xref: /linux/drivers/gpu/drm/amd/amdgpu/sdma_v4_4_2.c (revision 173b0b5b0e865348684c02bd9cb1d22b5d46e458)
1 /*
2  * Copyright 2022 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28 
29 #include "amdgpu.h"
30 #include "amdgpu_xcp.h"
31 #include "amdgpu_ucode.h"
32 #include "amdgpu_trace.h"
33 
34 #include "sdma/sdma_4_4_2_offset.h"
35 #include "sdma/sdma_4_4_2_sh_mask.h"
36 
37 #include "soc15_common.h"
38 #include "soc15.h"
39 #include "vega10_sdma_pkt_open.h"
40 
41 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
42 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
43 
44 #include "amdgpu_ras.h"
45 
46 MODULE_FIRMWARE("amdgpu/sdma_4_4_2.bin");
47 
48 #define mmSMNAID_AID0_MCA_SMU 0x03b30400
49 
50 #define WREG32_SDMA(instance, offset, value) \
51 	WREG32(sdma_v4_4_2_get_reg_offset(adev, (instance), (offset)), value)
52 #define RREG32_SDMA(instance, offset) \
53 	RREG32(sdma_v4_4_2_get_reg_offset(adev, (instance), (offset)))
54 
55 static void sdma_v4_4_2_set_ring_funcs(struct amdgpu_device *adev);
56 static void sdma_v4_4_2_set_buffer_funcs(struct amdgpu_device *adev);
57 static void sdma_v4_4_2_set_vm_pte_funcs(struct amdgpu_device *adev);
58 static void sdma_v4_4_2_set_irq_funcs(struct amdgpu_device *adev);
59 static void sdma_v4_4_2_set_ras_funcs(struct amdgpu_device *adev);
60 
61 static u32 sdma_v4_4_2_get_reg_offset(struct amdgpu_device *adev,
62 		u32 instance, u32 offset)
63 {
64 	u32 dev_inst = GET_INST(SDMA0, instance);
65 
66 	return (adev->reg_offset[SDMA0_HWIP][dev_inst][0] + offset);
67 }
68 
69 static unsigned sdma_v4_4_2_seq_to_irq_id(int seq_num)
70 {
71 	switch (seq_num) {
72 	case 0:
73 		return SOC15_IH_CLIENTID_SDMA0;
74 	case 1:
75 		return SOC15_IH_CLIENTID_SDMA1;
76 	case 2:
77 		return SOC15_IH_CLIENTID_SDMA2;
78 	case 3:
79 		return SOC15_IH_CLIENTID_SDMA3;
80 	default:
81 		return -EINVAL;
82 	}
83 }
84 
85 static int sdma_v4_4_2_irq_id_to_seq(unsigned client_id)
86 {
87 	switch (client_id) {
88 	case SOC15_IH_CLIENTID_SDMA0:
89 		return 0;
90 	case SOC15_IH_CLIENTID_SDMA1:
91 		return 1;
92 	case SOC15_IH_CLIENTID_SDMA2:
93 		return 2;
94 	case SOC15_IH_CLIENTID_SDMA3:
95 		return 3;
96 	default:
97 		return -EINVAL;
98 	}
99 }
100 
101 static void sdma_v4_4_2_inst_init_golden_registers(struct amdgpu_device *adev,
102 						   uint32_t inst_mask)
103 {
104 	u32 val;
105 	int i;
106 
107 	for (i = 0; i < adev->sdma.num_instances; i++) {
108 		val = RREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG);
109 		val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG, NUM_BANKS, 4);
110 		val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG,
111 				    PIPE_INTERLEAVE_SIZE, 0);
112 		WREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG, val);
113 
114 		val = RREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG_READ);
115 		val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG_READ, NUM_BANKS,
116 				    4);
117 		val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG_READ,
118 				    PIPE_INTERLEAVE_SIZE, 0);
119 		WREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG_READ, val);
120 	}
121 }
122 
123 /**
124  * sdma_v4_4_2_init_microcode - load ucode images from disk
125  *
126  * @adev: amdgpu_device pointer
127  *
128  * Use the firmware interface to load the ucode images into
129  * the driver (not loaded into hw).
130  * Returns 0 on success, error on failure.
131  */
132 static int sdma_v4_4_2_init_microcode(struct amdgpu_device *adev)
133 {
134 	int ret, i;
135 
136 	for (i = 0; i < adev->sdma.num_instances; i++) {
137 		if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) ==
138 		    IP_VERSION(4, 4, 2)) {
139 			ret = amdgpu_sdma_init_microcode(adev, 0, true);
140 			break;
141 		} else {
142 			ret = amdgpu_sdma_init_microcode(adev, i, false);
143 			if (ret)
144 				return ret;
145 		}
146 	}
147 
148 	return ret;
149 }
150 
151 /**
152  * sdma_v4_4_2_ring_get_rptr - get the current read pointer
153  *
154  * @ring: amdgpu ring pointer
155  *
156  * Get the current rptr from the hardware.
157  */
158 static uint64_t sdma_v4_4_2_ring_get_rptr(struct amdgpu_ring *ring)
159 {
160 	u64 rptr;
161 
162 	/* XXX check if swapping is necessary on BE */
163 	rptr = READ_ONCE(*((u64 *)&ring->adev->wb.wb[ring->rptr_offs]));
164 
165 	DRM_DEBUG("rptr before shift == 0x%016llx\n", rptr);
166 	return rptr >> 2;
167 }
168 
169 /**
170  * sdma_v4_4_2_ring_get_wptr - get the current write pointer
171  *
172  * @ring: amdgpu ring pointer
173  *
174  * Get the current wptr from the hardware.
175  */
176 static uint64_t sdma_v4_4_2_ring_get_wptr(struct amdgpu_ring *ring)
177 {
178 	struct amdgpu_device *adev = ring->adev;
179 	u64 wptr;
180 
181 	if (ring->use_doorbell) {
182 		/* XXX check if swapping is necessary on BE */
183 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
184 		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
185 	} else {
186 		wptr = RREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR_HI);
187 		wptr = wptr << 32;
188 		wptr |= RREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR);
189 		DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
190 				ring->me, wptr);
191 	}
192 
193 	return wptr >> 2;
194 }
195 
196 /**
197  * sdma_v4_4_2_ring_set_wptr - commit the write pointer
198  *
199  * @ring: amdgpu ring pointer
200  *
201  * Write the wptr back to the hardware.
202  */
203 static void sdma_v4_4_2_ring_set_wptr(struct amdgpu_ring *ring)
204 {
205 	struct amdgpu_device *adev = ring->adev;
206 
207 	DRM_DEBUG("Setting write pointer\n");
208 	if (ring->use_doorbell) {
209 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
210 
211 		DRM_DEBUG("Using doorbell -- "
212 				"wptr_offs == 0x%08x "
213 				"lower_32_bits(ring->wptr) << 2 == 0x%08x "
214 				"upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
215 				ring->wptr_offs,
216 				lower_32_bits(ring->wptr << 2),
217 				upper_32_bits(ring->wptr << 2));
218 		/* XXX check if swapping is necessary on BE */
219 		WRITE_ONCE(*wb, (ring->wptr << 2));
220 		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
221 				ring->doorbell_index, ring->wptr << 2);
222 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
223 	} else {
224 		DRM_DEBUG("Not using doorbell -- "
225 				"regSDMA%i_GFX_RB_WPTR == 0x%08x "
226 				"regSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
227 				ring->me,
228 				lower_32_bits(ring->wptr << 2),
229 				ring->me,
230 				upper_32_bits(ring->wptr << 2));
231 		WREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR,
232 			    lower_32_bits(ring->wptr << 2));
233 		WREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR_HI,
234 			    upper_32_bits(ring->wptr << 2));
235 	}
236 }
237 
238 /**
239  * sdma_v4_4_2_page_ring_get_wptr - get the current write pointer
240  *
241  * @ring: amdgpu ring pointer
242  *
243  * Get the current wptr from the hardware.
244  */
245 static uint64_t sdma_v4_4_2_page_ring_get_wptr(struct amdgpu_ring *ring)
246 {
247 	struct amdgpu_device *adev = ring->adev;
248 	u64 wptr;
249 
250 	if (ring->use_doorbell) {
251 		/* XXX check if swapping is necessary on BE */
252 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
253 	} else {
254 		wptr = RREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR_HI);
255 		wptr = wptr << 32;
256 		wptr |= RREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR);
257 	}
258 
259 	return wptr >> 2;
260 }
261 
262 /**
263  * sdma_v4_4_2_page_ring_set_wptr - commit the write pointer
264  *
265  * @ring: amdgpu ring pointer
266  *
267  * Write the wptr back to the hardware.
268  */
269 static void sdma_v4_4_2_page_ring_set_wptr(struct amdgpu_ring *ring)
270 {
271 	struct amdgpu_device *adev = ring->adev;
272 
273 	if (ring->use_doorbell) {
274 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
275 
276 		/* XXX check if swapping is necessary on BE */
277 		WRITE_ONCE(*wb, (ring->wptr << 2));
278 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
279 	} else {
280 		uint64_t wptr = ring->wptr << 2;
281 
282 		WREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR,
283 			    lower_32_bits(wptr));
284 		WREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR_HI,
285 			    upper_32_bits(wptr));
286 	}
287 }
288 
289 static void sdma_v4_4_2_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
290 {
291 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
292 	int i;
293 
294 	for (i = 0; i < count; i++)
295 		if (sdma && sdma->burst_nop && (i == 0))
296 			amdgpu_ring_write(ring, ring->funcs->nop |
297 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
298 		else
299 			amdgpu_ring_write(ring, ring->funcs->nop);
300 }
301 
302 /**
303  * sdma_v4_4_2_ring_emit_ib - Schedule an IB on the DMA engine
304  *
305  * @ring: amdgpu ring pointer
306  * @job: job to retrieve vmid from
307  * @ib: IB object to schedule
308  * @flags: unused
309  *
310  * Schedule an IB in the DMA ring.
311  */
312 static void sdma_v4_4_2_ring_emit_ib(struct amdgpu_ring *ring,
313 				   struct amdgpu_job *job,
314 				   struct amdgpu_ib *ib,
315 				   uint32_t flags)
316 {
317 	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
318 
319 	/* IB packet must end on a 8 DW boundary */
320 	sdma_v4_4_2_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
321 
322 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
323 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
324 	/* base must be 32 byte aligned */
325 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
326 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
327 	amdgpu_ring_write(ring, ib->length_dw);
328 	amdgpu_ring_write(ring, 0);
329 	amdgpu_ring_write(ring, 0);
330 
331 }
332 
333 static void sdma_v4_4_2_wait_reg_mem(struct amdgpu_ring *ring,
334 				   int mem_space, int hdp,
335 				   uint32_t addr0, uint32_t addr1,
336 				   uint32_t ref, uint32_t mask,
337 				   uint32_t inv)
338 {
339 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
340 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
341 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
342 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
343 	if (mem_space) {
344 		/* memory */
345 		amdgpu_ring_write(ring, addr0);
346 		amdgpu_ring_write(ring, addr1);
347 	} else {
348 		/* registers */
349 		amdgpu_ring_write(ring, addr0 << 2);
350 		amdgpu_ring_write(ring, addr1 << 2);
351 	}
352 	amdgpu_ring_write(ring, ref); /* reference */
353 	amdgpu_ring_write(ring, mask); /* mask */
354 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
355 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
356 }
357 
358 /**
359  * sdma_v4_4_2_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
360  *
361  * @ring: amdgpu ring pointer
362  *
363  * Emit an hdp flush packet on the requested DMA ring.
