xref: /linux/drivers/gpu/drm/amd/amdgpu/sdma_v4_4_2.c (revision 031fba65fc202abf1f193e321be7a2c274fd88ba)
1 /*
2  * Copyright 2022 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28 
29 #include "amdgpu.h"
30 #include "amdgpu_xcp.h"
31 #include "amdgpu_ucode.h"
32 #include "amdgpu_trace.h"
33 
34 #include "sdma/sdma_4_4_2_offset.h"
35 #include "sdma/sdma_4_4_2_sh_mask.h"
36 
37 #include "soc15_common.h"
38 #include "soc15.h"
39 #include "vega10_sdma_pkt_open.h"
40 
41 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
42 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
43 
44 #include "amdgpu_ras.h"
45 
46 MODULE_FIRMWARE("amdgpu/sdma_4_4_2.bin");
47 
48 #define WREG32_SDMA(instance, offset, value) \
49 	WREG32(sdma_v4_4_2_get_reg_offset(adev, (instance), (offset)), value)
50 #define RREG32_SDMA(instance, offset) \
51 	RREG32(sdma_v4_4_2_get_reg_offset(adev, (instance), (offset)))
52 
53 static void sdma_v4_4_2_set_ring_funcs(struct amdgpu_device *adev);
54 static void sdma_v4_4_2_set_buffer_funcs(struct amdgpu_device *adev);
55 static void sdma_v4_4_2_set_vm_pte_funcs(struct amdgpu_device *adev);
56 static void sdma_v4_4_2_set_irq_funcs(struct amdgpu_device *adev);
57 static void sdma_v4_4_2_set_ras_funcs(struct amdgpu_device *adev);
58 
59 static u32 sdma_v4_4_2_get_reg_offset(struct amdgpu_device *adev,
60 		u32 instance, u32 offset)
61 {
62 	u32 dev_inst = GET_INST(SDMA0, instance);
63 
64 	return (adev->reg_offset[SDMA0_HWIP][dev_inst][0] + offset);
65 }
66 
67 static unsigned sdma_v4_4_2_seq_to_irq_id(int seq_num)
68 {
69 	switch (seq_num) {
70 	case 0:
71 		return SOC15_IH_CLIENTID_SDMA0;
72 	case 1:
73 		return SOC15_IH_CLIENTID_SDMA1;
74 	case 2:
75 		return SOC15_IH_CLIENTID_SDMA2;
76 	case 3:
77 		return SOC15_IH_CLIENTID_SDMA3;
78 	default:
79 		return -EINVAL;
80 	}
81 }
82 
83 static int sdma_v4_4_2_irq_id_to_seq(unsigned client_id)
84 {
85 	switch (client_id) {
86 	case SOC15_IH_CLIENTID_SDMA0:
87 		return 0;
88 	case SOC15_IH_CLIENTID_SDMA1:
89 		return 1;
90 	case SOC15_IH_CLIENTID_SDMA2:
91 		return 2;
92 	case SOC15_IH_CLIENTID_SDMA3:
93 		return 3;
94 	default:
95 		return -EINVAL;
96 	}
97 }
98 
99 static void sdma_v4_4_2_inst_init_golden_registers(struct amdgpu_device *adev,
100 						   uint32_t inst_mask)
101 {
102 	u32 val;
103 	int i;
104 
105 	for (i = 0; i < adev->sdma.num_instances; i++) {
106 		val = RREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG);
107 		val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG, NUM_BANKS, 4);
108 		val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG,
109 				    PIPE_INTERLEAVE_SIZE, 0);
110 		WREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG, val);
111 
112 		val = RREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG_READ);
113 		val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG_READ, NUM_BANKS,
114 				    4);
115 		val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG_READ,
116 				    PIPE_INTERLEAVE_SIZE, 0);
117 		WREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG_READ, val);
118 	}
119 }
120 
121 /**
122  * sdma_v4_4_2_init_microcode - load ucode images from disk
123  *
124  * @adev: amdgpu_device pointer
125  *
126  * Use the firmware interface to load the ucode images into
127  * the driver (not loaded into hw).
128  * Returns 0 on success, error on failure.
129  */
130 static int sdma_v4_4_2_init_microcode(struct amdgpu_device *adev)
131 {
132 	int ret, i;
133 
134 	for (i = 0; i < adev->sdma.num_instances; i++) {
135 		if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) ==
136 		    IP_VERSION(4, 4, 2)) {
137 			ret = amdgpu_sdma_init_microcode(adev, 0, true);
138 			break;
139 		} else {
140 			ret = amdgpu_sdma_init_microcode(adev, i, false);
141 			if (ret)
142 				return ret;
143 		}
144 	}
145 
146 	return ret;
147 }
148 
149 /**
150  * sdma_v4_4_2_ring_get_rptr - get the current read pointer
151  *
152  * @ring: amdgpu ring pointer
153  *
154  * Get the current rptr from the hardware.
155  */
156 static uint64_t sdma_v4_4_2_ring_get_rptr(struct amdgpu_ring *ring)
157 {
158 	u64 rptr;
159 
160 	/* XXX check if swapping is necessary on BE */
161 	rptr = READ_ONCE(*((u64 *)&ring->adev->wb.wb[ring->rptr_offs]));
162 
163 	DRM_DEBUG("rptr before shift == 0x%016llx\n", rptr);
164 	return rptr >> 2;
165 }
166 
167 /**
168  * sdma_v4_4_2_ring_get_wptr - get the current write pointer
169  *
170  * @ring: amdgpu ring pointer
171  *
172  * Get the current wptr from the hardware.
173  */
174 static uint64_t sdma_v4_4_2_ring_get_wptr(struct amdgpu_ring *ring)
175 {
176 	struct amdgpu_device *adev = ring->adev;
177 	u64 wptr;
178 
179 	if (ring->use_doorbell) {
180 		/* XXX check if swapping is necessary on BE */
181 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
182 		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
183 	} else {
184 		wptr = RREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR_HI);
185 		wptr = wptr << 32;
186 		wptr |= RREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR);
187 		DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
188 				ring->me, wptr);
189 	}
190 
191 	return wptr >> 2;
192 }
193 
194 /**
195  * sdma_v4_4_2_ring_set_wptr - commit the write pointer
196  *
197  * @ring: amdgpu ring pointer
198  *
199  * Write the wptr back to the hardware.
200  */
201 static void sdma_v4_4_2_ring_set_wptr(struct amdgpu_ring *ring)
202 {
203 	struct amdgpu_device *adev = ring->adev;
204 
205 	DRM_DEBUG("Setting write pointer\n");
206 	if (ring->use_doorbell) {
207 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
208 
209 		DRM_DEBUG("Using doorbell -- "
210 				"wptr_offs == 0x%08x "
211 				"lower_32_bits(ring->wptr) << 2 == 0x%08x "
212 				"upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
213 				ring->wptr_offs,
214 				lower_32_bits(ring->wptr << 2),
215 				upper_32_bits(ring->wptr << 2));
216 		/* XXX check if swapping is necessary on BE */
217 		WRITE_ONCE(*wb, (ring->wptr << 2));
218 		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
219 				ring->doorbell_index, ring->wptr << 2);
220 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
221 	} else {
222 		DRM_DEBUG("Not using doorbell -- "
223 				"regSDMA%i_GFX_RB_WPTR == 0x%08x "
224 				"regSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
225 				ring->me,
226 				lower_32_bits(ring->wptr << 2),
227 				ring->me,
228 				upper_32_bits(ring->wptr << 2));
229 		WREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR,
230 			    lower_32_bits(ring->wptr << 2));
231 		WREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR_HI,
232 			    upper_32_bits(ring->wptr << 2));
233 	}
234 }
235 
236 /**
237  * sdma_v4_4_2_page_ring_get_wptr - get the current write pointer
238  *
239  * @ring: amdgpu ring pointer
240  *
241  * Get the current wptr from the hardware.
242  */
243 static uint64_t sdma_v4_4_2_page_ring_get_wptr(struct amdgpu_ring *ring)
244 {
245 	struct amdgpu_device *adev = ring->adev;
246 	u64 wptr;
247 
248 	if (ring->use_doorbell) {
249 		/* XXX check if swapping is necessary on BE */
250 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
251 	} else {
252 		wptr = RREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR_HI);
253 		wptr = wptr << 32;
254 		wptr |= RREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR);
255 	}
256 
257 	return wptr >> 2;
258 }
259 
260 /**
261  * sdma_v4_4_2_page_ring_set_wptr - commit the write pointer
262  *
263  * @ring: amdgpu ring pointer
264  *
265  * Write the wptr back to the hardware.
266  */
267 static void sdma_v4_4_2_page_ring_set_wptr(struct amdgpu_ring *ring)
268 {
269 	struct amdgpu_device *adev = ring->adev;
270 
271 	if (ring->use_doorbell) {
272 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
273 
274 		/* XXX check if swapping is necessary on BE */
275 		WRITE_ONCE(*wb, (ring->wptr << 2));
276 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
277 	} else {
278 		uint64_t wptr = ring->wptr << 2;
279 
280 		WREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR,
281 			    lower_32_bits(wptr));
282 		WREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR_HI,
283 			    upper_32_bits(wptr));
284 	}
285 }
286 
287 static void sdma_v4_4_2_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
288 {
289 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
290 	int i;
291 
292 	for (i = 0; i < count; i++)
293 		if (sdma && sdma->burst_nop && (i == 0))
294 			amdgpu_ring_write(ring, ring->funcs->nop |
295 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
296 		else
297 			amdgpu_ring_write(ring, ring->funcs->nop);
298 }
299 
300 /**
301  * sdma_v4_4_2_ring_emit_ib - Schedule an IB on the DMA engine
302  *
303  * @ring: amdgpu ring pointer
304  * @job: job to retrieve vmid from
305  * @ib: IB object to schedule
306  * @flags: unused
307  *
308  * Schedule an IB in the DMA ring.
309  */
310 static void sdma_v4_4_2_ring_emit_ib(struct amdgpu_ring *ring,
311 				   struct amdgpu_job *job,
312 				   struct amdgpu_ib *ib,
313 				   uint32_t flags)
314 {
315 	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
316 
317 	/* IB packet must end on a 8 DW boundary */
318 	sdma_v4_4_2_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
319 
320 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
321 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
322 	/* base must be 32 byte aligned */
323 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
324 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
325 	amdgpu_ring_write(ring, ib->length_dw);
326 	amdgpu_ring_write(ring, 0);
327 	amdgpu_ring_write(ring, 0);
328 
329 }
330 
331 static void sdma_v4_4_2_wait_reg_mem(struct amdgpu_ring *ring,
332 				   int mem_space, int hdp,
333 				   uint32_t addr0, uint32_t addr1,
334 				   uint32_t ref, uint32_t mask,
335 				   uint32_t inv)
336 {
337 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
338 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
339 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
340 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
341 	if (mem_space) {
342 		/* memory */
343 		amdgpu_ring_write(ring, addr0);
344 		amdgpu_ring_write(ring, addr1);
345 	} else {
346 		/* registers */
347 		amdgpu_ring_write(ring, addr0 << 2);
348 		amdgpu_ring_write(ring, addr1 << 2);
349 	}
350 	amdgpu_ring_write(ring, ref); /* reference */
351 	amdgpu_ring_write(ring, mask); /* mask */
352 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
353 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
354 }
355 
356 /**
357  * sdma_v4_4_2_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
358  *
359  * @ring: amdgpu ring pointer
360  *
361  * Emit an hdp flush packet on the requested DMA ring.
