xref: /linux/drivers/gpu/drm/amd/amdgpu/sdma_v4_4_2.c (revision 235f0da3274690f540aa53fccf77d433e344e4b8)
1 /*
2  * Copyright 2022 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28 
29 #include "amdgpu.h"
30 #include "amdgpu_xcp.h"
31 #include "amdgpu_ucode.h"
32 #include "amdgpu_trace.h"
33 
34 #include "sdma/sdma_4_4_2_offset.h"
35 #include "sdma/sdma_4_4_2_sh_mask.h"
36 
37 #include "soc15_common.h"
38 #include "soc15.h"
39 #include "vega10_sdma_pkt_open.h"
40 
41 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
42 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
43 
44 #include "amdgpu_ras.h"
45 
46 MODULE_FIRMWARE("amdgpu/sdma_4_4_2.bin");
47 MODULE_FIRMWARE("amdgpu/sdma_4_4_5.bin");
48 
49 #define mmSMNAID_AID0_MCA_SMU 0x03b30400
50 
51 #define WREG32_SDMA(instance, offset, value) \
52 	WREG32(sdma_v4_4_2_get_reg_offset(adev, (instance), (offset)), value)
53 #define RREG32_SDMA(instance, offset) \
54 	RREG32(sdma_v4_4_2_get_reg_offset(adev, (instance), (offset)))
55 
56 static void sdma_v4_4_2_set_ring_funcs(struct amdgpu_device *adev);
57 static void sdma_v4_4_2_set_buffer_funcs(struct amdgpu_device *adev);
58 static void sdma_v4_4_2_set_vm_pte_funcs(struct amdgpu_device *adev);
59 static void sdma_v4_4_2_set_irq_funcs(struct amdgpu_device *adev);
60 static void sdma_v4_4_2_set_ras_funcs(struct amdgpu_device *adev);
61 
62 static u32 sdma_v4_4_2_get_reg_offset(struct amdgpu_device *adev,
63 		u32 instance, u32 offset)
64 {
65 	u32 dev_inst = GET_INST(SDMA0, instance);
66 
67 	return (adev->reg_offset[SDMA0_HWIP][dev_inst][0] + offset);
68 }
69 
70 static unsigned sdma_v4_4_2_seq_to_irq_id(int seq_num)
71 {
72 	switch (seq_num) {
73 	case 0:
74 		return SOC15_IH_CLIENTID_SDMA0;
75 	case 1:
76 		return SOC15_IH_CLIENTID_SDMA1;
77 	case 2:
78 		return SOC15_IH_CLIENTID_SDMA2;
79 	case 3:
80 		return SOC15_IH_CLIENTID_SDMA3;
81 	default:
82 		return -EINVAL;
83 	}
84 }
85 
86 static int sdma_v4_4_2_irq_id_to_seq(struct amdgpu_device *adev, unsigned client_id)
87 {
88 	switch (client_id) {
89 	case SOC15_IH_CLIENTID_SDMA0:
90 		return 0;
91 	case SOC15_IH_CLIENTID_SDMA1:
92 		return 1;
93 	case SOC15_IH_CLIENTID_SDMA2:
94 		if (amdgpu_sriov_vf(adev) && (adev->gfx.xcc_mask == 0x1))
95 			return 0;
96 		else
97 			return 2;
98 	case SOC15_IH_CLIENTID_SDMA3:
99 		if (amdgpu_sriov_vf(adev) && (adev->gfx.xcc_mask == 0x1))
100 			return 1;
101 		else
102 			return 3;
103 	default:
104 		return -EINVAL;
105 	}
106 }
107 
108 static void sdma_v4_4_2_inst_init_golden_registers(struct amdgpu_device *adev,
109 						   uint32_t inst_mask)
110 {
111 	u32 val;
112 	int i;
113 
114 	for (i = 0; i < adev->sdma.num_instances; i++) {
115 		val = RREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG);
116 		val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG, NUM_BANKS, 4);
117 		val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG,
118 				    PIPE_INTERLEAVE_SIZE, 0);
119 		WREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG, val);
120 
121 		val = RREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG_READ);
122 		val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG_READ, NUM_BANKS,
123 				    4);
124 		val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG_READ,
125 				    PIPE_INTERLEAVE_SIZE, 0);
126 		WREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG_READ, val);
127 	}
128 }
129 
130 /**
131  * sdma_v4_4_2_init_microcode - load ucode images from disk
132  *
133  * @adev: amdgpu_device pointer
134  *
135  * Use the firmware interface to load the ucode images into
136  * the driver (not loaded into hw).
137  * Returns 0 on success, error on failure.
138  */
139 static int sdma_v4_4_2_init_microcode(struct amdgpu_device *adev)
140 {
141 	int ret, i;
142 
143 	for (i = 0; i < adev->sdma.num_instances; i++) {
144 		if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 2) ||
145 		    amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 5)) {
146 			ret = amdgpu_sdma_init_microcode(adev, 0, true);
147 			break;
148 		} else {
149 			ret = amdgpu_sdma_init_microcode(adev, i, false);
150 			if (ret)
151 				return ret;
152 		}
153 	}
154 
155 	return ret;
156 }
157 
158 /**
159  * sdma_v4_4_2_ring_get_rptr - get the current read pointer
160  *
161  * @ring: amdgpu ring pointer
162  *
163  * Get the current rptr from the hardware.
164  */
165 static uint64_t sdma_v4_4_2_ring_get_rptr(struct amdgpu_ring *ring)
166 {
167 	u64 rptr;
168 
169 	/* XXX check if swapping is necessary on BE */
170 	rptr = READ_ONCE(*((u64 *)&ring->adev->wb.wb[ring->rptr_offs]));
171 
172 	DRM_DEBUG("rptr before shift == 0x%016llx\n", rptr);
173 	return rptr >> 2;
174 }
175 
176 /**
177  * sdma_v4_4_2_ring_get_wptr - get the current write pointer
178  *
179  * @ring: amdgpu ring pointer
180  *
181  * Get the current wptr from the hardware.
182  */
183 static uint64_t sdma_v4_4_2_ring_get_wptr(struct amdgpu_ring *ring)
184 {
185 	struct amdgpu_device *adev = ring->adev;
186 	u64 wptr;
187 
188 	if (ring->use_doorbell) {
189 		/* XXX check if swapping is necessary on BE */
190 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
191 		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
192 	} else {
193 		wptr = RREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR_HI);
194 		wptr = wptr << 32;
195 		wptr |= RREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR);
196 		DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
197 				ring->me, wptr);
198 	}
199 
200 	return wptr >> 2;
201 }
202 
203 /**
204  * sdma_v4_4_2_ring_set_wptr - commit the write pointer
205  *
206  * @ring: amdgpu ring pointer
207  *
208  * Write the wptr back to the hardware.
209  */
210 static void sdma_v4_4_2_ring_set_wptr(struct amdgpu_ring *ring)
211 {
212 	struct amdgpu_device *adev = ring->adev;
213 
214 	DRM_DEBUG("Setting write pointer\n");
215 	if (ring->use_doorbell) {
216 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
217 
218 		DRM_DEBUG("Using doorbell -- "
219 				"wptr_offs == 0x%08x "
220 				"lower_32_bits(ring->wptr) << 2 == 0x%08x "
221 				"upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
222 				ring->wptr_offs,
223 				lower_32_bits(ring->wptr << 2),
224 				upper_32_bits(ring->wptr << 2));
225 		/* XXX check if swapping is necessary on BE */
226 		WRITE_ONCE(*wb, (ring->wptr << 2));
227 		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
228 				ring->doorbell_index, ring->wptr << 2);
229 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
230 	} else {
231 		DRM_DEBUG("Not using doorbell -- "
232 				"regSDMA%i_GFX_RB_WPTR == 0x%08x "
233 				"regSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
234 				ring->me,
235 				lower_32_bits(ring->wptr << 2),
236 				ring->me,
237 				upper_32_bits(ring->wptr << 2));
238 		WREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR,
239 			    lower_32_bits(ring->wptr << 2));
240 		WREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR_HI,
241 			    upper_32_bits(ring->wptr << 2));
242 	}
243 }
244 
245 /**
246  * sdma_v4_4_2_page_ring_get_wptr - get the current write pointer
247  *
248  * @ring: amdgpu ring pointer
249  *
250  * Get the current wptr from the hardware.
251  */
252 static uint64_t sdma_v4_4_2_page_ring_get_wptr(struct amdgpu_ring *ring)
253 {
254 	struct amdgpu_device *adev = ring->adev;
255 	u64 wptr;
256 
257 	if (ring->use_doorbell) {
258 		/* XXX check if swapping is necessary on BE */
259 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
260 	} else {
261 		wptr = RREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR_HI);
262 		wptr = wptr << 32;
263 		wptr |= RREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR);
264 	}
265 
266 	return wptr >> 2;
267 }
268 
269 /**
270  * sdma_v4_4_2_page_ring_set_wptr - commit the write pointer
271  *
272  * @ring: amdgpu ring pointer
273  *
274  * Write the wptr back to the hardware.
275  */
276 static void sdma_v4_4_2_page_ring_set_wptr(struct amdgpu_ring *ring)
277 {
278 	struct amdgpu_device *adev = ring->adev;
279 
280 	if (ring->use_doorbell) {
281 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
282 
283 		/* XXX check if swapping is necessary on BE */
284 		WRITE_ONCE(*wb, (ring->wptr << 2));
285 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
286 	} else {
287 		uint64_t wptr = ring->wptr << 2;
288 
289 		WREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR,
290 			    lower_32_bits(wptr));
291 		WREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR_HI,
292 			    upper_32_bits(wptr));
293 	}
294 }
295 
296 static void sdma_v4_4_2_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
297 {
298 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
299 	int i;
300 
301 	for (i = 0; i < count; i++)
302 		if (sdma && sdma->burst_nop && (i == 0))
303 			amdgpu_ring_write(ring, ring->funcs->nop |
304 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
305 		else
306 			amdgpu_ring_write(ring, ring->funcs->nop);
307 }
308 
309 /**
310  * sdma_v4_4_2_ring_emit_ib - Schedule an IB on the DMA engine
311  *
312  * @ring: amdgpu ring pointer
313  * @job: job to retrieve vmid from
314  * @ib: IB object to schedule
315  * @flags: unused
316  *
317  * Schedule an IB in the DMA ring.
318  */
319 static void sdma_v4_4_2_ring_emit_ib(struct amdgpu_ring *ring,
320 				   struct amdgpu_job *job,
321 				   struct amdgpu_ib *ib,
322 				   uint32_t flags)
323 {
324 	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
325 
326 	/* IB packet must end on a 8 DW boundary */
327 	sdma_v4_4_2_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
328 
329 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
330 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
331 	/* base must be 32 byte aligned */
332 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
333 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
334 	amdgpu_ring_write(ring, ib->length_dw);
335 	amdgpu_ring_write(ring, 0);
336 	amdgpu_ring_write(ring, 0);
337 
338 }
339 
340 static void sdma_v4_4_2_wait_reg_mem(struct amdgpu_ring *ring,
341 				   int mem_space, int hdp,
342 				   uint32_t addr0, uint32_t addr1,
343 				   uint32_t ref, uint32_t mask,
344 				   uint32_t inv)
345 {
346 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
347 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
348 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
349 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
350 	if (mem_space) {
351 		/* memory */
352 		amdgpu_ring_write(ring, addr0);
353 		amdgpu_ring_write(ring, addr1);
354 	} else {
355 		/* registers */
356 		amdgpu_ring_write(ring, addr0 << 2);
357 		amdgpu_ring_write(ring, addr1 << 2);
358 	}
359 	amdgpu_ring_write(ring, ref); /* reference */
360 	amdgpu_ring_write(ring, mask); /* mask */
361 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
362 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
363 }
364 
365 /**
366  * sdma_v4_4_2_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
367  *
368  * @ring: amdgpu ring pointer
369  *
370  * Emit an hdp flush packet on the requested DMA ring.