364  */
365 static void sdma_v4_4_2_ring_emit_hdp_flush(struct amdgpu_ring *ring)
366 {
367 	struct amdgpu_device *adev = ring->adev;
368 	u32 ref_and_mask = 0;
369 	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
370 
371 	ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me;
372 
373 	sdma_v4_4_2_wait_reg_mem(ring, 0, 1,
374 			       adev->nbio.funcs->get_hdp_flush_done_offset(adev),
375 			       adev->nbio.funcs->get_hdp_flush_req_offset(adev),
376 			       ref_and_mask, ref_and_mask, 10);
377 }
378 
379 /**
380  * sdma_v4_4_2_ring_emit_fence - emit a fence on the DMA ring
381  *
382  * @ring: amdgpu ring pointer
383  * @addr: address
384  * @seq: sequence number
385  * @flags: fence related flags
386  *
387  * Add a DMA fence packet to the ring to write
388  * the fence seq number and DMA trap packet to generate
389  * an interrupt if needed.
390  */
391 static void sdma_v4_4_2_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
392 				      unsigned flags)
393 {
394 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
395 	/* write the fence */
396 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
397 	/* zero in first two bits */
398 	BUG_ON(addr & 0x3);
399 	amdgpu_ring_write(ring, lower_32_bits(addr));
400 	amdgpu_ring_write(ring, upper_32_bits(addr));
401 	amdgpu_ring_write(ring, lower_32_bits(seq));
402 
403 	/* optionally write high bits as well */
404 	if (write64bit) {
405 		addr += 4;
406 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
407 		/* zero in first two bits */
408 		BUG_ON(addr & 0x3);
409 		amdgpu_ring_write(ring, lower_32_bits(addr));
410 		amdgpu_ring_write(ring, upper_32_bits(addr));
411 		amdgpu_ring_write(ring, upper_32_bits(seq));
412 	}
413 
414 	/* generate an interrupt */
415 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
416 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
417 }
418 
419 
420 /**
421  * sdma_v4_4_2_inst_gfx_stop - stop the gfx async dma engines
422  *
423  * @adev: amdgpu_device pointer
424  * @inst_mask: mask of dma engine instances to be disabled
425  *
426  * Stop the gfx async dma ring buffers.
427  */
428 static void sdma_v4_4_2_inst_gfx_stop(struct amdgpu_device *adev,
429 				      uint32_t inst_mask)
430 {
431 	struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
432 	u32 doorbell_offset, doorbell;
433 	u32 rb_cntl, ib_cntl;
434 	int i;
435 
436 	for_each_inst(i, inst_mask) {
437 		sdma[i] = &adev->sdma.instance[i].ring;
438 
439 		rb_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_CNTL);
440 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_ENABLE, 0);
441 		WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl);
442 		ib_cntl = RREG32_SDMA(i, regSDMA_GFX_IB_CNTL);
443 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_ENABLE, 0);
444 		WREG32_SDMA(i, regSDMA_GFX_IB_CNTL, ib_cntl);
445 
446 		if (sdma[i]->use_doorbell) {
447 			doorbell = RREG32_SDMA(i, regSDMA_GFX_DOORBELL);
448 			doorbell_offset = RREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET);
449 
450 			doorbell = REG_SET_FIELD(doorbell, SDMA_GFX_DOORBELL, ENABLE, 0);
451 			doorbell_offset = REG_SET_FIELD(doorbell_offset,
452 					SDMA_GFX_DOORBELL_OFFSET,
453 					OFFSET, 0);
454 			WREG32_SDMA(i, regSDMA_GFX_DOORBELL, doorbell);
455 			WREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET, doorbell_offset);
456 		}
457 	}
458 }
459 
460 /**
461  * sdma_v4_4_2_inst_rlc_stop - stop the compute async dma engines
462  *
463  * @adev: amdgpu_device pointer
464  * @inst_mask: mask of dma engine instances to be disabled
465  *
466  * Stop the compute async dma queues.
467  */
468 static void sdma_v4_4_2_inst_rlc_stop(struct amdgpu_device *adev,
469 				      uint32_t inst_mask)
470 {
471 	/* XXX todo */
472 }
473 
474 /**
475  * sdma_v4_4_2_inst_page_stop - stop the page async dma engines
476  *
477  * @adev: amdgpu_device pointer
478  * @inst_mask: mask of dma engine instances to be disabled
479  *
480  * Stop the page async dma ring buffers.
481  */
482 static void sdma_v4_4_2_inst_page_stop(struct amdgpu_device *adev,
483 				       uint32_t inst_mask)
484 {
485 	u32 rb_cntl, ib_cntl;
486 	int i;
487 
488 	for_each_inst(i, inst_mask) {
489 		rb_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_CNTL);
490 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL,
491 					RB_ENABLE, 0);
492 		WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl);
493 		ib_cntl = RREG32_SDMA(i, regSDMA_PAGE_IB_CNTL);
494 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL,
495 					IB_ENABLE, 0);
496 		WREG32_SDMA(i, regSDMA_PAGE_IB_CNTL, ib_cntl);
497 	}
498 }
499 
500 /**
501  * sdma_v4_4_2_inst_ctx_switch_enable - stop the async dma engines context switch
502  *
503  * @adev: amdgpu_device pointer
504  * @enable: enable/disable the DMA MEs context switch.
505  * @inst_mask: mask of dma engine instances to be enabled
506  *
507  * Halt or unhalt the async dma engines context switch.
508  */
509 static void sdma_v4_4_2_inst_ctx_switch_enable(struct amdgpu_device *adev,
510 					       bool enable, uint32_t inst_mask)
511 {
512 	u32 f32_cntl, phase_quantum = 0;
513 	int i;
514 
515 	if (amdgpu_sdma_phase_quantum) {
516 		unsigned value = amdgpu_sdma_phase_quantum;
517 		unsigned unit = 0;
518 
519 		while (value > (SDMA_PHASE0_QUANTUM__VALUE_MASK >>
520 				SDMA_PHASE0_QUANTUM__VALUE__SHIFT)) {
521 			value = (value + 1) >> 1;
522 			unit++;
523 		}
524 		if (unit > (SDMA_PHASE0_QUANTUM__UNIT_MASK >>
525 			    SDMA_PHASE0_QUANTUM__UNIT__SHIFT)) {
526 			value = (SDMA_PHASE0_QUANTUM__VALUE_MASK >>
527 				 SDMA_PHASE0_QUANTUM__VALUE__SHIFT);
528 			unit = (SDMA_PHASE0_QUANTUM__UNIT_MASK >>
529 				SDMA_PHASE0_QUANTUM__UNIT__SHIFT);
530 			WARN_ONCE(1,
531 			"clamping sdma_phase_quantum to %uK clock cycles\n",
532 				  value << unit);
533 		}
534 		phase_quantum =
535 			value << SDMA_PHASE0_QUANTUM__VALUE__SHIFT |
536 			unit  << SDMA_PHASE0_QUANTUM__UNIT__SHIFT;
537 	}
538 
539 	for_each_inst(i, inst_mask) {
540 		f32_cntl = RREG32_SDMA(i, regSDMA_CNTL);
541 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA_CNTL,
542 				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
543 		if (enable && amdgpu_sdma_phase_quantum) {
544 			WREG32_SDMA(i, regSDMA_PHASE0_QUANTUM, phase_quantum);
545 			WREG32_SDMA(i, regSDMA_PHASE1_QUANTUM, phase_quantum);
546 			WREG32_SDMA(i, regSDMA_PHASE2_QUANTUM, phase_quantum);
547 		}
548 		WREG32_SDMA(i, regSDMA_CNTL, f32_cntl);
549 
550 		/* Extend page fault timeout to avoid interrupt storm */
551 		WREG32_SDMA(i, regSDMA_UTCL1_TIMEOUT, 0x00800080);
552 	}
553 }
554 
555 /**
556  * sdma_v4_4_2_inst_enable - stop the async dma engines
557  *
558  * @adev: amdgpu_device pointer
559  * @enable: enable/disable the DMA MEs.
560  * @inst_mask: mask of dma engine instances to be enabled
561  *
562  * Halt or unhalt the async dma engines.
563  */
564 static void sdma_v4_4_2_inst_enable(struct amdgpu_device *adev, bool enable,
565 				    uint32_t inst_mask)
566 {
567 	u32 f32_cntl;
568 	int i;
569 
570 	if (!enable) {
571 		sdma_v4_4_2_inst_gfx_stop(adev, inst_mask);
572 		sdma_v4_4_2_inst_rlc_stop(adev, inst_mask);
573 		if (adev->sdma.has_page_queue)
574 			sdma_v4_4_2_inst_page_stop(adev, inst_mask);
575 
576 		/* SDMA FW needs to respond to FREEZE requests during reset.
577 		 * Keep it running during reset */
578 		if (!amdgpu_sriov_vf(adev) && amdgpu_in_reset(adev))
579 			return;
580 	}
581 
582 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP)
583 		return;
584 
585 	for_each_inst(i, inst_mask) {
586 		f32_cntl = RREG32_SDMA(i, regSDMA_F32_CNTL);
587 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA_F32_CNTL, HALT, enable ? 0 : 1);
588 		WREG32_SDMA(i, regSDMA_F32_CNTL, f32_cntl);
589 	}
590 }
591 
592 /*
593  * sdma_v4_4_2_rb_cntl - get parameters for rb_cntl
594  */
595 static uint32_t sdma_v4_4_2_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
596 {
597 	/* Set ring buffer size in dwords */
598 	uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
599 
600 	barrier(); /* work around https://llvm.org/pr42576 */
601 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
602 #ifdef __BIG_ENDIAN
603 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
604 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL,
605 				RPTR_WRITEBACK_SWAP_ENABLE, 1);
606 #endif
607 	return rb_cntl;
608 }
609 
610 /**
611  * sdma_v4_4_2_gfx_resume - setup and start the async dma engines
612  *
613  * @adev: amdgpu_device pointer
614  * @i: instance to resume
615  *
616  * Set up the gfx DMA ring buffers and enable them.
617  * Returns 0 for success, error for failure.