362  */
363 static void sdma_v4_4_2_ring_emit_hdp_flush(struct amdgpu_ring *ring)
364 {
365 	struct amdgpu_device *adev = ring->adev;
366 	u32 ref_and_mask = 0;
367 	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
368 
369 	ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me;
370 
371 	sdma_v4_4_2_wait_reg_mem(ring, 0, 1,
372 			       adev->nbio.funcs->get_hdp_flush_done_offset(adev),
373 			       adev->nbio.funcs->get_hdp_flush_req_offset(adev),
374 			       ref_and_mask, ref_and_mask, 10);
375 }
376 
377 /**
378  * sdma_v4_4_2_ring_emit_fence - emit a fence on the DMA ring
379  *
380  * @ring: amdgpu ring pointer
381  * @addr: address
382  * @seq: sequence number
383  * @flags: fence related flags
384  *
385  * Add a DMA fence packet to the ring to write
386  * the fence seq number and DMA trap packet to generate
387  * an interrupt if needed.
388  */
389 static void sdma_v4_4_2_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
390 				      unsigned flags)
391 {
392 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
393 	/* write the fence */
394 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
395 	/* zero in first two bits */
396 	BUG_ON(addr & 0x3);
397 	amdgpu_ring_write(ring, lower_32_bits(addr));
398 	amdgpu_ring_write(ring, upper_32_bits(addr));
399 	amdgpu_ring_write(ring, lower_32_bits(seq));
400 
401 	/* optionally write high bits as well */
402 	if (write64bit) {
403 		addr += 4;
404 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
405 		/* zero in first two bits */
406 		BUG_ON(addr & 0x3);
407 		amdgpu_ring_write(ring, lower_32_bits(addr));
408 		amdgpu_ring_write(ring, upper_32_bits(addr));
409 		amdgpu_ring_write(ring, upper_32_bits(seq));
410 	}
411 
412 	/* generate an interrupt */
413 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
414 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
415 }
416 
417 
418 /**
419  * sdma_v4_4_2_inst_gfx_stop - stop the gfx async dma engines
420  *
421  * @adev: amdgpu_device pointer
422  * @inst_mask: mask of dma engine instances to be disabled
423  *
424  * Stop the gfx async dma ring buffers.
425  */
426 static void sdma_v4_4_2_inst_gfx_stop(struct amdgpu_device *adev,
427 				      uint32_t inst_mask)
428 {
429 	struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
430 	u32 rb_cntl, ib_cntl;
431 	int i, unset = 0;
432 
433 	for_each_inst(i, inst_mask) {
434 		sdma[i] = &adev->sdma.instance[i].ring;
435 
436 		if ((adev->mman.buffer_funcs_ring == sdma[i]) && unset != 1) {
437 			amdgpu_ttm_set_buffer_funcs_status(adev, false);
438 			unset = 1;
439 		}
440 
441 		rb_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_CNTL);
442 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_ENABLE, 0);
443 		WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl);
444 		ib_cntl = RREG32_SDMA(i, regSDMA_GFX_IB_CNTL);
445 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_ENABLE, 0);
446 		WREG32_SDMA(i, regSDMA_GFX_IB_CNTL, ib_cntl);
447 	}
448 }
449 
450 /**
451  * sdma_v4_4_2_inst_rlc_stop - stop the compute async dma engines
452  *
453  * @adev: amdgpu_device pointer
454  * @inst_mask: mask of dma engine instances to be disabled
455  *
456  * Stop the compute async dma queues.
457  */
458 static void sdma_v4_4_2_inst_rlc_stop(struct amdgpu_device *adev,
459 				      uint32_t inst_mask)
460 {
461 	/* XXX todo */
462 }
463 
464 /**
465  * sdma_v4_4_2_inst_page_stop - stop the page async dma engines
466  *
467  * @adev: amdgpu_device pointer
468  * @inst_mask: mask of dma engine instances to be disabled
469  *
470  * Stop the page async dma ring buffers.
471  */
472 static void sdma_v4_4_2_inst_page_stop(struct amdgpu_device *adev,
473 				       uint32_t inst_mask)
474 {
475 	struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
476 	u32 rb_cntl, ib_cntl;
477 	int i;
478 	bool unset = false;
479 
480 	for_each_inst(i, inst_mask) {
481 		sdma[i] = &adev->sdma.instance[i].page;
482 
483 		if ((adev->mman.buffer_funcs_ring == sdma[i]) &&
484 			(!unset)) {
485 			amdgpu_ttm_set_buffer_funcs_status(adev, false);
486 			unset = true;
487 		}
488 
489 		rb_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_CNTL);
490 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL,
491 					RB_ENABLE, 0);
492 		WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl);
493 		ib_cntl = RREG32_SDMA(i, regSDMA_PAGE_IB_CNTL);
494 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL,
495 					IB_ENABLE, 0);
496 		WREG32_SDMA(i, regSDMA_PAGE_IB_CNTL, ib_cntl);
497 	}
498 }
499 
500 /**
501  * sdma_v4_4_2_inst_ctx_switch_enable - stop the async dma engines context switch
502  *
503  * @adev: amdgpu_device pointer
504  * @enable: enable/disable the DMA MEs context switch.
505  * @inst_mask: mask of dma engine instances to be enabled
506  *
507  * Halt or unhalt the async dma engines context switch.
508  */
509 static void sdma_v4_4_2_inst_ctx_switch_enable(struct amdgpu_device *adev,
510 					       bool enable, uint32_t inst_mask)
511 {
512 	u32 f32_cntl, phase_quantum = 0;
513 	int i;
514 
515 	if (amdgpu_sdma_phase_quantum) {
516 		unsigned value = amdgpu_sdma_phase_quantum;
517 		unsigned unit = 0;
518 
519 		while (value > (SDMA_PHASE0_QUANTUM__VALUE_MASK >>
520 				SDMA_PHASE0_QUANTUM__VALUE__SHIFT)) {
521 			value = (value + 1) >> 1;
522 			unit++;
523 		}
524 		if (unit > (SDMA_PHASE0_QUANTUM__UNIT_MASK >>
525 			    SDMA_PHASE0_QUANTUM__UNIT__SHIFT)) {
526 			value = (SDMA_PHASE0_QUANTUM__VALUE_MASK >>
527 				 SDMA_PHASE0_QUANTUM__VALUE__SHIFT);
528 			unit = (SDMA_PHASE0_QUANTUM__UNIT_MASK >>
529 				SDMA_PHASE0_QUANTUM__UNIT__SHIFT);
530 			WARN_ONCE(1,
531 			"clamping sdma_phase_quantum to %uK clock cycles\n",
532 				  value << unit);
533 		}
534 		phase_quantum =
535 			value << SDMA_PHASE0_QUANTUM__VALUE__SHIFT |
536 			unit  << SDMA_PHASE0_QUANTUM__UNIT__SHIFT;
537 	}
538 
539 	for_each_inst(i, inst_mask) {
540 		f32_cntl = RREG32_SDMA(i, regSDMA_CNTL);
541 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA_CNTL,
542 				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
543 		if (enable && amdgpu_sdma_phase_quantum) {
544 			WREG32_SDMA(i, regSDMA_PHASE0_QUANTUM, phase_quantum);
545 			WREG32_SDMA(i, regSDMA_PHASE1_QUANTUM, phase_quantum);
546 			WREG32_SDMA(i, regSDMA_PHASE2_QUANTUM, phase_quantum);
547 		}
548 		WREG32_SDMA(i, regSDMA_CNTL, f32_cntl);
549 
550 		/* Extend page fault timeout to avoid interrupt storm */
551 		WREG32_SDMA(i, regSDMA_UTCL1_TIMEOUT, 0x00800080);
552 	}
553 }
554 
555 /**
556  * sdma_v4_4_2_inst_enable - stop the async dma engines
557  *
558  * @adev: amdgpu_device pointer
559  * @enable: enable/disable the DMA MEs.
560  * @inst_mask: mask of dma engine instances to be enabled
561  *
562  * Halt or unhalt the async dma engines.
563  */
564 static void sdma_v4_4_2_inst_enable(struct amdgpu_device *adev, bool enable,
565 				    uint32_t inst_mask)
566 {
567 	u32 f32_cntl;
568 	int i;
569 
570 	if (!enable) {
571 		sdma_v4_4_2_inst_gfx_stop(adev, inst_mask);
572 		sdma_v4_4_2_inst_rlc_stop(adev, inst_mask);
573 		if (adev->sdma.has_page_queue)
574 			sdma_v4_4_2_inst_page_stop(adev, inst_mask);
575 
576 		/* SDMA FW needs to respond to FREEZE requests during reset.
577 		 * Keep it running during reset */
578 		if (!amdgpu_sriov_vf(adev) && amdgpu_in_reset(adev))
579 			return;
580 	}
581 
582 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP)
583 		return;
584 
585 	for_each_inst(i, inst_mask) {
586 		f32_cntl = RREG32_SDMA(i, regSDMA_F32_CNTL);
587 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA_F32_CNTL, HALT, enable ? 0 : 1);
588 		WREG32_SDMA(i, regSDMA_F32_CNTL, f32_cntl);
589 	}
590 }
591 
592 /*
593  * sdma_v4_4_2_rb_cntl - get parameters for rb_cntl
594  */
595 static uint32_t sdma_v4_4_2_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
596 {
597 	/* Set ring buffer size in dwords */
598 	uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
599 
600 	barrier(); /* work around https://bugs.llvm.org/show_bug.cgi?id=42576 */
601 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
602 #ifdef __BIG_ENDIAN
603 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
604 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL,
605 				RPTR_WRITEBACK_SWAP_ENABLE, 1);
606 #endif
607 	return rb_cntl;
608 }
609 
610 /**
611  * sdma_v4_4_2_gfx_resume - setup and start the async dma engines
612  *
613  * @adev: amdgpu_device pointer
614  * @i: instance to resume
615  *
616  * Set up the gfx DMA ring buffers and enable them.
617  * Returns 0 for success, error for failure.
