xref: /linux/drivers/gpu/drm/amd/amdgpu/sdma_v4_4_2.c (revision 16280ded45fba1216d1d4c6acfc20c2d5b45ef50)
1 /*
2  * Copyright 2022 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28 
29 #include "amdgpu.h"
30 #include "amdgpu_xcp.h"
31 #include "amdgpu_ucode.h"
32 #include "amdgpu_trace.h"
33 #include "amdgpu_reset.h"
34 
35 #include "sdma/sdma_4_4_2_offset.h"
36 #include "sdma/sdma_4_4_2_sh_mask.h"
37 
38 #include "soc15_common.h"
39 #include "soc15.h"
40 #include "vega10_sdma_pkt_open.h"
41 
42 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
43 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
44 
45 #include "amdgpu_ras.h"
46 
47 MODULE_FIRMWARE("amdgpu/sdma_4_4_2.bin");
48 MODULE_FIRMWARE("amdgpu/sdma_4_4_5.bin");
49 
50 static const struct amdgpu_hwip_reg_entry sdma_reg_list_4_4_2[] = {
51 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_STATUS_REG),
52 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_STATUS1_REG),
53 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_STATUS2_REG),
54 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_STATUS3_REG),
55 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_UCODE_CHECKSUM),
56 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RB_RPTR_FETCH_HI),
57 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RB_RPTR_FETCH),
58 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_UTCL1_RD_STATUS),
59 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_UTCL1_WR_STATUS),
60 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_UTCL1_RD_XNACK0),
61 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_UTCL1_RD_XNACK1),
62 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_UTCL1_WR_XNACK0),
63 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_UTCL1_WR_XNACK1),
64 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_RB_CNTL),
65 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_RB_RPTR),
66 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_RB_RPTR_HI),
67 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_RB_WPTR),
68 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_RB_WPTR_HI),
69 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_IB_OFFSET),
70 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_IB_BASE_LO),
71 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_IB_BASE_HI),
72 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_IB_CNTL),
73 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_IB_RPTR),
74 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_IB_SUB_REMAIN),
75 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_DUMMY_REG),
76 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_RB_CNTL),
77 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_RB_RPTR),
78 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_RB_RPTR_HI),
79 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_RB_WPTR),
80 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_RB_WPTR_HI),
81 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_IB_OFFSET),
82 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_IB_BASE_LO),
83 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_IB_BASE_HI),
84 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_DUMMY_REG),
85 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_RB_CNTL),
86 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_RB_RPTR),
87 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_RB_RPTR_HI),
88 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_RB_WPTR),
89 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_RB_WPTR_HI),
90 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_IB_OFFSET),
91 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_IB_BASE_LO),
92 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_IB_BASE_HI),
93 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_DUMMY_REG),
94 	SOC15_REG_ENTRY_STR(GC, 0, regSDMA_VM_CNTL)
95 };
96 
97 #define mmSMNAID_AID0_MCA_SMU 0x03b30400
98 
99 #define WREG32_SDMA(instance, offset, value) \
100 	WREG32(sdma_v4_4_2_get_reg_offset(adev, (instance), (offset)), value)
101 #define RREG32_SDMA(instance, offset) \
102 	RREG32(sdma_v4_4_2_get_reg_offset(adev, (instance), (offset)))
103 
104 static void sdma_v4_4_2_set_ring_funcs(struct amdgpu_device *adev);
105 static void sdma_v4_4_2_set_buffer_funcs(struct amdgpu_device *adev);
106 static void sdma_v4_4_2_set_vm_pte_funcs(struct amdgpu_device *adev);
107 static void sdma_v4_4_2_set_irq_funcs(struct amdgpu_device *adev);
108 static void sdma_v4_4_2_set_ras_funcs(struct amdgpu_device *adev);
109 static void sdma_v4_4_2_set_engine_reset_funcs(struct amdgpu_device *adev);
110 static void sdma_v4_4_2_update_reset_mask(struct amdgpu_device *adev);
111 
112 static u32 sdma_v4_4_2_get_reg_offset(struct amdgpu_device *adev,
113 		u32 instance, u32 offset)
114 {
115 	u32 dev_inst = GET_INST(SDMA0, instance);
116 
117 	return (adev->reg_offset[SDMA0_HWIP][dev_inst][0] + offset);
118 }
119 
120 static unsigned sdma_v4_4_2_seq_to_irq_id(int seq_num)
121 {
122 	switch (seq_num) {
123 	case 0:
124 		return SOC15_IH_CLIENTID_SDMA0;
125 	case 1:
126 		return SOC15_IH_CLIENTID_SDMA1;
127 	case 2:
128 		return SOC15_IH_CLIENTID_SDMA2;
129 	case 3:
130 		return SOC15_IH_CLIENTID_SDMA3;
131 	default:
132 		return -EINVAL;
133 	}
134 }
135 
136 static int sdma_v4_4_2_irq_id_to_seq(struct amdgpu_device *adev, unsigned client_id)
137 {
138 	switch (client_id) {
139 	case SOC15_IH_CLIENTID_SDMA0:
140 		return 0;
141 	case SOC15_IH_CLIENTID_SDMA1:
142 		return 1;
143 	case SOC15_IH_CLIENTID_SDMA2:
144 		if (amdgpu_sriov_vf(adev) && (adev->gfx.xcc_mask == 0x1))
145 			return 0;
146 		else
147 			return 2;
148 	case SOC15_IH_CLIENTID_SDMA3:
149 		if (amdgpu_sriov_vf(adev) && (adev->gfx.xcc_mask == 0x1))
150 			return 1;
151 		else
152 			return 3;
153 	default:
154 		return -EINVAL;
155 	}
156 }
157 
158 static void sdma_v4_4_2_inst_init_golden_registers(struct amdgpu_device *adev,
159 						   uint32_t inst_mask)
160 {
161 	u32 val;
162 	int i;
163 
164 	for (i = 0; i < adev->sdma.num_instances; i++) {
165 		val = RREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG);
166 		val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG, NUM_BANKS, 4);
167 		val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG,
168 				    PIPE_INTERLEAVE_SIZE, 0);
169 		WREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG, val);
170 
171 		val = RREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG_READ);
172 		val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG_READ, NUM_BANKS,
173 				    4);
174 		val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG_READ,
175 				    PIPE_INTERLEAVE_SIZE, 0);
176 		WREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG_READ, val);
177 	}
178 }
179 
180 /**
181  * sdma_v4_4_2_init_microcode - load ucode images from disk
182  *
183  * @adev: amdgpu_device pointer
184  *
185  * Use the firmware interface to load the ucode images into
186  * the driver (not loaded into hw).
187  * Returns 0 on success, error on failure.
188  */
189 static int sdma_v4_4_2_init_microcode(struct amdgpu_device *adev)
190 {
191 	int ret, i;
192 
193 	for (i = 0; i < adev->sdma.num_instances; i++) {
194 		if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 2) ||
195 		    amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 4) ||
196 		    amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 5)) {
197 			ret = amdgpu_sdma_init_microcode(adev, 0, true);
198 			break;
199 		} else {
200 			ret = amdgpu_sdma_init_microcode(adev, i, false);
201 			if (ret)
202 				return ret;
203 		}
204 	}
205 
206 	return ret;
207 }
208 
209 /**
210  * sdma_v4_4_2_ring_get_rptr - get the current read pointer
211  *
212  * @ring: amdgpu ring pointer
213  *
214  * Get the current rptr from the hardware.
215  */
216 static uint64_t sdma_v4_4_2_ring_get_rptr(struct amdgpu_ring *ring)
217 {
218 	u64 rptr;
219 
220 	/* XXX check if swapping is necessary on BE */
221 	rptr = READ_ONCE(*((u64 *)&ring->adev->wb.wb[ring->rptr_offs]));
222 
223 	DRM_DEBUG("rptr before shift == 0x%016llx\n", rptr);
224 	return rptr >> 2;
225 }
226 
227 /**
228  * sdma_v4_4_2_ring_get_wptr - get the current write pointer
229  *
230  * @ring: amdgpu ring pointer
231  *
232  * Get the current wptr from the hardware.
233  */
234 static uint64_t sdma_v4_4_2_ring_get_wptr(struct amdgpu_ring *ring)
235 {
236 	struct amdgpu_device *adev = ring->adev;
237 	u64 wptr;
238 
239 	if (ring->use_doorbell) {
240 		/* XXX check if swapping is necessary on BE */
241 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
242 		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
243 	} else {
244 		wptr = RREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR_HI);
245 		wptr = wptr << 32;
246 		wptr |= RREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR);
247 		DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
248 				ring->me, wptr);
249 	}
250 
251 	return wptr >> 2;
252 }
253 
254 /**
255  * sdma_v4_4_2_ring_set_wptr - commit the write pointer
256  *
257  * @ring: amdgpu ring pointer
258  *
259  * Write the wptr back to the hardware.
260  */
261 static void sdma_v4_4_2_ring_set_wptr(struct amdgpu_ring *ring)
262 {
263 	struct amdgpu_device *adev = ring->adev;
264 
265 	DRM_DEBUG("Setting write pointer\n");
266 	if (ring->use_doorbell) {
267 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
268 
269 		DRM_DEBUG("Using doorbell -- "
270 				"wptr_offs == 0x%08x "
271 				"lower_32_bits(ring->wptr) << 2 == 0x%08x "
272 				"upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
273 				ring->wptr_offs,
274 				lower_32_bits(ring->wptr << 2),
275 				upper_32_bits(ring->wptr << 2));
276 		/* XXX check if swapping is necessary on BE */
277 		WRITE_ONCE(*wb, (ring->wptr << 2));
278 		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
279 				ring->doorbell_index, ring->wptr << 2);
280 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
281 	} else {
282 		DRM_DEBUG("Not using doorbell -- "
283 				"regSDMA%i_GFX_RB_WPTR == 0x%08x "
284 				"regSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
285 				ring->me,
286 				lower_32_bits(ring->wptr << 2),
287 				ring->me,
288 				upper_32_bits(ring->wptr << 2));
289 		WREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR,
290 			    lower_32_bits(ring->wptr << 2));
291 		WREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR_HI,
292 			    upper_32_bits(ring->wptr << 2));
293 	}
294 }
295 
296 /**
297  * sdma_v4_4_2_page_ring_get_wptr - get the current write pointer
298  *
299  * @ring: amdgpu ring pointer
300  *
301  * Get the current wptr from the hardware.
302  */
303 static uint64_t sdma_v4_4_2_page_ring_get_wptr(struct amdgpu_ring *ring)
304 {
305 	struct amdgpu_device *adev = ring->adev;
306 	u64 wptr;
307 
308 	if (ring->use_doorbell) {
309 		/* XXX check if swapping is necessary on BE */
310 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
311 	} else {
312 		wptr = RREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR_HI);
313 		wptr = wptr << 32;
314 		wptr |= RREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR);
315 	}
316 
317 	return wptr >> 2;
318 }
319 
320 /**
321  * sdma_v4_4_2_page_ring_set_wptr - commit the write pointer
322  *
323  * @ring: amdgpu ring pointer
324  *
325  * Write the wptr back to the hardware.
326  */
327 static void sdma_v4_4_2_page_ring_set_wptr(struct amdgpu_ring *ring)
328 {
329 	struct amdgpu_device *adev = ring->adev;
330 
331 	if (ring->use_doorbell) {
332 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
333 
334 		/* XXX check if swapping is necessary on BE */
335 		WRITE_ONCE(*wb, (ring->wptr << 2));
336 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
337 	} else {
338 		uint64_t wptr = ring->wptr << 2;
339 
340 		WREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR,
341 			    lower_32_bits(wptr));
342 		WREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR_HI,
343 			    upper_32_bits(wptr));
344 	}
345 }
346 
347 static void sdma_v4_4_2_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
348 {
349 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
350 	int i;
351 
352 	for (i = 0; i < count; i++)
353 		if (sdma && sdma->burst_nop && (i == 0))
354 			amdgpu_ring_write(ring, ring->funcs->nop |
355 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
356 		else
357 			amdgpu_ring_write(ring, ring->funcs->nop);
358 }
359 
360 /**
361  * sdma_v4_4_2_ring_emit_ib - Schedule an IB on the DMA engine
362  *
363  * @ring: amdgpu ring pointer
364  * @job: job to retrieve vmid from
365  * @ib: IB object to schedule
366  * @flags: unused
367  *
368  * Schedule an IB in the DMA ring.
369  */
370 static void sdma_v4_4_2_ring_emit_ib(struct amdgpu_ring *ring,
371 				   struct amdgpu_job *job,
372 				   struct amdgpu_ib *ib,
373 				   uint32_t flags)
374 {
375 	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
376 
377 	/* IB packet must end on a 8 DW boundary */
378 	sdma_v4_4_2_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
379 
380 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
381 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
382 	/* base must be 32 byte aligned */
383 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
384 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
385 	amdgpu_ring_write(ring, ib->length_dw);
386 	amdgpu_ring_write(ring, 0);
387 	amdgpu_ring_write(ring, 0);
388 
389 }
390 
391 static void sdma_v4_4_2_wait_reg_mem(struct amdgpu_ring *ring,
392 				   int mem_space, int hdp,
393 				   uint32_t addr0, uint32_t addr1,
394 				   uint32_t ref, uint32_t mask,
395 				   uint32_t inv)
396 {
397 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
398 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
399 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
400 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
401 	if (mem_space) {
402 		/* memory */
403 		amdgpu_ring_write(ring, addr0);
404 		amdgpu_ring_write(ring, addr1);
405 	} else {
406 		/* registers */
407 		amdgpu_ring_write(ring, addr0 << 2);
408 		amdgpu_ring_write(ring, addr1 << 2);
409 	}
410 	amdgpu_ring_write(ring, ref); /* reference */
411 	amdgpu_ring_write(ring, mask); /* mask */
412 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
413 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
414 }
415 
416 /**
417  * sdma_v4_4_2_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
418  *
419  * @ring: amdgpu ring pointer
420  *
421  * Emit an hdp flush packet on the requested DMA ring.