371  */
372 static void sdma_v4_4_2_ring_emit_hdp_flush(struct amdgpu_ring *ring)
373 {
374 	struct amdgpu_device *adev = ring->adev;
375 	u32 ref_and_mask = 0;
376 	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
377 
378 	ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0
379 		       << (ring->me % adev->sdma.num_inst_per_aid);
380 
381 	sdma_v4_4_2_wait_reg_mem(ring, 0, 1,
382 			       adev->nbio.funcs->get_hdp_flush_done_offset(adev),
383 			       adev->nbio.funcs->get_hdp_flush_req_offset(adev),
384 			       ref_and_mask, ref_and_mask, 10);
385 }
386 
387 /**
388  * sdma_v4_4_2_ring_emit_fence - emit a fence on the DMA ring
389  *
390  * @ring: amdgpu ring pointer
391  * @addr: address
392  * @seq: sequence number
393  * @flags: fence related flags
394  *
395  * Add a DMA fence packet to the ring to write
396  * the fence seq number and DMA trap packet to generate
397  * an interrupt if needed.
398  */
399 static void sdma_v4_4_2_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
400 				      unsigned flags)
401 {
402 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
403 	/* write the fence */
404 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
405 	/* zero in first two bits */
406 	BUG_ON(addr & 0x3);
407 	amdgpu_ring_write(ring, lower_32_bits(addr));
408 	amdgpu_ring_write(ring, upper_32_bits(addr));
409 	amdgpu_ring_write(ring, lower_32_bits(seq));
410 
411 	/* optionally write high bits as well */
412 	if (write64bit) {
413 		addr += 4;
414 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
415 		/* zero in first two bits */
416 		BUG_ON(addr & 0x3);
417 		amdgpu_ring_write(ring, lower_32_bits(addr));
418 		amdgpu_ring_write(ring, upper_32_bits(addr));
419 		amdgpu_ring_write(ring, upper_32_bits(seq));
420 	}
421 
422 	/* generate an interrupt */
423 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
424 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
425 }
426 
427 
428 /**
429  * sdma_v4_4_2_inst_gfx_stop - stop the gfx async dma engines
430  *
431  * @adev: amdgpu_device pointer
432  * @inst_mask: mask of dma engine instances to be disabled
433  *
434  * Stop the gfx async dma ring buffers.
435  */
436 static void sdma_v4_4_2_inst_gfx_stop(struct amdgpu_device *adev,
437 				      uint32_t inst_mask)
438 {
439 	struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
440 	u32 doorbell_offset, doorbell;
441 	u32 rb_cntl, ib_cntl;
442 	int i;
443 
444 	for_each_inst(i, inst_mask) {
445 		sdma[i] = &adev->sdma.instance[i].ring;
446 
447 		rb_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_CNTL);
448 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_ENABLE, 0);
449 		WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl);
450 		ib_cntl = RREG32_SDMA(i, regSDMA_GFX_IB_CNTL);
451 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_ENABLE, 0);
452 		WREG32_SDMA(i, regSDMA_GFX_IB_CNTL, ib_cntl);
453 
454 		if (sdma[i]->use_doorbell) {
455 			doorbell = RREG32_SDMA(i, regSDMA_GFX_DOORBELL);
456 			doorbell_offset = RREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET);
457 
458 			doorbell = REG_SET_FIELD(doorbell, SDMA_GFX_DOORBELL, ENABLE, 0);
459 			doorbell_offset = REG_SET_FIELD(doorbell_offset,
460 					SDMA_GFX_DOORBELL_OFFSET,
461 					OFFSET, 0);
462 			WREG32_SDMA(i, regSDMA_GFX_DOORBELL, doorbell);
463 			WREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET, doorbell_offset);
464 		}
465 	}
466 }
467 
468 /**
469  * sdma_v4_4_2_inst_rlc_stop - stop the compute async dma engines
470  *
471  * @adev: amdgpu_device pointer
472  * @inst_mask: mask of dma engine instances to be disabled
473  *
474  * Stop the compute async dma queues.
475  */
476 static void sdma_v4_4_2_inst_rlc_stop(struct amdgpu_device *adev,
477 				      uint32_t inst_mask)
478 {
479 	/* XXX todo */
480 }
481 
482 /**
483  * sdma_v4_4_2_inst_page_stop - stop the page async dma engines
484  *
485  * @adev: amdgpu_device pointer
486  * @inst_mask: mask of dma engine instances to be disabled
487  *
488  * Stop the page async dma ring buffers.
489  */
490 static void sdma_v4_4_2_inst_page_stop(struct amdgpu_device *adev,
491 				       uint32_t inst_mask)
492 {
493 	u32 rb_cntl, ib_cntl;
494 	int i;
495 
496 	for_each_inst(i, inst_mask) {
497 		rb_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_CNTL);
498 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL,
499 					RB_ENABLE, 0);
500 		WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl);
501 		ib_cntl = RREG32_SDMA(i, regSDMA_PAGE_IB_CNTL);
502 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL,
503 					IB_ENABLE, 0);
504 		WREG32_SDMA(i, regSDMA_PAGE_IB_CNTL, ib_cntl);
505 	}
506 }
507 
508 /**
509  * sdma_v4_4_2_inst_ctx_switch_enable - stop the async dma engines context switch
510  *
511  * @adev: amdgpu_device pointer
512  * @enable: enable/disable the DMA MEs context switch.
513  * @inst_mask: mask of dma engine instances to be enabled
514  *
515  * Halt or unhalt the async dma engines context switch.
516  */
517 static void sdma_v4_4_2_inst_ctx_switch_enable(struct amdgpu_device *adev,
518 					       bool enable, uint32_t inst_mask)
519 {
520 	u32 f32_cntl, phase_quantum = 0;
521 	int i;
522 
523 	if (amdgpu_sdma_phase_quantum) {
524 		unsigned value = amdgpu_sdma_phase_quantum;
525 		unsigned unit = 0;
526 
527 		while (value > (SDMA_PHASE0_QUANTUM__VALUE_MASK >>
528 				SDMA_PHASE0_QUANTUM__VALUE__SHIFT)) {
529 			value = (value + 1) >> 1;
530 			unit++;
531 		}
532 		if (unit > (SDMA_PHASE0_QUANTUM__UNIT_MASK >>
533 			    SDMA_PHASE0_QUANTUM__UNIT__SHIFT)) {
534 			value = (SDMA_PHASE0_QUANTUM__VALUE_MASK >>
535 				 SDMA_PHASE0_QUANTUM__VALUE__SHIFT);
536 			unit = (SDMA_PHASE0_QUANTUM__UNIT_MASK >>
537 				SDMA_PHASE0_QUANTUM__UNIT__SHIFT);
538 			WARN_ONCE(1,
539 			"clamping sdma_phase_quantum to %uK clock cycles\n",
540 				  value << unit);
541 		}
542 		phase_quantum =
543 			value << SDMA_PHASE0_QUANTUM__VALUE__SHIFT |
544 			unit  << SDMA_PHASE0_QUANTUM__UNIT__SHIFT;
545 	}
546 
547 	for_each_inst(i, inst_mask) {
548 		f32_cntl = RREG32_SDMA(i, regSDMA_CNTL);
549 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA_CNTL,
550 				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
551 		if (enable && amdgpu_sdma_phase_quantum) {
552 			WREG32_SDMA(i, regSDMA_PHASE0_QUANTUM, phase_quantum);
553 			WREG32_SDMA(i, regSDMA_PHASE1_QUANTUM, phase_quantum);
554 			WREG32_SDMA(i, regSDMA_PHASE2_QUANTUM, phase_quantum);
555 		}
556 		WREG32_SDMA(i, regSDMA_CNTL, f32_cntl);
557 
558 		/* Extend page fault timeout to avoid interrupt storm */
559 		WREG32_SDMA(i, regSDMA_UTCL1_TIMEOUT, 0x00800080);
560 	}
561 }
562 
563 /**
564  * sdma_v4_4_2_inst_enable - stop the async dma engines
565  *
566  * @adev: amdgpu_device pointer
567  * @enable: enable/disable the DMA MEs.
568  * @inst_mask: mask of dma engine instances to be enabled
569  *
570  * Halt or unhalt the async dma engines.
571  */
572 static void sdma_v4_4_2_inst_enable(struct amdgpu_device *adev, bool enable,
573 				    uint32_t inst_mask)
574 {
575 	u32 f32_cntl;
576 	int i;
577 
578 	if (!enable) {
579 		sdma_v4_4_2_inst_gfx_stop(adev, inst_mask);
580 		sdma_v4_4_2_inst_rlc_stop(adev, inst_mask);
581 		if (adev->sdma.has_page_queue)
582 			sdma_v4_4_2_inst_page_stop(adev, inst_mask);
583 
584 		/* SDMA FW needs to respond to FREEZE requests during reset.
585 		 * Keep it running during reset */
586 		if (!amdgpu_sriov_vf(adev) && amdgpu_in_reset(adev))
587 			return;
588 	}
589 
590 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP)
591 		return;
592 
593 	for_each_inst(i, inst_mask) {
594 		f32_cntl = RREG32_SDMA(i, regSDMA_F32_CNTL);
595 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA_F32_CNTL, HALT, enable ? 0 : 1);
596 		WREG32_SDMA(i, regSDMA_F32_CNTL, f32_cntl);
597 	}
598 }
599 
600 /*
601  * sdma_v4_4_2_rb_cntl - get parameters for rb_cntl
602  */
603 static uint32_t sdma_v4_4_2_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
604 {
605 	/* Set ring buffer size in dwords */
606 	uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
607 
608 	barrier(); /* work around https://llvm.org/pr42576 */
609 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
610 #ifdef __BIG_ENDIAN
611 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
612 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL,
613 				RPTR_WRITEBACK_SWAP_ENABLE, 1);
614 #endif
615 	return rb_cntl;
616 }
617 
618 /**
619  * sdma_v4_4_2_gfx_resume - setup and start the async dma engines
620  *
621  * @adev: amdgpu_device pointer
622  * @i: instance to resume
623  *
624  * Set up the gfx DMA ring buffers and enable them.
625  * Returns 0 for success, error for failure.