618  */
619 static void sdma_v4_4_2_gfx_resume(struct amdgpu_device *adev, unsigned int i)
620 {
621 	struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
622 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
623 	u32 wb_offset;
624 	u32 doorbell;
625 	u32 doorbell_offset;
626 	u64 wptr_gpu_addr;
627 
628 	wb_offset = (ring->rptr_offs * 4);
629 
630 	rb_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_CNTL);
631 	rb_cntl = sdma_v4_4_2_rb_cntl(ring, rb_cntl);
632 	WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl);
633 
634 	/* set the wb address whether it's enabled or not */
635 	WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_ADDR_HI,
636 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
637 	WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_ADDR_LO,
638 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
639 
640 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL,
641 				RPTR_WRITEBACK_ENABLE, 1);
642 
643 	WREG32_SDMA(i, regSDMA_GFX_RB_BASE, ring->gpu_addr >> 8);
644 	WREG32_SDMA(i, regSDMA_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
645 
646 	ring->wptr = 0;
647 
648 	/* before programing wptr to a less value, need set minor_ptr_update first */
649 	WREG32_SDMA(i, regSDMA_GFX_MINOR_PTR_UPDATE, 1);
650 
651 	/* Initialize the ring buffer's read and write pointers */
652 	WREG32_SDMA(i, regSDMA_GFX_RB_RPTR, 0);
653 	WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_HI, 0);
654 	WREG32_SDMA(i, regSDMA_GFX_RB_WPTR, 0);
655 	WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_HI, 0);
656 
657 	doorbell = RREG32_SDMA(i, regSDMA_GFX_DOORBELL);
658 	doorbell_offset = RREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET);
659 
660 	doorbell = REG_SET_FIELD(doorbell, SDMA_GFX_DOORBELL, ENABLE,
661 				 ring->use_doorbell);
662 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
663 					SDMA_GFX_DOORBELL_OFFSET,
664 					OFFSET, ring->doorbell_index);
665 	WREG32_SDMA(i, regSDMA_GFX_DOORBELL, doorbell);
666 	WREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET, doorbell_offset);
667 
668 	sdma_v4_4_2_ring_set_wptr(ring);
669 
670 	/* set minor_ptr_update to 0 after wptr programed */
671 	WREG32_SDMA(i, regSDMA_GFX_MINOR_PTR_UPDATE, 0);
672 
673 	/* setup the wptr shadow polling */
674 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
675 	WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_ADDR_LO,
676 		    lower_32_bits(wptr_gpu_addr));
677 	WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_ADDR_HI,
678 		    upper_32_bits(wptr_gpu_addr));
679 	wptr_poll_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_CNTL);
680 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
681 				       SDMA_GFX_RB_WPTR_POLL_CNTL,
682 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
683 	WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
684 
685 	/* enable DMA RB */
686 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_ENABLE, 1);
687 	WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl);
688 
689 	ib_cntl = RREG32_SDMA(i, regSDMA_GFX_IB_CNTL);
690 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_ENABLE, 1);
691 #ifdef __BIG_ENDIAN
692 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
693 #endif
694 	/* enable DMA IBs */
695 	WREG32_SDMA(i, regSDMA_GFX_IB_CNTL, ib_cntl);
696 }
697 
698 /**
699  * sdma_v4_4_2_page_resume - setup and start the async dma engines
700  *
701  * @adev: amdgpu_device pointer
702  * @i: instance to resume
703  *
704  * Set up the page DMA ring buffers and enable them.
705  * Returns 0 for success, error for failure.
706  */
707 static void sdma_v4_4_2_page_resume(struct amdgpu_device *adev, unsigned int i)
708 {
709 	struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
710 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
711 	u32 wb_offset;
712 	u32 doorbell;
713 	u32 doorbell_offset;
714 	u64 wptr_gpu_addr;
715 
716 	wb_offset = (ring->rptr_offs * 4);
717 
718 	rb_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_CNTL);
719 	rb_cntl = sdma_v4_4_2_rb_cntl(ring, rb_cntl);
720 	WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl);
721 
722 	/* Initialize the ring buffer's read and write pointers */
723 	WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR, 0);
724 	WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_HI, 0);
725 	WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR, 0);
726 	WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_HI, 0);
727 
728 	/* set the wb address whether it's enabled or not */
729 	WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_ADDR_HI,
730 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
731 	WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_ADDR_LO,
732 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
733 
734 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL,
735 				RPTR_WRITEBACK_ENABLE, 1);
736 
737 	WREG32_SDMA(i, regSDMA_PAGE_RB_BASE, ring->gpu_addr >> 8);
738 	WREG32_SDMA(i, regSDMA_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
739 
740 	ring->wptr = 0;
741 
742 	/* before programing wptr to a less value, need set minor_ptr_update first */
743 	WREG32_SDMA(i, regSDMA_PAGE_MINOR_PTR_UPDATE, 1);
744 
745 	doorbell = RREG32_SDMA(i, regSDMA_PAGE_DOORBELL);
746 	doorbell_offset = RREG32_SDMA(i, regSDMA_PAGE_DOORBELL_OFFSET);
747 
748 	doorbell = REG_SET_FIELD(doorbell, SDMA_PAGE_DOORBELL, ENABLE,
749 				 ring->use_doorbell);
750 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
751 					SDMA_PAGE_DOORBELL_OFFSET,
752 					OFFSET, ring->doorbell_index);
753 	WREG32_SDMA(i, regSDMA_PAGE_DOORBELL, doorbell);
754 	WREG32_SDMA(i, regSDMA_PAGE_DOORBELL_OFFSET, doorbell_offset);
755 
756 	/* paging queue doorbell range is setup at sdma_v4_4_2_gfx_resume */
757 	sdma_v4_4_2_page_ring_set_wptr(ring);
758 
759 	/* set minor_ptr_update to 0 after wptr programed */
760 	WREG32_SDMA(i, regSDMA_PAGE_MINOR_PTR_UPDATE, 0);
761 
762 	/* setup the wptr shadow polling */
763 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
764 	WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_ADDR_LO,
765 		    lower_32_bits(wptr_gpu_addr));
766 	WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_ADDR_HI,
767 		    upper_32_bits(wptr_gpu_addr));
768 	wptr_poll_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_CNTL);
769 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
770 				       SDMA_PAGE_RB_WPTR_POLL_CNTL,
771 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
772 	WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
773 
774 	/* enable DMA RB */
775 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL, RB_ENABLE, 1);
776 	WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl);
777 
778 	ib_cntl = RREG32_SDMA(i, regSDMA_PAGE_IB_CNTL);
779 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL, IB_ENABLE, 1);
780 #ifdef __BIG_ENDIAN
781 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
782 #endif
783 	/* enable DMA IBs */
784 	WREG32_SDMA(i, regSDMA_PAGE_IB_CNTL, ib_cntl);
785 }
786 
787 static void sdma_v4_4_2_init_pg(struct amdgpu_device *adev)
788 {
789 
790 }
791 
792 /**
793  * sdma_v4_4_2_inst_rlc_resume - setup and start the async dma engines
794  *
795  * @adev: amdgpu_device pointer
796  * @inst_mask: mask of dma engine instances to be enabled
797  *
798  * Set up the compute DMA queues and enable them.
799  * Returns 0 for success, error for failure.
800  */
801 static int sdma_v4_4_2_inst_rlc_resume(struct amdgpu_device *adev,
802 				       uint32_t inst_mask)
803 {
804 	sdma_v4_4_2_init_pg(adev);
805 
806 	return 0;
807 }
808 
809 /**
810  * sdma_v4_4_2_inst_load_microcode - load the sDMA ME ucode
811  *
812  * @adev: amdgpu_device pointer
813  * @inst_mask: mask of dma engine instances to be enabled
814  *
815  * Loads the sDMA0/1 ucode.
816  * Returns 0 for success, -EINVAL if the ucode is not available.
817  */
818 static int sdma_v4_4_2_inst_load_microcode(struct amdgpu_device *adev,
819 					   uint32_t inst_mask)
820 {
821 	const struct sdma_firmware_header_v1_0 *hdr;
822 	const __le32 *fw_data;
823 	u32 fw_size;
824 	int i, j;
825 
826 	/* halt the MEs */
827 	sdma_v4_4_2_inst_enable(adev, false, inst_mask);
828 
829 	for_each_inst(i, inst_mask) {
830 		if (!adev->sdma.instance[i].fw)
831 			return -EINVAL;
832 
833 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
834 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
835 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
836 
837 		fw_data = (const __le32 *)
838 			(adev->sdma.instance[i].fw->data +
839 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
840 
841 		WREG32_SDMA(i, regSDMA_UCODE_ADDR, 0);
842 
843 		for (j = 0; j < fw_size; j++)
844 			WREG32_SDMA(i, regSDMA_UCODE_DATA,
845 				    le32_to_cpup(fw_data++));
846 
847 		WREG32_SDMA(i, regSDMA_UCODE_ADDR,
848 			    adev->sdma.instance[i].fw_version);
849 	}
850 
851 	return 0;
852 }
853 
854 /**
855  * sdma_v4_4_2_inst_start - setup and start the async dma engines
856  *
857  * @adev: amdgpu_device pointer
858  * @inst_mask: mask of dma engine instances to be enabled
859  *
860  * Set up the DMA engines and enable them.
861  * Returns 0 for success, error for failure.
862  */
863 static int sdma_v4_4_2_inst_start(struct amdgpu_device *adev,
864 				  uint32_t inst_mask)
865 {
866 	struct amdgpu_ring *ring;
867 	uint32_t tmp_mask;
868 	int i, r = 0;
869 
870 	if (amdgpu_sriov_vf(adev)) {
871 		sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask);
872 		sdma_v4_4_2_inst_enable(adev, false, inst_mask);
873 	} else {
874 		/* bypass sdma microcode loading on Gopher */
875 		if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP &&
876 		    adev->sdma.instance[0].fw) {
877 			r = sdma_v4_4_2_inst_load_microcode(adev, inst_mask);
878 			if (r)
879 				return r;
880 		}
881 
882 		/* unhalt the MEs */
883 		sdma_v4_4_2_inst_enable(adev, true, inst_mask);
884 		/* enable sdma ring preemption */
885 		sdma_v4_4_2_inst_ctx_switch_enable(adev, true, inst_mask);
886 	}
887 
888 	/* start the gfx rings and rlc compute queues */
889 	tmp_mask = inst_mask;
890 	for_each_inst(i, tmp_mask) {
891 		uint32_t temp;
892 
893 		WREG32_SDMA(i, regSDMA_SEM_WAIT_FAIL_TIMER_CNTL, 0);
894 		sdma_v4_4_2_gfx_resume(adev, i);
895 		if (adev->sdma.has_page_queue)
896 			sdma_v4_4_2_page_resume(adev, i);
897 
898 		/* set utc l1 enable flag always to 1 */
899 		temp = RREG32_SDMA(i, regSDMA_CNTL);
900 		temp = REG_SET_FIELD(temp, SDMA_CNTL, UTC_L1_ENABLE, 1);
901 		/* enable context empty interrupt during initialization */
902 		temp = REG_SET_FIELD(temp, SDMA_CNTL, CTXEMPTY_INT_ENABLE, 1);
903 		WREG32_SDMA(i, regSDMA_CNTL, temp);
904 
905 		if (!amdgpu_sriov_vf(adev)) {
906 			if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
907 				/* unhalt engine */
908 				temp = RREG32_SDMA(i, regSDMA_F32_CNTL);
909 				temp = REG_SET_FIELD(temp, SDMA_F32_CNTL, HALT, 0);
910 				WREG32_SDMA(i, regSDMA_F32_CNTL, temp);
911 			}
912 		}
913 	}
914 
915 	if (amdgpu_sriov_vf(adev)) {
916 		sdma_v4_4_2_inst_ctx_switch_enable(adev, true, inst_mask);
917 		sdma_v4_4_2_inst_enable(adev, true, inst_mask);
918 	} else {
919 		r = sdma_v4_4_2_inst_rlc_resume(adev, inst_mask);
920 		if (r)
921 			return r;
922 	}
923 
924 	tmp_mask = inst_mask;
925 	for_each_inst(i, tmp_mask) {
926 		ring = &adev->sdma.instance[i].ring;
927 
928 		r = amdgpu_ring_test_helper(ring);
929 		if (r)
930 			return r;
931 
932 		if (adev->sdma.has_page_queue) {
933 			struct amdgpu_ring *page = &adev->sdma.instance[i].page;
934 
935 			r = amdgpu_ring_test_helper(page);
936 			if (r)
937 				return r;
938 		}
939 	}
940 
941 	return r;
942 }
943 
944 /**
945  * sdma_v4_4_2_ring_test_ring - simple async dma engine test
946  *
947  * @ring: amdgpu_ring structure holding ring information
948  *
949  * Test the DMA engine by writing using it to write an
950  * value to memory.