422  */
423 static void sdma_v4_4_2_ring_emit_hdp_flush(struct amdgpu_ring *ring)
424 {
425 	struct amdgpu_device *adev = ring->adev;
426 	u32 ref_and_mask = 0;
427 	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
428 
429 	ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0
430 		       << (ring->me % adev->sdma.num_inst_per_aid);
431 
432 	sdma_v4_4_2_wait_reg_mem(ring, 0, 1,
433 			       adev->nbio.funcs->get_hdp_flush_done_offset(adev),
434 			       adev->nbio.funcs->get_hdp_flush_req_offset(adev),
435 			       ref_and_mask, ref_and_mask, 10);
436 }
437 
438 /**
439  * sdma_v4_4_2_ring_emit_fence - emit a fence on the DMA ring
440  *
441  * @ring: amdgpu ring pointer
442  * @addr: address
443  * @seq: sequence number
444  * @flags: fence related flags
445  *
446  * Add a DMA fence packet to the ring to write
447  * the fence seq number and DMA trap packet to generate
448  * an interrupt if needed.
449  */
450 static void sdma_v4_4_2_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
451 				      unsigned flags)
452 {
453 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
454 	/* write the fence */
455 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
456 	/* zero in first two bits */
457 	BUG_ON(addr & 0x3);
458 	amdgpu_ring_write(ring, lower_32_bits(addr));
459 	amdgpu_ring_write(ring, upper_32_bits(addr));
460 	amdgpu_ring_write(ring, lower_32_bits(seq));
461 
462 	/* optionally write high bits as well */
463 	if (write64bit) {
464 		addr += 4;
465 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
466 		/* zero in first two bits */
467 		BUG_ON(addr & 0x3);
468 		amdgpu_ring_write(ring, lower_32_bits(addr));
469 		amdgpu_ring_write(ring, upper_32_bits(addr));
470 		amdgpu_ring_write(ring, upper_32_bits(seq));
471 	}
472 
473 	/* generate an interrupt */
474 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
475 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
476 }
477 
478 
479 /**
480  * sdma_v4_4_2_inst_gfx_stop - stop the gfx async dma engines
481  *
482  * @adev: amdgpu_device pointer
483  * @inst_mask: mask of dma engine instances to be disabled
484  *
485  * Stop the gfx async dma ring buffers.
486  */
487 static void sdma_v4_4_2_inst_gfx_stop(struct amdgpu_device *adev,
488 				      uint32_t inst_mask)
489 {
490 	struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
491 	u32 doorbell_offset, doorbell;
492 	u32 rb_cntl, ib_cntl;
493 	int i;
494 
495 	for_each_inst(i, inst_mask) {
496 		sdma[i] = &adev->sdma.instance[i].ring;
497 
498 		rb_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_CNTL);
499 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_ENABLE, 0);
500 		WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl);
501 		ib_cntl = RREG32_SDMA(i, regSDMA_GFX_IB_CNTL);
502 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_ENABLE, 0);
503 		WREG32_SDMA(i, regSDMA_GFX_IB_CNTL, ib_cntl);
504 
505 		if (sdma[i]->use_doorbell) {
506 			doorbell = RREG32_SDMA(i, regSDMA_GFX_DOORBELL);
507 			doorbell_offset = RREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET);
508 
509 			doorbell = REG_SET_FIELD(doorbell, SDMA_GFX_DOORBELL, ENABLE, 0);
510 			doorbell_offset = REG_SET_FIELD(doorbell_offset,
511 					SDMA_GFX_DOORBELL_OFFSET,
512 					OFFSET, 0);
513 			WREG32_SDMA(i, regSDMA_GFX_DOORBELL, doorbell);
514 			WREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET, doorbell_offset);
515 		}
516 	}
517 }
518 
519 /**
520  * sdma_v4_4_2_inst_rlc_stop - stop the compute async dma engines
521  *
522  * @adev: amdgpu_device pointer
523  * @inst_mask: mask of dma engine instances to be disabled
524  *
525  * Stop the compute async dma queues.
526  */
527 static void sdma_v4_4_2_inst_rlc_stop(struct amdgpu_device *adev,
528 				      uint32_t inst_mask)
529 {
530 	/* XXX todo */
531 }
532 
533 /**
534  * sdma_v4_4_2_inst_page_stop - stop the page async dma engines
535  *
536  * @adev: amdgpu_device pointer
537  * @inst_mask: mask of dma engine instances to be disabled
538  *
539  * Stop the page async dma ring buffers.
540  */
541 static void sdma_v4_4_2_inst_page_stop(struct amdgpu_device *adev,
542 				       uint32_t inst_mask)
543 {
544 	u32 rb_cntl, ib_cntl;
545 	int i;
546 
547 	for_each_inst(i, inst_mask) {
548 		rb_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_CNTL);
549 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL,
550 					RB_ENABLE, 0);
551 		WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl);
552 		ib_cntl = RREG32_SDMA(i, regSDMA_PAGE_IB_CNTL);
553 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL,
554 					IB_ENABLE, 0);
555 		WREG32_SDMA(i, regSDMA_PAGE_IB_CNTL, ib_cntl);
556 	}
557 }
558 
559 /**
560  * sdma_v4_4_2_inst_ctx_switch_enable - stop the async dma engines context switch
561  *
562  * @adev: amdgpu_device pointer
563  * @enable: enable/disable the DMA MEs context switch.
564  * @inst_mask: mask of dma engine instances to be enabled
565  *
566  * Halt or unhalt the async dma engines context switch.
567  */
568 static void sdma_v4_4_2_inst_ctx_switch_enable(struct amdgpu_device *adev,
569 					       bool enable, uint32_t inst_mask)
570 {
571 	u32 f32_cntl, phase_quantum = 0;
572 	int i;
573 
574 	if (amdgpu_sdma_phase_quantum) {
575 		unsigned value = amdgpu_sdma_phase_quantum;
576 		unsigned unit = 0;
577 
578 		while (value > (SDMA_PHASE0_QUANTUM__VALUE_MASK >>
579 				SDMA_PHASE0_QUANTUM__VALUE__SHIFT)) {
580 			value = (value + 1) >> 1;
581 			unit++;
582 		}
583 		if (unit > (SDMA_PHASE0_QUANTUM__UNIT_MASK >>
584 			    SDMA_PHASE0_QUANTUM__UNIT__SHIFT)) {
585 			value = (SDMA_PHASE0_QUANTUM__VALUE_MASK >>
586 				 SDMA_PHASE0_QUANTUM__VALUE__SHIFT);
587 			unit = (SDMA_PHASE0_QUANTUM__UNIT_MASK >>
588 				SDMA_PHASE0_QUANTUM__UNIT__SHIFT);
589 			WARN_ONCE(1,
590 			"clamping sdma_phase_quantum to %uK clock cycles\n",
591 				  value << unit);
592 		}
593 		phase_quantum =
594 			value << SDMA_PHASE0_QUANTUM__VALUE__SHIFT |
595 			unit  << SDMA_PHASE0_QUANTUM__UNIT__SHIFT;
596 	}
597 
598 	for_each_inst(i, inst_mask) {
599 		f32_cntl = RREG32_SDMA(i, regSDMA_CNTL);
600 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA_CNTL,
601 				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
602 		if (enable && amdgpu_sdma_phase_quantum) {
603 			WREG32_SDMA(i, regSDMA_PHASE0_QUANTUM, phase_quantum);
604 			WREG32_SDMA(i, regSDMA_PHASE1_QUANTUM, phase_quantum);
605 			WREG32_SDMA(i, regSDMA_PHASE2_QUANTUM, phase_quantum);
606 		}
607 		WREG32_SDMA(i, regSDMA_CNTL, f32_cntl);
608 
609 		/* Extend page fault timeout to avoid interrupt storm */
610 		WREG32_SDMA(i, regSDMA_UTCL1_TIMEOUT, 0x00800080);
611 	}
612 }
613 
614 /**
615  * sdma_v4_4_2_inst_enable - stop the async dma engines
616  *
617  * @adev: amdgpu_device pointer
618  * @enable: enable/disable the DMA MEs.
619  * @inst_mask: mask of dma engine instances to be enabled
620  *
621  * Halt or unhalt the async dma engines.
622  */
623 static void sdma_v4_4_2_inst_enable(struct amdgpu_device *adev, bool enable,
624 				    uint32_t inst_mask)
625 {
626 	u32 f32_cntl;
627 	int i;
628 
629 	if (!enable) {
630 		sdma_v4_4_2_inst_gfx_stop(adev, inst_mask);
631 		sdma_v4_4_2_inst_rlc_stop(adev, inst_mask);
632 		if (adev->sdma.has_page_queue)
633 			sdma_v4_4_2_inst_page_stop(adev, inst_mask);
634 
635 		/* SDMA FW needs to respond to FREEZE requests during reset.
636 		 * Keep it running during reset */
637 		if (!amdgpu_sriov_vf(adev) && amdgpu_in_reset(adev))
638 			return;
639 	}
640 
641 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP)
642 		return;
643 
644 	for_each_inst(i, inst_mask) {
645 		f32_cntl = RREG32_SDMA(i, regSDMA_F32_CNTL);
646 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA_F32_CNTL, HALT, enable ? 0 : 1);
647 		WREG32_SDMA(i, regSDMA_F32_CNTL, f32_cntl);
648 	}
649 }
650 
651 /*
652  * sdma_v4_4_2_rb_cntl - get parameters for rb_cntl
653  */
654 static uint32_t sdma_v4_4_2_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
655 {
656 	/* Set ring buffer size in dwords */
657 	uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
658 
659 	barrier(); /* work around https://llvm.org/pr42576 */
660 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
661 #ifdef __BIG_ENDIAN
662 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
663 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL,
664 				RPTR_WRITEBACK_SWAP_ENABLE, 1);
665 #endif
666 	return rb_cntl;
667 }
668 
669 /**
670  * sdma_v4_4_2_gfx_resume - setup and start the async dma engines
671  *
672  * @adev: amdgpu_device pointer
673  * @i: instance to resume
674  * @restore: used to restore wptr when restart
675  * @guilty: boolean indicating whether this queue is the guilty one (caused the timeout/error)
676  *
677  * Set up the gfx DMA ring buffers and enable them.
678  * Returns 0 for success, error for failure.
679  */
680 static void sdma_v4_4_2_gfx_resume(struct amdgpu_device *adev, unsigned int i, bool restore, bool guilty)
681 {
682 	struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
683 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
684 	u32 wb_offset;
685 	u32 doorbell;
686 	u32 doorbell_offset;
687 	u64 wptr_gpu_addr;
688 	u64 rwptr;
689 
690 	wb_offset = (ring->rptr_offs * 4);
691 
692 	rb_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_CNTL);
693 	rb_cntl = sdma_v4_4_2_rb_cntl(ring, rb_cntl);
694 	WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl);
695 
696 	/* set the wb address whether it's enabled or not */
697 	WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_ADDR_HI,
698 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
699 	WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_ADDR_LO,
700 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
701 
702 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL,
703 				RPTR_WRITEBACK_ENABLE, 1);
704 
705 	WREG32_SDMA(i, regSDMA_GFX_RB_BASE, ring->gpu_addr >> 8);
706 	WREG32_SDMA(i, regSDMA_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
707 
708 	if (!restore)
709 		ring->wptr = 0;
710 
711 	/* before programing wptr to a less value, need set minor_ptr_update first */
712 	WREG32_SDMA(i, regSDMA_GFX_MINOR_PTR_UPDATE, 1);
713 
714 	/* For the guilty queue, set RPTR to the current wptr to skip bad commands,
715 	 * It is not a guilty queue, restore cache_rptr and continue execution.