626  */
627 static void sdma_v4_4_2_gfx_resume(struct amdgpu_device *adev, unsigned int i)
628 {
629 	struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
630 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
631 	u32 wb_offset;
632 	u32 doorbell;
633 	u32 doorbell_offset;
634 	u64 wptr_gpu_addr;
635 
636 	wb_offset = (ring->rptr_offs * 4);
637 
638 	rb_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_CNTL);
639 	rb_cntl = sdma_v4_4_2_rb_cntl(ring, rb_cntl);
640 	WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl);
641 
642 	/* set the wb address whether it's enabled or not */
643 	WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_ADDR_HI,
644 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
645 	WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_ADDR_LO,
646 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
647 
648 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL,
649 				RPTR_WRITEBACK_ENABLE, 1);
650 
651 	WREG32_SDMA(i, regSDMA_GFX_RB_BASE, ring->gpu_addr >> 8);
652 	WREG32_SDMA(i, regSDMA_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
653 
654 	ring->wptr = 0;
655 
656 	/* before programing wptr to a less value, need set minor_ptr_update first */
657 	WREG32_SDMA(i, regSDMA_GFX_MINOR_PTR_UPDATE, 1);
658 
659 	/* Initialize the ring buffer's read and write pointers */
660 	WREG32_SDMA(i, regSDMA_GFX_RB_RPTR, 0);
661 	WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_HI, 0);
662 	WREG32_SDMA(i, regSDMA_GFX_RB_WPTR, 0);
663 	WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_HI, 0);
664 
665 	doorbell = RREG32_SDMA(i, regSDMA_GFX_DOORBELL);
666 	doorbell_offset = RREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET);
667 
668 	doorbell = REG_SET_FIELD(doorbell, SDMA_GFX_DOORBELL, ENABLE,
669 				 ring->use_doorbell);
670 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
671 					SDMA_GFX_DOORBELL_OFFSET,
672 					OFFSET, ring->doorbell_index);
673 	WREG32_SDMA(i, regSDMA_GFX_DOORBELL, doorbell);
674 	WREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET, doorbell_offset);
675 
676 	sdma_v4_4_2_ring_set_wptr(ring);
677 
678 	/* set minor_ptr_update to 0 after wptr programed */
679 	WREG32_SDMA(i, regSDMA_GFX_MINOR_PTR_UPDATE, 0);
680 
681 	/* setup the wptr shadow polling */
682 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
683 	WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_ADDR_LO,
684 		    lower_32_bits(wptr_gpu_addr));
685 	WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_ADDR_HI,
686 		    upper_32_bits(wptr_gpu_addr));
687 	wptr_poll_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_CNTL);
688 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
689 				       SDMA_GFX_RB_WPTR_POLL_CNTL,
690 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
691 	WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
692 
693 	/* enable DMA RB */
694 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_ENABLE, 1);
695 	WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl);
696 
697 	ib_cntl = RREG32_SDMA(i, regSDMA_GFX_IB_CNTL);
698 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_ENABLE, 1);
699 #ifdef __BIG_ENDIAN
700 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
701 #endif
702 	/* enable DMA IBs */
703 	WREG32_SDMA(i, regSDMA_GFX_IB_CNTL, ib_cntl);
704 }
705 
706 /**
707  * sdma_v4_4_2_page_resume - setup and start the async dma engines
708  *
709  * @adev: amdgpu_device pointer
710  * @i: instance to resume
711  *
712  * Set up the page DMA ring buffers and enable them.
713  * Returns 0 for success, error for failure.
714  */
715 static void sdma_v4_4_2_page_resume(struct amdgpu_device *adev, unsigned int i)
716 {
717 	struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
718 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
719 	u32 wb_offset;
720 	u32 doorbell;
721 	u32 doorbell_offset;
722 	u64 wptr_gpu_addr;
723 
724 	wb_offset = (ring->rptr_offs * 4);
725 
726 	rb_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_CNTL);
727 	rb_cntl = sdma_v4_4_2_rb_cntl(ring, rb_cntl);
728 	WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl);
729 
730 	/* Initialize the ring buffer's read and write pointers */
731 	WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR, 0);
732 	WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_HI, 0);
733 	WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR, 0);
734 	WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_HI, 0);
735 
736 	/* set the wb address whether it's enabled or not */
737 	WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_ADDR_HI,
738 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
739 	WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_ADDR_LO,
740 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
741 
742 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL,
743 				RPTR_WRITEBACK_ENABLE, 1);
744 
745 	WREG32_SDMA(i, regSDMA_PAGE_RB_BASE, ring->gpu_addr >> 8);
746 	WREG32_SDMA(i, regSDMA_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
747 
748 	ring->wptr = 0;
749 
750 	/* before programing wptr to a less value, need set minor_ptr_update first */
751 	WREG32_SDMA(i, regSDMA_PAGE_MINOR_PTR_UPDATE, 1);
752 
753 	doorbell = RREG32_SDMA(i, regSDMA_PAGE_DOORBELL);
754 	doorbell_offset = RREG32_SDMA(i, regSDMA_PAGE_DOORBELL_OFFSET);
755 
756 	doorbell = REG_SET_FIELD(doorbell, SDMA_PAGE_DOORBELL, ENABLE,
757 				 ring->use_doorbell);
758 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
759 					SDMA_PAGE_DOORBELL_OFFSET,
760 					OFFSET, ring->doorbell_index);
761 	WREG32_SDMA(i, regSDMA_PAGE_DOORBELL, doorbell);
762 	WREG32_SDMA(i, regSDMA_PAGE_DOORBELL_OFFSET, doorbell_offset);
763 
764 	/* paging queue doorbell range is setup at sdma_v4_4_2_gfx_resume */
765 	sdma_v4_4_2_page_ring_set_wptr(ring);
766 
767 	/* set minor_ptr_update to 0 after wptr programed */
768 	WREG32_SDMA(i, regSDMA_PAGE_MINOR_PTR_UPDATE, 0);
769 
770 	/* setup the wptr shadow polling */
771 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
772 	WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_ADDR_LO,
773 		    lower_32_bits(wptr_gpu_addr));
774 	WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_ADDR_HI,
775 		    upper_32_bits(wptr_gpu_addr));
776 	wptr_poll_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_CNTL);
777 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
778 				       SDMA_PAGE_RB_WPTR_POLL_CNTL,
779 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
780 	WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
781 
782 	/* enable DMA RB */
783 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL, RB_ENABLE, 1);
784 	WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl);
785 
786 	ib_cntl = RREG32_SDMA(i, regSDMA_PAGE_IB_CNTL);
787 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL, IB_ENABLE, 1);
788 #ifdef __BIG_ENDIAN
789 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
790 #endif
791 	/* enable DMA IBs */
792 	WREG32_SDMA(i, regSDMA_PAGE_IB_CNTL, ib_cntl);
793 }
794 
795 static void sdma_v4_4_2_init_pg(struct amdgpu_device *adev)
796 {
797 
798 }
799 
800 /**
801  * sdma_v4_4_2_inst_rlc_resume - setup and start the async dma engines
802  *
803  * @adev: amdgpu_device pointer
804  * @inst_mask: mask of dma engine instances to be enabled
805  *
806  * Set up the compute DMA queues and enable them.
807  * Returns 0 for success, error for failure.
808  */
809 static int sdma_v4_4_2_inst_rlc_resume(struct amdgpu_device *adev,
810 				       uint32_t inst_mask)
811 {
812 	sdma_v4_4_2_init_pg(adev);
813 
814 	return 0;
815 }
816 
817 /**
818  * sdma_v4_4_2_inst_load_microcode - load the sDMA ME ucode
819  *
820  * @adev: amdgpu_device pointer
821  * @inst_mask: mask of dma engine instances to be enabled
822  *
823  * Loads the sDMA0/1 ucode.
824  * Returns 0 for success, -EINVAL if the ucode is not available.
825  */
826 static int sdma_v4_4_2_inst_load_microcode(struct amdgpu_device *adev,
827 					   uint32_t inst_mask)
828 {
829 	const struct sdma_firmware_header_v1_0 *hdr;
830 	const __le32 *fw_data;
831 	u32 fw_size;
832 	int i, j;
833 
834 	/* halt the MEs */
835 	sdma_v4_4_2_inst_enable(adev, false, inst_mask);
836 
837 	for_each_inst(i, inst_mask) {
838 		if (!adev->sdma.instance[i].fw)
839 			return -EINVAL;
840 
841 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
842 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
843 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
844 
845 		fw_data = (const __le32 *)
846 			(adev->sdma.instance[i].fw->data +
847 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
848 
849 		WREG32_SDMA(i, regSDMA_UCODE_ADDR, 0);
850 
851 		for (j = 0; j < fw_size; j++)
852 			WREG32_SDMA(i, regSDMA_UCODE_DATA,
853 				    le32_to_cpup(fw_data++));
854 
855 		WREG32_SDMA(i, regSDMA_UCODE_ADDR,
856 			    adev->sdma.instance[i].fw_version);
857 	}
858 
859 	return 0;
860 }
861 
862 /**
863  * sdma_v4_4_2_inst_start - setup and start the async dma engines
864  *
865  * @adev: amdgpu_device pointer
866  * @inst_mask: mask of dma engine instances to be enabled
867  *
868  * Set up the DMA engines and enable them.
869  * Returns 0 for success, error for failure.
870  */
871 static int sdma_v4_4_2_inst_start(struct amdgpu_device *adev,
872 				  uint32_t inst_mask)
873 {
874 	struct amdgpu_ring *ring;
875 	uint32_t tmp_mask;
876 	int i, r = 0;
877 
878 	if (amdgpu_sriov_vf(adev)) {
879 		sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask);
880 		sdma_v4_4_2_inst_enable(adev, false, inst_mask);
881 	} else {
882 		/* bypass sdma microcode loading on Gopher */
883 		if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP &&
884 		    adev->sdma.instance[0].fw) {
885 			r = sdma_v4_4_2_inst_load_microcode(adev, inst_mask);
886 			if (r)
887 				return r;
888 		}
889 
890 		/* unhalt the MEs */
891 		sdma_v4_4_2_inst_enable(adev, true, inst_mask);
892 		/* enable sdma ring preemption */
893 		sdma_v4_4_2_inst_ctx_switch_enable(adev, true, inst_mask);
894 	}
895 
896 	/* start the gfx rings and rlc compute queues */
897 	tmp_mask = inst_mask;
898 	for_each_inst(i, tmp_mask) {
899 		uint32_t temp;
900 
901 		WREG32_SDMA(i, regSDMA_SEM_WAIT_FAIL_TIMER_CNTL, 0);
902 		sdma_v4_4_2_gfx_resume(adev, i);
903 		if (adev->sdma.has_page_queue)
904 			sdma_v4_4_2_page_resume(adev, i);
905 
906 		/* set utc l1 enable flag always to 1 */
907 		temp = RREG32_SDMA(i, regSDMA_CNTL);
908 		temp = REG_SET_FIELD(temp, SDMA_CNTL, UTC_L1_ENABLE, 1);
909 		/* enable context empty interrupt during initialization */
910 		temp = REG_SET_FIELD(temp, SDMA_CNTL, CTXEMPTY_INT_ENABLE, 1);
911 		WREG32_SDMA(i, regSDMA_CNTL, temp);
912 
913 		if (!amdgpu_sriov_vf(adev)) {
914 			if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
915 				/* unhalt engine */
916 				temp = RREG32_SDMA(i, regSDMA_F32_CNTL);
917 				temp = REG_SET_FIELD(temp, SDMA_F32_CNTL, HALT, 0);
918 				WREG32_SDMA(i, regSDMA_F32_CNTL, temp);
919 			}
920 		}
921 	}
922 
923 	if (amdgpu_sriov_vf(adev)) {
924 		sdma_v4_4_2_inst_ctx_switch_enable(adev, true, inst_mask);
925 		sdma_v4_4_2_inst_enable(adev, true, inst_mask);
926 	} else {
927 		r = sdma_v4_4_2_inst_rlc_resume(adev, inst_mask);
928 		if (r)
929 			return r;
930 	}
931 
932 	tmp_mask = inst_mask;
933 	for_each_inst(i, tmp_mask) {
934 		ring = &adev->sdma.instance[i].ring;
935 
936 		r = amdgpu_ring_test_helper(ring);
937 		if (r)
938 			return r;
939 
940 		if (adev->sdma.has_page_queue) {
941 			struct amdgpu_ring *page = &adev->sdma.instance[i].page;
942 
943 			r = amdgpu_ring_test_helper(page);
944 			if (r)
945 				return r;
946 		}
947 	}
948 
949 	return r;
950 }
951 
952 /**
953  * sdma_v4_4_2_ring_test_ring - simple async dma engine test
954  *
955  * @ring: amdgpu_ring structure holding ring information
956  *
957  * Test the DMA engine by writing using it to write an
958  * value to memory.
