 {AMDGPU_SDMA_MBANK_DATA_BUF14, "SDMA_MBANK_DATA_BUF14"}, 2443 {AMDGPU_SDMA_MBANK_DATA_BUF15, "SDMA_MBANK_DATA_BUF15"}, 2444 {AMDGPU_SDMA_UCODE_BUF, "SDMA_UCODE_BUF"}, 2445 {AMDGPU_SDMA_RB_CMD_BUF, "SDMA_RB_CMD_BUF"}, 2446 {AMDGPU_SDMA_IB_CMD_BUF, "SDMA_IB_CMD_BUF"}, 2447 {AMDGPU_SDMA_UTCL1_RD_FIFO, "SDMA_UTCL1_RD_FIFO"}, 2448 {AMDGPU_SDMA_UTCL1_RDBST_FIFO, "SDMA_UTCL1_RDBST_FIFO"}, 2449 {AMDGPU_SDMA_UTCL1_WR_FIFO, "SDMA_UTCL1_WR_FIFO"}, 2450 {AMDGPU_SDMA_DATA_LUT_FIFO, "SDMA_DATA_LUT_FIFO"}, 2451 {AMDGPU_SDMA_SPLIT_DAT_BUF, "SDMA_SPLIT_DAT_BUF"}, 2452 }; 2453 2454 static void sdma_v4_4_2_inst_query_ras_error_count(struct amdgpu_device *adev, 2455 uint32_t sdma_inst, 2456 void *ras_err_status) 2457 { 2458 struct ras_err_data *err_data = (struct ras_err_data *)ras_err_status; 2459 uint32_t sdma_dev_inst = GET_INST(SDMA0, sdma_inst); 2460 unsigned long ue_count = 0; 2461 struct amdgpu_smuio_mcm_config_info mcm_info = { 2462 .socket_id = adev->smuio.funcs->get_socket_id(adev), 2463 .die_id = adev->sdma.instance[sdma_inst].aid_id, 2464 }; 2465 2466 /* sdma v4_4_2 doesn't support query ce counts */ 2467 amdgpu_ras_inst_query_ras_error_count(adev, 2468 sdma_v4_2_2_ue_reg_list, 2469 ARRAY_SIZE(sdma_v4_2_2_ue_reg_list), 2470 sdma_v4_4_2_ras_memory_list, 2471 ARRAY_SIZE(sdma_v4_4_2_ras_memory_list), 2472 sdma_dev_inst, 2473 AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE, 2474 &ue_count); 2475 2476 amdgpu_ras_error_statistic_ue_count(err_data, &mcm_info, ue_count); 2477 } 2478 2479 static void sdma_v4_4_2_query_ras_error_count(struct amdgpu_device *adev, 2480 void *ras_err_status) 2481 { 2482 uint32_t inst_mask; 2483 int i = 0; 2484 2485 inst_mask = GENMASK(adev->sdma.num_instances - 1, 0); 2486 if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) { 2487 for_each_inst(i, inst_mask) 2488 sdma_v4_4_2_inst_query_ras_error_count(adev, i, ras_err_status); 2489 } else { 2490 dev_warn(adev->dev, "SDMA RAS is not supported\n"); 2491 } 2492 } 2493 2494 static void sdma_v4_4_2_inst_reset_ras_error_count(struct amdgpu_device *adev, 2495 uint32_t sdma_inst) 2496 { 2497 uint32_t sdma_dev_inst = GET_INST(SDMA0, sdma_inst); 2498 2499 amdgpu_ras_inst_reset_ras_error_count(adev, 2500 sdma_v4_2_2_ue_reg_list, 2501 ARRAY_SIZE(sdma_v4_2_2_ue_reg_list), 2502 sdma_dev_inst); 2503 } 2504 2505 static void sdma_v4_4_2_reset_ras_error_count(struct amdgpu_device *adev) 2506 { 2507 uint32_t inst_mask; 2508 int i = 0; 2509 2510 inst_mask = GENMASK(adev->sdma.num_instances - 1, 0); 2511 if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) { 2512 for_each_inst(i, inst_mask) 2513 sdma_v4_4_2_inst_reset_ras_error_count(adev, i); 2514 } else { 2515 dev_warn(adev->dev, "SDMA RAS is not