716 	 */
717 	if (guilty)
718 		rwptr = ring->wptr;
719 	else
720 		rwptr = ring->cached_rptr;
721 
722 	/* Initialize the ring buffer's read and write pointers */
723 	if (restore) {
724 		WREG32_SDMA(i, regSDMA_GFX_RB_RPTR, lower_32_bits(rwptr << 2));
725 		WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_HI, upper_32_bits(rwptr << 2));
726 		WREG32_SDMA(i, regSDMA_GFX_RB_WPTR, lower_32_bits(rwptr << 2));
727 		WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_HI, upper_32_bits(rwptr << 2));
728 	} else {
729 		WREG32_SDMA(i, regSDMA_GFX_RB_RPTR, 0);
730 		WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_HI, 0);
731 		WREG32_SDMA(i, regSDMA_GFX_RB_WPTR, 0);
732 		WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_HI, 0);
733 	}
734 
735 	doorbell = RREG32_SDMA(i, regSDMA_GFX_DOORBELL);
736 	doorbell_offset = RREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET);
737 
738 	doorbell = REG_SET_FIELD(doorbell, SDMA_GFX_DOORBELL, ENABLE,
739 				 ring->use_doorbell);
740 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
741 					SDMA_GFX_DOORBELL_OFFSET,
742 					OFFSET, ring->doorbell_index);
743 	WREG32_SDMA(i, regSDMA_GFX_DOORBELL, doorbell);
744 	WREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET, doorbell_offset);
745 
746 	sdma_v4_4_2_ring_set_wptr(ring);
747 
748 	/* set minor_ptr_update to 0 after wptr programed */
749 	WREG32_SDMA(i, regSDMA_GFX_MINOR_PTR_UPDATE, 0);
750 
751 	/* setup the wptr shadow polling */
752 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
753 	WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_ADDR_LO,
754 		    lower_32_bits(wptr_gpu_addr));
755 	WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_ADDR_HI,
756 		    upper_32_bits(wptr_gpu_addr));
757 	wptr_poll_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_CNTL);
758 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
759 				       SDMA_GFX_RB_WPTR_POLL_CNTL,
760 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
761 	WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
762 
763 	/* enable DMA RB */
764 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_ENABLE, 1);
765 	WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl);
766 
767 	ib_cntl = RREG32_SDMA(i, regSDMA_GFX_IB_CNTL);
768 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_ENABLE, 1);
769 #ifdef __BIG_ENDIAN
770 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
771 #endif
772 	/* enable DMA IBs */
773 	WREG32_SDMA(i, regSDMA_GFX_IB_CNTL, ib_cntl);
774 }
775 
776 /**
777  * sdma_v4_4_2_page_resume - setup and start the async dma engines
778  *
779  * @adev: amdgpu_device pointer
780  * @i: instance to resume
781  * @restore: boolean to say restore needed or not
782  * @guilty: boolean indicating whether this queue is the guilty one (caused the timeout/error)
783  *
784  * Set up the page DMA ring buffers and enable them.
785  * Returns 0 for success, error for failure.
786  */
787 static void sdma_v4_4_2_page_resume(struct amdgpu_device *adev, unsigned int i, bool restore, bool guilty)
788 {
789 	struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
790 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
791 	u32 wb_offset;
792 	u32 doorbell;
793 	u32 doorbell_offset;
794 	u64 wptr_gpu_addr;
795 	u64 rwptr;
796 
797 	wb_offset = (ring->rptr_offs * 4);
798 
799 	rb_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_CNTL);
800 	rb_cntl = sdma_v4_4_2_rb_cntl(ring, rb_cntl);
801 	WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl);
802 
803 	/* For the guilty queue, set RPTR to the current wptr to skip bad commands,
804 	 * It is not a guilty queue, restore cache_rptr and continue execution.
805 	 */
806 	if (guilty)
807 		rwptr = ring->wptr;
808 	else
809 		rwptr = ring->cached_rptr;
810 
811 	/* Initialize the ring buffer's read and write pointers */
812 	if (restore) {
813 		WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR, lower_32_bits(rwptr << 2));
814 		WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_HI, upper_32_bits(rwptr << 2));
815 		WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR, lower_32_bits(rwptr << 2));
816 		WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_HI, upper_32_bits(rwptr << 2));
817 	} else {
818 		WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR, 0);
819 		WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_HI, 0);
820 		WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR, 0);
821 		WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_HI, 0);
822 	}
823 
824 	/* set the wb address whether it's enabled or not */
825 	WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_ADDR_HI,
826 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
827 	WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_ADDR_LO,
828 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
829 
830 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL,
831 				RPTR_WRITEBACK_ENABLE, 1);
832 
833 	WREG32_SDMA(i, regSDMA_PAGE_RB_BASE, ring->gpu_addr >> 8);
834 	WREG32_SDMA(i, regSDMA_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
835 
836 	if (!restore)
837 		ring->wptr = 0;
838 
839 	/* before programing wptr to a less value, need set minor_ptr_update first */
840 	WREG32_SDMA(i, regSDMA_PAGE_MINOR_PTR_UPDATE, 1);
841 
842 	doorbell = RREG32_SDMA(i, regSDMA_PAGE_DOORBELL);
843 	doorbell_offset = RREG32_SDMA(i, regSDMA_PAGE_DOORBELL_OFFSET);
844 
845 	doorbell = REG_SET_FIELD(doorbell, SDMA_PAGE_DOORBELL, ENABLE,
846 				 ring->use_doorbell);
847 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
848 					SDMA_PAGE_DOORBELL_OFFSET,
849 					OFFSET, ring->doorbell_index);
850 	WREG32_SDMA(i, regSDMA_PAGE_DOORBELL, doorbell);
851 	WREG32_SDMA(i, regSDMA_PAGE_DOORBELL_OFFSET, doorbell_offset);
852 
853 	/* paging queue doorbell range is setup at sdma_v4_4_2_gfx_resume */
854 	sdma_v4_4_2_page_ring_set_wptr(ring);
855 
856 	/* set minor_ptr_update to 0 after wptr programed */
857 	WREG32_SDMA(i, regSDMA_PAGE_MINOR_PTR_UPDATE, 0);
858 
859 	/* setup the wptr shadow polling */
860 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
861 	WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_ADDR_LO,
862 		    lower_32_bits(wptr_gpu_addr));
863 	WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_ADDR_HI,
864 		    upper_32_bits(wptr_gpu_addr));
865 	wptr_poll_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_CNTL);
866 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
867 				       SDMA_PAGE_RB_WPTR_POLL_CNTL,
868 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
869 	WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
870 
871 	/* enable DMA RB */
872 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL, RB_ENABLE, 1);
873 	WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl);
874 
875 	ib_cntl = RREG32_SDMA(i, regSDMA_PAGE_IB_CNTL);
876 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL, IB_ENABLE, 1);
877 #ifdef __BIG_ENDIAN
878 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
879 #endif
880 	/* enable DMA IBs */
881 	WREG32_SDMA(i, regSDMA_PAGE_IB_CNTL, ib_cntl);
882 }
883 
884 static void sdma_v4_4_2_init_pg(struct amdgpu_device *adev)
885 {
886 
887 }
888 
889 /**
890  * sdma_v4_4_2_inst_rlc_resume - setup and start the async dma engines
891  *
892  * @adev: amdgpu_device pointer
893  * @inst_mask: mask of dma engine instances to be enabled
894  *
895  * Set up the compute DMA queues and enable them.
896  * Returns 0 for success, error for failure.
897  */
898 static int sdma_v4_4_2_inst_rlc_resume(struct amdgpu_device *adev,
899 				       uint32_t inst_mask)
900 {
901 	sdma_v4_4_2_init_pg(adev);
902 
903 	return 0;
904 }
905 
906 /**
907  * sdma_v4_4_2_inst_load_microcode - load the sDMA ME ucode
908  *
909  * @adev: amdgpu_device pointer
910  * @inst_mask: mask of dma engine instances to be enabled
911  *
912  * Loads the sDMA0/1 ucode.
913  * Returns 0 for success, -EINVAL if the ucode is not available.
914  */
915 static int sdma_v4_4_2_inst_load_microcode(struct amdgpu_device *adev,
916 					   uint32_t inst_mask)
917 {
918 	const struct sdma_firmware_header_v1_0 *hdr;
919 	const __le32 *fw_data;
920 	u32 fw_size;
921 	int i, j;
922 
923 	/* halt the MEs */
924 	sdma_v4_4_2_inst_enable(adev, false, inst_mask);
925 
926 	for_each_inst(i, inst_mask) {
927 		if (!adev->sdma.instance[i].fw)
928 			return -EINVAL;
929 
930 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
931 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
932 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
933 
934 		fw_data = (const __le32 *)
935 			(adev->sdma.instance[i].fw->data +
936 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
937 
938 		WREG32_SDMA(i, regSDMA_UCODE_ADDR, 0);
939 
940 		for (j = 0; j < fw_size; j++)
941 			WREG32_SDMA(i, regSDMA_UCODE_DATA,
942 				    le32_to_cpup(fw_data++));
943 
944 		WREG32_SDMA(i, regSDMA_UCODE_ADDR,
945 			    adev->sdma.instance[i].fw_version);
946 	}
947 
948 	return 0;
949 }
950 
951 /**
952  * sdma_v4_4_2_inst_start - setup and start the async dma engines
953  *
954  * @adev: amdgpu_device pointer
955  * @inst_mask: mask of dma engine instances to be enabled
956  * @restore: boolean to say restore needed or not
957  *
958  * Set up the DMA engines and enable them.
959  * Returns 0 for success, error for failure.
960  */
961 static int sdma_v4_4_2_inst_start(struct amdgpu_device *adev,
962 				  uint32_t inst_mask, bool restore)
963 {
964 	struct amdgpu_ring *ring;
965 	uint32_t tmp_mask;
966 	int i, r = 0;
967 
968 	if (amdgpu_sriov_vf(adev)) {
969 		sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask);
970 		sdma_v4_4_2_inst_enable(adev, false, inst_mask);
971 	} else {
972 		/* bypass sdma microcode loading on Gopher */
973 		if (!restore && adev->firmware.load_type != AMDGPU_FW_LOAD_PSP &&
974 		    adev->sdma.instance[0].fw) {
975 			r = sdma_v4_4_2_inst_load_microcode(adev, inst_mask);
976 			if (r)
977 				return r;
978 		}
979 
980 		/* unhalt the MEs */
981 		sdma_v4_4_2_inst_enable(adev, true, inst_mask);
982 		/* enable sdma ring preemption */
983 		sdma_v4_4_2_inst_ctx_switch_enable(adev, true, inst_mask);
984 	}
985 
986 	/* start the gfx rings and rlc compute queues */
987 	tmp_mask = inst_mask;
988 	for_each_inst(i, tmp_mask) {
989 		uint32_t temp;
990 
991 		WREG32_SDMA(i, regSDMA_SEM_WAIT_FAIL_TIMER_CNTL, 0);
992 		sdma_v4_4_2_gfx_resume(adev, i, restore, adev->sdma.gfx_guilty);
993 		if (adev->sdma.has_page_queue)
994 			sdma_v4_4_2_page_resume(adev, i, restore, adev->sdma.page_guilty);
995 
996 		/* set utc l1 enable flag always to 1 */
997 		temp = RREG32_SDMA(i, regSDMA_CNTL);
998 		temp = REG_SET_FIELD(temp, SDMA_CNTL, UTC_L1_ENABLE, 1);
999 
1000 		if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) < IP_VERSION(4, 4, 5)) {
1001 			/* enable context empty interrupt during initialization */
1002 			temp = REG_SET_FIELD(temp, SDMA_CNTL, CTXEMPTY_INT_ENABLE, 1);
1003 			WREG32_SDMA(i, regSDMA_CNTL, temp);
1004 		}
1005 		if (!amdgpu_sriov_vf(adev)) {
1006 			if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
1007 				/* unhalt engine */
1008 				temp = RREG32_SDMA(i, regSDMA_F32_CNTL);
1009 				temp = REG_SET_FIELD(temp, SDMA_F32_CNTL, HALT, 0);
1010 				WREG32_SDMA(i, regSDMA_F32_CNTL, temp);
1011 			}
1012 		}
1013 	}
1014 
1015 	if (amdgpu_sriov_vf(adev)) {
1016 		sdma_v4_4_2_inst_ctx_switch_enable(adev, true, inst_mask);
1017 		sdma_v4_4_2_inst_enable(adev, true, inst_mask);
1018 	} else {
1019 		r = sdma_v4_4_2_inst_rlc_resume(adev, inst_mask);
1020 		if (r)
1021 			return r;
1022 	}
1023 
1024 	tmp_mask = inst_mask;
1025 	for_each_inst(i, tmp_mask) {
1026 		ring = &adev->sdma.instance[i].ring;
1027 
1028 		r = amdgpu_ring_test_helper(ring);
1029 		if (r)
1030 			return r;
1031 
1032 		if (adev->sdma.has_page_queue) {
1033 			struct amdgpu_ring *page = &adev->sdma.instance[i].page;
1034 
1035 			r = amdgpu_ring_test_helper(page);
1036 			if (r)
1037 				return r;
1038 		}
1039 	}
1040 
1041 	return r;
1042 }
1043 
1044 /**
1045  * sdma_v4_4_2_ring_test_ring - simple async dma engine test
1046  *
1047  * @ring: amdgpu_ring structure holding ring information
1048  *
1049  * Test the DMA engine by writing using it to write an
1050  * value to memory.
1051  * Returns 0 for success, error for failure.