959  * Returns 0 for success, error for failure.
960  */
961 static int sdma_v4_4_2_ring_test_ring(struct amdgpu_ring *ring)
962 {
963 	struct amdgpu_device *adev = ring->adev;
964 	unsigned i;
965 	unsigned index;
966 	int r;
967 	u32 tmp;
968 	u64 gpu_addr;
969 
970 	r = amdgpu_device_wb_get(adev, &index);
971 	if (r)
972 		return r;
973 
974 	gpu_addr = adev->wb.gpu_addr + (index * 4);
975 	tmp = 0xCAFEDEAD;
976 	adev->wb.wb[index] = cpu_to_le32(tmp);
977 
978 	r = amdgpu_ring_alloc(ring, 5);
979 	if (r)
980 		goto error_free_wb;
981 
982 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
983 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
984 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
985 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
986 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
987 	amdgpu_ring_write(ring, 0xDEADBEEF);
988 	amdgpu_ring_commit(ring);
989 
990 	for (i = 0; i < adev->usec_timeout; i++) {
991 		tmp = le32_to_cpu(adev->wb.wb[index]);
992 		if (tmp == 0xDEADBEEF)
993 			break;
994 		udelay(1);
995 	}
996 
997 	if (i >= adev->usec_timeout)
998 		r = -ETIMEDOUT;
999 
1000 error_free_wb:
1001 	amdgpu_device_wb_free(adev, index);
1002 	return r;
1003 }
1004 
1005 /**
1006  * sdma_v4_4_2_ring_test_ib - test an IB on the DMA engine
1007  *
1008  * @ring: amdgpu_ring structure holding ring information
1009  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
1010  *
1011  * Test a simple IB in the DMA ring.
1012  * Returns 0 on success, error on failure.
1013  */
1014 static int sdma_v4_4_2_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1015 {
1016 	struct amdgpu_device *adev = ring->adev;
1017 	struct amdgpu_ib ib;
1018 	struct dma_fence *f = NULL;
1019 	unsigned index;
1020 	long r;
1021 	u32 tmp = 0;
1022 	u64 gpu_addr;
1023 
1024 	r = amdgpu_device_wb_get(adev, &index);
1025 	if (r)
1026 		return r;
1027 
1028 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1029 	tmp = 0xCAFEDEAD;
1030 	adev->wb.wb[index] = cpu_to_le32(tmp);
1031 	memset(&ib, 0, sizeof(ib));
1032 	r = amdgpu_ib_get(adev, NULL, 256,
1033 					AMDGPU_IB_POOL_DIRECT, &ib);
1034 	if (r)
1035 		goto err0;
1036 
1037 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1038 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1039 	ib.ptr[1] = lower_32_bits(gpu_addr);
1040 	ib.ptr[2] = upper_32_bits(gpu_addr);
1041 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1042 	ib.ptr[4] = 0xDEADBEEF;
1043 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1044 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1045 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1046 	ib.length_dw = 8;
1047 
1048 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1049 	if (r)
1050 		goto err1;
1051 
1052 	r = dma_fence_wait_timeout(f, false, timeout);
1053 	if (r == 0) {
1054 		r = -ETIMEDOUT;
1055 		goto err1;
1056 	} else if (r < 0) {
1057 		goto err1;
1058 	}
1059 	tmp = le32_to_cpu(adev->wb.wb[index]);
1060 	if (tmp == 0xDEADBEEF)
1061 		r = 0;
1062 	else
1063 		r = -EINVAL;
1064 
1065 err1:
1066 	amdgpu_ib_free(adev, &ib, NULL);
1067 	dma_fence_put(f);
1068 err0:
1069 	amdgpu_device_wb_free(adev, index);
1070 	return r;
1071 }
1072 
1073 
1074 /**
1075  * sdma_v4_4_2_vm_copy_pte - update PTEs by copying them from the GART
1076  *
1077  * @ib: indirect buffer to fill with commands
1078  * @pe: addr of the page entry
1079  * @src: src addr to copy from
1080  * @count: number of page entries to update
1081  *
1082  * Update PTEs by copying them from the GART using sDMA.
1083  */
1084 static void sdma_v4_4_2_vm_copy_pte(struct amdgpu_ib *ib,
1085 				  uint64_t pe, uint64_t src,
1086 				  unsigned count)
1087 {
1088 	unsigned bytes = count * 8;
1089 
1090 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1091 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1092 	ib->ptr[ib->length_dw++] = bytes - 1;
1093 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1094 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1095 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1096 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1097 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1098 
1099 }
1100 
1101 /**
1102  * sdma_v4_4_2_vm_write_pte - update PTEs by writing them manually
1103  *
1104  * @ib: indirect buffer to fill with commands
1105  * @pe: addr of the page entry
1106  * @value: dst addr to write into pe
1107  * @count: number of page entries to update
1108  * @incr: increase next addr by incr bytes
1109  *
1110  * Update PTEs by writing them manually using sDMA.
1111  */
1112 static void sdma_v4_4_2_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1113 				   uint64_t value, unsigned count,
1114 				   uint32_t incr)
1115 {
1116 	unsigned ndw = count * 2;
1117 
1118 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1119 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1120 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1121 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1122 	ib->ptr[ib->length_dw++] = ndw - 1;
1123 	for (; ndw > 0; ndw -= 2) {
1124 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1125 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1126 		value += incr;
1127 	}
1128 }
1129 
1130 /**
1131  * sdma_v4_4_2_vm_set_pte_pde - update the page tables using sDMA
1132  *
1133  * @ib: indirect buffer to fill with commands
1134  * @pe: addr of the page entry
1135  * @addr: dst addr to write into pe
1136  * @count: number of page entries to update
1137  * @incr: increase next addr by incr bytes
1138  * @flags: access flags
1139  *
1140  * Update the page tables using sDMA.
1141  */
1142 static void sdma_v4_4_2_vm_set_pte_pde(struct amdgpu_ib *ib,
1143 				     uint64_t pe,
1144 				     uint64_t addr, unsigned count,
1145 				     uint32_t incr, uint64_t flags)
1146 {
1147 	/* for physically contiguous pages (vram) */
1148 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1149 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1150 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1151 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1152 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1153 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1154 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1155 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1156 	ib->ptr[ib->length_dw++] = 0;
1157 	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1158 }
1159 
1160 /**
1161  * sdma_v4_4_2_ring_pad_ib - pad the IB to the required number of dw
1162  *
1163  * @ring: amdgpu_ring structure holding ring information
1164  * @ib: indirect buffer to fill with padding
1165  */
1166 static void sdma_v4_4_2_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1167 {
1168 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1169 	u32 pad_count;
1170 	int i;
1171 
1172 	pad_count = (-ib->length_dw) & 7;
1173 	for (i = 0; i < pad_count; i++)
1174 		if (sdma && sdma->burst_nop && (i == 0))
1175 			ib->ptr[ib->length_dw++] =
1176 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1177 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1178 		else
1179 			ib->ptr[ib->length_dw++] =
1180 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1181 }
1182 
1183 
1184 /**
1185  * sdma_v4_4_2_ring_emit_pipeline_sync - sync the pipeline
1186  *
1187  * @ring: amdgpu_ring pointer
1188  *
1189  * Make sure all previous operations are completed (CIK).
1190  */
1191 static void sdma_v4_4_2_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1192 {
1193 	uint32_t seq = ring->fence_drv.sync_seq;
1194 	uint64_t addr = ring->fence_drv.gpu_addr;
1195 
1196 	/* wait for idle */
1197 	sdma_v4_4_2_wait_reg_mem(ring, 1, 0,
1198 			       addr & 0xfffffffc,
1199 			       upper_32_bits(addr) & 0xffffffff,
1200 			       seq, 0xffffffff, 4);
1201 }
1202 
1203 
1204 /**
1205  * sdma_v4_4_2_ring_emit_vm_flush - vm flush using sDMA
1206  *
1207  * @ring: amdgpu_ring pointer
1208  * @vmid: vmid number to use
1209  * @pd_addr: address
1210  *
1211  * Update the page table base and flush the VM TLB
1212  * using sDMA.