618  */
619 static void sdma_v4_4_2_gfx_resume(struct amdgpu_device *adev, unsigned int i)
620 {
621 	struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
622 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
623 	u32 wb_offset;
624 	u32 doorbell;
625 	u32 doorbell_offset;
626 	u64 wptr_gpu_addr;
627 
628 	wb_offset = (ring->rptr_offs * 4);
629 
630 	rb_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_CNTL);
631 	rb_cntl = sdma_v4_4_2_rb_cntl(ring, rb_cntl);
632 	WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl);
633 
634 	/* Initialize the ring buffer's read and write pointers */
635 	WREG32_SDMA(i, regSDMA_GFX_RB_RPTR, 0);
636 	WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_HI, 0);
637 	WREG32_SDMA(i, regSDMA_GFX_RB_WPTR, 0);
638 	WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_HI, 0);
639 
640 	/* set the wb address whether it's enabled or not */
641 	WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_ADDR_HI,
642 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
643 	WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_ADDR_LO,
644 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
645 
646 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL,
647 				RPTR_WRITEBACK_ENABLE, 1);
648 
649 	WREG32_SDMA(i, regSDMA_GFX_RB_BASE, ring->gpu_addr >> 8);
650 	WREG32_SDMA(i, regSDMA_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
651 
652 	ring->wptr = 0;
653 
654 	/* before programing wptr to a less value, need set minor_ptr_update first */
655 	WREG32_SDMA(i, regSDMA_GFX_MINOR_PTR_UPDATE, 1);
656 
657 	doorbell = RREG32_SDMA(i, regSDMA_GFX_DOORBELL);
658 	doorbell_offset = RREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET);
659 
660 	doorbell = REG_SET_FIELD(doorbell, SDMA_GFX_DOORBELL, ENABLE,
661 				 ring->use_doorbell);
662 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
663 					SDMA_GFX_DOORBELL_OFFSET,
664 					OFFSET, ring->doorbell_index);
665 	WREG32_SDMA(i, regSDMA_GFX_DOORBELL, doorbell);
666 	WREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET, doorbell_offset);
667 
668 	sdma_v4_4_2_ring_set_wptr(ring);
669 
670 	/* set minor_ptr_update to 0 after wptr programed */
671 	WREG32_SDMA(i, regSDMA_GFX_MINOR_PTR_UPDATE, 0);
672 
673 	/* setup the wptr shadow polling */
674 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
675 	WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_ADDR_LO,
676 		    lower_32_bits(wptr_gpu_addr));
677 	WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_ADDR_HI,
678 		    upper_32_bits(wptr_gpu_addr));
679 	wptr_poll_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_CNTL);
680 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
681 				       SDMA_GFX_RB_WPTR_POLL_CNTL,
682 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
683 	WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
684 
685 	/* enable DMA RB */
686 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_ENABLE, 1);
687 	WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl);
688 
689 	ib_cntl = RREG32_SDMA(i, regSDMA_GFX_IB_CNTL);
690 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_ENABLE, 1);
691 #ifdef __BIG_ENDIAN
692 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
693 #endif
694 	/* enable DMA IBs */
695 	WREG32_SDMA(i, regSDMA_GFX_IB_CNTL, ib_cntl);
696 }
697 
698 /**
699  * sdma_v4_4_2_page_resume - setup and start the async dma engines
700  *
701  * @adev: amdgpu_device pointer
702  * @i: instance to resume
703  *
704  * Set up the page DMA ring buffers and enable them.
705  * Returns 0 for success, error for failure.
706  */
707 static void sdma_v4_4_2_page_resume(struct amdgpu_device *adev, unsigned int i)
708 {
709 	struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
710 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
711 	u32 wb_offset;
712 	u32 doorbell;
713 	u32 doorbell_offset;
714 	u64 wptr_gpu_addr;
715 
716 	wb_offset = (ring->rptr_offs * 4);
717 
718 	rb_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_CNTL);
719 	rb_cntl = sdma_v4_4_2_rb_cntl(ring, rb_cntl);
720 	WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl);
721 
722 	/* Initialize the ring buffer's read and write pointers */
723 	WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR, 0);
724 	WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_HI, 0);
725 	WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR, 0);
726 	WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_HI, 0);
727 
728 	/* set the wb address whether it's enabled or not */
729 	WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_ADDR_HI,
730 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
731 	WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_ADDR_LO,
732 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
733 
734 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL,
735 				RPTR_WRITEBACK_ENABLE, 1);
736 
737 	WREG32_SDMA(i, regSDMA_PAGE_RB_BASE, ring->gpu_addr >> 8);
738 	WREG32_SDMA(i, regSDMA_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
739 
740 	ring->wptr = 0;
741 
742 	/* before programing wptr to a less value, need set minor_ptr_update first */
743 	WREG32_SDMA(i, regSDMA_PAGE_MINOR_PTR_UPDATE, 1);
744 
745 	doorbell = RREG32_SDMA(i, regSDMA_PAGE_DOORBELL);
746 	doorbell_offset = RREG32_SDMA(i, regSDMA_PAGE_DOORBELL_OFFSET);
747 
748 	doorbell = REG_SET_FIELD(doorbell, SDMA_PAGE_DOORBELL, ENABLE,
749 				 ring->use_doorbell);
750 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
751 					SDMA_PAGE_DOORBELL_OFFSET,
752 					OFFSET, ring->doorbell_index);
753 	WREG32_SDMA(i, regSDMA_PAGE_DOORBELL, doorbell);
754 	WREG32_SDMA(i, regSDMA_PAGE_DOORBELL_OFFSET, doorbell_offset);
755 
756 	/* paging queue doorbell range is setup at sdma_v4_4_2_gfx_resume */
757 	sdma_v4_4_2_page_ring_set_wptr(ring);
758 
759 	/* set minor_ptr_update to 0 after wptr programed */
760 	WREG32_SDMA(i, regSDMA_PAGE_MINOR_PTR_UPDATE, 0);
761 
762 	/* setup the wptr shadow polling */
763 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
764 	WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_ADDR_LO,
765 		    lower_32_bits(wptr_gpu_addr));
766 	WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_ADDR_HI,
767 		    upper_32_bits(wptr_gpu_addr));
768 	wptr_poll_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_CNTL);
769 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
770 				       SDMA_PAGE_RB_WPTR_POLL_CNTL,
771 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
772 	WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
773 
774 	/* enable DMA RB */
775 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL, RB_ENABLE, 1);
776 	WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl);
777 
778 	ib_cntl = RREG32_SDMA(i, regSDMA_PAGE_IB_CNTL);
779 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL, IB_ENABLE, 1);
780 #ifdef __BIG_ENDIAN
781 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
782 #endif
783 	/* enable DMA IBs */
784 	WREG32_SDMA(i, regSDMA_PAGE_IB_CNTL, ib_cntl);
785 }
786 
787 static void sdma_v4_4_2_init_pg(struct amdgpu_device *adev)
788 {
789 
790 }
791 
792 /**
793  * sdma_v4_4_2_inst_rlc_resume - setup and start the async dma engines
794  *
795  * @adev: amdgpu_device pointer
796  * @inst_mask: mask of dma engine instances to be enabled
797  *
798  * Set up the compute DMA queues and enable them.
799  * Returns 0 for success, error for failure.
800  */
801 static int sdma_v4_4_2_inst_rlc_resume(struct amdgpu_device *adev,
802 				       uint32_t inst_mask)
803 {
804 	sdma_v4_4_2_init_pg(adev);
805 
806 	return 0;
807 }
808 
809 /**
810  * sdma_v4_4_2_inst_load_microcode - load the sDMA ME ucode
811  *
812  * @adev: amdgpu_device pointer
813  * @inst_mask: mask of dma engine instances to be enabled
814  *
815  * Loads the sDMA0/1 ucode.
816  * Returns 0 for success, -EINVAL if the ucode is not available.
817  */
818 static int sdma_v4_4_2_inst_load_microcode(struct amdgpu_device *adev,
819 					   uint32_t inst_mask)
820 {
821 	const struct sdma_firmware_header_v1_0 *hdr;
822 	const __le32 *fw_data;
823 	u32 fw_size;
824 	int i, j;
825 
826 	/* halt the MEs */
827 	sdma_v4_4_2_inst_enable(adev, false, inst_mask);
828 
829 	for_each_inst(i, inst_mask) {
830 		if (!adev->sdma.instance[i].fw)
831 			return -EINVAL;
832 
833 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
834 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
835 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
836 
837 		fw_data = (const __le32 *)
838 			(adev->sdma.instance[i].fw->data +
839 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
840 
841 		WREG32_SDMA(i, regSDMA_UCODE_ADDR, 0);
842 
843 		for (j = 0; j < fw_size; j++)
844 			WREG32_SDMA(i, regSDMA_UCODE_DATA,
845 				    le32_to_cpup(fw_data++));
846 
847 		WREG32_SDMA(i, regSDMA_UCODE_ADDR,
848 			    adev->sdma.instance[i].fw_version);
849 	}
850 
851 	return 0;
852 }
853 
854 /**
855  * sdma_v4_4_2_inst_start - setup and start the async dma engines
856  *
857  * @adev: amdgpu_device pointer
858  * @inst_mask: mask of dma engine instances to be enabled
859  *
860  * Set up the DMA engines and enable them.
861  * Returns 0 for success, error for failure.