1052  */
1053 static int sdma_v4_4_2_ring_test_ring(struct amdgpu_ring *ring)
1054 {
1055 	struct amdgpu_device *adev = ring->adev;
1056 	unsigned i;
1057 	unsigned index;
1058 	int r;
1059 	u32 tmp;
1060 	u64 gpu_addr;
1061 
1062 	r = amdgpu_device_wb_get(adev, &index);
1063 	if (r)
1064 		return r;
1065 
1066 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1067 	tmp = 0xCAFEDEAD;
1068 	adev->wb.wb[index] = cpu_to_le32(tmp);
1069 
1070 	r = amdgpu_ring_alloc(ring, 5);
1071 	if (r)
1072 		goto error_free_wb;
1073 
1074 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1075 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1076 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1077 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1078 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1079 	amdgpu_ring_write(ring, 0xDEADBEEF);
1080 	amdgpu_ring_commit(ring);
1081 
1082 	for (i = 0; i < adev->usec_timeout; i++) {
1083 		tmp = le32_to_cpu(adev->wb.wb[index]);
1084 		if (tmp == 0xDEADBEEF)
1085 			break;
1086 		udelay(1);
1087 	}
1088 
1089 	if (i >= adev->usec_timeout)
1090 		r = -ETIMEDOUT;
1091 
1092 error_free_wb:
1093 	amdgpu_device_wb_free(adev, index);
1094 	return r;
1095 }
1096 
1097 /**
1098  * sdma_v4_4_2_ring_test_ib - test an IB on the DMA engine
1099  *
1100  * @ring: amdgpu_ring structure holding ring information
1101  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
1102  *
1103  * Test a simple IB in the DMA ring.
1104  * Returns 0 on success, error on failure.
1105  */
1106 static int sdma_v4_4_2_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1107 {
1108 	struct amdgpu_device *adev = ring->adev;
1109 	struct amdgpu_ib ib;
1110 	struct dma_fence *f = NULL;
1111 	unsigned index;
1112 	long r;
1113 	u32 tmp = 0;
1114 	u64 gpu_addr;
1115 
1116 	r = amdgpu_device_wb_get(adev, &index);
1117 	if (r)
1118 		return r;
1119 
1120 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1121 	tmp = 0xCAFEDEAD;
1122 	adev->wb.wb[index] = cpu_to_le32(tmp);
1123 	memset(&ib, 0, sizeof(ib));
1124 	r = amdgpu_ib_get(adev, NULL, 256,
1125 					AMDGPU_IB_POOL_DIRECT, &ib);
1126 	if (r)
1127 		goto err0;
1128 
1129 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1130 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1131 	ib.ptr[1] = lower_32_bits(gpu_addr);
1132 	ib.ptr[2] = upper_32_bits(gpu_addr);
1133 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1134 	ib.ptr[4] = 0xDEADBEEF;
1135 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1136 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1137 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1138 	ib.length_dw = 8;
1139 
1140 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1141 	if (r)
1142 		goto err1;
1143 
1144 	r = dma_fence_wait_timeout(f, false, timeout);
1145 	if (r == 0) {
1146 		r = -ETIMEDOUT;
1147 		goto err1;
1148 	} else if (r < 0) {
1149 		goto err1;
1150 	}
1151 	tmp = le32_to_cpu(adev->wb.wb[index]);
1152 	if (tmp == 0xDEADBEEF)
1153 		r = 0;
1154 	else
1155 		r = -EINVAL;
1156 
1157 err1:
1158 	amdgpu_ib_free(&ib, NULL);
1159 	dma_fence_put(f);
1160 err0:
1161 	amdgpu_device_wb_free(adev, index);
1162 	return r;
1163 }
1164 
1165 
1166 /**
1167  * sdma_v4_4_2_vm_copy_pte - update PTEs by copying them from the GART
1168  *
1169  * @ib: indirect buffer to fill with commands
1170  * @pe: addr of the page entry
1171  * @src: src addr to copy from
1172  * @count: number of page entries to update
1173  *
1174  * Update PTEs by copying them from the GART using sDMA.
1175  */
1176 static void sdma_v4_4_2_vm_copy_pte(struct amdgpu_ib *ib,
1177 				  uint64_t pe, uint64_t src,
1178 				  unsigned count)
1179 {
1180 	unsigned bytes = count * 8;
1181 
1182 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1183 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1184 	ib->ptr[ib->length_dw++] = bytes - 1;
1185 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1186 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1187 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1188 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1189 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1190 
1191 }
1192 
1193 /**
1194  * sdma_v4_4_2_vm_write_pte - update PTEs by writing them manually
1195  *
1196  * @ib: indirect buffer to fill with commands
1197  * @pe: addr of the page entry
1198  * @value: dst addr to write into pe
1199  * @count: number of page entries to update
1200  * @incr: increase next addr by incr bytes
1201  *
1202  * Update PTEs by writing them manually using sDMA.
1203  */
1204 static void sdma_v4_4_2_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1205 				   uint64_t value, unsigned count,
1206 				   uint32_t incr)
1207 {
1208 	unsigned ndw = count * 2;
1209 
1210 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1211 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1212 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1213 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1214 	ib->ptr[ib->length_dw++] = ndw - 1;
1215 	for (; ndw > 0; ndw -= 2) {
1216 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1217 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1218 		value += incr;
1219 	}
1220 }
1221 
1222 /**
1223  * sdma_v4_4_2_vm_set_pte_pde - update the page tables using sDMA
1224  *
1225  * @ib: indirect buffer to fill with commands
1226  * @pe: addr of the page entry
1227  * @addr: dst addr to write into pe
1228  * @count: number of page entries to update
1229  * @incr: increase next addr by incr bytes
1230  * @flags: access flags
1231  *
1232  * Update the page tables using sDMA.
1233  */
1234 static void sdma_v4_4_2_vm_set_pte_pde(struct amdgpu_ib *ib,
1235 				     uint64_t pe,
1236 				     uint64_t addr, unsigned count,
1237 				     uint32_t incr, uint64_t flags)
1238 {
1239 	/* for physically contiguous pages (vram) */
1240 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1241 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1242 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1243 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1244 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1245 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1246 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1247 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1248 	ib->ptr[ib->length_dw++] = 0;
1249 	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1250 }
1251 
1252 /**
1253  * sdma_v4_4_2_ring_pad_ib - pad the IB to the required number of dw
1254  *
1255  * @ring: amdgpu_ring structure holding ring information
1256  * @ib: indirect buffer to fill with padding
1257  */
1258 static void sdma_v4_4_2_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1259 {
1260 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1261 	u32 pad_count;
1262 	int i;
1263 
1264 	pad_count = (-ib->length_dw) & 7;
1265 	for (i = 0; i < pad_count; i++)
1266 		if (sdma && sdma->burst_nop && (i == 0))
1267 			ib->ptr[ib->length_dw++] =
1268 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1269 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1270 		else
1271 			ib->ptr[ib->length_dw++] =
1272 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1273 }
1274 
1275 
1276 /**
1277  * sdma_v4_4_2_ring_emit_pipeline_sync - sync the pipeline
1278  *
1279  * @ring: amdgpu_ring pointer
1280  *
1281  * Make sure all previous operations are completed (CIK).
1282  */
1283 static void sdma_v4_4_2_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1284 {
1285 	uint32_t seq = ring->fence_drv.sync_seq;
1286 	uint64_t addr = ring->fence_drv.gpu_addr;
1287 
1288 	/* wait for idle */
1289 	sdma_v4_4_2_wait_reg_mem(ring, 1, 0,
1290 			       addr & 0xfffffffc,
1291 			       upper_32_bits(addr) & 0xffffffff,
1292 			       seq, 0xffffffff, 4);
1293 }
1294 
1295 
1296 /**
1297  * sdma_v4_4_2_ring_emit_vm_flush - vm flush using sDMA
1298  *
1299  * @ring: amdgpu_ring pointer
1300  * @vmid: vmid number to use
1301  * @pd_addr: address
1302  *
1303  * Update the page table base and flush the VM TLB
1304  * using sDMA.
1305  */
1306 static void sdma_v4_4_2_ring_emit_vm_flush(struct amdgpu_ring *ring,
1307 					 unsigned vmid, uint64_t pd_addr)
1308 {
1309 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1310 }
1311 
1312 static void sdma_v4_4_2_ring_emit_wreg(struct amdgpu_ring *ring,
1313 				     uint32_t reg, uint32_t val)
1314 {
1315 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1316 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1317 	amdgpu_ring_write(ring, reg);
1318 	amdgpu_ring_write(ring, val);
1319 }
1320 
1321 static void sdma_v4_4_2_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1322 					 uint32_t val, uint32_t mask)
1323 {
1324 	sdma_v4_4_2_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1325 }
1326 
1327 static bool sdma_v4_4_2_fw_support_paging_queue(struct amdgpu_device *adev)
1328 {
1329 	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
1330 	case IP_VERSION(4, 4, 2):
1331 	case IP_VERSION(4, 4, 5):
1332 		return false;
1333 	default:
1334 		return false;
1335 	}
1336 }
1337 
1338 static int sdma_v4_4_2_early_init(struct amdgpu_ip_block *ip_block)
1339 {
1340 	struct amdgpu_device *adev = ip_block->adev;
1341 	int r;
1342 
1343 	r = sdma_v4_4_2_init_microcode(adev);
1344 	if (r)
1345 		return r;
1346 
1347 	/* TODO: Page queue breaks driver reload under SRIOV */
1348 	if (sdma_v4_4_2_fw_support_paging_queue(adev))
1349 		adev->sdma.has_page_queue = true;
1350 
1351 	sdma_v4_4_2_set_ring_funcs(adev);
1352 	sdma_v4_4_2_set_buffer_funcs(adev);
1353 	sdma_v4_4_2_set_vm_pte_funcs(adev);
1354 	sdma_v4_4_2_set_irq_funcs(adev);
1355 	sdma_v4_4_2_set_ras_funcs(adev);
1356 	sdma_v4_4_2_set_engine_reset_funcs(adev);
1357 
1358 	return 0;
1359 }
1360 
1361 #if 0
1362 static int sdma_v4_4_2_process_ras_data_cb(struct amdgpu_device *adev,
1363 		void *err_data,
1364 		struct amdgpu_iv_entry *entry);
1365 #endif
1366 
1367 static int sdma_v4_4_2_late_init(struct amdgpu_ip_block *ip_block)
1368 {
1369 	struct amdgpu_device *adev = ip_block->adev;
1370 #if 0
1371 	struct ras_ih_if ih_info = {
1372 		.cb = sdma_v4_4_2_process_ras_data_cb,
1373 	};
1374 #endif
1375 	if (!amdgpu_persistent_edc_harvesting_supported(adev))
1376 		amdgpu_ras_reset_error_count(adev, AMDGPU_RAS_BLOCK__SDMA);
1377 
1378 	/* The initialization is done in the late_init stage to ensure that the SMU
1379 	 * initialization and capability setup are completed before we check the SDMA
1380 	 * reset capability
1381 	 */
1382 	sdma_v4_4_2_update_reset_mask(adev);
1383 
1384 	return 0;
1385 }
1386 
1387 static int sdma_v4_4_2_sw_init(struct amdgpu_ip_block *ip_block)
1388 {
1389 	struct amdgpu_ring *ring;
1390 	int r, i;
1391 	struct amdgpu_device *adev = ip_block->adev;
1392 	u32 aid_id;
1393 	uint32_t reg_count = ARRAY_SIZE(sdma_reg_list_4_4_2);
1394 	uint32_t *ptr;
1395 
1396 	/* SDMA trap event */
1397 	for (i = 0; i < adev->sdma.num_inst_per_aid; i++) {
1398 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1399 				      SDMA0_4_0__SRCID__SDMA_TRAP,
1400 				      &adev->sdma.trap_irq);
1401 		if (r)
1402 			return r;
1403 	}
1404 
1405 	/* SDMA SRAM ECC event */
1406 	for (i = 0; i < adev->sdma.num_inst_per_aid; i++) {
1407 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1408 				      SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
1409 				      &adev->sdma.ecc_irq);
1410 		if (r)
1411 			return r;
1412 	}
1413 
1414 	/* SDMA VM_HOLE/DOORBELL_INV/POLL_TIMEOUT/SRBM_WRITE_PROTECTION event*/