951  * Returns 0 for success, error for failure.
952  */
953 static int sdma_v4_4_2_ring_test_ring(struct amdgpu_ring *ring)
954 {
955 	struct amdgpu_device *adev = ring->adev;
956 	unsigned i;
957 	unsigned index;
958 	int r;
959 	u32 tmp;
960 	u64 gpu_addr;
961 
962 	r = amdgpu_device_wb_get(adev, &index);
963 	if (r)
964 		return r;
965 
966 	gpu_addr = adev->wb.gpu_addr + (index * 4);
967 	tmp = 0xCAFEDEAD;
968 	adev->wb.wb[index] = cpu_to_le32(tmp);
969 
970 	r = amdgpu_ring_alloc(ring, 5);
971 	if (r)
972 		goto error_free_wb;
973 
974 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
975 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
976 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
977 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
978 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
979 	amdgpu_ring_write(ring, 0xDEADBEEF);
980 	amdgpu_ring_commit(ring);
981 
982 	for (i = 0; i < adev->usec_timeout; i++) {
983 		tmp = le32_to_cpu(adev->wb.wb[index]);
984 		if (tmp == 0xDEADBEEF)
985 			break;
986 		udelay(1);
987 	}
988 
989 	if (i >= adev->usec_timeout)
990 		r = -ETIMEDOUT;
991 
992 error_free_wb:
993 	amdgpu_device_wb_free(adev, index);
994 	return r;
995 }
996 
997 /**
998  * sdma_v4_4_2_ring_test_ib - test an IB on the DMA engine
999  *
1000  * @ring: amdgpu_ring structure holding ring information
1001  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
1002  *
1003  * Test a simple IB in the DMA ring.
1004  * Returns 0 on success, error on failure.
1005  */
1006 static int sdma_v4_4_2_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1007 {
1008 	struct amdgpu_device *adev = ring->adev;
1009 	struct amdgpu_ib ib;
1010 	struct dma_fence *f = NULL;
1011 	unsigned index;
1012 	long r;
1013 	u32 tmp = 0;
1014 	u64 gpu_addr;
1015 
1016 	r = amdgpu_device_wb_get(adev, &index);
1017 	if (r)
1018 		return r;
1019 
1020 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1021 	tmp = 0xCAFEDEAD;
1022 	adev->wb.wb[index] = cpu_to_le32(tmp);
1023 	memset(&ib, 0, sizeof(ib));
1024 	r = amdgpu_ib_get(adev, NULL, 256,
1025 					AMDGPU_IB_POOL_DIRECT, &ib);
1026 	if (r)
1027 		goto err0;
1028 
1029 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1030 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1031 	ib.ptr[1] = lower_32_bits(gpu_addr);
1032 	ib.ptr[2] = upper_32_bits(gpu_addr);
1033 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1034 	ib.ptr[4] = 0xDEADBEEF;
1035 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1036 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1037 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1038 	ib.length_dw = 8;
1039 
1040 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1041 	if (r)
1042 		goto err1;
1043 
1044 	r = dma_fence_wait_timeout(f, false, timeout);
1045 	if (r == 0) {
1046 		r = -ETIMEDOUT;
1047 		goto err1;
1048 	} else if (r < 0) {
1049 		goto err1;
1050 	}
1051 	tmp = le32_to_cpu(adev->wb.wb[index]);
1052 	if (tmp == 0xDEADBEEF)
1053 		r = 0;
1054 	else
1055 		r = -EINVAL;
1056 
1057 err1:
1058 	amdgpu_ib_free(adev, &ib, NULL);
1059 	dma_fence_put(f);
1060 err0:
1061 	amdgpu_device_wb_free(adev, index);
1062 	return r;
1063 }
1064 
1065 
1066 /**
1067  * sdma_v4_4_2_vm_copy_pte - update PTEs by copying them from the GART
1068  *
1069  * @ib: indirect buffer to fill with commands
1070  * @pe: addr of the page entry
1071  * @src: src addr to copy from
1072  * @count: number of page entries to update
1073  *
1074  * Update PTEs by copying them from the GART using sDMA.
1075  */
1076 static void sdma_v4_4_2_vm_copy_pte(struct amdgpu_ib *ib,
1077 				  uint64_t pe, uint64_t src,
1078 				  unsigned count)
1079 {
1080 	unsigned bytes = count * 8;
1081 
1082 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1083 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1084 	ib->ptr[ib->length_dw++] = bytes - 1;
1085 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1086 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1087 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1088 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1089 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1090 
1091 }
1092 
1093 /**
1094  * sdma_v4_4_2_vm_write_pte - update PTEs by writing them manually
1095  *
1096  * @ib: indirect buffer to fill with commands
1097  * @pe: addr of the page entry
1098  * @value: dst addr to write into pe
1099  * @count: number of page entries to update
1100  * @incr: increase next addr by incr bytes
1101  *
1102  * Update PTEs by writing them manually using sDMA.
1103  */
1104 static void sdma_v4_4_2_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1105 				   uint64_t value, unsigned count,
1106 				   uint32_t incr)
1107 {
1108 	unsigned ndw = count * 2;
1109 
1110 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1111 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1112 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1113 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1114 	ib->ptr[ib->length_dw++] = ndw - 1;
1115 	for (; ndw > 0; ndw -= 2) {
1116 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1117 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1118 		value += incr;
1119 	}
1120 }
1121 
1122 /**
1123  * sdma_v4_4_2_vm_set_pte_pde - update the page tables using sDMA
1124  *
1125  * @ib: indirect buffer to fill with commands
1126  * @pe: addr of the page entry
1127  * @addr: dst addr to write into pe
1128  * @count: number of page entries to update
1129  * @incr: increase next addr by incr bytes
1130  * @flags: access flags
1131  *
1132  * Update the page tables using sDMA.
1133  */
1134 static void sdma_v4_4_2_vm_set_pte_pde(struct amdgpu_ib *ib,
1135 				     uint64_t pe,
1136 				     uint64_t addr, unsigned count,
1137 				     uint32_t incr, uint64_t flags)
1138 {
1139 	/* for physically contiguous pages (vram) */
1140 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1141 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1142 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1143 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1144 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1145 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1146 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1147 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1148 	ib->ptr[ib->length_dw++] = 0;
1149 	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1150 }
1151 
1152 /**
1153  * sdma_v4_4_2_ring_pad_ib - pad the IB to the required number of dw
1154  *
1155  * @ring: amdgpu_ring structure holding ring information
1156  * @ib: indirect buffer to fill with padding
1157  */
1158 static void sdma_v4_4_2_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1159 {
1160 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1161 	u32 pad_count;
1162 	int i;
1163 
1164 	pad_count = (-ib->length_dw) & 7;
1165 	for (i = 0; i < pad_count; i++)
1166 		if (sdma && sdma->burst_nop && (i == 0))
1167 			ib->ptr[ib->length_dw++] =
1168 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1169 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1170 		else
1171 			ib->ptr[ib->length_dw++] =
1172 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1173 }
1174 
1175 
1176 /**
1177  * sdma_v4_4_2_ring_emit_pipeline_sync - sync the pipeline
1178  *
1179  * @ring: amdgpu_ring pointer
1180  *
1181  * Make sure all previous operations are completed (CIK).
1182  */
1183 static void sdma_v4_4_2_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1184 {
1185 	uint32_t seq = ring->fence_drv.sync_seq;
1186 	uint64_t addr = ring->fence_drv.gpu_addr;
1187 
1188 	/* wait for idle */
1189 	sdma_v4_4_2_wait_reg_mem(ring, 1, 0,
1190 			       addr & 0xfffffffc,
1191 			       upper_32_bits(addr) & 0xffffffff,
1192 			       seq, 0xffffffff, 4);
1193 }
1194 
1195 
1196 /**
1197  * sdma_v4_4_2_ring_emit_vm_flush - vm flush using sDMA
1198  *
1199  * @ring: amdgpu_ring pointer
1200  * @vmid: vmid number to use
1201  * @pd_addr: address
1202  *
1203  * Update the page table base and flush the VM TLB
1204  * using sDMA.