1213  */
1214 static void sdma_v4_4_2_ring_emit_vm_flush(struct amdgpu_ring *ring,
1215 					 unsigned vmid, uint64_t pd_addr)
1216 {
1217 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1218 }
1219 
1220 static void sdma_v4_4_2_ring_emit_wreg(struct amdgpu_ring *ring,
1221 				     uint32_t reg, uint32_t val)
1222 {
1223 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1224 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1225 	amdgpu_ring_write(ring, reg);
1226 	amdgpu_ring_write(ring, val);
1227 }
1228 
1229 static void sdma_v4_4_2_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1230 					 uint32_t val, uint32_t mask)
1231 {
1232 	sdma_v4_4_2_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1233 }
1234 
1235 static bool sdma_v4_4_2_fw_support_paging_queue(struct amdgpu_device *adev)
1236 {
1237 	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
1238 	case IP_VERSION(4, 4, 2):
1239 	case IP_VERSION(4, 4, 5):
1240 		return false;
1241 	default:
1242 		return false;
1243 	}
1244 }
1245 
1246 static int sdma_v4_4_2_early_init(void *handle)
1247 {
1248 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1249 	int r;
1250 
1251 	r = sdma_v4_4_2_init_microcode(adev);
1252 	if (r)
1253 		return r;
1254 
1255 	/* TODO: Page queue breaks driver reload under SRIOV */
1256 	if (sdma_v4_4_2_fw_support_paging_queue(adev))
1257 		adev->sdma.has_page_queue = true;
1258 
1259 	sdma_v4_4_2_set_ring_funcs(adev);
1260 	sdma_v4_4_2_set_buffer_funcs(adev);
1261 	sdma_v4_4_2_set_vm_pte_funcs(adev);
1262 	sdma_v4_4_2_set_irq_funcs(adev);
1263 	sdma_v4_4_2_set_ras_funcs(adev);
1264 
1265 	return 0;
1266 }
1267 
1268 #if 0
1269 static int sdma_v4_4_2_process_ras_data_cb(struct amdgpu_device *adev,
1270 		void *err_data,
1271 		struct amdgpu_iv_entry *entry);
1272 #endif
1273 
1274 static int sdma_v4_4_2_late_init(void *handle)
1275 {
1276 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1277 #if 0
1278 	struct ras_ih_if ih_info = {
1279 		.cb = sdma_v4_4_2_process_ras_data_cb,
1280 	};
1281 #endif
1282 	if (!amdgpu_persistent_edc_harvesting_supported(adev))
1283 		amdgpu_ras_reset_error_count(adev, AMDGPU_RAS_BLOCK__SDMA);
1284 
1285 	return 0;
1286 }
1287 
1288 static int sdma_v4_4_2_sw_init(void *handle)
1289 {
1290 	struct amdgpu_ring *ring;
1291 	int r, i;
1292 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1293 	u32 aid_id;
1294 
1295 	/* SDMA trap event */
1296 	for (i = 0; i < adev->sdma.num_inst_per_aid; i++) {
1297 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1298 				      SDMA0_4_0__SRCID__SDMA_TRAP,
1299 				      &adev->sdma.trap_irq);
1300 		if (r)
1301 			return r;
1302 	}
1303 
1304 	/* SDMA SRAM ECC event */
1305 	for (i = 0; i < adev->sdma.num_inst_per_aid; i++) {
1306 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1307 				      SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
1308 				      &adev->sdma.ecc_irq);
1309 		if (r)
1310 			return r;
1311 	}
1312 
1313 	/* SDMA VM_HOLE/DOORBELL_INV/POLL_TIMEOUT/SRBM_WRITE_PROTECTION event*/
1314 	for (i = 0; i < adev->sdma.num_inst_per_aid; i++) {
1315 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1316 				      SDMA0_4_0__SRCID__SDMA_VM_HOLE,
1317 				      &adev->sdma.vm_hole_irq);
1318 		if (r)
1319 			return r;
1320 
1321 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1322 				      SDMA0_4_0__SRCID__SDMA_DOORBELL_INVALID,
1323 				      &adev->sdma.doorbell_invalid_irq);
1324 		if (r)
1325 			return r;
1326 
1327 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1328 				      SDMA0_4_0__SRCID__SDMA_POLL_TIMEOUT,
1329 				      &adev->sdma.pool_timeout_irq);
1330 		if (r)
1331 			return r;
1332 
1333 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1334 				      SDMA0_4_0__SRCID__SDMA_SRBMWRITE,
1335 				      &adev->sdma.srbm_write_irq);
1336 		if (r)
1337 			return r;
1338 	}
1339 
1340 	for (i = 0; i < adev->sdma.num_instances; i++) {
1341 		ring = &adev->sdma.instance[i].ring;
1342 		ring->ring_obj = NULL;
1343 		ring->use_doorbell = true;
1344 		aid_id = adev->sdma.instance[i].aid_id;
1345 
1346 		DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i,
1347 				ring->use_doorbell?"true":"false");
1348 
1349 		/* doorbell size is 2 dwords, get DWORD offset */
1350 		ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1351 		ring->vm_hub = AMDGPU_MMHUB0(aid_id);
1352 
1353 		sprintf(ring->name, "sdma%d.%d", aid_id,
1354 				i % adev->sdma.num_inst_per_aid);
1355 		r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1356 				     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1357 				     AMDGPU_RING_PRIO_DEFAULT, NULL);
1358 		if (r)
1359 			return r;
1360 
1361 		if (adev->sdma.has_page_queue) {
1362 			ring = &adev->sdma.instance[i].page;
1363 			ring->ring_obj = NULL;
1364 			ring->use_doorbell = true;
1365 
1366 			/* doorbell index of page queue is assigned right after
1367 			 * gfx queue on the same instance
1368 			 */
1369 			ring->doorbell_index =
1370 				(adev->doorbell_index.sdma_engine[i] + 1) << 1;
1371 			ring->vm_hub = AMDGPU_MMHUB0(aid_id);
1372 
1373 			sprintf(ring->name, "page%d.%d", aid_id,
1374 					i % adev->sdma.num_inst_per_aid);
1375 			r = amdgpu_ring_init(adev, ring, 1024,
1376 					     &adev->sdma.trap_irq,
1377 					     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1378 					     AMDGPU_RING_PRIO_DEFAULT, NULL);
1379 			if (r)
1380 				return r;
1381 		}
1382 	}
1383 
1384 	if (amdgpu_sdma_ras_sw_init(adev)) {
1385 		dev_err(adev->dev, "fail to initialize sdma ras block\n");
1386 		return -EINVAL;
1387 	}
1388 
1389 	return r;
1390 }
1391 
1392 static int sdma_v4_4_2_sw_fini(void *handle)
1393 {
1394 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1395 	int i;
1396 
1397 	for (i = 0; i < adev->sdma.num_instances; i++) {
1398 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1399 		if (adev->sdma.has_page_queue)
1400 			amdgpu_ring_fini(&adev->sdma.instance[i].page);
1401 	}
1402 
1403 	if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 2) ||
1404 	    amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 5))
1405 		amdgpu_sdma_destroy_inst_ctx(adev, true);
1406 	else
1407 		amdgpu_sdma_destroy_inst_ctx(adev, false);
1408 
1409 	return 0;
1410 }
1411 
1412 static int sdma_v4_4_2_hw_init(void *handle)
1413 {
1414 	int r;
1415 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1416 	uint32_t inst_mask;
1417 
1418 	inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
1419 	if (!amdgpu_sriov_vf(adev))
1420 		sdma_v4_4_2_inst_init_golden_registers(adev, inst_mask);
1421 
1422 	r = sdma_v4_4_2_inst_start(adev, inst_mask);
1423 
1424 	return r;
1425 }
1426 
1427 static int sdma_v4_4_2_hw_fini(void *handle)
1428 {
1429 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1430 	uint32_t inst_mask;
1431 	int i;
1432 
1433 	if (amdgpu_sriov_vf(adev))
1434 		return 0;
1435 
1436 	inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
1437 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
1438 		for (i = 0; i < adev->sdma.num_instances; i++) {
1439 			amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
1440 				       AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1441 		}
1442 	}
1443 
1444 	sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask);
1445 	sdma_v4_4_2_inst_enable(adev, false, inst_mask);
1446 
1447 	return 0;
1448 }
1449 
1450 static int sdma_v4_4_2_set_clockgating_state(void *handle,
1451 					     enum amd_clockgating_state state);
1452 
1453 static int sdma_v4_4_2_suspend(void *handle)
1454 {
1455 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1456 
1457 	if (amdgpu_in_reset(adev))
1458 		sdma_v4_4_2_set_clockgating_state(adev, AMD_CG_STATE_UNGATE);
1459 
1460 	return sdma_v4_4_2_hw_fini(adev);
1461 }
1462 
1463 static int sdma_v4_4_2_resume(void *handle)
1464 {
1465 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1466 
1467 	return sdma_v4_4_2_hw_init(adev);
1468 }
1469 
1470 static bool sdma_v4_4_2_is_idle(void *handle)
1471 {
1472 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1473 	u32 i;
1474 
1475 	for (i = 0; i < adev->sdma.num_instances; i++) {
1476 		u32 tmp = RREG32_SDMA(i, regSDMA_STATUS_REG);
1477 
1478 		if (!(tmp & SDMA_STATUS_REG__IDLE_MASK))
1479 			return false;
1480 	}
1481 
1482 	return true;
1483 }
1484 
1485 static int sdma_v4_4_2_wait_for_idle(void *handle)
1486 {
1487 	unsigned i, j;
1488 	u32 sdma[AMDGPU_MAX_SDMA_INSTANCES];
1489 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1490 
1491 	for (i = 0; i < adev->usec_timeout; i++) {
1492 		for (j = 0; j < adev->sdma.num_instances; j++) {
1493 			sdma[j] = RREG32_SDMA(j, regSDMA_STATUS_REG);
1494 			if (!(sdma[j] & SDMA_STATUS_REG__IDLE_MASK))
1495 				break;
1496 		}
1497 		if (j == adev->sdma.num_instances)
1498 			return 0;
1499 		udelay(1);
1500 	}
1501 	return -ETIMEDOUT;
1502 }
1503 
1504 static int sdma_v4_4_2_soft_reset(void *handle)
1505 {
1506 	/* todo */
1507 
1508 	return 0;
1509 }
1510 
1511 static int sdma_v4_4_2_set_trap_irq_state(struct amdgpu_device *adev,
1512 					struct amdgpu_irq_src *source,
1513 					unsigned type,
1514 					enum amdgpu_interrupt_state state)
1515 {
1516 	u32 sdma_cntl;
1517 
1518 	sdma_cntl = RREG32_SDMA(type, regSDMA_CNTL);
1519 	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA_CNTL, TRAP_ENABLE,
1520 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1521 	WREG32_SDMA(type, regSDMA_CNTL, sdma_cntl);
1522 
1523 	return 0;
1524 }
1525 
1526 static int sdma_v4_4_2_process_trap_irq(struct amdgpu_device *adev,
1527 				      struct amdgpu_irq_src *source,
1528 				      struct amdgpu_iv_entry *entry)
1529 {
1530 	uint32_t instance, i;
1531 
1532 	DRM_DEBUG("IH: SDMA trap\n");
1533 	instance = sdma_v4_4_2_irq_id_to_seq(adev, entry->client_id);
1534 
1535 	/* Client id gives the SDMA instance in AID. To know the exact SDMA
1536 	 * instance, interrupt entry gives the node id which corresponds to the AID instance.