1415 	for (i = 0; i < adev->sdma.num_inst_per_aid; i++) {
1416 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1417 				      SDMA0_4_0__SRCID__SDMA_VM_HOLE,
1418 				      &adev->sdma.vm_hole_irq);
1419 		if (r)
1420 			return r;
1421 
1422 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1423 				      SDMA0_4_0__SRCID__SDMA_DOORBELL_INVALID,
1424 				      &adev->sdma.doorbell_invalid_irq);
1425 		if (r)
1426 			return r;
1427 
1428 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1429 				      SDMA0_4_0__SRCID__SDMA_POLL_TIMEOUT,
1430 				      &adev->sdma.pool_timeout_irq);
1431 		if (r)
1432 			return r;
1433 
1434 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1435 				      SDMA0_4_0__SRCID__SDMA_SRBMWRITE,
1436 				      &adev->sdma.srbm_write_irq);
1437 		if (r)
1438 			return r;
1439 
1440 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1441 				      SDMA0_4_0__SRCID__SDMA_CTXEMPTY,
1442 				      &adev->sdma.ctxt_empty_irq);
1443 		if (r)
1444 			return r;
1445 	}
1446 
1447 	for (i = 0; i < adev->sdma.num_instances; i++) {
1448 		ring = &adev->sdma.instance[i].ring;
1449 		ring->ring_obj = NULL;
1450 		ring->use_doorbell = true;
1451 		aid_id = adev->sdma.instance[i].aid_id;
1452 
1453 		DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i,
1454 				ring->use_doorbell?"true":"false");
1455 
1456 		/* doorbell size is 2 dwords, get DWORD offset */
1457 		ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1458 		ring->vm_hub = AMDGPU_MMHUB0(aid_id);
1459 
1460 		sprintf(ring->name, "sdma%d.%d", aid_id,
1461 				i % adev->sdma.num_inst_per_aid);
1462 		r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1463 				     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1464 				     AMDGPU_RING_PRIO_DEFAULT, NULL);
1465 		if (r)
1466 			return r;
1467 
1468 		if (adev->sdma.has_page_queue) {
1469 			ring = &adev->sdma.instance[i].page;
1470 			ring->ring_obj = NULL;
1471 			ring->use_doorbell = true;
1472 
1473 			/* doorbell index of page queue is assigned right after
1474 			 * gfx queue on the same instance
1475 			 */
1476 			ring->doorbell_index =
1477 				(adev->doorbell_index.sdma_engine[i] + 1) << 1;
1478 			ring->vm_hub = AMDGPU_MMHUB0(aid_id);
1479 
1480 			sprintf(ring->name, "page%d.%d", aid_id,
1481 					i % adev->sdma.num_inst_per_aid);
1482 			r = amdgpu_ring_init(adev, ring, 1024,
1483 					     &adev->sdma.trap_irq,
1484 					     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1485 					     AMDGPU_RING_PRIO_DEFAULT, NULL);
1486 			if (r)
1487 				return r;
1488 		}
1489 	}
1490 
1491 	adev->sdma.supported_reset =
1492 		amdgpu_get_soft_full_reset_mask(&adev->sdma.instance[0].ring);
1493 
1494 	if (amdgpu_sdma_ras_sw_init(adev)) {
1495 		dev_err(adev->dev, "fail to initialize sdma ras block\n");
1496 		return -EINVAL;
1497 	}
1498 
1499 	/* Allocate memory for SDMA IP Dump buffer */
1500 	ptr = kcalloc(adev->sdma.num_instances * reg_count, sizeof(uint32_t), GFP_KERNEL);
1501 	if (ptr)
1502 		adev->sdma.ip_dump = ptr;
1503 	else
1504 		DRM_ERROR("Failed to allocated memory for SDMA IP Dump\n");
1505 
1506 	r = amdgpu_sdma_sysfs_reset_mask_init(adev);
1507 	if (r)
1508 		return r;
1509 	/* Initialize guilty flags for GFX and PAGE queues */
1510 	adev->sdma.gfx_guilty = false;
1511 	adev->sdma.page_guilty = false;
1512 
1513 	return r;
1514 }
1515 
1516 static int sdma_v4_4_2_sw_fini(struct amdgpu_ip_block *ip_block)
1517 {
1518 	struct amdgpu_device *adev = ip_block->adev;
1519 	int i;
1520 
1521 	for (i = 0; i < adev->sdma.num_instances; i++) {
1522 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1523 		if (adev->sdma.has_page_queue)
1524 			amdgpu_ring_fini(&adev->sdma.instance[i].page);
1525 	}
1526 
1527 	amdgpu_sdma_sysfs_reset_mask_fini(adev);
1528 	if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 2) ||
1529 	    amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 4) ||
1530 	    amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 5))
1531 		amdgpu_sdma_destroy_inst_ctx(adev, true);
1532 	else
1533 		amdgpu_sdma_destroy_inst_ctx(adev, false);
1534 
1535 	kfree(adev->sdma.ip_dump);
1536 
1537 	return 0;
1538 }
1539 
1540 static int sdma_v4_4_2_hw_init(struct amdgpu_ip_block *ip_block)
1541 {
1542 	int r;
1543 	struct amdgpu_device *adev = ip_block->adev;
1544 	uint32_t inst_mask;
1545 
1546 	inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
1547 	if (!amdgpu_sriov_vf(adev))
1548 		sdma_v4_4_2_inst_init_golden_registers(adev, inst_mask);
1549 
1550 	r = sdma_v4_4_2_inst_start(adev, inst_mask, false);
1551 
1552 	return r;
1553 }
1554 
1555 static int sdma_v4_4_2_hw_fini(struct amdgpu_ip_block *ip_block)
1556 {
1557 	struct amdgpu_device *adev = ip_block->adev;
1558 	uint32_t inst_mask;
1559 	int i;
1560 
1561 	if (amdgpu_sriov_vf(adev))
1562 		return 0;
1563 
1564 	inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
1565 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
1566 		for (i = 0; i < adev->sdma.num_instances; i++) {
1567 			amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
1568 				       AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1569 		}
1570 	}
1571 
1572 	sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask);
1573 	sdma_v4_4_2_inst_enable(adev, false, inst_mask);
1574 
1575 	return 0;
1576 }
1577 
1578 static int sdma_v4_4_2_set_clockgating_state(struct amdgpu_ip_block *ip_block,
1579 					     enum amd_clockgating_state state);
1580 
1581 static int sdma_v4_4_2_suspend(struct amdgpu_ip_block *ip_block)
1582 {
1583 	struct amdgpu_device *adev = ip_block->adev;
1584 
1585 	if (amdgpu_in_reset(adev))
1586 		sdma_v4_4_2_set_clockgating_state(ip_block, AMD_CG_STATE_UNGATE);
1587 
1588 	return sdma_v4_4_2_hw_fini(ip_block);
1589 }
1590 
1591 static int sdma_v4_4_2_resume(struct amdgpu_ip_block *ip_block)
1592 {
1593 	return sdma_v4_4_2_hw_init(ip_block);
1594 }
1595 
1596 static bool sdma_v4_4_2_is_idle(struct amdgpu_ip_block *ip_block)
1597 {
1598 	struct amdgpu_device *adev = ip_block->adev;
1599 	u32 i;
1600 
1601 	for (i = 0; i < adev->sdma.num_instances; i++) {
1602 		u32 tmp = RREG32_SDMA(i, regSDMA_STATUS_REG);
1603 
1604 		if (!(tmp & SDMA_STATUS_REG__IDLE_MASK))
1605 			return false;
1606 	}
1607 
1608 	return true;
1609 }
1610 
1611 static int sdma_v4_4_2_wait_for_idle(struct amdgpu_ip_block *ip_block)
1612 {
1613 	unsigned i, j;
1614 	u32 sdma[AMDGPU_MAX_SDMA_INSTANCES];
1615 	struct amdgpu_device *adev = ip_block->adev;
1616 
1617 	for (i = 0; i < adev->usec_timeout; i++) {
1618 		for (j = 0; j < adev->sdma.num_instances; j++) {
1619 			sdma[j] = RREG32_SDMA(j, regSDMA_STATUS_REG);
1620 			if (!(sdma[j] & SDMA_STATUS_REG__IDLE_MASK))
1621 				break;
1622 		}
1623 		if (j == adev->sdma.num_instances)
1624 			return 0;
1625 		udelay(1);
1626 	}
1627 	return -ETIMEDOUT;
1628 }
1629 
1630 static int sdma_v4_4_2_soft_reset(struct amdgpu_ip_block *ip_block)
1631 {
1632 	/* todo */
1633 
1634 	return 0;
1635 }
1636 
1637 static bool sdma_v4_4_2_is_queue_selected(struct amdgpu_device *adev, uint32_t instance_id, bool is_page_queue)
1638 {
1639 	uint32_t reg_offset = is_page_queue ? regSDMA_PAGE_CONTEXT_STATUS : regSDMA_GFX_CONTEXT_STATUS;
1640 	uint32_t context_status = RREG32(sdma_v4_4_2_get_reg_offset(adev, instance_id, reg_offset));
1641 
1642 	/* Check if the SELECTED bit is set */
1643 	return (context_status & SDMA_GFX_CONTEXT_STATUS__SELECTED_MASK) != 0;
1644 }
1645 
1646 static bool sdma_v4_4_2_ring_is_guilty(struct amdgpu_ring *ring)
1647 {
1648 	struct amdgpu_device *adev = ring->adev;
1649 	uint32_t instance_id = ring->me;
1650 
1651 	return sdma_v4_4_2_is_queue_selected(adev, instance_id, false);
1652 }
1653 
1654 static bool sdma_v4_4_2_page_ring_is_guilty(struct amdgpu_ring *ring)
1655 {
1656 	struct amdgpu_device *adev = ring->adev;
1657 	uint32_t instance_id = ring->me;
1658 
1659 	if (!adev->sdma.has_page_queue)
1660 		return false;
1661 
1662 	return sdma_v4_4_2_is_queue_selected(adev, instance_id, true);
1663 }
1664 
1665 static int sdma_v4_4_2_reset_queue(struct amdgpu_ring *ring, unsigned int vmid)
1666 {
1667 	struct amdgpu_device *adev = ring->adev;
1668 	u32 id = GET_INST(SDMA0, ring->me);
1669 	return amdgpu_sdma_reset_engine(adev, id, true);
1670 }
1671 
1672 static int sdma_v4_4_2_stop_queue(struct amdgpu_device *adev, uint32_t instance_id)
1673 {
1674 	u32 inst_mask;
1675 	uint64_t rptr;
1676 	struct amdgpu_ring *ring = &adev->sdma.instance[instance_id].ring;
1677 
1678 	if (amdgpu_sriov_vf(adev))
1679 		return -EINVAL;
1680 
1681 	/* Check if this queue is the guilty one */
1682 	adev->sdma.gfx_guilty = sdma_v4_4_2_is_queue_selected(adev, instance_id, false);
1683 	if (adev->sdma.has_page_queue)
1684 		adev->sdma.page_guilty = sdma_v4_4_2_is_queue_selected(adev, instance_id, true);
1685 
1686 	/* Cache the rptr before reset, after the reset,
1687 	* all of the registers will be reset to 0
1688 	*/
1689 	rptr = amdgpu_ring_get_rptr(ring);
1690 	ring->cached_rptr = rptr;
1691 	/* Cache the rptr for the page queue if it exists */
1692 	if (adev->sdma.has_page_queue) {
1693 		struct amdgpu_ring *page_ring = &adev->sdma.instance[instance_id].page;
1694 		rptr = amdgpu_ring_get_rptr(page_ring);
1695 		page_ring->cached_rptr = rptr;
1696 	}
1697 
1698 	/* stop queue */
1699 	inst_mask = 1 << ring->me;
1700 	sdma_v4_4_2_inst_gfx_stop(adev, inst_mask);
1701 	if (adev->sdma.has_page_queue)
1702 		sdma_v4_4_2_inst_page_stop(adev, inst_mask);
1703 
1704 	return 0;
1705 }
1706 
1707 static int sdma_v4_4_2_restore_queue(struct amdgpu_device *adev, uint32_t instance_id)
1708 {
1709 	int i;
1710 	u32 inst_mask;
1711 	struct amdgpu_ring *ring = &adev->sdma.instance[instance_id].ring;
1712 
1713 	inst_mask = 1 << ring->me;
1714 	udelay(50);
1715 
1716 	for (i = 0; i < adev->usec_timeout; i++) {
1717 		if (!REG_GET_FIELD(RREG32_SDMA(ring->me, regSDMA_F32_CNTL), SDMA_F32_CNTL, HALT))
1718 			break;
1719 		udelay(1);
1720 	}
1721 
1722 	if (i == adev->usec_timeout) {
1723 		dev_err(adev->dev, "timed out waiting for SDMA%d unhalt after reset\n",
1724 			ring->me);
1725 		return -ETIMEDOUT;
1726 	}
1727 
1728 	return sdma_v4_4_2_inst_start(adev, inst_mask, true);
1729 }
1730 
1731 static struct sdma_on_reset_funcs sdma_v4_4_2_engine_reset_funcs = {
1732 	.pre_reset = sdma_v4_4_2_stop_queue,
1733 	.post_reset = sdma_v4_4_2_restore_queue,
1734 };
1735 
1736 static void sdma_v4_4_2_set_engine_reset_funcs(struct amdgpu_device *adev)
1737 {
1738 	amdgpu_sdma_register_on_reset_callbacks(adev, &sdma_v4_4_2_engine_reset_funcs);
1739 }
1740 
1741 static int sdma_v4_4_2_set_trap_irq_state(struct amdgpu_device *adev,
1742 					struct amdgpu_irq_src *source,
1743 					unsigned type,
1744 					enum amdgpu_interrupt_state state)
1745 {
1746 	u32 sdma_cntl;
1747 
1748 	sdma_cntl = RREG32_SDMA(type, regSDMA_CNTL);
1749 	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA_CNTL, TRAP_ENABLE,
1750 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1751 	WREG32_SDMA(type, regSDMA_CNTL, sdma_cntl);
1752 
1753 	return 0;
1754 }
1755 
1756 static int sdma_v4_4_2_process_trap_irq(struct amdgpu_device *adev,
1757 				      struct amdgpu_irq_src *source,
1758 				      struct amdgpu_iv_entry *entry)
1759 {
1760 	uint32_t instance, i;
1761 
1762 	DRM_DEBUG("IH: SDMA trap\n");
1763 	instance = sdma_v4_4_2_irq_id_to_seq(adev, entry->client_id);
1764 
1765 	/* Client id gives the SDMA instance in AID. To know the exact SDMA
1766 	 * instance, interrupt entry gives the node id which corresponds to the AID instance.