1205  */
1206 static void sdma_v4_4_2_ring_emit_vm_flush(struct amdgpu_ring *ring,
1207 					 unsigned vmid, uint64_t pd_addr)
1208 {
1209 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1210 }
1211 
1212 static void sdma_v4_4_2_ring_emit_wreg(struct amdgpu_ring *ring,
1213 				     uint32_t reg, uint32_t val)
1214 {
1215 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1216 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1217 	amdgpu_ring_write(ring, reg);
1218 	amdgpu_ring_write(ring, val);
1219 }
1220 
1221 static void sdma_v4_4_2_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1222 					 uint32_t val, uint32_t mask)
1223 {
1224 	sdma_v4_4_2_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1225 }
1226 
1227 static bool sdma_v4_4_2_fw_support_paging_queue(struct amdgpu_device *adev)
1228 {
1229 	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
1230 	case IP_VERSION(4, 4, 2):
1231 		return false;
1232 	default:
1233 		return false;
1234 	}
1235 }
1236 
1237 static int sdma_v4_4_2_early_init(void *handle)
1238 {
1239 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1240 	int r;
1241 
1242 	r = sdma_v4_4_2_init_microcode(adev);
1243 	if (r)
1244 		return r;
1245 
1246 	/* TODO: Page queue breaks driver reload under SRIOV */
1247 	if (sdma_v4_4_2_fw_support_paging_queue(adev))
1248 		adev->sdma.has_page_queue = true;
1249 
1250 	sdma_v4_4_2_set_ring_funcs(adev);
1251 	sdma_v4_4_2_set_buffer_funcs(adev);
1252 	sdma_v4_4_2_set_vm_pte_funcs(adev);
1253 	sdma_v4_4_2_set_irq_funcs(adev);
1254 	sdma_v4_4_2_set_ras_funcs(adev);
1255 
1256 	return 0;
1257 }
1258 
1259 #if 0
1260 static int sdma_v4_4_2_process_ras_data_cb(struct amdgpu_device *adev,
1261 		void *err_data,
1262 		struct amdgpu_iv_entry *entry);
1263 #endif
1264 
1265 static int sdma_v4_4_2_late_init(void *handle)
1266 {
1267 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1268 #if 0
1269 	struct ras_ih_if ih_info = {
1270 		.cb = sdma_v4_4_2_process_ras_data_cb,
1271 	};
1272 #endif
1273 	if (!amdgpu_persistent_edc_harvesting_supported(adev))
1274 		amdgpu_ras_reset_error_count(adev, AMDGPU_RAS_BLOCK__SDMA);
1275 
1276 	return 0;
1277 }
1278 
1279 static int sdma_v4_4_2_sw_init(void *handle)
1280 {
1281 	struct amdgpu_ring *ring;
1282 	int r, i;
1283 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1284 	u32 aid_id;
1285 
1286 	/* SDMA trap event */
1287 	for (i = 0; i < adev->sdma.num_inst_per_aid; i++) {
1288 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1289 				      SDMA0_4_0__SRCID__SDMA_TRAP,
1290 				      &adev->sdma.trap_irq);
1291 		if (r)
1292 			return r;
1293 	}
1294 
1295 	/* SDMA SRAM ECC event */
1296 	for (i = 0; i < adev->sdma.num_inst_per_aid; i++) {
1297 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1298 				      SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
1299 				      &adev->sdma.ecc_irq);
1300 		if (r)
1301 			return r;
1302 	}
1303 
1304 	/* SDMA VM_HOLE/DOORBELL_INV/POLL_TIMEOUT/SRBM_WRITE_PROTECTION event*/
1305 	for (i = 0; i < adev->sdma.num_inst_per_aid; i++) {
1306 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1307 				      SDMA0_4_0__SRCID__SDMA_VM_HOLE,
1308 				      &adev->sdma.vm_hole_irq);
1309 		if (r)
1310 			return r;
1311 
1312 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1313 				      SDMA0_4_0__SRCID__SDMA_DOORBELL_INVALID,
1314 				      &adev->sdma.doorbell_invalid_irq);
1315 		if (r)
1316 			return r;
1317 
1318 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1319 				      SDMA0_4_0__SRCID__SDMA_POLL_TIMEOUT,
1320 				      &adev->sdma.pool_timeout_irq);
1321 		if (r)
1322 			return r;
1323 
1324 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1325 				      SDMA0_4_0__SRCID__SDMA_SRBMWRITE,
1326 				      &adev->sdma.srbm_write_irq);
1327 		if (r)
1328 			return r;
1329 	}
1330 
1331 	for (i = 0; i < adev->sdma.num_instances; i++) {
1332 		ring = &adev->sdma.instance[i].ring;
1333 		ring->ring_obj = NULL;
1334 		ring->use_doorbell = true;
1335 		aid_id = adev->sdma.instance[i].aid_id;
1336 
1337 		DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i,
1338 				ring->use_doorbell?"true":"false");
1339 
1340 		/* doorbell size is 2 dwords, get DWORD offset */
1341 		ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1342 		ring->vm_hub = AMDGPU_MMHUB0(aid_id);
1343 
1344 		sprintf(ring->name, "sdma%d.%d", aid_id,
1345 				i % adev->sdma.num_inst_per_aid);
1346 		r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1347 				     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1348 				     AMDGPU_RING_PRIO_DEFAULT, NULL);
1349 		if (r)
1350 			return r;
1351 
1352 		if (adev->sdma.has_page_queue) {
1353 			ring = &adev->sdma.instance[i].page;
1354 			ring->ring_obj = NULL;
1355 			ring->use_doorbell = true;
1356 
1357 			/* doorbell index of page queue is assigned right after
1358 			 * gfx queue on the same instance
1359 			 */
1360 			ring->doorbell_index =
1361 				(adev->doorbell_index.sdma_engine[i] + 1) << 1;
1362 			ring->vm_hub = AMDGPU_MMHUB0(aid_id);
1363 
1364 			sprintf(ring->name, "page%d.%d", aid_id,
1365 					i % adev->sdma.num_inst_per_aid);
1366 			r = amdgpu_ring_init(adev, ring, 1024,
1367 					     &adev->sdma.trap_irq,
1368 					     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1369 					     AMDGPU_RING_PRIO_DEFAULT, NULL);
1370 			if (r)
1371 				return r;
1372 		}
1373 	}
1374 
1375 	if (amdgpu_sdma_ras_sw_init(adev)) {
1376 		dev_err(adev->dev, "fail to initialize sdma ras block\n");
1377 		return -EINVAL;
1378 	}
1379 
1380 	return r;
1381 }
1382 
1383 static int sdma_v4_4_2_sw_fini(void *handle)
1384 {
1385 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1386 	int i;
1387 
1388 	for (i = 0; i < adev->sdma.num_instances; i++) {
1389 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1390 		if (adev->sdma.has_page_queue)
1391 			amdgpu_ring_fini(&adev->sdma.instance[i].page);
1392 	}
1393 
1394 	if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 2))
1395 		amdgpu_sdma_destroy_inst_ctx(adev, true);
1396 	else
1397 		amdgpu_sdma_destroy_inst_ctx(adev, false);
1398 
1399 	return 0;
1400 }
1401 
1402 static int sdma_v4_4_2_hw_init(void *handle)
1403 {
1404 	int r;
1405 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1406 	uint32_t inst_mask;
1407 
1408 	inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
1409 	if (!amdgpu_sriov_vf(adev))
1410 		sdma_v4_4_2_inst_init_golden_registers(adev, inst_mask);
1411 
1412 	r = sdma_v4_4_2_inst_start(adev, inst_mask);
1413 
1414 	return r;
1415 }
1416 
1417 static int sdma_v4_4_2_hw_fini(void *handle)
1418 {
1419 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1420 	uint32_t inst_mask;
1421 	int i;
1422 
1423 	if (amdgpu_sriov_vf(adev))
1424 		return 0;
1425 
1426 	inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
1427 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
1428 		for (i = 0; i < adev->sdma.num_instances; i++) {
1429 			amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
1430 				       AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1431 		}
1432 	}
1433 
1434 	sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask);
1435 	sdma_v4_4_2_inst_enable(adev, false, inst_mask);
1436 
1437 	return 0;
1438 }
1439 
1440 static int sdma_v4_4_2_set_clockgating_state(void *handle,
1441 					     enum amd_clockgating_state state);
1442 
1443 static int sdma_v4_4_2_suspend(void *handle)
1444 {
1445 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1446 
1447 	if (amdgpu_in_reset(adev))
1448 		sdma_v4_4_2_set_clockgating_state(adev, AMD_CG_STATE_UNGATE);
1449 
1450 	return sdma_v4_4_2_hw_fini(adev);
1451 }
1452 
1453 static int sdma_v4_4_2_resume(void *handle)
1454 {
1455 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1456 
1457 	return sdma_v4_4_2_hw_init(adev);
1458 }
1459 
1460 static bool sdma_v4_4_2_is_idle(void *handle)
1461 {
1462 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1463 	u32 i;
1464 
1465 	for (i = 0; i < adev->sdma.num_instances; i++) {
1466 		u32 tmp = RREG32_SDMA(i, regSDMA_STATUS_REG);
1467 
1468 		if (!(tmp & SDMA_STATUS_REG__IDLE_MASK))
1469 			return false;
1470 	}
1471 
1472 	return true;
1473 }
1474 
1475 static int sdma_v4_4_2_wait_for_idle(void *handle)
1476 {
1477 	unsigned i, j;
1478 	u32 sdma[AMDGPU_MAX_SDMA_INSTANCES];
1479 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1480 
1481 	for (i = 0; i < adev->usec_timeout; i++) {
1482 		for (j = 0; j < adev->sdma.num_instances; j++) {
1483 			sdma[j] = RREG32_SDMA(j, regSDMA_STATUS_REG);
1484 			if (!(sdma[j] & SDMA_STATUS_REG__IDLE_MASK))
1485 				break;
1486 		}
1487 		if (j == adev->sdma.num_instances)
1488 			return 0;
1489 		udelay(1);
1490 	}
1491 	return -ETIMEDOUT;
1492 }
1493 
1494 static int sdma_v4_4_2_soft_reset(void *handle)
1495 {
1496 	/* todo */
1497 
1498 	return 0;
1499 }
1500 
1501 static int sdma_v4_4_2_set_trap_irq_state(struct amdgpu_device *adev,
1502 					struct amdgpu_irq_src *source,
1503 					unsigned type,
1504 					enum amdgpu_interrupt_state state)
1505 {
1506 	u32 sdma_cntl;
1507 
1508 	sdma_cntl = RREG32_SDMA(type, regSDMA_CNTL);
1509 	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA_CNTL, TRAP_ENABLE,
1510 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1511 	WREG32_SDMA(type, regSDMA_CNTL, sdma_cntl);
1512 
1513 	return 0;
1514 }
1515 
1516 static int sdma_v4_4_2_process_trap_irq(struct amdgpu_device *adev,
1517 				      struct amdgpu_irq_src *source,
1518 				      struct amdgpu_iv_entry *entry)
1519 {
1520 	uint32_t instance, i;
1521 
1522 	DRM_DEBUG("IH: SDMA trap\n");
1523 	instance = sdma_v4_4_2_irq_id_to_seq(entry->client_id);
1524 
1525 	/* Client id gives the SDMA instance in AID. To know the exact SDMA
1526 	 * instance, interrupt entry gives the node id which corresponds to the AID instance.