862  */
863 static int sdma_v4_4_2_inst_start(struct amdgpu_device *adev,
864 				  uint32_t inst_mask)
865 {
866 	struct amdgpu_ring *ring;
867 	uint32_t tmp_mask;
868 	int i, r = 0;
869 
870 	if (amdgpu_sriov_vf(adev)) {
871 		sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask);
872 		sdma_v4_4_2_inst_enable(adev, false, inst_mask);
873 	} else {
874 		/* bypass sdma microcode loading on Gopher */
875 		if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP &&
876 		    adev->sdma.instance[0].fw) {
877 			r = sdma_v4_4_2_inst_load_microcode(adev, inst_mask);
878 			if (r)
879 				return r;
880 		}
881 
882 		/* unhalt the MEs */
883 		sdma_v4_4_2_inst_enable(adev, true, inst_mask);
884 		/* enable sdma ring preemption */
885 		sdma_v4_4_2_inst_ctx_switch_enable(adev, true, inst_mask);
886 	}
887 
888 	/* start the gfx rings and rlc compute queues */
889 	tmp_mask = inst_mask;
890 	for_each_inst(i, tmp_mask) {
891 		uint32_t temp;
892 
893 		WREG32_SDMA(i, regSDMA_SEM_WAIT_FAIL_TIMER_CNTL, 0);
894 		sdma_v4_4_2_gfx_resume(adev, i);
895 		if (adev->sdma.has_page_queue)
896 			sdma_v4_4_2_page_resume(adev, i);
897 
898 		/* set utc l1 enable flag always to 1 */
899 		temp = RREG32_SDMA(i, regSDMA_CNTL);
900 		temp = REG_SET_FIELD(temp, SDMA_CNTL, UTC_L1_ENABLE, 1);
901 		/* enable context empty interrupt during initialization */
902 		temp = REG_SET_FIELD(temp, SDMA_CNTL, CTXEMPTY_INT_ENABLE, 1);
903 		WREG32_SDMA(i, regSDMA_CNTL, temp);
904 
905 		if (!amdgpu_sriov_vf(adev)) {
906 			if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
907 				/* unhalt engine */
908 				temp = RREG32_SDMA(i, regSDMA_F32_CNTL);
909 				temp = REG_SET_FIELD(temp, SDMA_F32_CNTL, HALT, 0);
910 				WREG32_SDMA(i, regSDMA_F32_CNTL, temp);
911 			}
912 		}
913 	}
914 
915 	if (amdgpu_sriov_vf(adev)) {
916 		sdma_v4_4_2_inst_ctx_switch_enable(adev, true, inst_mask);
917 		sdma_v4_4_2_inst_enable(adev, true, inst_mask);
918 	} else {
919 		r = sdma_v4_4_2_inst_rlc_resume(adev, inst_mask);
920 		if (r)
921 			return r;
922 	}
923 
924 	tmp_mask = inst_mask;
925 	for_each_inst(i, tmp_mask) {
926 		ring = &adev->sdma.instance[i].ring;
927 
928 		r = amdgpu_ring_test_helper(ring);
929 		if (r)
930 			return r;
931 
932 		if (adev->sdma.has_page_queue) {
933 			struct amdgpu_ring *page = &adev->sdma.instance[i].page;
934 
935 			r = amdgpu_ring_test_helper(page);
936 			if (r)
937 				return r;
938 
939 			if (adev->mman.buffer_funcs_ring == page)
940 				amdgpu_ttm_set_buffer_funcs_status(adev, true);
941 		}
942 
943 		if (adev->mman.buffer_funcs_ring == ring)
944 			amdgpu_ttm_set_buffer_funcs_status(adev, true);
945 	}
946 
947 	return r;
948 }
949 
950 /**
951  * sdma_v4_4_2_ring_test_ring - simple async dma engine test
952  *
953  * @ring: amdgpu_ring structure holding ring information
954  *
955  * Test the DMA engine by writing using it to write an
956  * value to memory.
957  * Returns 0 for success, error for failure.
958  */
959 static int sdma_v4_4_2_ring_test_ring(struct amdgpu_ring *ring)
960 {
961 	struct amdgpu_device *adev = ring->adev;
962 	unsigned i;
963 	unsigned index;
964 	int r;
965 	u32 tmp;
966 	u64 gpu_addr;
967 
968 	r = amdgpu_device_wb_get(adev, &index);
969 	if (r)
970 		return r;
971 
972 	gpu_addr = adev->wb.gpu_addr + (index * 4);
973 	tmp = 0xCAFEDEAD;
974 	adev->wb.wb[index] = cpu_to_le32(tmp);
975 
976 	r = amdgpu_ring_alloc(ring, 5);
977 	if (r)
978 		goto error_free_wb;
979 
980 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
981 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
982 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
983 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
984 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
985 	amdgpu_ring_write(ring, 0xDEADBEEF);
986 	amdgpu_ring_commit(ring);
987 
988 	for (i = 0; i < adev->usec_timeout; i++) {
989 		tmp = le32_to_cpu(adev->wb.wb[index]);
990 		if (tmp == 0xDEADBEEF)
991 			break;
992 		udelay(1);
993 	}
994 
995 	if (i >= adev->usec_timeout)
996 		r = -ETIMEDOUT;
997 
998 error_free_wb:
999 	amdgpu_device_wb_free(adev, index);
1000 	return r;
1001 }
1002 
1003 /**
1004  * sdma_v4_4_2_ring_test_ib - test an IB on the DMA engine
1005  *
1006  * @ring: amdgpu_ring structure holding ring information
1007  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
1008  *
1009  * Test a simple IB in the DMA ring.
1010  * Returns 0 on success, error on failure.
1011  */
1012 static int sdma_v4_4_2_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1013 {
1014 	struct amdgpu_device *adev = ring->adev;
1015 	struct amdgpu_ib ib;
1016 	struct dma_fence *f = NULL;
1017 	unsigned index;
1018 	long r;
1019 	u32 tmp = 0;
1020 	u64 gpu_addr;
1021 
1022 	r = amdgpu_device_wb_get(adev, &index);
1023 	if (r)
1024 		return r;
1025 
1026 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1027 	tmp = 0xCAFEDEAD;
1028 	adev->wb.wb[index] = cpu_to_le32(tmp);
1029 	memset(&ib, 0, sizeof(ib));
1030 	r = amdgpu_ib_get(adev, NULL, 256,
1031 					AMDGPU_IB_POOL_DIRECT, &ib);
1032 	if (r)
1033 		goto err0;
1034 
1035 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1036 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1037 	ib.ptr[1] = lower_32_bits(gpu_addr);
1038 	ib.ptr[2] = upper_32_bits(gpu_addr);
1039 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1040 	ib.ptr[4] = 0xDEADBEEF;
1041 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1042 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1043 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1044 	ib.length_dw = 8;
1045 
1046 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1047 	if (r)
1048 		goto err1;
1049 
1050 	r = dma_fence_wait_timeout(f, false, timeout);
1051 	if (r == 0) {
1052 		r = -ETIMEDOUT;
1053 		goto err1;
1054 	} else if (r < 0) {
1055 		goto err1;
1056 	}
1057 	tmp = le32_to_cpu(adev->wb.wb[index]);
1058 	if (tmp == 0xDEADBEEF)
1059 		r = 0;
1060 	else
1061 		r = -EINVAL;
1062 
1063 err1:
1064 	amdgpu_ib_free(adev, &ib, NULL);
1065 	dma_fence_put(f);
1066 err0:
1067 	amdgpu_device_wb_free(adev, index);
1068 	return r;
1069 }
1070 
1071 
1072 /**
1073  * sdma_v4_4_2_vm_copy_pte - update PTEs by copying them from the GART
1074  *
1075  * @ib: indirect buffer to fill with commands
1076  * @pe: addr of the page entry
1077  * @src: src addr to copy from
1078  * @count: number of page entries to update
1079  *
1080  * Update PTEs by copying them from the GART using sDMA.
1081  */
1082 static void sdma_v4_4_2_vm_copy_pte(struct amdgpu_ib *ib,
1083 				  uint64_t pe, uint64_t src,
1084 				  unsigned count)
1085 {
1086 	unsigned bytes = count * 8;
1087 
1088 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1089 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1090 	ib->ptr[ib->length_dw++] = bytes - 1;
1091 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1092 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1093 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1094 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1095 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1096 
1097 }
1098 
1099 /**
1100  * sdma_v4_4_2_vm_write_pte - update PTEs by writing them manually
1101  *
1102  * @ib: indirect buffer to fill with commands
1103  * @pe: addr of the page entry
1104  * @value: dst addr to write into pe
1105  * @count: number of page entries to update
1106  * @incr: increase next addr by incr bytes
1107  *
1108  * Update PTEs by writing them manually using sDMA.
1109  */
1110 static void sdma_v4_4_2_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1111 				   uint64_t value, unsigned count,
1112 				   uint32_t incr)
1113 {
1114 	unsigned ndw = count * 2;
1115 
1116 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1117 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1118 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1119 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1120 	ib->ptr[ib->length_dw++] = ndw - 1;
1121 	for (; ndw > 0; ndw -= 2) {
1122 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1123 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1124 		value += incr;
1125 	}
1126 }
1127 
1128 /**
1129  * sdma_v4_4_2_vm_set_pte_pde - update the page tables using sDMA
1130  *
1131  * @ib: indirect buffer to fill with commands
1132  * @pe: addr of the page entry
1133  * @addr: dst addr to write into pe
1134  * @count: number of page entries to update
1135  * @incr: increase next addr by incr bytes
1136  * @flags: access flags
1137  *
1138  * Update the page tables using sDMA.
1139  */
1140 static void sdma_v4_4_2_vm_set_pte_pde(struct amdgpu_ib *ib,
1141 				     uint64_t pe,
1142 				     uint64_t addr, unsigned count,
1143 				     uint32_t incr, uint64_t flags)
1144 {
1145 	/* for physically contiguous pages (vram) */
1146 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1147 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1148 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1149 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1150 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1151 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1152 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1153 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1154 	ib->ptr[ib->length_dw++] = 0;
1155 	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1156 }
1157 
1158 /**
1159  * sdma_v4_4_2_ring_pad_ib - pad the IB to the required number of dw
1160  *
1161  * @ring: amdgpu_ring structure holding ring information
1162  * @ib: indirect buffer to fill with padding
1163  */
1164 static void sdma_v4_4_2_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1165 {
1166 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1167 	u32 pad_count;
1168 	int i;
1169 
1170 	pad_count = (-ib->length_dw) & 7;
1171 	for (i = 0; i < pad_count; i++)
1172 		if (sdma && sdma->burst_nop && (i == 0))
1173 			ib->ptr[ib->length_dw++] =
1174 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1175 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1176 		else
1177 			ib->ptr[ib->length_dw++] =
1178 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1179 }
1180 
1181 
1182 /**
1183  * sdma_v4_4_2_ring_emit_pipeline_sync - sync the pipeline
1184  *
1185  * @ring: amdgpu_ring pointer
1186  *
1187  * Make sure all previous operations are completed (CIK).
1188  */
1189 static void sdma_v4_4_2_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1190 {
1191 	uint32_t seq = ring->fence_drv.sync_seq;
1192 	uint64_t addr = ring->fence_drv.gpu_addr;
1193 
1194 	/* wait for idle */
1195 	sdma_v4_4_2_wait_reg_mem(ring, 1, 0,
1196 			       addr & 0xfffffffc,
1197 			       upper_32_bits(addr) & 0xffffffff,
1198 			       seq, 0xffffffff, 4);
1199 }
1200 
1201 
1202 /**
1203  * sdma_v4_4_2_ring_emit_vm_flush - vm flush using sDMA
1204  *
1205  * @ring: amdgpu_ring pointer
1206  * @vmid: vmid number to use
1207  * @pd_addr: address
1208  *
1209  * Update the page table base and flush the VM TLB
1210  * using sDMA.