1767 	 * Match node id with the AID id associated with the SDMA instance. */
1768 	for (i = instance; i < adev->sdma.num_instances;
1769 	     i += adev->sdma.num_inst_per_aid) {
1770 		if (adev->sdma.instance[i].aid_id ==
1771 		    node_id_to_phys_map[entry->node_id])
1772 			break;
1773 	}
1774 
1775 	if (i >= adev->sdma.num_instances) {
1776 		dev_WARN_ONCE(
1777 			adev->dev, 1,
1778 			"Couldn't find the right sdma instance in trap handler");
1779 		return 0;
1780 	}
1781 
1782 	switch (entry->ring_id) {
1783 	case 0:
1784 		amdgpu_fence_process(&adev->sdma.instance[i].ring);
1785 		break;
1786 	case 1:
1787 		amdgpu_fence_process(&adev->sdma.instance[i].page);
1788 		break;
1789 	default:
1790 		break;
1791 	}
1792 	return 0;
1793 }
1794 
1795 #if 0
1796 static int sdma_v4_4_2_process_ras_data_cb(struct amdgpu_device *adev,
1797 		void *err_data,
1798 		struct amdgpu_iv_entry *entry)
1799 {
1800 	int instance;
1801 
1802 	/* When “Full RAS” is enabled, the per-IP interrupt sources should
1803 	 * be disabled and the driver should only look for the aggregated
1804 	 * interrupt via sync flood
1805 	 */
1806 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA))
1807 		goto out;
1808 
1809 	instance = sdma_v4_4_2_irq_id_to_seq(adev, entry->client_id);
1810 	if (instance < 0)
1811 		goto out;
1812 
1813 	amdgpu_sdma_process_ras_data_cb(adev, err_data, entry);
1814 
1815 out:
1816 	return AMDGPU_RAS_SUCCESS;
1817 }
1818 #endif
1819 
1820 static int sdma_v4_4_2_process_illegal_inst_irq(struct amdgpu_device *adev,
1821 					      struct amdgpu_irq_src *source,
1822 					      struct amdgpu_iv_entry *entry)
1823 {
1824 	int instance;
1825 
1826 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
1827 
1828 	instance = sdma_v4_4_2_irq_id_to_seq(adev, entry->client_id);
1829 	if (instance < 0)
1830 		return 0;
1831 
1832 	switch (entry->ring_id) {
1833 	case 0:
1834 		drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
1835 		break;
1836 	}
1837 	return 0;
1838 }
1839 
1840 static int sdma_v4_4_2_set_ecc_irq_state(struct amdgpu_device *adev,
1841 					struct amdgpu_irq_src *source,
1842 					unsigned type,
1843 					enum amdgpu_interrupt_state state)
1844 {
1845 	u32 sdma_cntl;
1846 
1847 	sdma_cntl = RREG32_SDMA(type, regSDMA_CNTL);
1848 	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA_CNTL, DRAM_ECC_INT_ENABLE,
1849 					state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1850 	WREG32_SDMA(type, regSDMA_CNTL, sdma_cntl);
1851 
1852 	return 0;
1853 }
1854 
1855 static int sdma_v4_4_2_print_iv_entry(struct amdgpu_device *adev,
1856 					      struct amdgpu_iv_entry *entry)
1857 {
1858 	int instance;
1859 	struct amdgpu_task_info *task_info;
1860 	u64 addr;
1861 
1862 	instance = sdma_v4_4_2_irq_id_to_seq(adev, entry->client_id);
1863 	if (instance < 0 || instance >= adev->sdma.num_instances) {
1864 		dev_err(adev->dev, "sdma instance invalid %d\n", instance);
1865 		return -EINVAL;
1866 	}
1867 
1868 	addr = (u64)entry->src_data[0] << 12;
1869 	addr |= ((u64)entry->src_data[1] & 0xf) << 44;
1870 
1871 	dev_dbg_ratelimited(adev->dev,
1872 			    "[sdma%d] address:0x%016llx src_id:%u ring:%u vmid:%u pasid:%u\n",
1873 			    instance, addr, entry->src_id, entry->ring_id, entry->vmid,
1874 			    entry->pasid);
1875 
1876 	task_info = amdgpu_vm_get_task_info_pasid(adev, entry->pasid);
1877 	if (task_info) {
1878 		dev_dbg_ratelimited(adev->dev, " for process %s pid %d thread %s pid %d\n",
1879 				    task_info->process_name, task_info->tgid,
1880 				    task_info->task_name, task_info->pid);
1881 		amdgpu_vm_put_task_info(task_info);
1882 	}
1883 
1884 	return 0;
1885 }
1886 
1887 static int sdma_v4_4_2_process_vm_hole_irq(struct amdgpu_device *adev,
1888 					      struct amdgpu_irq_src *source,
1889 					      struct amdgpu_iv_entry *entry)
1890 {
1891 	dev_dbg_ratelimited(adev->dev, "MC or SEM address in VM hole\n");
1892 	sdma_v4_4_2_print_iv_entry(adev, entry);
1893 	return 0;
1894 }
1895 
1896 static int sdma_v4_4_2_process_doorbell_invalid_irq(struct amdgpu_device *adev,
1897 					      struct amdgpu_irq_src *source,
1898 					      struct amdgpu_iv_entry *entry)
1899 {
1900 
1901 	dev_dbg_ratelimited(adev->dev, "SDMA received a doorbell from BIF with byte_enable !=0xff\n");
1902 	sdma_v4_4_2_print_iv_entry(adev, entry);
1903 	return 0;
1904 }
1905 
1906 static int sdma_v4_4_2_process_pool_timeout_irq(struct amdgpu_device *adev,
1907 					      struct amdgpu_irq_src *source,
1908 					      struct amdgpu_iv_entry *entry)
1909 {
1910 	dev_dbg_ratelimited(adev->dev,
1911 		"Polling register/memory timeout executing POLL_REG/MEM with finite timer\n");
1912 	sdma_v4_4_2_print_iv_entry(adev, entry);
1913 	return 0;
1914 }
1915 
1916 static int sdma_v4_4_2_process_srbm_write_irq(struct amdgpu_device *adev,
1917 					      struct amdgpu_irq_src *source,
1918 					      struct amdgpu_iv_entry *entry)
1919 {
1920 	dev_dbg_ratelimited(adev->dev,
1921 		"SDMA gets an Register Write SRBM_WRITE command in non-privilege command buffer\n");
1922 	sdma_v4_4_2_print_iv_entry(adev, entry);
1923 	return 0;
1924 }
1925 
1926 static int sdma_v4_4_2_process_ctxt_empty_irq(struct amdgpu_device *adev,
1927 					      struct amdgpu_irq_src *source,
1928 					      struct amdgpu_iv_entry *entry)
1929 {
1930 	/* There is nothing useful to be done here, only kept for debug */
1931 	dev_dbg_ratelimited(adev->dev, "SDMA context empty interrupt");
1932 	sdma_v4_4_2_print_iv_entry(adev, entry);
1933 	return 0;
1934 }
1935 
1936 static void sdma_v4_4_2_inst_update_medium_grain_light_sleep(
1937 	struct amdgpu_device *adev, bool enable, uint32_t inst_mask)
1938 {
1939 	uint32_t data, def;
1940 	int i;
1941 
1942 	/* leave as default if it is not driver controlled */
1943 	if (!(adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS))
1944 		return;
1945 
1946 	if (enable) {
1947 		for_each_inst(i, inst_mask) {
1948 			/* 1-not override: enable sdma mem light sleep */
1949 			def = data = RREG32_SDMA(i, regSDMA_POWER_CNTL);
1950 			data |= SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1951 			if (def != data)
1952 				WREG32_SDMA(i, regSDMA_POWER_CNTL, data);
1953 		}
1954 	} else {
1955 		for_each_inst(i, inst_mask) {
1956 			/* 0-override:disable sdma mem light sleep */
1957 			def = data = RREG32_SDMA(i, regSDMA_POWER_CNTL);
1958 			data &= ~SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1959 			if (def != data)
1960 				WREG32_SDMA(i, regSDMA_POWER_CNTL, data);
1961 		}
1962 	}
1963 }
1964 
1965 static void sdma_v4_4_2_inst_update_medium_grain_clock_gating(
1966 	struct amdgpu_device *adev, bool enable, uint32_t inst_mask)
1967 {
1968 	uint32_t data, def;
1969 	int i;
1970 
1971 	/* leave as default if it is not driver controlled */
1972 	if (!(adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG))
1973 		return;
1974 
1975 	if (enable) {
1976 		for_each_inst(i, inst_mask) {
1977 			def = data = RREG32_SDMA(i, regSDMA_CLK_CTRL);
1978 			data &= ~(SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1979 				  SDMA_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1980 				  SDMA_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1981 				  SDMA_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1982 				  SDMA_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1983 				  SDMA_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1984 			if (def != data)
1985 				WREG32_SDMA(i, regSDMA_CLK_CTRL, data);
1986 		}
1987 	} else {
1988 		for_each_inst(i, inst_mask) {
1989 			def = data = RREG32_SDMA(i, regSDMA_CLK_CTRL);
1990 			data |= (SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1991 				 SDMA_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1992 				 SDMA_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1993 				 SDMA_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1994 				 SDMA_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1995 				 SDMA_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1996 			if (def != data)
1997 				WREG32_SDMA(i, regSDMA_CLK_CTRL, data);
1998 		}
1999 	}
2000 }
2001 
2002 static int sdma_v4_4_2_set_clockgating_state(struct amdgpu_ip_block *ip_block,
2003 					  enum amd_clockgating_state state)
2004 {
2005 	struct amdgpu_device *adev = ip_block->adev;
2006 	uint32_t inst_mask;
2007 
2008 	if (amdgpu_sriov_vf(adev))
2009 		return 0;
2010 
2011 	inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
2012 
2013 	sdma_v4_4_2_inst_update_medium_grain_clock_gating(
2014 		adev, state == AMD_CG_STATE_GATE, inst_mask);
2015 	sdma_v4_4_2_inst_update_medium_grain_light_sleep(
2016 		adev, state == AMD_CG_STATE_GATE, inst_mask);
2017 	return 0;
2018 }
2019 
2020 static int sdma_v4_4_2_set_powergating_state(struct amdgpu_ip_block *ip_block,
2021 					  enum amd_powergating_state state)
2022 {
2023 	return 0;
2024 }
2025 
2026 static void sdma_v4_4_2_get_clockgating_state(struct amdgpu_ip_block *ip_block, u64 *flags)
2027 {
2028 	struct amdgpu_device *adev = ip_block->adev;
2029 	int data;
2030 
2031 	if (amdgpu_sriov_vf(adev))
2032 		*flags = 0;
2033 
2034 	/* AMD_CG_SUPPORT_SDMA_MGCG */
2035 	data = RREG32(SOC15_REG_OFFSET(SDMA0, GET_INST(SDMA0, 0), regSDMA_CLK_CTRL));
2036 	if (!(data & SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK))
2037 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
2038 
2039 	/* AMD_CG_SUPPORT_SDMA_LS */
2040 	data = RREG32(SOC15_REG_OFFSET(SDMA0, GET_INST(SDMA0, 0), regSDMA_POWER_CNTL));
2041 	if (data & SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
2042 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
2043 }
2044 
2045 static void sdma_v4_4_2_print_ip_state(struct amdgpu_ip_block *ip_block, struct drm_printer *p)
2046 {
2047 	struct amdgpu_device *adev = ip_block->adev;
2048 	int i, j;
2049 	uint32_t reg_count = ARRAY_SIZE(sdma_reg_list_4_4_2);
2050 	uint32_t instance_offset;
2051 
2052 	if (!adev->sdma.ip_dump)
2053 		return;
2054 
2055 	drm_printf(p, "num_instances:%d\n", adev->sdma.num_instances);
2056 	for (i = 0; i < adev->sdma.num_instances; i++) {
2057 		instance_offset = i * reg_count;
2058 		drm_printf(p, "\nInstance:%d\n", i);
2059 
2060 		for (j = 0; j < reg_count; j++)
2061 			drm_printf(p, "%-50s \t 0x%08x\n", sdma_reg_list_4_4_2[j].reg_name,
2062 				   adev->sdma.ip_dump[instance_offset + j]);
2063 	}
2064 }
2065 
2066 static void sdma_v4_4_2_dump_ip_state(struct amdgpu_ip_block *ip_block)
2067 {
2068 	struct amdgpu_device *adev = ip_block->adev;
2069 	int i, j;
2070 	uint32_t instance_offset;
2071 	uint32_t reg_count = ARRAY_SIZE(sdma_reg_list_4_4_2);
2072 
2073 	if (!adev->sdma.ip_dump)
2074 		return;
2075 
2076 	for (i = 0; i < adev->sdma.num_instances; i++) {
2077 		instance_offset = i * reg_count;
2078 		for (j = 0; j < reg_count; j++)
2079 			adev->sdma.ip_dump[instance_offset + j] =
2080 				RREG32(sdma_v4_4_2_get_reg_offset(adev, i,