1527 	 * Match node id with the AID id associated with the SDMA instance. */
1528 	for (i = instance; i < adev->sdma.num_instances;
1529 	     i += adev->sdma.num_inst_per_aid) {
1530 		if (adev->sdma.instance[i].aid_id ==
1531 		    node_id_to_phys_map[entry->node_id])
1532 			break;
1533 	}
1534 
1535 	if (i >= adev->sdma.num_instances) {
1536 		dev_WARN_ONCE(
1537 			adev->dev, 1,
1538 			"Couldn't find the right sdma instance in trap handler");
1539 		return 0;
1540 	}
1541 
1542 	switch (entry->ring_id) {
1543 	case 0:
1544 		amdgpu_fence_process(&adev->sdma.instance[i].ring);
1545 		break;
1546 	default:
1547 		break;
1548 	}
1549 	return 0;
1550 }
1551 
1552 #if 0
1553 static int sdma_v4_4_2_process_ras_data_cb(struct amdgpu_device *adev,
1554 		void *err_data,
1555 		struct amdgpu_iv_entry *entry)
1556 {
1557 	int instance;
1558 
1559 	/* When “Full RAS” is enabled, the per-IP interrupt sources should
1560 	 * be disabled and the driver should only look for the aggregated
1561 	 * interrupt via sync flood
1562 	 */
1563 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA))
1564 		goto out;
1565 
1566 	instance = sdma_v4_4_2_irq_id_to_seq(entry->client_id);
1567 	if (instance < 0)
1568 		goto out;
1569 
1570 	amdgpu_sdma_process_ras_data_cb(adev, err_data, entry);
1571 
1572 out:
1573 	return AMDGPU_RAS_SUCCESS;
1574 }
1575 #endif
1576 
1577 static int sdma_v4_4_2_process_illegal_inst_irq(struct amdgpu_device *adev,
1578 					      struct amdgpu_irq_src *source,
1579 					      struct amdgpu_iv_entry *entry)
1580 {
1581 	int instance;
1582 
1583 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
1584 
1585 	instance = sdma_v4_4_2_irq_id_to_seq(entry->client_id);
1586 	if (instance < 0)
1587 		return 0;
1588 
1589 	switch (entry->ring_id) {
1590 	case 0:
1591 		drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
1592 		break;
1593 	}
1594 	return 0;
1595 }
1596 
1597 static int sdma_v4_4_2_set_ecc_irq_state(struct amdgpu_device *adev,
1598 					struct amdgpu_irq_src *source,
1599 					unsigned type,
1600 					enum amdgpu_interrupt_state state)
1601 {
1602 	u32 sdma_cntl;
1603 
1604 	sdma_cntl = RREG32_SDMA(type, regSDMA_CNTL);
1605 	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA_CNTL, DRAM_ECC_INT_ENABLE,
1606 					state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1607 	WREG32_SDMA(type, regSDMA_CNTL, sdma_cntl);
1608 
1609 	return 0;
1610 }
1611 
1612 static int sdma_v4_4_2_print_iv_entry(struct amdgpu_device *adev,
1613 					      struct amdgpu_iv_entry *entry)
1614 {
1615 	int instance;
1616 	struct amdgpu_task_info *task_info;
1617 	u64 addr;
1618 
1619 	instance = sdma_v4_4_2_irq_id_to_seq(entry->client_id);
1620 	if (instance < 0 || instance >= adev->sdma.num_instances) {
1621 		dev_err(adev->dev, "sdma instance invalid %d\n", instance);
1622 		return -EINVAL;
1623 	}
1624 
1625 	addr = (u64)entry->src_data[0] << 12;
1626 	addr |= ((u64)entry->src_data[1] & 0xf) << 44;
1627 
1628 	dev_dbg_ratelimited(adev->dev,
1629 			    "[sdma%d] address:0x%016llx src_id:%u ring:%u vmid:%u pasid:%u\n",
1630 			    instance, addr, entry->src_id, entry->ring_id, entry->vmid,
1631 			    entry->pasid);
1632 
1633 	task_info = amdgpu_vm_get_task_info_pasid(adev, entry->pasid);
1634 	if (task_info) {
1635 		dev_dbg_ratelimited(adev->dev, " for process %s pid %d thread %s pid %d\n",
1636 				    task_info->process_name, task_info->tgid,
1637 				    task_info->task_name, task_info->pid);
1638 		amdgpu_vm_put_task_info(task_info);
1639 	}
1640 
1641 	return 0;
1642 }
1643 
1644 static int sdma_v4_4_2_process_vm_hole_irq(struct amdgpu_device *adev,
1645 					      struct amdgpu_irq_src *source,
1646 					      struct amdgpu_iv_entry *entry)
1647 {
1648 	dev_dbg_ratelimited(adev->dev, "MC or SEM address in VM hole\n");
1649 	sdma_v4_4_2_print_iv_entry(adev, entry);
1650 	return 0;
1651 }
1652 
1653 static int sdma_v4_4_2_process_doorbell_invalid_irq(struct amdgpu_device *adev,
1654 					      struct amdgpu_irq_src *source,
1655 					      struct amdgpu_iv_entry *entry)
1656 {
1657 
1658 	dev_dbg_ratelimited(adev->dev, "SDMA received a doorbell from BIF with byte_enable !=0xff\n");
1659 	sdma_v4_4_2_print_iv_entry(adev, entry);
1660 	return 0;
1661 }
1662 
1663 static int sdma_v4_4_2_process_pool_timeout_irq(struct amdgpu_device *adev,
1664 					      struct amdgpu_irq_src *source,
1665 					      struct amdgpu_iv_entry *entry)
1666 {
1667 	dev_dbg_ratelimited(adev->dev,
1668 		"Polling register/memory timeout executing POLL_REG/MEM with finite timer\n");
1669 	sdma_v4_4_2_print_iv_entry(adev, entry);
1670 	return 0;
1671 }
1672 
1673 static int sdma_v4_4_2_process_srbm_write_irq(struct amdgpu_device *adev,
1674 					      struct amdgpu_irq_src *source,
1675 					      struct amdgpu_iv_entry *entry)
1676 {
1677 	dev_dbg_ratelimited(adev->dev,
1678 		"SDMA gets an Register Write SRBM_WRITE command in non-privilege command buffer\n");
1679 	sdma_v4_4_2_print_iv_entry(adev, entry);
1680 	return 0;
1681 }
1682 
1683 static void sdma_v4_4_2_inst_update_medium_grain_light_sleep(
1684 	struct amdgpu_device *adev, bool enable, uint32_t inst_mask)
1685 {
1686 	uint32_t data, def;
1687 	int i;
1688 
1689 	/* leave as default if it is not driver controlled */
1690 	if (!(adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS))
1691 		return;
1692 
1693 	if (enable) {
1694 		for_each_inst(i, inst_mask) {
1695 			/* 1-not override: enable sdma mem light sleep */
1696 			def = data = RREG32_SDMA(i, regSDMA_POWER_CNTL);
1697 			data |= SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1698 			if (def != data)
1699 				WREG32_SDMA(i, regSDMA_POWER_CNTL, data);
1700 		}
1701 	} else {
1702 		for_each_inst(i, inst_mask) {
1703 			/* 0-override:disable sdma mem light sleep */
1704 			def = data = RREG32_SDMA(i, regSDMA_POWER_CNTL);
1705 			data &= ~SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1706 			if (def != data)
1707 				WREG32_SDMA(i, regSDMA_POWER_CNTL, data);
1708 		}
1709 	}
1710 }
1711 
1712 static void sdma_v4_4_2_inst_update_medium_grain_clock_gating(
1713 	struct amdgpu_device *adev, bool enable, uint32_t inst_mask)
1714 {
1715 	uint32_t data, def;
1716 	int i;
1717 
1718 	/* leave as default if it is not driver controlled */
1719 	if (!(adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG))
1720 		return;
1721 
1722 	if (enable) {
1723 		for_each_inst(i, inst_mask) {
1724 			def = data = RREG32_SDMA(i, regSDMA_CLK_CTRL);
1725 			data &= ~(SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1726 				  SDMA_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1727 				  SDMA_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1728 				  SDMA_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1729 				  SDMA_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1730 				  SDMA_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1731 			if (def != data)
1732 				WREG32_SDMA(i, regSDMA_CLK_CTRL, data);
1733 		}
1734 	} else {
1735 		for_each_inst(i, inst_mask) {
1736 			def = data = RREG32_SDMA(i, regSDMA_CLK_CTRL);
1737 			data |= (SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1738 				 SDMA_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1739 				 SDMA_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1740 				 SDMA_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1741 				 SDMA_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1742 				 SDMA_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1743 			if (def != data)
1744 				WREG32_SDMA(i, regSDMA_CLK_CTRL, data);
1745 		}
1746 	}
1747 }
1748 
1749 static int sdma_v4_4_2_set_clockgating_state(void *handle,
1750 					  enum amd_clockgating_state state)
1751 {
1752 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1753 	uint32_t inst_mask;
1754 
1755 	if (amdgpu_sriov_vf(adev))
1756 		return 0;
1757 
1758 	inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
1759 
1760 	sdma_v4_4_2_inst_update_medium_grain_clock_gating(
1761 		adev, state == AMD_CG_STATE_GATE, inst_mask);
1762 	sdma_v4_4_2_inst_update_medium_grain_light_sleep(
1763 		adev, state == AMD_CG_STATE_GATE, inst_mask);
1764 	return 0;
1765 }
1766 
1767 static int sdma_v4_4_2_set_powergating_state(void *handle,
1768 					  enum amd_powergating_state state)
1769 {
1770 	return 0;
1771 }
1772 
1773 static void sdma_v4_4_2_get_clockgating_state(void *handle, u64 *flags)
1774 {
1775 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1776 	int data;
1777 
1778 	if (amdgpu_sriov_vf(adev))
1779 		*flags = 0;
1780 
1781 	/* AMD_CG_SUPPORT_SDMA_MGCG */
1782 	data = RREG32(SOC15_REG_OFFSET(SDMA0, GET_INST(SDMA0, 0), regSDMA_CLK_CTRL));
1783 	if (!(data & SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK))
1784 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1785 
1786 	/* AMD_CG_SUPPORT_SDMA_LS */
1787 	data = RREG32(SOC15_REG_OFFSET(SDMA0, GET_INST(SDMA0, 0), regSDMA_POWER_CNTL));
1788 	if (data & SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1789 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