1537 	 * Match node id with the AID id associated with the SDMA instance. */
1538 	for (i = instance; i < adev->sdma.num_instances;
1539 	     i += adev->sdma.num_inst_per_aid) {
1540 		if (adev->sdma.instance[i].aid_id ==
1541 		    node_id_to_phys_map[entry->node_id])
1542 			break;
1543 	}
1544 
1545 	if (i >= adev->sdma.num_instances) {
1546 		dev_WARN_ONCE(
1547 			adev->dev, 1,
1548 			"Couldn't find the right sdma instance in trap handler");
1549 		return 0;
1550 	}
1551 
1552 	switch (entry->ring_id) {
1553 	case 0:
1554 		amdgpu_fence_process(&adev->sdma.instance[i].ring);
1555 		break;
1556 	default:
1557 		break;
1558 	}
1559 	return 0;
1560 }
1561 
1562 #if 0
1563 static int sdma_v4_4_2_process_ras_data_cb(struct amdgpu_device *adev,
1564 		void *err_data,
1565 		struct amdgpu_iv_entry *entry)
1566 {
1567 	int instance;
1568 
1569 	/* When “Full RAS” is enabled, the per-IP interrupt sources should
1570 	 * be disabled and the driver should only look for the aggregated
1571 	 * interrupt via sync flood
1572 	 */
1573 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA))
1574 		goto out;
1575 
1576 	instance = sdma_v4_4_2_irq_id_to_seq(adev, entry->client_id);
1577 	if (instance < 0)
1578 		goto out;
1579 
1580 	amdgpu_sdma_process_ras_data_cb(adev, err_data, entry);
1581 
1582 out:
1583 	return AMDGPU_RAS_SUCCESS;
1584 }
1585 #endif
1586 
1587 static int sdma_v4_4_2_process_illegal_inst_irq(struct amdgpu_device *adev,
1588 					      struct amdgpu_irq_src *source,
1589 					      struct amdgpu_iv_entry *entry)
1590 {
1591 	int instance;
1592 
1593 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
1594 
1595 	instance = sdma_v4_4_2_irq_id_to_seq(adev, entry->client_id);
1596 	if (instance < 0)
1597 		return 0;
1598 
1599 	switch (entry->ring_id) {
1600 	case 0:
1601 		drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
1602 		break;
1603 	}
1604 	return 0;
1605 }
1606 
1607 static int sdma_v4_4_2_set_ecc_irq_state(struct amdgpu_device *adev,
1608 					struct amdgpu_irq_src *source,
1609 					unsigned type,
1610 					enum amdgpu_interrupt_state state)
1611 {
1612 	u32 sdma_cntl;
1613 
1614 	sdma_cntl = RREG32_SDMA(type, regSDMA_CNTL);
1615 	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA_CNTL, DRAM_ECC_INT_ENABLE,
1616 					state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1617 	WREG32_SDMA(type, regSDMA_CNTL, sdma_cntl);
1618 
1619 	return 0;
1620 }
1621 
1622 static int sdma_v4_4_2_print_iv_entry(struct amdgpu_device *adev,
1623 					      struct amdgpu_iv_entry *entry)
1624 {
1625 	int instance;
1626 	struct amdgpu_task_info *task_info;
1627 	u64 addr;
1628 
1629 	instance = sdma_v4_4_2_irq_id_to_seq(adev, entry->client_id);
1630 	if (instance < 0 || instance >= adev->sdma.num_instances) {
1631 		dev_err(adev->dev, "sdma instance invalid %d\n", instance);
1632 		return -EINVAL;
1633 	}
1634 
1635 	addr = (u64)entry->src_data[0] << 12;
1636 	addr |= ((u64)entry->src_data[1] & 0xf) << 44;
1637 
1638 	dev_dbg_ratelimited(adev->dev,
1639 			    "[sdma%d] address:0x%016llx src_id:%u ring:%u vmid:%u pasid:%u\n",
1640 			    instance, addr, entry->src_id, entry->ring_id, entry->vmid,
1641 			    entry->pasid);
1642 
1643 	task_info = amdgpu_vm_get_task_info_pasid(adev, entry->pasid);
1644 	if (task_info) {
1645 		dev_dbg_ratelimited(adev->dev, " for process %s pid %d thread %s pid %d\n",
1646 				    task_info->process_name, task_info->tgid,
1647 				    task_info->task_name, task_info->pid);
1648 		amdgpu_vm_put_task_info(task_info);
1649 	}
1650 
1651 	return 0;
1652 }
1653 
1654 static int sdma_v4_4_2_process_vm_hole_irq(struct amdgpu_device *adev,
1655 					      struct amdgpu_irq_src *source,
1656 					      struct amdgpu_iv_entry *entry)
1657 {
1658 	dev_dbg_ratelimited(adev->dev, "MC or SEM address in VM hole\n");
1659 	sdma_v4_4_2_print_iv_entry(adev, entry);
1660 	return 0;
1661 }
1662 
1663 static int sdma_v4_4_2_process_doorbell_invalid_irq(struct amdgpu_device *adev,
1664 					      struct amdgpu_irq_src *source,
1665 					      struct amdgpu_iv_entry *entry)
1666 {
1667 
1668 	dev_dbg_ratelimited(adev->dev, "SDMA received a doorbell from BIF with byte_enable !=0xff\n");
1669 	sdma_v4_4_2_print_iv_entry(adev, entry);
1670 	return 0;
1671 }
1672 
1673 static int sdma_v4_4_2_process_pool_timeout_irq(struct amdgpu_device *adev,
1674 					      struct amdgpu_irq_src *source,
1675 					      struct amdgpu_iv_entry *entry)
1676 {
1677 	dev_dbg_ratelimited(adev->dev,
1678 		"Polling register/memory timeout executing POLL_REG/MEM with finite timer\n");
1679 	sdma_v4_4_2_print_iv_entry(adev, entry);
1680 	return 0;
1681 }
1682 
1683 static int sdma_v4_4_2_process_srbm_write_irq(struct amdgpu_device *adev,
1684 					      struct amdgpu_irq_src *source,
1685 					      struct amdgpu_iv_entry *entry)
1686 {
1687 	dev_dbg_ratelimited(adev->dev,
1688 		"SDMA gets an Register Write SRBM_WRITE command in non-privilege command buffer\n");
1689 	sdma_v4_4_2_print_iv_entry(adev, entry);
1690 	return 0;
1691 }
1692 
1693 static void sdma_v4_4_2_inst_update_medium_grain_light_sleep(
1694 	struct amdgpu_device *adev, bool enable, uint32_t inst_mask)
1695 {
1696 	uint32_t data, def;
1697 	int i;
1698 
1699 	/* leave as default if it is not driver controlled */
1700 	if (!(adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS))
1701 		return;
1702 
1703 	if (enable) {
1704 		for_each_inst(i, inst_mask) {
1705 			/* 1-not override: enable sdma mem light sleep */
1706 			def = data = RREG32_SDMA(i, regSDMA_POWER_CNTL);
1707 			data |= SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1708 			if (def != data)
1709 				WREG32_SDMA(i, regSDMA_POWER_CNTL, data);
1710 		}
1711 	} else {
1712 		for_each_inst(i, inst_mask) {
1713 			/* 0-override:disable sdma mem light sleep */
1714 			def = data = RREG32_SDMA(i, regSDMA_POWER_CNTL);
1715 			data &= ~SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1716 			if (def != data)
1717 				WREG32_SDMA(i, regSDMA_POWER_CNTL, data);
1718 		}
1719 	}
1720 }
1721 
1722 static void sdma_v4_4_2_inst_update_medium_grain_clock_gating(
1723 	struct amdgpu_device *adev, bool enable, uint32_t inst_mask)
1724 {
1725 	uint32_t data, def;
1726 	int i;
1727 
1728 	/* leave as default if it is not driver controlled */
1729 	if (!(adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG))
1730 		return;
1731 
1732 	if (enable) {
1733 		for_each_inst(i, inst_mask) {
1734 			def = data = RREG32_SDMA(i, regSDMA_CLK_CTRL);
1735 			data &= ~(SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1736 				  SDMA_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1737 				  SDMA_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1738 				  SDMA_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1739 				  SDMA_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1740 				  SDMA_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1741 			if (def != data)
1742 				WREG32_SDMA(i, regSDMA_CLK_CTRL, data);
1743 		}
1744 	} else {
1745 		for_each_inst(i, inst_mask) {
1746 			def = data = RREG32_SDMA(i, regSDMA_CLK_CTRL);
1747 			data |= (SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1748 				 SDMA_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1749 				 SDMA_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1750 				 SDMA_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1751 				 SDMA_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1752 				 SDMA_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1753 			if (def != data)
1754 				WREG32_SDMA(i, regSDMA_CLK_CTRL, data);
1755 		}
1756 	}
1757 }
1758 
1759 static int sdma_v4_4_2_set_clockgating_state(void *handle,
1760 					  enum amd_clockgating_state state)
1761 {
1762 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1763 	uint32_t inst_mask;
1764 
1765 	if (amdgpu_sriov_vf(adev))
1766 		return 0;
1767 
1768 	inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
1769 
1770 	sdma_v4_4_2_inst_update_medium_grain_clock_gating(
1771 		adev, state == AMD_CG_STATE_GATE, inst_mask);
1772 	sdma_v4_4_2_inst_update_medium_grain_light_sleep(
1773 		adev, state == AMD_CG_STATE_GATE, inst_mask);
1774 	return 0;
1775 }
1776 
1777 static int sdma_v4_4_2_set_powergating_state(void *handle,
1778 					  enum amd_powergating_state state)
1779 {
1780 	return 0;
1781 }
1782 
1783 static void sdma_v4_4_2_get_clockgating_state(void *handle, u64 *flags)
1784 {
1785 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1786 	int data;
1787 
1788 	if (amdgpu_sriov_vf(adev))
1789 		*flags = 0;
1790 