2081 				       sdma_reg_list_4_4_2[j].reg_offset));
2082 	}
2083 }
2084 
2085 const struct amd_ip_funcs sdma_v4_4_2_ip_funcs = {
2086 	.name = "sdma_v4_4_2",
2087 	.early_init = sdma_v4_4_2_early_init,
2088 	.late_init = sdma_v4_4_2_late_init,
2089 	.sw_init = sdma_v4_4_2_sw_init,
2090 	.sw_fini = sdma_v4_4_2_sw_fini,
2091 	.hw_init = sdma_v4_4_2_hw_init,
2092 	.hw_fini = sdma_v4_4_2_hw_fini,
2093 	.suspend = sdma_v4_4_2_suspend,
2094 	.resume = sdma_v4_4_2_resume,
2095 	.is_idle = sdma_v4_4_2_is_idle,
2096 	.wait_for_idle = sdma_v4_4_2_wait_for_idle,
2097 	.soft_reset = sdma_v4_4_2_soft_reset,
2098 	.set_clockgating_state = sdma_v4_4_2_set_clockgating_state,
2099 	.set_powergating_state = sdma_v4_4_2_set_powergating_state,
2100 	.get_clockgating_state = sdma_v4_4_2_get_clockgating_state,
2101 	.dump_ip_state = sdma_v4_4_2_dump_ip_state,
2102 	.print_ip_state = sdma_v4_4_2_print_ip_state,
2103 };
2104 
2105 static const struct amdgpu_ring_funcs sdma_v4_4_2_ring_funcs = {
2106 	.type = AMDGPU_RING_TYPE_SDMA,
2107 	.align_mask = 0xff,
2108 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2109 	.support_64bit_ptrs = true,
2110 	.get_rptr = sdma_v4_4_2_ring_get_rptr,
2111 	.get_wptr = sdma_v4_4_2_ring_get_wptr,
2112 	.set_wptr = sdma_v4_4_2_ring_set_wptr,
2113 	.emit_frame_size =
2114 		6 + /* sdma_v4_4_2_ring_emit_hdp_flush */
2115 		3 + /* hdp invalidate */
2116 		6 + /* sdma_v4_4_2_ring_emit_pipeline_sync */
2117 		/* sdma_v4_4_2_ring_emit_vm_flush */
2118 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2119 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2120 		10 + 10 + 10, /* sdma_v4_4_2_ring_emit_fence x3 for user fence, vm fence */
2121 	.emit_ib_size = 7 + 6, /* sdma_v4_4_2_ring_emit_ib */
2122 	.emit_ib = sdma_v4_4_2_ring_emit_ib,
2123 	.emit_fence = sdma_v4_4_2_ring_emit_fence,
2124 	.emit_pipeline_sync = sdma_v4_4_2_ring_emit_pipeline_sync,
2125 	.emit_vm_flush = sdma_v4_4_2_ring_emit_vm_flush,
2126 	.emit_hdp_flush = sdma_v4_4_2_ring_emit_hdp_flush,
2127 	.test_ring = sdma_v4_4_2_ring_test_ring,
2128 	.test_ib = sdma_v4_4_2_ring_test_ib,
2129 	.insert_nop = sdma_v4_4_2_ring_insert_nop,
2130 	.pad_ib = sdma_v4_4_2_ring_pad_ib,
2131 	.emit_wreg = sdma_v4_4_2_ring_emit_wreg,
2132 	.emit_reg_wait = sdma_v4_4_2_ring_emit_reg_wait,
2133 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2134 	.reset = sdma_v4_4_2_reset_queue,
2135 	.is_guilty = sdma_v4_4_2_ring_is_guilty,
2136 };
2137 
2138 static const struct amdgpu_ring_funcs sdma_v4_4_2_page_ring_funcs = {
2139 	.type = AMDGPU_RING_TYPE_SDMA,
2140 	.align_mask = 0xff,
2141 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2142 	.support_64bit_ptrs = true,
2143 	.get_rptr = sdma_v4_4_2_ring_get_rptr,
2144 	.get_wptr = sdma_v4_4_2_page_ring_get_wptr,
2145 	.set_wptr = sdma_v4_4_2_page_ring_set_wptr,
2146 	.emit_frame_size =
2147 		6 + /* sdma_v4_4_2_ring_emit_hdp_flush */
2148 		3 + /* hdp invalidate */
2149 		6 + /* sdma_v4_4_2_ring_emit_pipeline_sync */
2150 		/* sdma_v4_4_2_ring_emit_vm_flush */
2151 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2152 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2153 		10 + 10 + 10, /* sdma_v4_4_2_ring_emit_fence x3 for user fence, vm fence */
2154 	.emit_ib_size = 7 + 6, /* sdma_v4_4_2_ring_emit_ib */
2155 	.emit_ib = sdma_v4_4_2_ring_emit_ib,
2156 	.emit_fence = sdma_v4_4_2_ring_emit_fence,
2157 	.emit_pipeline_sync = sdma_v4_4_2_ring_emit_pipeline_sync,
2158 	.emit_vm_flush = sdma_v4_4_2_ring_emit_vm_flush,
2159 	.emit_hdp_flush = sdma_v4_4_2_ring_emit_hdp_flush,
2160 	.test_ring = sdma_v4_4_2_ring_test_ring,
2161 	.test_ib = sdma_v4_4_2_ring_test_ib,
2162 	.insert_nop = sdma_v4_4_2_ring_insert_nop,
2163 	.pad_ib = sdma_v4_4_2_ring_pad_ib,
2164 	.emit_wreg = sdma_v4_4_2_ring_emit_wreg,
2165 	.emit_reg_wait = sdma_v4_4_2_ring_emit_reg_wait,
2166 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2167 	.reset = sdma_v4_4_2_reset_queue,
2168 	.is_guilty = sdma_v4_4_2_page_ring_is_guilty,
2169 };
2170 
2171 static void sdma_v4_4_2_set_ring_funcs(struct amdgpu_device *adev)
2172 {
2173 	int i, dev_inst;
2174 
2175 	for (i = 0; i < adev->sdma.num_instances; i++) {
2176 		adev->sdma.instance[i].ring.funcs = &sdma_v4_4_2_ring_funcs;
2177 		adev->sdma.instance[i].ring.me = i;
2178 		if (adev->sdma.has_page_queue) {
2179 			adev->sdma.instance[i].page.funcs =
2180 				&sdma_v4_4_2_page_ring_funcs;
2181 			adev->sdma.instance[i].page.me = i;
2182 		}
2183 
2184 		dev_inst = GET_INST(SDMA0, i);
2185 		/* AID to which SDMA belongs depends on physical instance */
2186 		adev->sdma.instance[i].aid_id =
2187 			dev_inst / adev->sdma.num_inst_per_aid;
2188 	}
2189 }
2190 
2191 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_trap_irq_funcs = {
2192 	.set = sdma_v4_4_2_set_trap_irq_state,
2193 	.process = sdma_v4_4_2_process_trap_irq,
2194 };
2195 
2196 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_illegal_inst_irq_funcs = {
2197 	.process = sdma_v4_4_2_process_illegal_inst_irq,
2198 };
2199 
2200 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_ecc_irq_funcs = {
2201 	.set = sdma_v4_4_2_set_ecc_irq_state,
2202 	.process = amdgpu_sdma_process_ecc_irq,
2203 };
2204 
2205 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_vm_hole_irq_funcs = {
2206 	.process = sdma_v4_4_2_process_vm_hole_irq,
2207 };
2208 
2209 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_doorbell_invalid_irq_funcs = {
2210 	.process = sdma_v4_4_2_process_doorbell_invalid_irq,
2211 };
2212 
2213 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_pool_timeout_irq_funcs = {
2214 	.process = sdma_v4_4_2_process_pool_timeout_irq,
2215 };
2216 
2217 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_srbm_write_irq_funcs = {
2218 	.process = sdma_v4_4_2_process_srbm_write_irq,
2219 };
2220 
2221 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_ctxt_empty_irq_funcs = {
2222 	.process = sdma_v4_4_2_process_ctxt_empty_irq,
2223 };
2224 
2225 static void sdma_v4_4_2_set_irq_funcs(struct amdgpu_device *adev)
2226 {
2227 	adev->sdma.trap_irq.num_types = adev->sdma.num_instances;
2228 	adev->sdma.ecc_irq.num_types = adev->sdma.num_instances;
2229 	adev->sdma.vm_hole_irq.num_types = adev->sdma.num_instances;
2230 	adev->sdma.doorbell_invalid_irq.num_types = adev->sdma.num_instances;
2231 	adev->sdma.pool_timeout_irq.num_types = adev->sdma.num_instances;
2232 	adev->sdma.srbm_write_irq.num_types = adev->sdma.num_instances;
2233 	adev->sdma.ctxt_empty_irq.num_types = adev->sdma.num_instances;
2234 
2235 	adev->sdma.trap_irq.funcs = &sdma_v4_4_2_trap_irq_funcs;
2236 	adev->sdma.illegal_inst_irq.funcs = &sdma_v4_4_2_illegal_inst_irq_funcs;
2237 	adev->sdma.ecc_irq.funcs = &sdma_v4_4_2_ecc_irq_funcs;
2238 	adev->sdma.vm_hole_irq.funcs = &sdma_v4_4_2_vm_hole_irq_funcs;
2239 	adev->sdma.doorbell_invalid_irq.funcs = &sdma_v4_4_2_doorbell_invalid_irq_funcs;
2240 	adev->sdma.pool_timeout_irq.funcs = &sdma_v4_4_2_pool_timeout_irq_funcs;
2241 	adev->sdma.srbm_write_irq.funcs = &sdma_v4_4_2_srbm_write_irq_funcs;
2242 	adev->sdma.ctxt_empty_irq.funcs = &sdma_v4_4_2_ctxt_empty_irq_funcs;
2243 }
2244 
2245 /**
2246  * sdma_v4_4_2_emit_copy_buffer - copy buffer using the sDMA engine
2247  *
2248  * @ib: indirect buffer to copy to
2249  * @src_offset: src GPU address
2250  * @dst_offset: dst GPU address
2251  * @byte_count: number of bytes to xfer
2252  * @copy_flags: copy flags for the buffers
2253  *
2254  * Copy GPU buffers using the DMA engine.
2255  * Used by the amdgpu ttm implementation to move pages if
2256  * registered as the asic copy callback.
2257  */
2258 static void sdma_v4_4_2_emit_copy_buffer(struct amdgpu_ib *ib,
2259 				       uint64_t src_offset,
2260 				       uint64_t dst_offset,
2261 				       uint32_t byte_count,
2262 				       uint32_t copy_flags)
2263 {
2264 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
2265 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
2266 		SDMA_PKT_COPY_LINEAR_HEADER_TMZ((copy_flags & AMDGPU_COPY_FLAGS_TMZ) ? 1 : 0);
2267 	ib->ptr[ib->length_dw++] = byte_count - 1;
2268 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
2269 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
2270 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
2271 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2272 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2273 }
2274 
2275 /**
2276  * sdma_v4_4_2_emit_fill_buffer - fill buffer using the sDMA engine
2277  *
2278  * @ib: indirect buffer to copy to
2279  * @src_data: value to write to buffer
2280  * @dst_offset: dst GPU address
2281  * @byte_count: number of bytes to xfer
2282  *
2283  * Fill GPU buffers using the DMA engine.
2284  */
2285 static void sdma_v4_4_2_emit_fill_buffer(struct amdgpu_ib *ib,
2286 				       uint32_t src_data,
2287 				       uint64_t dst_offset,
2288 				       uint32_t byte_count)
2289 {
2290 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2291 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2292 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2293 	ib->ptr[ib->length_dw++] = src_data;
2294 	ib->ptr[ib->length_dw++] = byte_count - 1;
2295 }
2296 
2297 static const struct amdgpu_buffer_funcs sdma_v4_4_2_buffer_funcs = {
2298 	.copy_max_bytes = 0x400000,
2299 	.copy_num_dw = 7,
2300 	.emit_copy_buffer = sdma_v4_4_2_emit_copy_buffer,
2301 
2302 	.fill_max_bytes = 0x400000,
2303 	.fill_num_dw = 5,
2304 	.emit_fill_buffer = sdma_v4_4_2_emit_fill_buffer,
2305 };
2306 
2307 static void sdma_v4_4_2_set_buffer_funcs(struct amdgpu_device *adev)
2308 {
2309 	adev->mman.buffer_funcs = &sdma_v4_4_2_buffer_funcs;
2310 	if (adev->sdma.has_page_queue)
2311 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
2312 	else
2313 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2314 }
2315 
2316 static const struct amdgpu_vm_pte_funcs sdma_v4_4_2_vm_pte_funcs = {
2317 	.copy_pte_num_dw = 7,
2318 	.copy_pte = sdma_v4_4_2_vm_copy_pte,
2319 
2320 	.write_pte = sdma_v4_4_2_vm_write_pte,
2321 	.set_pte_pde = sdma_v4_4_2_vm_set_pte_pde,
2322 };
2323 
2324 static void sdma_v4_4_2_set_vm_pte_funcs(struct amdgpu_device *adev)
2325 {
2326 	struct drm_gpu_scheduler *sched;
2327 	unsigned i;
2328 
2329 	adev->vm_manager.vm_pte_funcs = &sdma_v4_4_2_vm_pte_funcs;
2330 	for (i = 0; i < adev->sdma.num_instances; i++) {
2331 		if (adev->sdma.has_page_queue)
2332 			sched = &adev->sdma.instance[i].page.sched;
2333 		else
2334 			sched = &adev->sdma.instance[i].ring.sched;
2335 		adev->vm_manager.vm_pte_scheds[i] = sched;
2336 	}
2337 	adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
2338 }
2339 
2340 /**
2341  * sdma_v4_4_2_update_reset_mask - update  reset mask for SDMA
2342  * @adev: Pointer to the AMDGPU device structure
2343  *
2344  * This function update reset mask for SDMA and sets the supported
2345  * reset types based on the IP version and firmware versions.