1790 }
1791 
1792 const struct amd_ip_funcs sdma_v4_4_2_ip_funcs = {
1793 	.name = "sdma_v4_4_2",
1794 	.early_init = sdma_v4_4_2_early_init,
1795 	.late_init = sdma_v4_4_2_late_init,
1796 	.sw_init = sdma_v4_4_2_sw_init,
1797 	.sw_fini = sdma_v4_4_2_sw_fini,
1798 	.hw_init = sdma_v4_4_2_hw_init,
1799 	.hw_fini = sdma_v4_4_2_hw_fini,
1800 	.suspend = sdma_v4_4_2_suspend,
1801 	.resume = sdma_v4_4_2_resume,
1802 	.is_idle = sdma_v4_4_2_is_idle,
1803 	.wait_for_idle = sdma_v4_4_2_wait_for_idle,
1804 	.soft_reset = sdma_v4_4_2_soft_reset,
1805 	.set_clockgating_state = sdma_v4_4_2_set_clockgating_state,
1806 	.set_powergating_state = sdma_v4_4_2_set_powergating_state,
1807 	.get_clockgating_state = sdma_v4_4_2_get_clockgating_state,
1808 };
1809 
1810 static const struct amdgpu_ring_funcs sdma_v4_4_2_ring_funcs = {
1811 	.type = AMDGPU_RING_TYPE_SDMA,
1812 	.align_mask = 0xff,
1813 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1814 	.support_64bit_ptrs = true,
1815 	.get_rptr = sdma_v4_4_2_ring_get_rptr,
1816 	.get_wptr = sdma_v4_4_2_ring_get_wptr,
1817 	.set_wptr = sdma_v4_4_2_ring_set_wptr,
1818 	.emit_frame_size =
1819 		6 + /* sdma_v4_4_2_ring_emit_hdp_flush */
1820 		3 + /* hdp invalidate */
1821 		6 + /* sdma_v4_4_2_ring_emit_pipeline_sync */
1822 		/* sdma_v4_4_2_ring_emit_vm_flush */
1823 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
1824 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
1825 		10 + 10 + 10, /* sdma_v4_4_2_ring_emit_fence x3 for user fence, vm fence */
1826 	.emit_ib_size = 7 + 6, /* sdma_v4_4_2_ring_emit_ib */
1827 	.emit_ib = sdma_v4_4_2_ring_emit_ib,
1828 	.emit_fence = sdma_v4_4_2_ring_emit_fence,
1829 	.emit_pipeline_sync = sdma_v4_4_2_ring_emit_pipeline_sync,
1830 	.emit_vm_flush = sdma_v4_4_2_ring_emit_vm_flush,
1831 	.emit_hdp_flush = sdma_v4_4_2_ring_emit_hdp_flush,
1832 	.test_ring = sdma_v4_4_2_ring_test_ring,
1833 	.test_ib = sdma_v4_4_2_ring_test_ib,
1834 	.insert_nop = sdma_v4_4_2_ring_insert_nop,
1835 	.pad_ib = sdma_v4_4_2_ring_pad_ib,
1836 	.emit_wreg = sdma_v4_4_2_ring_emit_wreg,
1837 	.emit_reg_wait = sdma_v4_4_2_ring_emit_reg_wait,
1838 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
1839 };
1840 
1841 static const struct amdgpu_ring_funcs sdma_v4_4_2_page_ring_funcs = {
1842 	.type = AMDGPU_RING_TYPE_SDMA,
1843 	.align_mask = 0xff,
1844 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1845 	.support_64bit_ptrs = true,
1846 	.get_rptr = sdma_v4_4_2_ring_get_rptr,
1847 	.get_wptr = sdma_v4_4_2_page_ring_get_wptr,
1848 	.set_wptr = sdma_v4_4_2_page_ring_set_wptr,
1849 	.emit_frame_size =
1850 		6 + /* sdma_v4_4_2_ring_emit_hdp_flush */
1851 		3 + /* hdp invalidate */
1852 		6 + /* sdma_v4_4_2_ring_emit_pipeline_sync */
1853 		/* sdma_v4_4_2_ring_emit_vm_flush */
1854 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
1855 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
1856 		10 + 10 + 10, /* sdma_v4_4_2_ring_emit_fence x3 for user fence, vm fence */
1857 	.emit_ib_size = 7 + 6, /* sdma_v4_4_2_ring_emit_ib */
1858 	.emit_ib = sdma_v4_4_2_ring_emit_ib,
1859 	.emit_fence = sdma_v4_4_2_ring_emit_fence,
1860 	.emit_pipeline_sync = sdma_v4_4_2_ring_emit_pipeline_sync,
1861 	.emit_vm_flush = sdma_v4_4_2_ring_emit_vm_flush,
1862 	.emit_hdp_flush = sdma_v4_4_2_ring_emit_hdp_flush,
1863 	.test_ring = sdma_v4_4_2_ring_test_ring,
1864 	.test_ib = sdma_v4_4_2_ring_test_ib,
1865 	.insert_nop = sdma_v4_4_2_ring_insert_nop,
1866 	.pad_ib = sdma_v4_4_2_ring_pad_ib,
1867 	.emit_wreg = sdma_v4_4_2_ring_emit_wreg,
1868 	.emit_reg_wait = sdma_v4_4_2_ring_emit_reg_wait,
1869 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
1870 };
1871 
1872 static void sdma_v4_4_2_set_ring_funcs(struct amdgpu_device *adev)
1873 {
1874 	int i, dev_inst;
1875 
1876 	for (i = 0; i < adev->sdma.num_instances; i++) {
1877 		adev->sdma.instance[i].ring.funcs = &sdma_v4_4_2_ring_funcs;
1878 		adev->sdma.instance[i].ring.me = i;
1879 		if (adev->sdma.has_page_queue) {
1880 			adev->sdma.instance[i].page.funcs =
1881 				&sdma_v4_4_2_page_ring_funcs;
1882 			adev->sdma.instance[i].page.me = i;
1883 		}
1884 
1885 		dev_inst = GET_INST(SDMA0, i);
1886 		/* AID to which SDMA belongs depends on physical instance */
1887 		adev->sdma.instance[i].aid_id =
1888 			dev_inst / adev->sdma.num_inst_per_aid;
1889 	}
1890 }
1891 
1892 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_trap_irq_funcs = {
1893 	.set = sdma_v4_4_2_set_trap_irq_state,
1894 	.process = sdma_v4_4_2_process_trap_irq,
1895 };
1896 
1897 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_illegal_inst_irq_funcs = {
1898 	.process = sdma_v4_4_2_process_illegal_inst_irq,
1899 };
1900 
1901 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_ecc_irq_funcs = {
1902 	.set = sdma_v4_4_2_set_ecc_irq_state,
1903 	.process = amdgpu_sdma_process_ecc_irq,
1904 };
1905 
1906 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_vm_hole_irq_funcs = {
1907 	.process = sdma_v4_4_2_process_vm_hole_irq,
1908 };
1909 
1910 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_doorbell_invalid_irq_funcs = {
1911 	.process = sdma_v4_4_2_process_doorbell_invalid_irq,
1912 };
1913 
1914 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_pool_timeout_irq_funcs = {
1915 	.process = sdma_v4_4_2_process_pool_timeout_irq,
1916 };
1917 
1918 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_srbm_write_irq_funcs = {
1919 	.process = sdma_v4_4_2_process_srbm_write_irq,
1920 };
1921 
1922 static void sdma_v4_4_2_set_irq_funcs(struct amdgpu_device *adev)
1923 {
1924 	adev->sdma.trap_irq.num_types = adev->sdma.num_instances;
1925 	adev->sdma.ecc_irq.num_types = adev->sdma.num_instances;
1926 	adev->sdma.vm_hole_irq.num_types = adev->sdma.num_instances;
1927 	adev->sdma.doorbell_invalid_irq.num_types = adev->sdma.num_instances;
1928 	adev->sdma.pool_timeout_irq.num_types = adev->sdma.num_instances;
1929 	adev->sdma.srbm_write_irq.num_types = adev->sdma.num_instances;
1930 
1931 	adev->sdma.trap_irq.funcs = &sdma_v4_4_2_trap_irq_funcs;
1932 	adev->sdma.illegal_inst_irq.funcs = &sdma_v4_4_2_illegal_inst_irq_funcs;
1933 	adev->sdma.ecc_irq.funcs = &sdma_v4_4_2_ecc_irq_funcs;
1934 	adev->sdma.vm_hole_irq.funcs = &sdma_v4_4_2_vm_hole_irq_funcs;
1935 	adev->sdma.doorbell_invalid_irq.funcs = &sdma_v4_4_2_doorbell_invalid_irq_funcs;
1936 	adev->sdma.pool_timeout_irq.funcs = &sdma_v4_4_2_pool_timeout_irq_funcs;
1937 	adev->sdma.srbm_write_irq.funcs = &sdma_v4_4_2_srbm_write_irq_funcs;
1938 }
1939 
1940 /**
1941  * sdma_v4_4_2_emit_copy_buffer - copy buffer using the sDMA engine
1942  *
1943  * @ib: indirect buffer to copy to
1944  * @src_offset: src GPU address
1945  * @dst_offset: dst GPU address
1946  * @byte_count: number of bytes to xfer
1947  * @tmz: if a secure copy should be used
1948  *
1949  * Copy GPU buffers using the DMA engine.
1950  * Used by the amdgpu ttm implementation to move pages if
1951  * registered as the asic copy callback.
1952  */
1953 static void sdma_v4_4_2_emit_copy_buffer(struct amdgpu_ib *ib,
1954 				       uint64_t src_offset,
1955 				       uint64_t dst_offset,
1956 				       uint32_t byte_count,
1957 				       bool tmz)
1958 {
1959 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1960 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
1961 		SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0);
1962 	ib->ptr[ib->length_dw++] = byte_count - 1;
1963 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1964 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1965 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1966 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1967 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1968 }
1969 
1970 /**
1971  * sdma_v4_4_2_emit_fill_buffer - fill buffer using the sDMA engine
1972  *
1973  * @ib: indirect buffer to copy to
1974  * @src_data: value to write to buffer
1975  * @dst_offset: dst GPU address
1976  * @byte_count: number of bytes to xfer
1977  *
1978  * Fill GPU buffers using the DMA engine.
1979  */
1980 static void sdma_v4_4_2_emit_fill_buffer(struct amdgpu_ib *ib,
1981 				       uint32_t src_data,
1982 				       uint64_t dst_offset,
1983 				       uint32_t byte_count)
1984 {
1985 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1986 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1987 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1988 	ib->ptr[ib->length_dw++] = src_data;
1989 	ib->ptr[ib->length_dw++] = byte_count - 1;
1990 }
1991 
1992 static const struct amdgpu_buffer_funcs sdma_v4_4_2_buffer_funcs = {
1993 	.copy_max_bytes = 0x400000,
1994 	.copy_num_dw = 7,
1995 	.emit_copy_buffer = sdma_v4_4_2_emit_copy_buffer,
1996 
1997 	.fill_max_bytes = 0x400000,
1998 	.fill_num_dw = 5,
1999 	.emit_fill_buffer = sdma_v4_4_2_emit_fill_buffer,
2000 };
2001 
2002 static void sdma_v4_4_2_set_buffer_funcs(struct amdgpu_device *adev)
2003 {
2004 	adev->mman.buffer_funcs = &sdma_v4_4_2_buffer_funcs;
2005 	if (adev->sdma.has_page_queue)
2006 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