1791 	/* AMD_CG_SUPPORT_SDMA_MGCG */
1792 	data = RREG32(SOC15_REG_OFFSET(SDMA0, GET_INST(SDMA0, 0), regSDMA_CLK_CTRL));
1793 	if (!(data & SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK))
1794 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1795 
1796 	/* AMD_CG_SUPPORT_SDMA_LS */
1797 	data = RREG32(SOC15_REG_OFFSET(SDMA0, GET_INST(SDMA0, 0), regSDMA_POWER_CNTL));
1798 	if (data & SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1799 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
1800 }
1801 
1802 const struct amd_ip_funcs sdma_v4_4_2_ip_funcs = {
1803 	.name = "sdma_v4_4_2",
1804 	.early_init = sdma_v4_4_2_early_init,
1805 	.late_init = sdma_v4_4_2_late_init,
1806 	.sw_init = sdma_v4_4_2_sw_init,
1807 	.sw_fini = sdma_v4_4_2_sw_fini,
1808 	.hw_init = sdma_v4_4_2_hw_init,
1809 	.hw_fini = sdma_v4_4_2_hw_fini,
1810 	.suspend = sdma_v4_4_2_suspend,
1811 	.resume = sdma_v4_4_2_resume,
1812 	.is_idle = sdma_v4_4_2_is_idle,
1813 	.wait_for_idle = sdma_v4_4_2_wait_for_idle,
1814 	.soft_reset = sdma_v4_4_2_soft_reset,
1815 	.set_clockgating_state = sdma_v4_4_2_set_clockgating_state,
1816 	.set_powergating_state = sdma_v4_4_2_set_powergating_state,
1817 	.get_clockgating_state = sdma_v4_4_2_get_clockgating_state,
1818 };
1819 
1820 static const struct amdgpu_ring_funcs sdma_v4_4_2_ring_funcs = {
1821 	.type = AMDGPU_RING_TYPE_SDMA,
1822 	.align_mask = 0xff,
1823 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1824 	.support_64bit_ptrs = true,
1825 	.get_rptr = sdma_v4_4_2_ring_get_rptr,
1826 	.get_wptr = sdma_v4_4_2_ring_get_wptr,
1827 	.set_wptr = sdma_v4_4_2_ring_set_wptr,
1828 	.emit_frame_size =
1829 		6 + /* sdma_v4_4_2_ring_emit_hdp_flush */
1830 		3 + /* hdp invalidate */
1831 		6 + /* sdma_v4_4_2_ring_emit_pipeline_sync */
1832 		/* sdma_v4_4_2_ring_emit_vm_flush */
1833 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
1834 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
1835 		10 + 10 + 10, /* sdma_v4_4_2_ring_emit_fence x3 for user fence, vm fence */
1836 	.emit_ib_size = 7 + 6, /* sdma_v4_4_2_ring_emit_ib */
1837 	.emit_ib = sdma_v4_4_2_ring_emit_ib,
1838 	.emit_fence = sdma_v4_4_2_ring_emit_fence,
1839 	.emit_pipeline_sync = sdma_v4_4_2_ring_emit_pipeline_sync,
1840 	.emit_vm_flush = sdma_v4_4_2_ring_emit_vm_flush,
1841 	.emit_hdp_flush = sdma_v4_4_2_ring_emit_hdp_flush,
1842 	.test_ring = sdma_v4_4_2_ring_test_ring,
1843 	.test_ib = sdma_v4_4_2_ring_test_ib,
1844 	.insert_nop = sdma_v4_4_2_ring_insert_nop,
1845 	.pad_ib = sdma_v4_4_2_ring_pad_ib,
1846 	.emit_wreg = sdma_v4_4_2_ring_emit_wreg,
1847 	.emit_reg_wait = sdma_v4_4_2_ring_emit_reg_wait,
1848 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
1849 };
1850 
1851 static const struct amdgpu_ring_funcs sdma_v4_4_2_page_ring_funcs = {
1852 	.type = AMDGPU_RING_TYPE_SDMA,
1853 	.align_mask = 0xff,
1854 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1855 	.support_64bit_ptrs = true,
1856 	.get_rptr = sdma_v4_4_2_ring_get_rptr,
1857 	.get_wptr = sdma_v4_4_2_page_ring_get_wptr,
1858 	.set_wptr = sdma_v4_4_2_page_ring_set_wptr,
1859 	.emit_frame_size =
1860 		6 + /* sdma_v4_4_2_ring_emit_hdp_flush */
1861 		3 + /* hdp invalidate */
1862 		6 + /* sdma_v4_4_2_ring_emit_pipeline_sync */
1863 		/* sdma_v4_4_2_ring_emit_vm_flush */
1864 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
1865 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
1866 		10 + 10 + 10, /* sdma_v4_4_2_ring_emit_fence x3 for user fence, vm fence */
1867 	.emit_ib_size = 7 + 6, /* sdma_v4_4_2_ring_emit_ib */
1868 	.emit_ib = sdma_v4_4_2_ring_emit_ib,
1869 	.emit_fence = sdma_v4_4_2_ring_emit_fence,
1870 	.emit_pipeline_sync = sdma_v4_4_2_ring_emit_pipeline_sync,
1871 	.emit_vm_flush = sdma_v4_4_2_ring_emit_vm_flush,
1872 	.emit_hdp_flush = sdma_v4_4_2_ring_emit_hdp_flush,
1873 	.test_ring = sdma_v4_4_2_ring_test_ring,
1874 	.test_ib = sdma_v4_4_2_ring_test_ib,
1875 	.insert_nop = sdma_v4_4_2_ring_insert_nop,
1876 	.pad_ib = sdma_v4_4_2_ring_pad_ib,
1877 	.emit_wreg = sdma_v4_4_2_ring_emit_wreg,
1878 	.emit_reg_wait = sdma_v4_4_2_ring_emit_reg_wait,
1879 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
1880 };
1881 
1882 static void sdma_v4_4_2_set_ring_funcs(struct amdgpu_device *adev)
1883 {
1884 	int i, dev_inst;
1885 
1886 	for (i = 0; i < adev->sdma.num_instances; i++) {
1887 		adev->sdma.instance[i].ring.funcs = &sdma_v4_4_2_ring_funcs;
1888 		adev->sdma.instance[i].ring.me = i;
1889 		if (adev->sdma.has_page_queue) {
1890 			adev->sdma.instance[i].page.funcs =
1891 				&sdma_v4_4_2_page_ring_funcs;
1892 			adev->sdma.instance[i].page.me = i;
1893 		}
1894 
1895 		dev_inst = GET_INST(SDMA0, i);
1896 		/* AID to which SDMA belongs depends on physical instance */
1897 		adev->sdma.instance[i].aid_id =
1898 			dev_inst / adev->sdma.num_inst_per_aid;
1899 	}
1900 }
1901 
1902 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_trap_irq_funcs = {
1903 	.set = sdma_v4_4_2_set_trap_irq_state,
1904 	.process = sdma_v4_4_2_process_trap_irq,
1905 };
1906 
1907 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_illegal_inst_irq_funcs = {
1908 	.process = sdma_v4_4_2_process_illegal_inst_irq,
1909 };
1910 
1911 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_ecc_irq_funcs = {
1912 	.set = sdma_v4_4_2_set_ecc_irq_state,
1913 	.process = amdgpu_sdma_process_ecc_irq,
1914 };
1915 
1916 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_vm_hole_irq_funcs = {
1917 	.process = sdma_v4_4_2_process_vm_hole_irq,
1918 };
1919 
1920 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_doorbell_invalid_irq_funcs = {
1921 	.process = sdma_v4_4_2_process_doorbell_invalid_irq,
1922 };
1923 
1924 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_pool_timeout_irq_funcs = {
1925 	.process = sdma_v4_4_2_process_pool_timeout_irq,
1926 };
1927 
1928 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_srbm_write_irq_funcs = {
1929 	.process = sdma_v4_4_2_process_srbm_write_irq,
1930 };
1931 
1932 static void sdma_v4_4_2_set_irq_funcs(struct amdgpu_device *adev)
1933 {
1934 	adev->sdma.trap_irq.num_types = adev->sdma.num_instances;
1935 	adev->sdma.ecc_irq.num_types = adev->sdma.num_instances;
1936 	adev->sdma.vm_hole_irq.num_types = adev->sdma.num_instances;
1937 	adev->sdma.doorbell_invalid_irq.num_types = adev->sdma.num_instances;
1938 	adev->sdma.pool_timeout_irq.num_types = adev->sdma.num_instances;
1939 	adev->sdma.srbm_write_irq.num_types = adev->sdma.num_instances;
1940 
1941 	adev->sdma.trap_irq.funcs = &sdma_v4_4_2_trap_irq_funcs;
1942 	adev->sdma.illegal_inst_irq.funcs = &sdma_v4_4_2_illegal_inst_irq_funcs;
1943 	adev->sdma.ecc_irq.funcs = &sdma_v4_4_2_ecc_irq_funcs;
1944 	adev->sdma.vm_hole_irq.funcs = &sdma_v4_4_2_vm_hole_irq_funcs;
1945 	adev->sdma.doorbell_invalid_irq.funcs = &sdma_v4_4_2_doorbell_invalid_irq_funcs;
1946 	adev->sdma.pool_timeout_irq.funcs = &sdma_v4_4_2_pool_timeout_irq_funcs;
1947 	adev->sdma.srbm_write_irq.funcs = &sdma_v4_4_2_srbm_write_irq_funcs;
1948 }
1949 
1950 /**
1951  * sdma_v4_4_2_emit_copy_buffer - copy buffer using the sDMA engine
1952  *
1953  * @ib: indirect buffer to copy to
1954  * @src_offset: src GPU address
1955  * @dst_offset: dst GPU address
1956  * @byte_count: number of bytes to xfer
1957  * @copy_flags: copy flags for the buffers
1958  *
1959  * Copy GPU buffers using the DMA engine.
1960  * Used by the amdgpu ttm implementation to move pages if
1961  * registered as the asic copy callback.
1962  */
1963 static void sdma_v4_4_2_emit_copy_buffer(struct amdgpu_ib *ib,
1964 				       uint64_t src_offset,
1965 				       uint64_t dst_offset,
1966 				       uint32_t byte_count,
1967 				       uint32_t copy_flags)
1968 {
1969 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1970 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
1971 		SDMA_PKT_COPY_LINEAR_HEADER_TMZ((copy_flags & AMDGPU_COPY_FLAGS_TMZ) ? 1 : 0);
1972 	ib->ptr[ib->length_dw++] = byte_count - 1;
1973 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1974 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1975 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1976 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1977 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1978 }
1979 
1980 /**
1981  * sdma_v4_4_2_emit_fill_buffer - fill buffer using the sDMA engine
1982  *
1983  * @ib: indirect buffer to copy to
1984  * @src_data: value to write to buffer
1985  * @dst_offset: dst GPU address
1986  * @byte_count: number of bytes to xfer
1987  *
1988  * Fill GPU buffers using the DMA engine.