2346  *
2347  */
2348 static void sdma_v4_4_2_update_reset_mask(struct amdgpu_device *adev)
2349 {
2350 
2351 	/*
2352 	 * the user queue relies on MEC fw and pmfw when the sdma queue do reset.
2353 	 * it needs to check both of them at here to skip old mec and pmfw.
2354 	 */
2355 	switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
2356 	case IP_VERSION(9, 4, 3):
2357 	case IP_VERSION(9, 4, 4):
2358 		if ((adev->gfx.mec_fw_version >= 0xb0) && amdgpu_dpm_reset_sdma_is_supported(adev))
2359 			adev->sdma.supported_reset |= AMDGPU_RESET_TYPE_PER_QUEUE;
2360 		break;
2361 	case IP_VERSION(9, 5, 0):
2362 		/*TODO: enable the queue reset flag until fw supported */
2363 	default:
2364 		break;
2365 	}
2366 
2367 }
2368 
2369 const struct amdgpu_ip_block_version sdma_v4_4_2_ip_block = {
2370 	.type = AMD_IP_BLOCK_TYPE_SDMA,
2371 	.major = 4,
2372 	.minor = 4,
2373 	.rev = 2,
2374 	.funcs = &sdma_v4_4_2_ip_funcs,
2375 };
2376 
2377 static int sdma_v4_4_2_xcp_resume(void *handle, uint32_t inst_mask)
2378 {
2379 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2380 	int r;
2381 
2382 	if (!amdgpu_sriov_vf(adev))
2383 		sdma_v4_4_2_inst_init_golden_registers(adev, inst_mask);
2384 
2385 	r = sdma_v4_4_2_inst_start(adev, inst_mask, false);
2386 
2387 	return r;
2388 }
2389 
2390 static int sdma_v4_4_2_xcp_suspend(void *handle, uint32_t inst_mask)
2391 {
2392 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2393 	uint32_t tmp_mask = inst_mask;
2394 	int i;
2395 
2396 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2397 		for_each_inst(i, tmp_mask) {
2398 			amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
2399 				       AMDGPU_SDMA_IRQ_INSTANCE0 + i);
2400 		}
2401 	}
2402 
2403 	sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask);
2404 	sdma_v4_4_2_inst_enable(adev, false, inst_mask);
2405 
2406 	return 0;
2407 }
2408 
2409 struct amdgpu_xcp_ip_funcs sdma_v4_4_2_xcp_funcs = {
2410 	.suspend = &sdma_v4_4_2_xcp_suspend,
2411 	.resume = &sdma_v4_4_2_xcp_resume
2412 };
2413 
2414 static const struct amdgpu_ras_err_status_reg_entry sdma_v4_2_2_ue_reg_list[] = {
2415 	{AMDGPU_RAS_REG_ENTRY(SDMA0, 0, regSDMA_UE_ERR_STATUS_LO, regSDMA_UE_ERR_STATUS_HI),
2416 	1, (AMDGPU_RAS_ERR_INFO_VALID | AMDGPU_RAS_ERR_STATUS_VALID), "SDMA"},
2417 };
2418 
2419 static const struct amdgpu_ras_memory_id_entry sdma_v4_4_2_ras_memory_list[] = {
2420 	{AMDGPU_SDMA_MBANK_DATA_BUF0, "SDMA_MBANK_DATA_BUF0"},
2421 	{AMDGPU_SDMA_MBANK_DATA_BUF1, "SDMA_MBANK_DATA_BUF1"},
2422 	{AMDGPU_SDMA_MBANK_DATA_BUF2, "SDMA_MBANK_DATA_BUF2"},
2423 	{AMDGPU_SDMA_MBANK_DATA_BUF3, "SDMA_MBANK_DATA_BUF3"},
2424 	{AMDGPU_SDMA_MBANK_DATA_BUF4, "SDMA_MBANK_DATA_BUF4"},
2425 	{AMDGPU_SDMA_MBANK_DATA_BUF5, "SDMA_MBANK_DATA_BUF5"},
2426 	{AMDGPU_SDMA_MBANK_DATA_BUF6, "SDMA_MBANK_DATA_BUF6"},
2427 	{AMDGPU_SDMA_MBANK_DATA_BUF7, "SDMA_MBANK_DATA_BUF7"},
2428 	{AMDGPU_SDMA_MBANK_DATA_BUF8, "SDMA_MBANK_DATA_BUF8"},
2429 	{AMDGPU_SDMA_MBANK_DATA_BUF9, "SDMA_MBANK_DATA_BUF9"},
2430 	{AMDGPU_SDMA_MBANK_DATA_BUF10, "SDMA_MBANK_DATA_BUF10"},
2431 	{AMDGPU_SDMA_MBANK_DATA_BUF11, "SDMA_MBANK_DATA_BUF11"},
2432 	{AMDGPU_SDMA_MBANK_DATA_BUF12, "SDMA_MBANK_DATA_BUF12"},
2433 	{AMDGPU_SDMA_MBANK_DATA_BUF13, "SDMA_MBANK_DATA_BUF13"},
2434 	{AMDGPU_SDMA_MBANK_DATA_BUF14, "SDMA_MBANK_DATA_BUF14"},
2435 	{AMDGPU_SDMA_MBANK_DATA_BUF15, "SDMA_MBANK_DATA_BUF15"},
2436 	{AMDGPU_SDMA_UCODE_BUF, "SDMA_UCODE_BUF"},
2437 	{AMDGPU_SDMA_RB_CMD_BUF, "SDMA_RB_CMD_BUF"},
2438 	{AMDGPU_SDMA_IB_CMD_BUF, "SDMA_IB_CMD_BUF"},
2439 	{AMDGPU_SDMA_UTCL1_RD_FIFO, "SDMA_UTCL1_RD_FIFO"},
2440 	{AMDGPU_SDMA_UTCL1_RDBST_FIFO, "SDMA_UTCL1_RDBST_FIFO"},
2441 	{AMDGPU_SDMA_UTCL1_WR_FIFO, "SDMA_UTCL1_WR_FIFO"},
2442 	{AMDGPU_SDMA_DATA_LUT_FIFO, "SDMA_DATA_LUT_FIFO"},
2443 	{AMDGPU_SDMA_SPLIT_DAT_BUF, "SDMA_SPLIT_DAT_BUF"},
2444 };
2445 
2446 static void sdma_v4_4_2_inst_query_ras_error_count(struct amdgpu_device *adev,
2447 						   uint32_t sdma_inst,
2448 						   void *ras_err_status)
2449 {
2450 	struct ras_err_data *err_data = (struct ras_err_data *)ras_err_status;
2451 	uint32_t sdma_dev_inst = GET_INST(SDMA0, sdma_inst);
2452 	unsigned long ue_count = 0;
2453 	struct amdgpu_smuio_mcm_config_info mcm_info = {
2454 		.socket_id = adev->smuio.funcs->get_socket_id(adev),
2455 		.die_id = adev->sdma.instance[sdma_inst].aid_id,
2456 	};
2457 
2458 	/* sdma v4_4_2 doesn't support query ce counts */
2459 	amdgpu_ras_inst_query_ras_error_count(adev,
2460 					sdma_v4_2_2_ue_reg_list,
2461 					ARRAY_SIZE(sdma_v4_2_2_ue_reg_list),
2462 					sdma_v4_4_2_ras_memory_list,
2463 					ARRAY_SIZE(sdma_v4_4_2_ras_memory_list),
2464 					sdma_dev_inst,
2465 					AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE,
2466 					&ue_count);
2467 
2468 	amdgpu_ras_error_statistic_ue_count(err_data, &mcm_info, ue_count);
2469 }
2470 
2471 static void sdma_v4_4_2_query_ras_error_count(struct amdgpu_device *adev,
2472 					      void *ras_err_status)
2473 {
2474 	uint32_t inst_mask;
2475 	int i = 0;
2476 
2477 	inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
2478 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2479 		for_each_inst(i, inst_mask)
2480 			sdma_v4_4_2_inst_query_ras_error_count(adev, i, ras_err_status);
2481 	} else {
2482 		dev_warn(adev->dev, "SDMA RAS is not supported\n");
2483 	}
2484 }
2485 
2486 static void sdma_v4_4_2_inst_reset_ras_error_count(struct amdgpu_device *adev,
2487 						   uint32_t sdma_inst)
2488 {
2489 	uint32_t sdma_dev_inst = GET_INST(SDMA0, sdma_inst);
2490 
2491 	amdgpu_ras_inst_reset_ras_error_count(adev,
2492 					sdma_v4_2_2_ue_reg_list,
2493 					ARRAY_SIZE(sdma_v4_2_2_ue_reg_list),
2494 					sdma_dev_inst);
2495 }
2496 
2497 static void sdma_v4_4_2_reset_ras_error_count(struct amdgpu_device *adev)
2498 {
2499 	uint32_t inst_mask;
2500 	int i = 0;
2501 
2502 	inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
2503 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2504 		for_each_inst(i, inst_mask)
2505 			sdma_v4_4_2_inst_reset_ras_error_count(adev, i);
2506 	} else {
2507 		dev_warn(adev->dev, "SDMA RAS is not supported\n");
2508 	}
2509 }
2510 
2511 static const struct amdgpu_ras_block_hw_ops sdma_v4_4_2_ras_hw_ops = {
2512 	.query_ras_error_count = sdma_v4_4_2_query_ras_error_count,
2513 	.reset_ras_error_count = sdma_v4_4_2_reset_ras_error_count,
2514 };
2515 
2516 static int sdma_v4_4_2_aca_bank_parser(struct aca_handle *handle, struct aca_bank *bank,
2517 				       enum aca_smu_type type, void *data)
2518 {
2519 	struct aca_bank_info info;
2520 	u64 misc0;
2521 	int ret;
2522 
2523 	ret = aca_bank_info_decode(bank, &info);
2524 	if (ret)
2525 		return ret;
2526 
2527 	misc0 = bank->regs[ACA_REG_IDX_MISC0];
2528 	switch (type) {
2529 	case ACA_SMU_TYPE_UE:
2530 		bank->aca_err_type = ACA_ERROR_TYPE_UE;
2531 		ret = aca_error_cache_log_bank_error(handle, &info, ACA_ERROR_TYPE_UE,
2532 						     1ULL);
2533 		break;
2534 	case ACA_SMU_TYPE_CE:
2535 		bank->aca_err_type = ACA_BANK_ERR_CE_DE_DECODE(bank);
2536 		ret = aca_error_cache_log_bank_error(handle, &info, bank->aca_err_type,
2537 						     ACA_REG__MISC0__ERRCNT(misc0));
2538 		break;
2539 	default:
2540 		return -EINVAL;
2541 	}
2542 
2543 	return ret;
2544 }
2545 
2546 /* CODE_SDMA0 - CODE_SDMA4, reference to smu driver if header file */
2547 static int sdma_v4_4_2_err_codes[] = { 33, 34, 35, 36 };
2548 
2549 static bool sdma_v4_4_2_aca_bank_is_valid(struct aca_handle *handle, struct aca_bank *bank,
2550 					  enum aca_smu_type type, void *data)
2551 {
2552 	u32 instlo;
2553 
2554 	instlo = ACA_REG__IPID__INSTANCEIDLO(bank->regs[ACA_REG_IDX_IPID]);
2555 	instlo &= GENMASK(31, 1);
2556 
2557 	if (instlo != mmSMNAID_AID0_MCA_SMU)
2558 		return false;
2559 
2560 	if (aca_bank_check_error_codes(handle->adev, bank,
2561 				       sdma_v4_4_2_err_codes,
2562 				       ARRAY_SIZE(sdma_v4_4_2_err_codes)))
2563 		return false;
2564 
2565 	return true;
2566 }
2567 
2568 static const struct aca_bank_ops sdma_v4_4_2_aca_bank_ops = {
2569 	.aca_bank_parser = sdma_v4_4_2_aca_bank_parser,
2570 	.aca_bank_is_valid = sdma_v4_4_2_aca_bank_is_valid,
2571 };
2572 
2573 static const struct aca_info sdma_v4_4_2_aca_info = {
2574 	.hwip = ACA_HWIP_TYPE_SMU,
2575 	.mask = ACA_ERROR_UE_MASK,
2576 	.bank_ops = &sdma_v4_4_2_aca_bank_ops,
2577 };
2578 
2579 static int sdma_v4_4_2_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block)
2580 {
2581 	int r;
2582 
2583 	r = amdgpu_sdma_ras_late_init(adev, ras_block);
2584 	if (r)
2585 		return r;
2586 
2587 	return amdgpu_ras_bind_aca(adev, AMDGPU_RAS_BLOCK__SDMA,
2588 				   &sdma_v4_4_2_aca_info, NULL);
2589 }
2590 
2591 static struct amdgpu_sdma_ras sdma_v4_4_2_ras = {
2592 	.ras_block = {
2593 		.hw_ops = &sdma_v4_4_2_ras_hw_ops,
2594 		.ras_late_init = sdma_v4_4_2_ras_late_init,
2595 	},
2596 };
2597 
2598 static void sdma_v4_4_2_set_ras_funcs(struct amdgpu_device *adev)
2599 {
2600 	adev->sdma.ras = &sdma_v4_4_2_ras;
2601 }
2602