2007 	else
2008 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2009 }
2010 
2011 static const struct amdgpu_vm_pte_funcs sdma_v4_4_2_vm_pte_funcs = {
2012 	.copy_pte_num_dw = 7,
2013 	.copy_pte = sdma_v4_4_2_vm_copy_pte,
2014 
2015 	.write_pte = sdma_v4_4_2_vm_write_pte,
2016 	.set_pte_pde = sdma_v4_4_2_vm_set_pte_pde,
2017 };
2018 
2019 static void sdma_v4_4_2_set_vm_pte_funcs(struct amdgpu_device *adev)
2020 {
2021 	struct drm_gpu_scheduler *sched;
2022 	unsigned i;
2023 
2024 	adev->vm_manager.vm_pte_funcs = &sdma_v4_4_2_vm_pte_funcs;
2025 	for (i = 0; i < adev->sdma.num_instances; i++) {
2026 		if (adev->sdma.has_page_queue)
2027 			sched = &adev->sdma.instance[i].page.sched;
2028 		else
2029 			sched = &adev->sdma.instance[i].ring.sched;
2030 		adev->vm_manager.vm_pte_scheds[i] = sched;
2031 	}
2032 	adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
2033 }
2034 
2035 const struct amdgpu_ip_block_version sdma_v4_4_2_ip_block = {
2036 	.type = AMD_IP_BLOCK_TYPE_SDMA,
2037 	.major = 4,
2038 	.minor = 4,
2039 	.rev = 2,
2040 	.funcs = &sdma_v4_4_2_ip_funcs,
2041 };
2042 
2043 static int sdma_v4_4_2_xcp_resume(void *handle, uint32_t inst_mask)
2044 {
2045 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2046 	int r;
2047 
2048 	if (!amdgpu_sriov_vf(adev))
2049 		sdma_v4_4_2_inst_init_golden_registers(adev, inst_mask);
2050 
2051 	r = sdma_v4_4_2_inst_start(adev, inst_mask);
2052 
2053 	return r;
2054 }
2055 
2056 static int sdma_v4_4_2_xcp_suspend(void *handle, uint32_t inst_mask)
2057 {
2058 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2059 	uint32_t tmp_mask = inst_mask;
2060 	int i;
2061 
2062 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2063 		for_each_inst(i, tmp_mask) {
2064 			amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
2065 				       AMDGPU_SDMA_IRQ_INSTANCE0 + i);
2066 		}
2067 	}
2068 
2069 	sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask);
2070 	sdma_v4_4_2_inst_enable(adev, false, inst_mask);
2071 
2072 	return 0;
2073 }
2074 
2075 struct amdgpu_xcp_ip_funcs sdma_v4_4_2_xcp_funcs = {
2076 	.suspend = &sdma_v4_4_2_xcp_suspend,
2077 	.resume = &sdma_v4_4_2_xcp_resume
2078 };
2079 
2080 static const struct amdgpu_ras_err_status_reg_entry sdma_v4_2_2_ue_reg_list[] = {
2081 	{AMDGPU_RAS_REG_ENTRY(SDMA0, 0, regSDMA_UE_ERR_STATUS_LO, regSDMA_UE_ERR_STATUS_HI),
2082 	1, (AMDGPU_RAS_ERR_INFO_VALID | AMDGPU_RAS_ERR_STATUS_VALID), "SDMA"},
2083 };
2084 
2085 static const struct amdgpu_ras_memory_id_entry sdma_v4_4_2_ras_memory_list[] = {
2086 	{AMDGPU_SDMA_MBANK_DATA_BUF0, "SDMA_MBANK_DATA_BUF0"},
2087 	{AMDGPU_SDMA_MBANK_DATA_BUF1, "SDMA_MBANK_DATA_BUF1"},
2088 	{AMDGPU_SDMA_MBANK_DATA_BUF2, "SDMA_MBANK_DATA_BUF2"},
2089 	{AMDGPU_SDMA_MBANK_DATA_BUF3, "SDMA_MBANK_DATA_BUF3"},
2090 	{AMDGPU_SDMA_MBANK_DATA_BUF4, "SDMA_MBANK_DATA_BUF4"},
2091 	{AMDGPU_SDMA_MBANK_DATA_BUF5, "SDMA_MBANK_DATA_BUF5"},
2092 	{AMDGPU_SDMA_MBANK_DATA_BUF6, "SDMA_MBANK_DATA_BUF6"},
2093 	{AMDGPU_SDMA_MBANK_DATA_BUF7, "SDMA_MBANK_DATA_BUF7"},
2094 	{AMDGPU_SDMA_MBANK_DATA_BUF8, "SDMA_MBANK_DATA_BUF8"},
2095 	{AMDGPU_SDMA_MBANK_DATA_BUF9, "SDMA_MBANK_DATA_BUF9"},
2096 	{AMDGPU_SDMA_MBANK_DATA_BUF10, "SDMA_MBANK_DATA_BUF10"},
2097 	{AMDGPU_SDMA_MBANK_DATA_BUF11, "SDMA_MBANK_DATA_BUF11"},
2098 	{AMDGPU_SDMA_MBANK_DATA_BUF12, "SDMA_MBANK_DATA_BUF12"},
2099 	{AMDGPU_SDMA_MBANK_DATA_BUF13, "SDMA_MBANK_DATA_BUF13"},
2100 	{AMDGPU_SDMA_MBANK_DATA_BUF14, "SDMA_MBANK_DATA_BUF14"},
2101 	{AMDGPU_SDMA_MBANK_DATA_BUF15, "SDMA_MBANK_DATA_BUF15"},
2102 	{AMDGPU_SDMA_UCODE_BUF, "SDMA_UCODE_BUF"},
2103 	{AMDGPU_SDMA_RB_CMD_BUF, "SDMA_RB_CMD_BUF"},
2104 	{AMDGPU_SDMA_IB_CMD_BUF, "SDMA_IB_CMD_BUF"},
2105 	{AMDGPU_SDMA_UTCL1_RD_FIFO, "SDMA_UTCL1_RD_FIFO"},
2106 	{AMDGPU_SDMA_UTCL1_RDBST_FIFO, "SDMA_UTCL1_RDBST_FIFO"},
2107 	{AMDGPU_SDMA_UTCL1_WR_FIFO, "SDMA_UTCL1_WR_FIFO"},
2108 	{AMDGPU_SDMA_DATA_LUT_FIFO, "SDMA_DATA_LUT_FIFO"},
2109 	{AMDGPU_SDMA_SPLIT_DAT_BUF, "SDMA_SPLIT_DAT_BUF"},
2110 };
2111 
2112 static void sdma_v4_4_2_inst_query_ras_error_count(struct amdgpu_device *adev,
2113 						   uint32_t sdma_inst,
2114 						   void *ras_err_status)
2115 {
2116 	struct ras_err_data *err_data = (struct ras_err_data *)ras_err_status;
2117 	uint32_t sdma_dev_inst = GET_INST(SDMA0, sdma_inst);
2118 	unsigned long ue_count = 0;
2119 	struct amdgpu_smuio_mcm_config_info mcm_info = {
2120 		.socket_id = adev->smuio.funcs->get_socket_id(adev),
2121 		.die_id = adev->sdma.instance[sdma_inst].aid_id,
2122 	};
2123 
2124 	/* sdma v4_4_2 doesn't support query ce counts */
2125 	amdgpu_ras_inst_query_ras_error_count(adev,
2126 					sdma_v4_2_2_ue_reg_list,
2127 					ARRAY_SIZE(sdma_v4_2_2_ue_reg_list),
2128 					sdma_v4_4_2_ras_memory_list,
2129 					ARRAY_SIZE(sdma_v4_4_2_ras_memory_list),
2130 					sdma_dev_inst,
2131 					AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE,
2132 					&ue_count);
2133 
2134 	amdgpu_ras_error_statistic_ue_count(err_data, &mcm_info, NULL, ue_count);
2135 }
2136 
2137 static void sdma_v4_4_2_query_ras_error_count(struct amdgpu_device *adev,
2138 					      void *ras_err_status)
2139 {
2140 	uint32_t inst_mask;
2141 	int i = 0;
2142 
2143 	inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
2144 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2145 		for_each_inst(i, inst_mask)
2146 			sdma_v4_4_2_inst_query_ras_error_count(adev, i, ras_err_status);
2147 	} else {
2148 		dev_warn(adev->dev, "SDMA RAS is not supported\n");
2149 	}
2150 }
2151 
2152 static void sdma_v4_4_2_inst_reset_ras_error_count(struct amdgpu_device *adev,
2153 						   uint32_t sdma_inst)
2154 {
2155 	uint32_t sdma_dev_inst = GET_INST(SDMA0, sdma_inst);
2156 
2157 	amdgpu_ras_inst_reset_ras_error_count(adev,
2158 					sdma_v4_2_2_ue_reg_list,
2159 					ARRAY_SIZE(sdma_v4_2_2_ue_reg_list),
2160 					sdma_dev_inst);
2161 }
2162 
2163 static void sdma_v4_4_2_reset_ras_error_count(struct amdgpu_device *adev)
2164 {
2165 	uint32_t inst_mask;
2166 	int i = 0;
2167 
2168 	inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
2169 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2170 		for_each_inst(i, inst_mask)
2171 			sdma_v4_4_2_inst_reset_ras_error_count(adev, i);
2172 	} else {
2173 		dev_warn(adev->dev, "SDMA RAS is not supported\n");
2174 	}
2175 }
2176 
2177 static const struct amdgpu_ras_block_hw_ops sdma_v4_4_2_ras_hw_ops = {
2178 	.query_ras_error_count = sdma_v4_4_2_query_ras_error_count,
2179 	.reset_ras_error_count = sdma_v4_4_2_reset_ras_error_count,
2180 };
2181 
2182 static int sdma_v4_4_2_aca_bank_generate_report(struct aca_handle *handle,
2183 						struct aca_bank *bank, enum aca_error_type type,
2184 						struct aca_bank_report *report, void *data)
2185 {
2186 	u64 status, misc0;
2187 	int ret;
2188 
2189 	status = bank->regs[ACA_REG_IDX_STATUS];
2190 	if ((type == ACA_ERROR_TYPE_UE &&
2191 	     ACA_REG__STATUS__ERRORCODEEXT(status) == ACA_EXTERROR_CODE_FAULT) ||
2192 	    (type == ACA_ERROR_TYPE_CE &&
2193 	     ACA_REG__STATUS__ERRORCODEEXT(status) == ACA_EXTERROR_CODE_CE)) {
2194 
2195 		ret = aca_bank_info_decode(bank, &report->info);
2196 		if (ret)
2197 			return ret;
2198 
2199 		misc0 = bank->regs[ACA_REG_IDX_MISC0];
2200 		report->count[type] = ACA_REG__MISC0__ERRCNT(misc0);
2201 	}
2202 
2203 	return 0;
2204 }
2205 
2206 /* CODE_SDMA0 - CODE_SDMA4, reference to smu driver if header file */
2207 static int sdma_v4_4_2_err_codes[] = { 33, 34, 35, 36 };
2208 
2209 static bool sdma_v4_4_2_aca_bank_is_valid(struct aca_handle *handle, struct aca_bank *bank,
2210 					  enum aca_error_type type, void *data)
2211 {
2212 	u32 instlo;
2213 
2214 	instlo = ACA_REG__IPID__INSTANCEIDLO(bank->regs[ACA_REG_IDX_IPID]);
2215 	instlo &= GENMASK(31, 1);
2216 
2217 	if (instlo != mmSMNAID_AID0_MCA_SMU)
2218 		return false;
2219 
2220 	if (aca_bank_check_error_codes(handle->adev, bank,
2221 				       sdma_v4_4_2_err_codes,
2222 				       ARRAY_SIZE(sdma_v4_4_2_err_codes)))
2223 		return false;
2224 
2225 	return true;
2226 }
2227 
2228 static const struct aca_bank_ops sdma_v4_4_2_aca_bank_ops = {
2229 	.aca_bank_generate_report = sdma_v4_4_2_aca_bank_generate_report,
2230 	.aca_bank_is_valid = sdma_v4_4_2_aca_bank_is_valid,
2231 };
2232 
2233 static const struct aca_info sdma_v4_4_2_aca_info = {
2234 	.hwip = ACA_HWIP_TYPE_SMU,
2235 	.mask = ACA_ERROR_UE_MASK,
2236 	.bank_ops = &sdma_v4_4_2_aca_bank_ops,
2237 };
2238 
2239 static int sdma_v4_4_2_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block)
2240 {
2241 	int r;
2242 
2243 	r = amdgpu_sdma_ras_late_init(adev, ras_block);
2244 	if (r)
2245 		return r;
2246 
2247 	return amdgpu_ras_bind_aca(adev, AMDGPU_RAS_BLOCK__SDMA,
2248 				   &sdma_v4_4_2_aca_info, NULL);
2249 }
2250 
2251 static struct amdgpu_sdma_ras sdma_v4_4_2_ras = {
2252 	.ras_block = {
2253 		.hw_ops = &sdma_v4_4_2_ras_hw_ops,
2254 		.ras_late_init = sdma_v4_4_2_ras_late_init,
2255 	},
2256 };
2257 
2258 static void sdma_v4_4_2_set_ras_funcs(struct amdgpu_device *adev)
2259 {
2260 	adev->sdma.ras = &sdma_v4_4_2_ras;
2261 }
2262