1211  */
1212 static void sdma_v4_4_2_ring_emit_vm_flush(struct amdgpu_ring *ring,
1213 					 unsigned vmid, uint64_t pd_addr)
1214 {
1215 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1216 }
1217 
1218 static void sdma_v4_4_2_ring_emit_wreg(struct amdgpu_ring *ring,
1219 				     uint32_t reg, uint32_t val)
1220 {
1221 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1222 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1223 	amdgpu_ring_write(ring, reg);
1224 	amdgpu_ring_write(ring, val);
1225 }
1226 
1227 static void sdma_v4_4_2_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1228 					 uint32_t val, uint32_t mask)
1229 {
1230 	sdma_v4_4_2_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1231 }
1232 
1233 static bool sdma_v4_4_2_fw_support_paging_queue(struct amdgpu_device *adev)
1234 {
1235 	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
1236 	case IP_VERSION(4, 4, 2):
1237 		return false;
1238 	default:
1239 		return false;
1240 	}
1241 }
1242 
1243 static int sdma_v4_4_2_early_init(void *handle)
1244 {
1245 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1246 	int r;
1247 
1248 	r = sdma_v4_4_2_init_microcode(adev);
1249 	if (r)
1250 		return r;
1251 
1252 	/* TODO: Page queue breaks driver reload under SRIOV */
1253 	if (sdma_v4_4_2_fw_support_paging_queue(adev))
1254 		adev->sdma.has_page_queue = true;
1255 
1256 	sdma_v4_4_2_set_ring_funcs(adev);
1257 	sdma_v4_4_2_set_buffer_funcs(adev);
1258 	sdma_v4_4_2_set_vm_pte_funcs(adev);
1259 	sdma_v4_4_2_set_irq_funcs(adev);
1260 	sdma_v4_4_2_set_ras_funcs(adev);
1261 
1262 	return 0;
1263 }
1264 
1265 #if 0
1266 static int sdma_v4_4_2_process_ras_data_cb(struct amdgpu_device *adev,
1267 		void *err_data,
1268 		struct amdgpu_iv_entry *entry);
1269 #endif
1270 
1271 static int sdma_v4_4_2_late_init(void *handle)
1272 {
1273 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1274 #if 0
1275 	struct ras_ih_if ih_info = {
1276 		.cb = sdma_v4_4_2_process_ras_data_cb,
1277 	};
1278 #endif
1279 	if (!amdgpu_persistent_edc_harvesting_supported(adev))
1280 		amdgpu_ras_reset_error_count(adev, AMDGPU_RAS_BLOCK__SDMA);
1281 
1282 	return 0;
1283 }
1284 
1285 static int sdma_v4_4_2_sw_init(void *handle)
1286 {
1287 	struct amdgpu_ring *ring;
1288 	int r, i;
1289 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1290 	u32 aid_id;
1291 
1292 	/* SDMA trap event */
1293 	for (i = 0; i < adev->sdma.num_inst_per_aid; i++) {
1294 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1295 				      SDMA0_4_0__SRCID__SDMA_TRAP,
1296 				      &adev->sdma.trap_irq);
1297 		if (r)
1298 			return r;
1299 	}
1300 
1301 	/* SDMA SRAM ECC event */
1302 	for (i = 0; i < adev->sdma.num_inst_per_aid; i++) {
1303 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1304 				      SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
1305 				      &adev->sdma.ecc_irq);
1306 		if (r)
1307 			return r;
1308 	}
1309 
1310 	/* SDMA VM_HOLE/DOORBELL_INV/POLL_TIMEOUT/SRBM_WRITE_PROTECTION event*/
1311 	for (i = 0; i < adev->sdma.num_inst_per_aid; i++) {
1312 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1313 				      SDMA0_4_0__SRCID__SDMA_VM_HOLE,
1314 				      &adev->sdma.vm_hole_irq);
1315 		if (r)
1316 			return r;
1317 
1318 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1319 				      SDMA0_4_0__SRCID__SDMA_DOORBELL_INVALID,
1320 				      &adev->sdma.doorbell_invalid_irq);
1321 		if (r)
1322 			return r;
1323 
1324 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1325 				      SDMA0_4_0__SRCID__SDMA_POLL_TIMEOUT,
1326 				      &adev->sdma.pool_timeout_irq);
1327 		if (r)
1328 			return r;
1329 
1330 		r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1331 				      SDMA0_4_0__SRCID__SDMA_SRBMWRITE,
1332 				      &adev->sdma.srbm_write_irq);
1333 		if (r)
1334 			return r;
1335 	}
1336 
1337 	for (i = 0; i < adev->sdma.num_instances; i++) {
1338 		ring = &adev->sdma.instance[i].ring;
1339 		ring->ring_obj = NULL;
1340 		ring->use_doorbell = true;
1341 		aid_id = adev->sdma.instance[i].aid_id;
1342 
1343 		DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i,
1344 				ring->use_doorbell?"true":"false");
1345 
1346 		/* doorbell size is 2 dwords, get DWORD offset */
1347 		ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1348 		ring->vm_hub = AMDGPU_MMHUB0(aid_id);
1349 
1350 		sprintf(ring->name, "sdma%d.%d", aid_id,
1351 				i % adev->sdma.num_inst_per_aid);
1352 		r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1353 				     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1354 				     AMDGPU_RING_PRIO_DEFAULT, NULL);
1355 		if (r)
1356 			return r;
1357 
1358 		if (adev->sdma.has_page_queue) {
1359 			ring = &adev->sdma.instance[i].page;
1360 			ring->ring_obj = NULL;
1361 			ring->use_doorbell = true;
1362 
1363 			/* doorbell index of page queue is assigned right after
1364 			 * gfx queue on the same instance
1365 			 */
1366 			ring->doorbell_index =
1367 				(adev->doorbell_index.sdma_engine[i] + 1) << 1;
1368 			ring->vm_hub = AMDGPU_MMHUB0(aid_id);
1369 
1370 			sprintf(ring->name, "page%d.%d", aid_id,
1371 					i % adev->sdma.num_inst_per_aid);
1372 			r = amdgpu_ring_init(adev, ring, 1024,
1373 					     &adev->sdma.trap_irq,
1374 					     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1375 					     AMDGPU_RING_PRIO_DEFAULT, NULL);
1376 			if (r)
1377 				return r;
1378 		}
1379 	}
1380 
1381 	if (amdgpu_sdma_ras_sw_init(adev)) {
1382 		dev_err(adev->dev, "fail to initialize sdma ras block\n");
1383 		return -EINVAL;
1384 	}
1385 
1386 	return r;
1387 }
1388 
1389 static int sdma_v4_4_2_sw_fini(void *handle)
1390 {
1391 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1392 	int i;
1393 
1394 	for (i = 0; i < adev->sdma.num_instances; i++) {
1395 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1396 		if (adev->sdma.has_page_queue)
1397 			amdgpu_ring_fini(&adev->sdma.instance[i].page);
1398 	}
1399 
1400 	if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 2))
1401 		amdgpu_sdma_destroy_inst_ctx(adev, true);
1402 	else
1403 		amdgpu_sdma_destroy_inst_ctx(adev, false);
1404 
1405 	return 0;
1406 }
1407 
1408 static int sdma_v4_4_2_hw_init(void *handle)
1409 {
1410 	int r;
1411 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1412 	uint32_t inst_mask;
1413 
1414 	inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
1415 	if (!amdgpu_sriov_vf(adev))
1416 		sdma_v4_4_2_inst_init_golden_registers(adev, inst_mask);
1417 
1418 	r = sdma_v4_4_2_inst_start(adev, inst_mask);
1419 
1420 	return r;
1421 }
1422 
1423 static int sdma_v4_4_2_hw_fini(void *handle)
1424 {
1425 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1426 	uint32_t inst_mask;
1427 	int i;
1428 
1429 	if (amdgpu_sriov_vf(adev))
1430 		return 0;
1431 
1432 	inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
1433 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
1434 		for (i = 0; i < adev->sdma.num_instances; i++) {
1435 			amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
1436 				       AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1437 		}
1438 	}
1439 
1440 	sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask);
1441 	sdma_v4_4_2_inst_enable(adev, false, inst_mask);
1442 
1443 	return 0;
1444 }
1445 
1446 static int sdma_v4_4_2_set_clockgating_state(void *handle,
1447 					     enum amd_clockgating_state state);
1448 
1449 static int sdma_v4_4_2_suspend(void *handle)
1450 {
1451 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1452 
1453 	if (amdgpu_in_reset(adev))
1454 		sdma_v4_4_2_set_clockgating_state(adev, AMD_CG_STATE_UNGATE);
1455 
1456 	return sdma_v4_4_2_hw_fini(adev);
1457 }
1458 
1459 static int sdma_v4_4_2_resume(void *handle)
1460 {
1461 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1462 
1463 	return sdma_v4_4_2_hw_init(adev);
1464 }
1465 
1466 static bool sdma_v4_4_2_is_idle(void *handle)
1467 {
1468 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1469 	u32 i;
1470 
1471 	for (i = 0; i < adev->sdma.num_instances; i++) {
1472 		u32 tmp = RREG32_SDMA(i, regSDMA_STATUS_REG);
1473 
1474 		if (!(tmp & SDMA_STATUS_REG__IDLE_MASK))
1475 			return false;
1476 	}
1477 
1478 	return true;
1479 }
1480 
1481 static int sdma_v4_4_2_wait_for_idle(void *handle)
1482 {
1483 	unsigned i, j;
1484 	u32 sdma[AMDGPU_MAX_SDMA_INSTANCES];
1485 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1486 
1487 	for (i = 0; i < adev->usec_timeout; i++) {
1488 		for (j = 0; j < adev->sdma.num_instances; j++) {
1489 			sdma[j] = RREG32_SDMA(j, regSDMA_STATUS_REG);
1490 			if (!(sdma[j] & SDMA_STATUS_REG__IDLE_MASK))
1491 				break;
1492 		}
1493 		if (j == adev->sdma.num_instances)
1494 			return 0;
1495 		udelay(1);
1496 	}
1497 	return -ETIMEDOUT;
1498 }
1499 
1500 static int sdma_v4_4_2_soft_reset(void *handle)
1501 {
1502 	/* todo */
1503 
1504 	return 0;
1505 }
1506 
1507 static int sdma_v4_4_2_set_trap_irq_state(struct amdgpu_device *adev,
1508 					struct amdgpu_irq_src *source,
1509 					unsigned type,
1510 					enum amdgpu_interrupt_state state)
1511 {
1512 	u32 sdma_cntl;
1513 
1514 	sdma_cntl = RREG32_SDMA(type, regSDMA_CNTL);
1515 	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA_CNTL, TRAP_ENABLE,
1516 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1517 	WREG32_SDMA(type, regSDMA_CNTL, sdma_cntl);
1518 
1519 	return 0;
1520 }
1521 
1522 static int sdma_v4_4_2_process_trap_irq(struct amdgpu_device *adev,
1523 				      struct amdgpu_irq_src *source,
1524 				      struct amdgpu_iv_entry *entry)
1525 {
1526 	uint32_t instance, i;
1527 
1528 	DRM_DEBUG("IH: SDMA trap\n");
1529 	instance = sdma_v4_4_2_irq_id_to_seq(entry->client_id);
1530 
1531 	/* Client id gives the SDMA instance in AID. To know the exact SDMA
1532 	 * instance, interrupt entry gives the node id which corresponds to the AID instance.