1989  */
1990 static void sdma_v4_4_2_emit_fill_buffer(struct amdgpu_ib *ib,
1991 				       uint32_t src_data,
1992 				       uint64_t dst_offset,
1993 				       uint32_t byte_count)
1994 {
1995 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1996 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1997 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1998 	ib->ptr[ib->length_dw++] = src_data;
1999 	ib->ptr[ib->length_dw++] = byte_count - 1;
2000 }
2001 
2002 static const struct amdgpu_buffer_funcs sdma_v4_4_2_buffer_funcs = {
2003 	.copy_max_bytes = 0x400000,
2004 	.copy_num_dw = 7,
2005 	.emit_copy_buffer = sdma_v4_4_2_emit_copy_buffer,
2006 
2007 	.fill_max_bytes = 0x400000,
2008 	.fill_num_dw = 5,
2009 	.emit_fill_buffer = sdma_v4_4_2_emit_fill_buffer,
2010 };
2011 
2012 static void sdma_v4_4_2_set_buffer_funcs(struct amdgpu_device *adev)
2013 {
2014 	adev->mman.buffer_funcs = &sdma_v4_4_2_buffer_funcs;
2015 	if (adev->sdma.has_page_queue)
2016 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
2017 	else
2018 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2019 }
2020 
2021 static const struct amdgpu_vm_pte_funcs sdma_v4_4_2_vm_pte_funcs = {
2022 	.copy_pte_num_dw = 7,
2023 	.copy_pte = sdma_v4_4_2_vm_copy_pte,
2024 
2025 	.write_pte = sdma_v4_4_2_vm_write_pte,
2026 	.set_pte_pde = sdma_v4_4_2_vm_set_pte_pde,
2027 };
2028 
2029 static void sdma_v4_4_2_set_vm_pte_funcs(struct amdgpu_device *adev)
2030 {
2031 	struct drm_gpu_scheduler *sched;
2032 	unsigned i;
2033 
2034 	adev->vm_manager.vm_pte_funcs = &sdma_v4_4_2_vm_pte_funcs;
2035 	for (i = 0; i < adev->sdma.num_instances; i++) {
2036 		if (adev->sdma.has_page_queue)
2037 			sched = &adev->sdma.instance[i].page.sched;
2038 		else
2039 			sched = &adev->sdma.instance[i].ring.sched;
2040 		adev->vm_manager.vm_pte_scheds[i] = sched;
2041 	}
2042 	adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
2043 }
2044 
2045 const struct amdgpu_ip_block_version sdma_v4_4_2_ip_block = {
2046 	.type = AMD_IP_BLOCK_TYPE_SDMA,
2047 	.major = 4,
2048 	.minor = 4,
2049 	.rev = 2,
2050 	.funcs = &sdma_v4_4_2_ip_funcs,
2051 };
2052 
2053 static int sdma_v4_4_2_xcp_resume(void *handle, uint32_t inst_mask)
2054 {
2055 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2056 	int r;
2057 
2058 	if (!amdgpu_sriov_vf(adev))
2059 		sdma_v4_4_2_inst_init_golden_registers(adev, inst_mask);
2060 
2061 	r = sdma_v4_4_2_inst_start(adev, inst_mask);
2062 
2063 	return r;
2064 }
2065 
2066 static int sdma_v4_4_2_xcp_suspend(void *handle, uint32_t inst_mask)
2067 {
2068 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2069 	uint32_t tmp_mask = inst_mask;
2070 	int i;
2071 
2072 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2073 		for_each_inst(i, tmp_mask) {
2074 			amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
2075 				       AMDGPU_SDMA_IRQ_INSTANCE0 + i);
2076 		}
2077 	}
2078 
2079 	sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask);
2080 	sdma_v4_4_2_inst_enable(adev, false, inst_mask);
2081 
2082 	return 0;
2083 }
2084 
2085 struct amdgpu_xcp_ip_funcs sdma_v4_4_2_xcp_funcs = {
2086 	.suspend = &sdma_v4_4_2_xcp_suspend,
2087 	.resume = &sdma_v4_4_2_xcp_resume
2088 };
2089 
2090 static const struct amdgpu_ras_err_status_reg_entry sdma_v4_2_2_ue_reg_list[] = {
2091 	{AMDGPU_RAS_REG_ENTRY(SDMA0, 0, regSDMA_UE_ERR_STATUS_LO, regSDMA_UE_ERR_STATUS_HI),
2092 	1, (AMDGPU_RAS_ERR_INFO_VALID | AMDGPU_RAS_ERR_STATUS_VALID), "SDMA"},
2093 };
2094 
2095 static const struct amdgpu_ras_memory_id_entry sdma_v4_4_2_ras_memory_list[] = {
2096 	{AMDGPU_SDMA_MBANK_DATA_BUF0, "SDMA_MBANK_DATA_BUF0"},
2097 	{AMDGPU_SDMA_MBANK_DATA_BUF1, "SDMA_MBANK_DATA_BUF1"},
2098 	{AMDGPU_SDMA_MBANK_DATA_BUF2, "SDMA_MBANK_DATA_BUF2"},
2099 	{AMDGPU_SDMA_MBANK_DATA_BUF3, "SDMA_MBANK_DATA_BUF3"},
2100 	{AMDGPU_SDMA_MBANK_DATA_BUF4, "SDMA_MBANK_DATA_BUF4"},
2101 	{AMDGPU_SDMA_MBANK_DATA_BUF5, "SDMA_MBANK_DATA_BUF5"},
2102 	{AMDGPU_SDMA_MBANK_DATA_BUF6, "SDMA_MBANK_DATA_BUF6"},
2103 	{AMDGPU_SDMA_MBANK_DATA_BUF7, "SDMA_MBANK_DATA_BUF7"},
2104 	{AMDGPU_SDMA_MBANK_DATA_BUF8, "SDMA_MBANK_DATA_BUF8"},
2105 	{AMDGPU_SDMA_MBANK_DATA_BUF9, "SDMA_MBANK_DATA_BUF9"},
2106 	{AMDGPU_SDMA_MBANK_DATA_BUF10, "SDMA_MBANK_DATA_BUF10"},
2107 	{AMDGPU_SDMA_MBANK_DATA_BUF11, "SDMA_MBANK_DATA_BUF11"},
2108 	{AMDGPU_SDMA_MBANK_DATA_BUF12, "SDMA_MBANK_DATA_BUF12"},
2109 	{AMDGPU_SDMA_MBANK_DATA_BUF13, "SDMA_MBANK_DATA_BUF13"},
2110 	{AMDGPU_SDMA_MBANK_DATA_BUF14, "SDMA_MBANK_DATA_BUF14"},
2111 	{AMDGPU_SDMA_MBANK_DATA_BUF15, "SDMA_MBANK_DATA_BUF15"},
2112 	{AMDGPU_SDMA_UCODE_BUF, "SDMA_UCODE_BUF"},
2113 	{AMDGPU_SDMA_RB_CMD_BUF, "SDMA_RB_CMD_BUF"},
2114 	{AMDGPU_SDMA_IB_CMD_BUF, "SDMA_IB_CMD_BUF"},
2115 	{AMDGPU_SDMA_UTCL1_RD_FIFO, "SDMA_UTCL1_RD_FIFO"},
2116 	{AMDGPU_SDMA_UTCL1_RDBST_FIFO, "SDMA_UTCL1_RDBST_FIFO"},
2117 	{AMDGPU_SDMA_UTCL1_WR_FIFO, "SDMA_UTCL1_WR_FIFO"},
2118 	{AMDGPU_SDMA_DATA_LUT_FIFO, "SDMA_DATA_LUT_FIFO"},
2119 	{AMDGPU_SDMA_SPLIT_DAT_BUF, "SDMA_SPLIT_DAT_BUF"},
2120 };
2121 
2122 static void sdma_v4_4_2_inst_query_ras_error_count(struct amdgpu_device *adev,
2123 						   uint32_t sdma_inst,
2124 						   void *ras_err_status)
2125 {
2126 	struct ras_err_data *err_data = (struct ras_err_data *)ras_err_status;
2127 	uint32_t sdma_dev_inst = GET_INST(SDMA0, sdma_inst);
2128 	unsigned long ue_count = 0;
2129 	struct amdgpu_smuio_mcm_config_info mcm_info = {
2130 		.socket_id = adev->smuio.funcs->get_socket_id(adev),
2131 		.die_id = adev->sdma.instance[sdma_inst].aid_id,
2132 	};
2133 
2134 	/* sdma v4_4_2 doesn't support query ce counts */
2135 	amdgpu_ras_inst_query_ras_error_count(adev,
2136 					sdma_v4_2_2_ue_reg_list,
2137 					ARRAY_SIZE(sdma_v4_2_2_ue_reg_list),
2138 					sdma_v4_4_2_ras_memory_list,
2139 					ARRAY_SIZE(sdma_v4_4_2_ras_memory_list),
2140 					sdma_dev_inst,
2141 					AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE,
2142 					&ue_count);
2143 
2144 	amdgpu_ras_error_statistic_ue_count(err_data, &mcm_info, NULL, ue_count);
2145 }
2146 
2147 static void sdma_v4_4_2_query_ras_error_count(struct amdgpu_device *adev,
2148 					      void *ras_err_status)
2149 {
2150 	uint32_t inst_mask;
2151 	int i = 0;
2152 
2153 	inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
2154 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2155 		for_each_inst(i, inst_mask)
2156 			sdma_v4_4_2_inst_query_ras_error_count(adev, i, ras_err_status);
2157 	} else {
2158 		dev_warn(adev->dev, "SDMA RAS is not supported\n");
2159 	}
2160 }
2161 
2162 static void sdma_v4_4_2_inst_reset_ras_error_count(struct amdgpu_device *adev,
2163 						   uint32_t sdma_inst)
2164 {
2165 	uint32_t sdma_dev_inst = GET_INST(SDMA0, sdma_inst);
2166 
2167 	amdgpu_ras_inst_reset_ras_error_count(adev,
2168 					sdma_v4_2_2_ue_reg_list,
2169 					ARRAY_SIZE(sdma_v4_2_2_ue_reg_list),
2170 					sdma_dev_inst);
2171 }
2172 
2173 static void sdma_v4_4_2_reset_ras_error_count(struct amdgpu_device *adev)
2174 {
2175 	uint32_t inst_mask;
2176 	int i = 0;
2177 
2178 	inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
2179 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2180 		for_each_inst(i, inst_mask)
2181 			sdma_v4_4_2_inst_reset_ras_error_count(adev, i);
2182 	} else {
2183 		dev_warn(adev->dev, "SDMA RAS is not supported\n");
2184 	}
2185 }
2186 
2187 static const struct amdgpu_ras_block_hw_ops sdma_v4_4_2_ras_hw_ops = {
2188 	.query_ras_error_count = sdma_v4_4_2_query_ras_error_count,
2189 	.reset_ras_error_count = sdma_v4_4_2_reset_ras_error_count,
2190 };
2191 
2192 static int sdma_v4_4_2_aca_bank_parser(struct aca_handle *handle, struct aca_bank *bank,
2193 				       enum aca_smu_type type, void *data)
2194 {
2195 	struct aca_bank_info info;
2196 	u64 misc0;
2197 	int ret;
2198 
2199 	ret = aca_bank_info_decode(bank, &info);
2200 	if (ret)
2201 		return ret;
2202 
2203 	misc0 = bank->regs[ACA_REG_IDX_MISC0];
2204 	switch (type) {
2205 	case ACA_SMU_TYPE_UE:
2206 		ret = aca_error_cache_log_bank_error(handle, &info, ACA_ERROR_TYPE_UE,
2207 						     1ULL);
2208 		break;
2209 	case ACA_SMU_TYPE_CE:
2210 		ret = aca_error_cache_log_bank_error(handle, &info, ACA_ERROR_TYPE_CE,
2211 						     ACA_REG__MISC0__ERRCNT(misc0));
2212 		break;
2213 	default:
2214 		return -EINVAL;
2215 	}
2216 
2217 	return ret;
2218 }
2219 
2220 /* CODE_SDMA0 - CODE_SDMA4, reference to smu driver if header file */
2221 static int sdma_v4_4_2_err_codes[] = { 33, 34, 35, 36 };
2222 
2223 static bool sdma_v4_4_2_aca_bank_is_valid(struct aca_handle *handle, struct aca_bank *bank,
2224 					  enum aca_smu_type type, void *data)
2225 {
2226 	u32 instlo;
2227 
2228 	instlo = ACA_REG__IPID__INSTANCEIDLO(bank->regs[ACA_REG_IDX_IPID]);
2229 	instlo &= GENMASK(31, 1);
2230 
2231 	if (instlo != mmSMNAID_AID0_MCA_SMU)
2232 		return false;
2233 
2234 	if (aca_bank_check_error_codes(handle->adev, bank,
2235 				       sdma_v4_4_2_err_codes,
2236 				       ARRAY_SIZE(sdma_v4_4_2_err_codes)))
2237 		return false;
2238 
2239 	return true;
2240 }
2241 
2242 static const struct aca_bank_ops sdma_v4_4_2_aca_bank_ops = {
2243 	.aca_bank_parser = sdma_v4_4_2_aca_bank_parser,
2244 	.aca_bank_is_valid = sdma_v4_4_2_aca_bank_is_valid,
2245 };
2246 
2247 static const struct aca_info sdma_v4_4_2_aca_info = {
2248 	.hwip = ACA_HWIP_TYPE_SMU,
2249 	.mask = ACA_ERROR_UE_MASK,
2250 	.bank_ops = &sdma_v4_4_2_aca_bank_ops,
2251 };
2252 
2253 static int sdma_v4_4_2_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block)
2254 {
2255 	int r;
2256 
2257 	r = amdgpu_sdma_ras_late_init(adev, ras_block);
2258 	if (r)
2259 		return r;
2260 
2261 	return amdgpu_ras_bind_aca(adev, AMDGPU_RAS_BLOCK__SDMA,
2262 				   &sdma_v4_4_2_aca_info, NULL);
2263 }
2264 
2265 static struct amdgpu_sdma_ras sdma_v4_4_2_ras = {
2266 	.ras_block = {
2267 		.hw_ops = &sdma_v4_4_2_ras_hw_ops,
2268 		.ras_late_init = sdma_v4_4_2_ras_late_init,
2269 	},
2270 };
2271 
2272 static void sdma_v4_4_2_set_ras_funcs(struct amdgpu_device *adev)
2273 {
2274 	adev->sdma.ras = &sdma_v4_4_2_ras;
2275 }
2276