supported\n"); 2516 } 2517 } 2518 2519 static const struct amdgpu_ras_block_hw_ops sdma_v4_4_2_ras_hw_ops = { 2520 .query_ras_error_count = sdma_v4_4_2_query_ras_error_count, 2521 .reset_ras_error_count = sdma_v4_4_2_reset_ras_error_count, 2522 }; 2523 2524 static int sdma_v4_4_2_aca_bank_parser(struct aca_handle *handle, struct aca_bank *bank, 2525 enum aca_smu_type type, void *data) 2526 { 2527 struct aca_bank_info info; 2528 u64 misc0; 2529 int ret; 2530 2531 ret = aca_bank_info_decode(bank, &info); 2532 if (ret) 2533 return ret; 2534 2535 misc0 = bank->regs[ACA_REG_IDX_MISC0]; 2536 switch (type) { 2537 case ACA_SMU_TYPE_UE: 2538 bank->aca_err_type = ACA_ERROR_TYPE_UE; 2539 ret = aca_error_cache_log_bank_error(handle, &info, ACA_ERROR_TYPE_UE, 2540 1ULL); 2541 break; 2542 case ACA_SMU_TYPE_CE: 2543 bank->aca_err_type = ACA_ERROR_TYPE_CE; 2544 ret = aca_error_cache_log_bank_error(handle, &info, bank->aca_err_type, 2545 ACA_REG__MISC0__ERRCNT(misc0)); 2546 break; 2547 default: 2548 return -EINVAL; 2549 } 2550 2551 return ret; 2552 } 2553 2554 /* CODE_SDMA0 - CODE_SDMA4, reference to smu driver if header file */ 2555 static int sdma_v4_4_2_err_codes[] = { 33, 34, 35, 36 }; 2556 2557 static bool sdma_v4_4_2_aca_bank_is_valid(struct aca_handle *handle, struct aca_bank *bank, 2558 enum aca_smu_type type, void *data) 2559 { 2560 u32 instlo; 2561 2562 instlo = ACA_REG__IPID__INSTANCEIDLO(bank->regs[ACA_REG_IDX_IPID]); 2563 instlo &= GENMASK(31, 1); 2564 2565 if (instlo != mmSMNAID_AID0_MCA_SMU) 2566 return false; 2567 2568 if (aca_bank_check_error_codes(handle->adev, bank, 2569 sdma_v4_4_2_err_codes, 2570 ARRAY_SIZE(sdma_v4_4_2_err_codes))) 2571 return false; 2572 2573 return true; 2574 } 2575 2576 static const struct aca_bank_ops sdma_v4_4_2_aca_bank_ops = { 2577 .aca_bank_parser = sdma_v4_4_2_aca_bank_parser, 2578 .aca_bank_is_valid = sdma_v4_4_2_aca_bank_is_valid, 2579 }; 2580 2581 static const struct aca_info sdma_v4_4_2_aca_info = { 2582 .hwip = ACA_HWIP_TYPE_SMU, 2583 .mask = ACA_ERROR_UE_MASK, 2584 .bank_ops = &sdma_v4_4_2_aca_bank_ops, 2585 }; 2586 2587 static int sdma_v4_4_2_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block) 2588 { 2589 int r; 2590 2591 r = amdgpu_sdma_ras_late_init(adev, ras_block); 2592 if (r) 2593 return r; 2594 2595 return amdgpu_ras_bind_aca(adev, AMDGPU_RAS_BLOCK__SDMA, 2596 &sdma_v4_4_2_aca_info, NULL); 2597 } 2598 2599 static struct amdgpu_sdma_ras sdma_v4_4_2_ras = { 2600 .ras_block = { 2601 .hw_ops = &sdma_v4_4_2_ras_hw_ops, 2602 .ras_late_init = sdma_v4_4_2_ras_late_init, 2603 }, 2604 }; 2605 2606 static void sdma_v4_4_2_set_ras_funcs(struct amdgpu_device *adev) 2607 { 2608 adev->sdma.ras = &sdma_v4_4_2_ras; 2609 } 2610