1533 	 * Match node id with the AID id associated with the SDMA instance. */
1534 	for (i = instance; i < adev->sdma.num_instances;
1535 	     i += adev->sdma.num_inst_per_aid) {
1536 		if (adev->sdma.instance[i].aid_id ==
1537 		    node_id_to_phys_map[entry->node_id])
1538 			break;
1539 	}
1540 
1541 	if (i >= adev->sdma.num_instances) {
1542 		dev_WARN_ONCE(
1543 			adev->dev, 1,
1544 			"Couldn't find the right sdma instance in trap handler");
1545 		return 0;
1546 	}
1547 
1548 	switch (entry->ring_id) {
1549 	case 0:
1550 		amdgpu_fence_process(&adev->sdma.instance[i].ring);
1551 		break;
1552 	default:
1553 		break;
1554 	}
1555 	return 0;
1556 }
1557 
1558 #if 0
1559 static int sdma_v4_4_2_process_ras_data_cb(struct amdgpu_device *adev,
1560 		void *err_data,
1561 		struct amdgpu_iv_entry *entry)
1562 {
1563 	int instance;
1564 
1565 	/* When “Full RAS” is enabled, the per-IP interrupt sources should
1566 	 * be disabled and the driver should only look for the aggregated
1567 	 * interrupt via sync flood
1568 	 */
1569 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA))
1570 		goto out;
1571 
1572 	instance = sdma_v4_4_2_irq_id_to_seq(entry->client_id);
1573 	if (instance < 0)
1574 		goto out;
1575 
1576 	amdgpu_sdma_process_ras_data_cb(adev, err_data, entry);
1577 
1578 out:
1579 	return AMDGPU_RAS_SUCCESS;
1580 }
1581 #endif
1582 
1583 static int sdma_v4_4_2_process_illegal_inst_irq(struct amdgpu_device *adev,
1584 					      struct amdgpu_irq_src *source,
1585 					      struct amdgpu_iv_entry *entry)
1586 {
1587 	int instance;
1588 
1589 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
1590 
1591 	instance = sdma_v4_4_2_irq_id_to_seq(entry->client_id);
1592 	if (instance < 0)
1593 		return 0;
1594 
1595 	switch (entry->ring_id) {
1596 	case 0:
1597 		drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
1598 		break;
1599 	}
1600 	return 0;
1601 }
1602 
1603 static int sdma_v4_4_2_set_ecc_irq_state(struct amdgpu_device *adev,
1604 					struct amdgpu_irq_src *source,
1605 					unsigned type,
1606 					enum amdgpu_interrupt_state state)
1607 {
1608 	u32 sdma_cntl;
1609 
1610 	sdma_cntl = RREG32_SDMA(type, regSDMA_CNTL);
1611 	switch (state) {
1612 	case AMDGPU_IRQ_STATE_DISABLE:
1613 		sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA_CNTL,
1614 					  DRAM_ECC_INT_ENABLE, 0);
1615 		WREG32_SDMA(type, regSDMA_CNTL, sdma_cntl);
1616 		break;
1617 	/* sdma ecc interrupt is enabled by default
1618 	 * driver doesn't need to do anything to
1619 	 * enable the interrupt */
1620 	case AMDGPU_IRQ_STATE_ENABLE:
1621 	default:
1622 		break;
1623 	}
1624 
1625 	return 0;
1626 }
1627 
1628 static int sdma_v4_4_2_print_iv_entry(struct amdgpu_device *adev,
1629 					      struct amdgpu_iv_entry *entry)
1630 {
1631 	int instance;
1632 	struct amdgpu_task_info task_info;
1633 	u64 addr;
1634 
1635 	instance = sdma_v4_4_2_irq_id_to_seq(entry->client_id);
1636 	if (instance < 0 || instance >= adev->sdma.num_instances) {
1637 		dev_err(adev->dev, "sdma instance invalid %d\n", instance);
1638 		return -EINVAL;
1639 	}
1640 
1641 	addr = (u64)entry->src_data[0] << 12;
1642 	addr |= ((u64)entry->src_data[1] & 0xf) << 44;
1643 
1644 	memset(&task_info, 0, sizeof(struct amdgpu_task_info));
1645 	amdgpu_vm_get_task_info(adev, entry->pasid, &task_info);
1646 
1647 	dev_dbg_ratelimited(adev->dev,
1648 		   "[sdma%d] address:0x%016llx src_id:%u ring:%u vmid:%u "
1649 		   "pasid:%u, for process %s pid %d thread %s pid %d\n",
1650 		   instance, addr, entry->src_id, entry->ring_id, entry->vmid,
1651 		   entry->pasid, task_info.process_name, task_info.tgid,
1652 		   task_info.task_name, task_info.pid);
1653 	return 0;
1654 }
1655 
1656 static int sdma_v4_4_2_process_vm_hole_irq(struct amdgpu_device *adev,
1657 					      struct amdgpu_irq_src *source,
1658 					      struct amdgpu_iv_entry *entry)
1659 {
1660 	dev_dbg_ratelimited(adev->dev, "MC or SEM address in VM hole\n");
1661 	sdma_v4_4_2_print_iv_entry(adev, entry);
1662 	return 0;
1663 }
1664 
1665 static int sdma_v4_4_2_process_doorbell_invalid_irq(struct amdgpu_device *adev,
1666 					      struct amdgpu_irq_src *source,
1667 					      struct amdgpu_iv_entry *entry)
1668 {
1669 
1670 	dev_dbg_ratelimited(adev->dev, "SDMA received a doorbell from BIF with byte_enable !=0xff\n");
1671 	sdma_v4_4_2_print_iv_entry(adev, entry);
1672 	return 0;
1673 }
1674 
1675 static int sdma_v4_4_2_process_pool_timeout_irq(struct amdgpu_device *adev,
1676 					      struct amdgpu_irq_src *source,
1677 					      struct amdgpu_iv_entry *entry)
1678 {
1679 	dev_dbg_ratelimited(adev->dev,
1680 		"Polling register/memory timeout executing POLL_REG/MEM with finite timer\n");
1681 	sdma_v4_4_2_print_iv_entry(adev, entry);
1682 	return 0;
1683 }
1684 
1685 static int sdma_v4_4_2_process_srbm_write_irq(struct amdgpu_device *adev,
1686 					      struct amdgpu_irq_src *source,
1687 					      struct amdgpu_iv_entry *entry)
1688 {
1689 	dev_dbg_ratelimited(adev->dev,
1690 		"SDMA gets an Register Write SRBM_WRITE command in non-privilege command buffer\n");
1691 	sdma_v4_4_2_print_iv_entry(adev, entry);
1692 	return 0;
1693 }
1694 
1695 static void sdma_v4_4_2_inst_update_medium_grain_light_sleep(
1696 	struct amdgpu_device *adev, bool enable, uint32_t inst_mask)
1697 {
1698 	uint32_t data, def;
1699 	int i;
1700 
1701 	/* leave as default if it is not driver controlled */
1702 	if (!(adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS))
1703 		return;
1704 
1705 	if (enable) {
1706 		for_each_inst(i, inst_mask) {
1707 			/* 1-not override: enable sdma mem light sleep */
1708 			def = data = RREG32_SDMA(i, regSDMA_POWER_CNTL);
1709 			data |= SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1710 			if (def != data)
1711 				WREG32_SDMA(i, regSDMA_POWER_CNTL, data);
1712 		}
1713 	} else {
1714 		for_each_inst(i, inst_mask) {
1715 			/* 0-override:disable sdma mem light sleep */
1716 			def = data = RREG32_SDMA(i, regSDMA_POWER_CNTL);
1717 			data &= ~SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1718 			if (def != data)
1719 				WREG32_SDMA(i, regSDMA_POWER_CNTL, data);
1720 		}
1721 	}
1722 }
1723 
1724 static void sdma_v4_4_2_inst_update_medium_grain_clock_gating(
1725 	struct amdgpu_device *adev, bool enable, uint32_t inst_mask)
1726 {
1727 	uint32_t data, def;
1728 	int i;
1729 
1730 	/* leave as default if it is not driver controlled */
1731 	if (!(adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG))
1732 		return;
1733 
1734 	if (enable) {
1735 		for_each_inst(i, inst_mask) {
1736 			def = data = RREG32_SDMA(i, regSDMA_CLK_CTRL);
1737 			data &= ~(SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1738 				  SDMA_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1739 				  SDMA_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1740 				  SDMA_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1741 				  SDMA_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1742 				  SDMA_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1743 			if (def != data)
1744 				WREG32_SDMA(i, regSDMA_CLK_CTRL, data);
1745 		}
1746 	} else {
1747 		for_each_inst(i, inst_mask) {
1748 			def = data = RREG32_SDMA(i, regSDMA_CLK_CTRL);
1749 			data |= (SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1750 				 SDMA_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1751 				 SDMA_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1752 				 SDMA_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1753 				 SDMA_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1754 				 SDMA_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1755 			if (def != data)
1756 				WREG32_SDMA(i, regSDMA_CLK_CTRL, data);
1757 		}
1758 	}
1759 }
1760 
1761 static int sdma_v4_4_2_set_clockgating_state(void *handle,
1762 					  enum amd_clockgating_state state)
1763 {
1764 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1765 	uint32_t inst_mask;
1766 
1767 	if (amdgpu_sriov_vf(adev))
1768 		return 0;
1769 
1770 	inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
1771 
1772 	sdma_v4_4_2_inst_update_medium_grain_clock_gating(
1773 		adev, state == AMD_CG_STATE_GATE, inst_mask);
1774 	sdma_v4_4_2_inst_update_medium_grain_light_sleep(
1775 		adev, state == AMD_CG_STATE_GATE, inst_mask);
1776 	return 0;
1777 }
1778 
1779 static int sdma_v4_4_2_set_powergating_state(void *handle,
1780 					  enum amd_powergating_state state)
1781 {
1782 	return 0;
1783 }
1784 
1785 static void sdma_v4_4_2_get_clockgating_state(void *handle, u64 *flags)
1786 {
1787 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1788 	int data;
1789 
1790 	if (amdgpu_sriov_vf(adev))
1791 		*flags = 0;
1792 
1793 	/* AMD_CG_SUPPORT_SDMA_MGCG */
1794 	data = RREG32(SOC15_REG_OFFSET(SDMA0, GET_INST(SDMA0, 0), regSDMA_CLK_CTRL));
1795 	if (!(data & SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK))
1796 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1797 
1798 	/* AMD_CG_SUPPORT_SDMA_LS */
1799 	data = RREG32(SOC15_REG_OFFSET(SDMA0, GET_INST(SDMA0, 0), regSDMA_POWER_CNTL));
1800 	if (data & SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1801 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
1802 }
1803 
1804 const struct amd_ip_funcs sdma_v4_4_2_ip_funcs = {
1805 	.name = "sdma_v4_4_2",
1806 	.early_init = sdma_v4_4_2_early_init,
1807 	.late_init = sdma_v4_4_2_late_init,
1808 	.sw_init = sdma_v4_4_2_sw_init,
1809 	.sw_fini = sdma_v4_4_2_sw_fini,
1810 	.hw_init = sdma_v4_4_2_hw_init,
1811 	.hw_fini = sdma_v4_4_2_hw_fini,
1812 	.suspend = sdma_v4_4_2_suspend,
1813 	.resume = sdma_v4_4_2_resume,
1814 	.is_idle = sdma_v4_4_2_is_idle,
1815 	.wait_for_idle = sdma_v4_4_2_wait_for_idle,
1816 	.soft_reset = sdma_v4_4_2_soft_reset,
1817 	.set_clockgating_state = sdma_v4_4_2_set_clockgating_state,
1818 	.set_powergating_state = sdma_v4_4_2_set_powergating_state,
1819 	.get_clockgating_state = sdma_v4_4_2_get_clockgating_state,
1820 };
1821 
1822 static const struct amdgpu_ring_funcs sdma_v4_4_2_ring_funcs = {
1823 	.type = AMDGPU_RING_TYPE_SDMA,
1824 	.align_mask = 0xff,
1825 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1826 	.support_64bit_ptrs = true,
1827 	.get_rptr = sdma_v4_4_2_ring_get_rptr,
1828 	.get_wptr = sdma_v4_4_2_ring_get_wptr,
1829 	.set_wptr = sdma_v4_4_2_ring_set_wptr,
1830 	.emit_frame_size =
1831 		6 + /* sdma_v4_4_2_ring_emit_hdp_flush */
1832 		3 + /* hdp invalidate */
1833 		6 + /* sdma_v4_4_2_ring_emit_pipeline_sync */
1834 		/* sdma_v4_4_2_ring_emit_vm_flush */
1835 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
1836 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
1837 		10 + 10 + 10, /* sdma_v4_4_2_ring_emit_fence x3 for user fence, vm fence */
1838 	.emit_ib_size = 7 + 6, /* sdma_v4_4_2_ring_emit_ib */
1839 	.emit_ib = sdma_v4_4_2_ring_emit_ib,
1840 	.emit_fence = sdma_v4_4_2_ring_emit_fence,
1841 	.emit_pipeline_sync = sdma_v4_4_2_ring_emit_pipeline_sync,
1842 	.emit_vm_flush = sdma_v4_4_2_ring_emit_vm_flush,
1843 	.emit_hdp_flush = sdma_v4_4_2_ring_emit_hdp_flush,
1844 	.test_ring = sdma_v4_4_2_ring_test_ring,
1845 	.test_ib = sdma_v4_4_2_ring_test_ib,
1846 	.insert_nop = sdma_v4_4_2_ring_insert_nop,
1847 	.pad_ib = sdma_v4_4_2_ring_pad_ib,
1848 	.emit_wreg = sdma_v4_4_2_ring_emit_wreg,
1849 	.emit_reg_wait = sdma_v4_4_2_ring_emit_reg_wait,
1850 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
1851 };
1852 
1853 static const struct amdgpu_ring_funcs sdma_v4_4_2_page_ring_funcs = {
1854 	.type = AMDGPU_RING_TYPE_SDMA,
1855 	.align_mask = 0xff,
1856 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1857 	.support_64bit_ptrs = true,
1858 	.get_rptr = sdma_v4_4_2_ring_get_rptr,
1859 	.get_wptr = sdma_v4_4_2_page_ring_get_wptr,
1860 	.set_wptr = sdma_v4_4_2_page_ring_set_wptr,
1861 	.emit_frame_size =
1862 		6 + /* sdma_v4_4_2_ring_emit_hdp_flush */
1863 		3 + /* hdp invalidate */
1864 		6 + /* sdma_v4_4_2_ring_emit_pipeline_sync */
1865 		/* sdma_v4_4_2_ring_emit_vm_flush */
1866 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
1867 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
1868 		10 + 10 + 10, /* sdma_v4_4_2_ring_emit_fence x3 for user fence, vm fence */
1869 	.emit_ib_size = 7 + 6, /* sdma_v4_4_2_ring_emit_ib */
1870 	.emit_ib = sdma_v4_4_2_ring_emit_ib,
1871 	.emit_fence = sdma_v4_4_2_ring_emit_fence,
1872 	.emit_pipeline_sync = sdma_v4_4_2_ring_emit_pipeline_sync,
1873 	.emit_vm_flush = sdma_v4_4_2_ring_emit_vm_flush,
1874 	.emit_hdp_flush = sdma_v4_4_2_ring_emit_hdp_flush,
1875 	.test_ring = sdma_v4_4_2_ring_test_ring,
1876 	.test_ib = sdma_v4_4_2_ring_test_ib,
1877 	.insert_nop = sdma_v4_4_2_ring_insert_nop,
1878 	.pad_ib = sdma_v4_4_2_ring_pad_ib,
1879 	.emit_wreg = sdma_v4_4_2_ring_emit_wreg,
1880 	.emit_reg_wait = sdma_v4_4_2_ring_emit_reg_wait,
1881 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
1882 };
1883 
1884 static void sdma_v4_4_2_set_ring_funcs(struct amdgpu_device *adev)
1885 {
1886 	int i, dev_inst;
1887 
1888 	for (i = 0; i < adev->sdma.num_instances; i++) {
1889 		adev->sdma.instance[i].ring.funcs = &sdma_v4_4_2_ring_funcs;
1890 		adev->sdma.instance[i].ring.me = i;
1891 		if (adev->sdma.has_page_queue) {
1892 			adev->sdma.instance[i].page.funcs =
1893 				&sdma_v4_4_2_page_ring_funcs;
1894 			adev->sdma.instance[i].page.me = i;
1895 		}
1896 
1897 		dev_inst = GET_INST(SDMA0, i);
1898 		/* AID to which SDMA belongs depends on physical instance */
1899 		adev->sdma.instance[i].aid_id =
1900 			dev_inst / adev->sdma.num_inst_per_aid;
1901 	}
1902 }
1903 
1904 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_trap_irq_funcs = {
1905 	.set = sdma_v4_4_2_set_trap_irq_state,
1906 	.process = sdma_v4_4_2_process_trap_irq,
1907 };
1908 
1909 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_illegal_inst_irq_funcs = {
1910 	.process = sdma_v4_4_2_process_illegal_inst_irq,
1911 };
1912 
1913 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_ecc_irq_funcs = {
1914 	.set = sdma_v4_4_2_set_ecc_irq_state,
1915 	.process = amdgpu_sdma_process_ecc_irq,
1916 };
1917 
1918 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_vm_hole_irq_funcs = {
1919 	.process = sdma_v4_4_2_process_vm_hole_irq,
1920 };
1921 
1922 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_doorbell_invalid_irq_funcs = {
1923 	.process = sdma_v4_4_2_process_doorbell_invalid_irq,
1924 };
1925 
1926 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_pool_timeout_irq_funcs = {
1927 	.process = sdma_v4_4_2_process_pool_timeout_irq,
1928 };
1929 
1930 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_srbm_write_irq_funcs = {
1931 	.process = sdma_v4_4_2_process_srbm_write_irq,
1932 };
1933 
1934 static void sdma_v4_4_2_set_irq_funcs(struct amdgpu_device *adev)
1935 {
1936 	adev->sdma.trap_irq.num_types = adev->sdma.num_instances;
1937 	adev->sdma.ecc_irq.num_types = adev->sdma.num_instances;
1938 	adev->sdma.vm_hole_irq.num_types = adev->sdma.num_instances;
1939 	adev->sdma.doorbell_invalid_irq.num_types = adev->sdma.num_instances;
1940 	adev->sdma.pool_timeout_irq.num_types = adev->sdma.num_instances;
1941 	adev->sdma.srbm_write_irq.num_types = adev->sdma.num_instances;
1942 
1943 	adev->sdma.trap_irq.funcs = &sdma_v4_4_2_trap_irq_funcs;
1944 	adev->sdma.illegal_inst_irq.funcs = &sdma_v4_4_2_illegal_inst_irq_funcs;
1945 	adev->sdma.ecc_irq.funcs = &sdma_v4_4_2_ecc_irq_funcs;
1946 	adev->sdma.vm_hole_irq.funcs = &sdma_v4_4_2_vm_hole_irq_funcs;
1947 	adev->sdma.doorbell_invalid_irq.funcs = &sdma_v4_4_2_doorbell_invalid_irq_funcs;
1948 	adev->sdma.pool_timeout_irq.funcs = &sdma_v4_4_2_pool_timeout_irq_funcs;
1949 	adev->sdma.srbm_write_irq.funcs = &sdma_v4_4_2_srbm_write_irq_funcs;
1950 }
1951 
1952 /**
1953  * sdma_v4_4_2_emit_copy_buffer - copy buffer using the sDMA engine
1954  *
1955  * @ib: indirect buffer to copy to
1956  * @src_offset: src GPU address
1957  * @dst_offset: dst GPU address
1958  * @byte_count: number of bytes to xfer
1959  * @tmz: if a secure copy should be used
1960  *
1961  * Copy GPU buffers using the DMA engine.
1962  * Used by the amdgpu ttm implementation to move pages if
1963  * registered as the asic copy callback.
1964  */
1965 static void sdma_v4_4_2_emit_copy_buffer(struct amdgpu_ib *ib,
1966 				       uint64_t src_offset,
1967 				       uint64_t dst_offset,
1968 				       uint32_t byte_count,
1969 				       bool tmz)
1970 {
1971 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1972 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
1973 		SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0);
1974 	ib->ptr[ib->length_dw++] = byte_count - 1;
1975 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1976 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1977 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1978 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1979 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1980 }
1981 
1982 /**
1983  * sdma_v4_4_2_emit_fill_buffer - fill buffer using the sDMA engine
1984  *
1985  * @ib: indirect buffer to copy to
1986  * @src_data: value to write to buffer
1987  * @dst_offset: dst GPU address
1988  * @byte_count: number of bytes to xfer
1989  *
1990  * Fill GPU buffers using the DMA engine.
1991  */
1992 static void sdma_v4_4_2_emit_fill_buffer(struct amdgpu_ib *ib,
1993 				       uint32_t src_data,
1994 				       uint64_t dst_offset,
1995 				       uint32_t byte_count)
1996 {
1997 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1998 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1999 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2000 	ib->ptr[ib->length_dw++] = src_data;
2001 	ib->ptr[ib->length_dw++] = byte_count - 1;
2002 }
2003 
2004 static const struct amdgpu_buffer_funcs sdma_v4_4_2_buffer_funcs = {
2005 	.copy_max_bytes = 0x400000,
2006 	.copy_num_dw = 7,
2007 	.emit_copy_buffer = sdma_v4_4_2_emit_copy_buffer,
2008 
2009 	.fill_max_bytes = 0x400000,
2010 	.fill_num_dw = 5,
2011 	.emit_fill_buffer = sdma_v4_4_2_emit_fill_buffer,
2012 };
2013 
2014 static void sdma_v4_4_2_set_buffer_funcs(struct amdgpu_device *adev)
2015 {
2016 	adev->mman.buffer_funcs = &sdma_v4_4_2_buffer_funcs;
2017 	if (adev->sdma.has_page_queue)
2018 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
2019 	else
2020 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2021 }
2022 
2023 static const struct amdgpu_vm_pte_funcs sdma_v4_4_2_vm_pte_funcs = {
2024 	.copy_pte_num_dw = 7,
2025 	.copy_pte = sdma_v4_4_2_vm_copy_pte,
2026 
2027 	.write_pte = sdma_v4_4_2_vm_write_pte,
2028 	.set_pte_pde = sdma_v4_4_2_vm_set_pte_pde,
2029 };
2030 
2031 static void sdma_v4_4_2_set_vm_pte_funcs(struct amdgpu_device *adev)
2032 {
2033 	struct drm_gpu_scheduler *sched;
2034 	unsigned i;
2035 
2036 	adev->vm_manager.vm_pte_funcs = &sdma_v4_4_2_vm_pte_funcs;
2037 	for (i = 0; i < adev->sdma.num_instances; i++) {
2038 		if (adev->sdma.has_page_queue)
2039 			sched = &adev->sdma.instance[i].page.sched;
2040 		else
2041 			sched = &adev->sdma.instance[i].ring.sched;
2042 		adev->vm_manager.vm_pte_scheds[i] = sched;
2043 	}
2044 	adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
2045 }
2046 
2047 const struct amdgpu_ip_block_version sdma_v4_4_2_ip_block = {
2048 	.type = AMD_IP_BLOCK_TYPE_SDMA,
2049 	.major = 4,
2050 	.minor = 4,
2051 	.rev = 0,
2052 	.funcs = &sdma_v4_4_2_ip_funcs,
2053 };
2054 
2055 static int sdma_v4_4_2_xcp_resume(void *handle, uint32_t inst_mask)
2056 {
2057 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2058 	int r;
2059 
2060 	if (!amdgpu_sriov_vf(adev))
2061 		sdma_v4_4_2_inst_init_golden_registers(adev, inst_mask);
2062 
2063 	r = sdma_v4_4_2_inst_start(adev, inst_mask);
2064 
2065 	return r;
2066 }
2067 
2068 static int sdma_v4_4_2_xcp_suspend(void *handle, uint32_t inst_mask)
2069 {
2070 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2071 	uint32_t tmp_mask = inst_mask;
2072 	int i;
2073 
2074 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2075 		for_each_inst(i, tmp_mask) {
2076 			amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
2077 				       AMDGPU_SDMA_IRQ_INSTANCE0 + i);
2078 		}
2079 	}
2080 
2081 	sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask);
2082 	sdma_v4_4_2_inst_enable(adev, false, inst_mask);
2083 
2084 	return 0;
2085 }
2086 
2087 struct amdgpu_xcp_ip_funcs sdma_v4_4_2_xcp_funcs = {
2088 	.suspend = &sdma_v4_4_2_xcp_suspend,
2089 	.resume = &sdma_v4_4_2_xcp_resume
2090 };
2091 
2092 static const struct amdgpu_ras_err_status_reg_entry sdma_v4_2_2_ue_reg_list[] = {
2093 	{AMDGPU_RAS_REG_ENTRY(SDMA0, 0, regSDMA_UE_ERR_STATUS_LO, regSDMA_UE_ERR_STATUS_HI),
2094 	1, (AMDGPU_RAS_ERR_INFO_VALID | AMDGPU_RAS_ERR_STATUS_VALID), "SDMA"},
2095 };
2096 
2097 static const struct amdgpu_ras_memory_id_entry sdma_v4_4_2_ras_memory_list[] = {
2098 	{AMDGPU_SDMA_MBANK_DATA_BUF0, "SDMA_MBANK_DATA_BUF0"},
2099 	{AMDGPU_SDMA_MBANK_DATA_BUF1, "SDMA_MBANK_DATA_BUF1"},
2100 	{AMDGPU_SDMA_MBANK_DATA_BUF2, "SDMA_MBANK_DATA_BUF2"},
2101 	{AMDGPU_SDMA_MBANK_DATA_BUF3, "SDMA_MBANK_DATA_BUF3"},
2102 	{AMDGPU_SDMA_MBANK_DATA_BUF4, "SDMA_MBANK_DATA_BUF4"},
2103 	{AMDGPU_SDMA_MBANK_DATA_BUF5, "SDMA_MBANK_DATA_BUF5"},
2104 	{AMDGPU_SDMA_MBANK_DATA_BUF6, "SDMA_MBANK_DATA_BUF6"},
2105 	{AMDGPU_SDMA_MBANK_DATA_BUF7, "SDMA_MBANK_DATA_BUF7"},
2106 	{AMDGPU_SDMA_MBANK_DATA_BUF8, "SDMA_MBANK_DATA_BUF8"},
2107 	{AMDGPU_SDMA_MBANK_DATA_BUF9, "SDMA_MBANK_DATA_BUF9"},
2108 	{AMDGPU_SDMA_MBANK_DATA_BUF10, "SDMA_MBANK_DATA_BUF10"},
2109 	{AMDGPU_SDMA_MBANK_DATA_BUF11, "SDMA_MBANK_DATA_BUF11"},
2110 	{AMDGPU_SDMA_MBANK_DATA_BUF12, "SDMA_MBANK_DATA_BUF12"},
2111 	{AMDGPU_SDMA_MBANK_DATA_BUF13, "SDMA_MBANK_DATA_BUF13"},
2112 	{AMDGPU_SDMA_MBANK_DATA_BUF14, "SDMA_MBANK_DATA_BUF14"},
2113 	{AMDGPU_SDMA_MBANK_DATA_BUF15, "SDMA_MBANK_DATA_BUF15"},
2114 	{AMDGPU_SDMA_UCODE_BUF, "SDMA_UCODE_BUF"},
2115 	{AMDGPU_SDMA_RB_CMD_BUF, "SDMA_RB_CMD_BUF"},
2116 	{AMDGPU_SDMA_IB_CMD_BUF, "SDMA_IB_CMD_BUF"},
2117 	{AMDGPU_SDMA_UTCL1_RD_FIFO, "SDMA_UTCL1_RD_FIFO"},
2118 	{AMDGPU_SDMA_UTCL1_RDBST_FIFO, "SDMA_UTCL1_RDBST_FIFO"},
2119 	{AMDGPU_SDMA_UTCL1_WR_FIFO, "SDMA_UTCL1_WR_FIFO"},
2120 	{AMDGPU_SDMA_DATA_LUT_FIFO, "SDMA_DATA_LUT_FIFO"},
2121 	{AMDGPU_SDMA_SPLIT_DAT_BUF, "SDMA_SPLIT_DAT_BUF"},
2122 };
2123 
2124 static void sdma_v4_4_2_inst_query_ras_error_count(struct amdgpu_device *adev,
2125 						   uint32_t sdma_inst,
2126 						   void *ras_err_status)
2127 {
2128 	struct ras_err_data *err_data = (struct ras_err_data *)ras_err_status;
2129 	uint32_t sdma_dev_inst = GET_INST(SDMA0, sdma_inst);
2130 	unsigned long ue_count = 0;
2131 	struct amdgpu_smuio_mcm_config_info mcm_info = {
2132 		.socket_id = adev->smuio.funcs->get_socket_id(adev),
2133 		.die_id = adev->sdma.instance[sdma_inst].aid_id,
2134 	};
2135 
2136 	/* sdma v4_4_2 doesn't support query ce counts */
2137 	amdgpu_ras_inst_query_ras_error_count(adev,
2138 					sdma_v4_2_2_ue_reg_list,
2139 					ARRAY_SIZE(sdma_v4_2_2_ue_reg_list),
2140 					sdma_v4_4_2_ras_memory_list,
2141 					ARRAY_SIZE(sdma_v4_4_2_ras_memory_list),
2142 					sdma_dev_inst,
2143 					AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE,
2144 					&ue_count);
2145 
2146 	amdgpu_ras_error_statistic_ue_count(err_data, &mcm_info, ue_count);
2147 }
2148 
2149 static void sdma_v4_4_2_query_ras_error_count(struct amdgpu_device *adev,
2150 					      void *ras_err_status)
2151 {
2152 	uint32_t inst_mask;
2153 	int i = 0;
2154 
2155 	inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
2156 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2157 		for_each_inst(i, inst_mask)
2158 			sdma_v4_4_2_inst_query_ras_error_count(adev, i, ras_err_status);
2159 	} else {
2160 		dev_warn(adev->dev, "SDMA RAS is not supported\n");
2161 	}
2162 }
2163 
2164 static void sdma_v4_4_2_inst_reset_ras_error_count(struct amdgpu_device *adev,
2165 						   uint32_t sdma_inst)
2166 {
2167 	uint32_t sdma_dev_inst = GET_INST(SDMA0, sdma_inst);
2168 
2169 	amdgpu_ras_inst_reset_ras_error_count(adev,
2170 					sdma_v4_2_2_ue_reg_list,
2171 					ARRAY_SIZE(sdma_v4_2_2_ue_reg_list),
2172 					sdma_dev_inst);
2173 }
2174 
2175 static void sdma_v4_4_2_reset_ras_error_count(struct amdgpu_device *adev)
2176 {
2177 	uint32_t inst_mask;
2178 	int i = 0;
2179 
2180 	inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
2181 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2182 		for_each_inst(i, inst_mask)
2183 			sdma_v4_4_2_inst_reset_ras_error_count(adev, i);
2184 	} else {
2185 		dev_warn(adev->dev, "SDMA RAS is not supported\n");
2186 	}
2187 }
2188 
2189 static const struct amdgpu_ras_block_hw_ops sdma_v4_4_2_ras_hw_ops = {
2190 	.query_ras_error_count = sdma_v4_4_2_query_ras_error_count,
2191 	.reset_ras_error_count = sdma_v4_4_2_reset_ras_error_count,
2192 };
2193 
2194 static struct amdgpu_sdma_ras sdma_v4_4_2_ras = {
2195 	.ras_block = {
2196 		.hw_ops = &sdma_v4_4_2_ras_hw_ops,
2197 	},
2198 };
2199 
2200 static void sdma_v4_4_2_set_ras_funcs(struct amdgpu_device *adev)
2201 {
2202 	adev->sdma.ras = &sdma_v4_4_2_ras;
2203 }
2204