xref: /linux/drivers/gpu/drm/amd/amdgpu/sdma_v4_0.c (revision 72251fac062c0b4fe98670ec9e3db3f0702c50ae)
1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28 
29 #include "amdgpu.h"
30 #include "amdgpu_ucode.h"
31 #include "amdgpu_trace.h"
32 
33 #include "sdma0/sdma0_4_2_offset.h"
34 #include "sdma0/sdma0_4_2_sh_mask.h"
35 #include "sdma1/sdma1_4_2_offset.h"
36 #include "sdma1/sdma1_4_2_sh_mask.h"
37 #include "sdma2/sdma2_4_2_2_offset.h"
38 #include "sdma2/sdma2_4_2_2_sh_mask.h"
39 #include "sdma3/sdma3_4_2_2_offset.h"
40 #include "sdma3/sdma3_4_2_2_sh_mask.h"
41 #include "sdma4/sdma4_4_2_2_offset.h"
42 #include "sdma4/sdma4_4_2_2_sh_mask.h"
43 #include "sdma5/sdma5_4_2_2_offset.h"
44 #include "sdma5/sdma5_4_2_2_sh_mask.h"
45 #include "sdma6/sdma6_4_2_2_offset.h"
46 #include "sdma6/sdma6_4_2_2_sh_mask.h"
47 #include "sdma7/sdma7_4_2_2_offset.h"
48 #include "sdma7/sdma7_4_2_2_sh_mask.h"
49 #include "hdp/hdp_4_0_offset.h"
50 #include "sdma0/sdma0_4_1_default.h"
51 
52 #include "soc15_common.h"
53 #include "soc15.h"
54 #include "vega10_sdma_pkt_open.h"
55 
56 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
57 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
58 
59 #include "amdgpu_ras.h"
60 
61 MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
62 MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
63 MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
64 MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
65 MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
66 MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
67 MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
68 MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
69 MODULE_FIRMWARE("amdgpu/raven2_sdma.bin");
70 MODULE_FIRMWARE("amdgpu/arcturus_sdma.bin");
71 
72 #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK  0x000000F8L
73 #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
74 
75 #define WREG32_SDMA(instance, offset, value) \
76 	WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value)
77 #define RREG32_SDMA(instance, offset) \
78 	RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)))
79 
80 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
81 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
82 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
83 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
84 
85 static const struct soc15_reg_golden golden_settings_sdma_4[] = {
86 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
87 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
88 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
89 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
90 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
91 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
92 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
93 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
94 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
95 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
96 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
97 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
98 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
99 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
100 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
101 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
102 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
103 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
104 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
105 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
106 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
107 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
108 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
109 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
110 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
111 };
112 
113 static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
114 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
115 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
116 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
117 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
118 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002)
119 };
120 
121 static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
122 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
123 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
124 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
125 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
126 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001)
127 };
128 
129 static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
130 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
131 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
132 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
133 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
134 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
135 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
136 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
137 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
138 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
139 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
140 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
141 };
142 
143 static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
144 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
145 };
146 
147 static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
148 {
149 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
150 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
151 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
152 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
153 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
154 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
155 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
156 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
157 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
158 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
159 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
160 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
161 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
162 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
163 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
164 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
165 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
166 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
167 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
168 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
169 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
170 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
171 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
172 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
173 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
174 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
175 };
176 
177 static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
178 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
179 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
180 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
181 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
182 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
183 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
184 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
185 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
186 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
187 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
188 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
189 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
190 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
191 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
192 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
193 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
194 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
195 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
196 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
197 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
198 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
199 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
200 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
201 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
202 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
203 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
204 };
205 
206 static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
207 {
208 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
209 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
210 };
211 
212 static const struct soc15_reg_golden golden_settings_sdma_rv2[] =
213 {
214 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001),
215 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001)
216 };
217 
218 static const struct soc15_reg_golden golden_settings_sdma_arct[] =
219 {
220 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
221 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
222 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
223 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
224 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
225 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
226 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
227 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
228 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
229 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
230 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
231 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
232 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
233 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
234 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
235 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
236 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
237 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
238 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
239 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
240 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
241 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
242 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
243 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002)
244 };
245 
246 static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
247 		u32 instance, u32 offset)
248 {
249 	switch (instance) {
250 	case 0:
251 		return (adev->reg_offset[SDMA0_HWIP][0][0] + offset);
252 	case 1:
253 		return (adev->reg_offset[SDMA1_HWIP][0][0] + offset);
254 	case 2:
255 		return (adev->reg_offset[SDMA2_HWIP][0][1] + offset);
256 	case 3:
257 		return (adev->reg_offset[SDMA3_HWIP][0][1] + offset);
258 	case 4:
259 		return (adev->reg_offset[SDMA4_HWIP][0][1] + offset);
260 	case 5:
261 		return (adev->reg_offset[SDMA5_HWIP][0][1] + offset);
262 	case 6:
263 		return (adev->reg_offset[SDMA6_HWIP][0][1] + offset);
264 	case 7:
265 		return (adev->reg_offset[SDMA7_HWIP][0][1] + offset);
266 	default:
267 		break;
268 	}
269 	return 0;
270 }
271 
272 static unsigned sdma_v4_0_seq_to_irq_id(int seq_num)
273 {
274 	switch (seq_num) {
275 	case 0:
276 		return SOC15_IH_CLIENTID_SDMA0;
277 	case 1:
278 		return SOC15_IH_CLIENTID_SDMA1;
279 	case 2:
280 		return SOC15_IH_CLIENTID_SDMA2;
281 	case 3:
282 		return SOC15_IH_CLIENTID_SDMA3;
283 	case 4:
284 		return SOC15_IH_CLIENTID_SDMA4;
285 	case 5:
286 		return SOC15_IH_CLIENTID_SDMA5;
287 	case 6:
288 		return SOC15_IH_CLIENTID_SDMA6;
289 	case 7:
290 		return SOC15_IH_CLIENTID_SDMA7;
291 	default:
292 		break;
293 	}
294 	return -EINVAL;
295 }
296 
297 static int sdma_v4_0_irq_id_to_seq(unsigned client_id)
298 {
299 	switch (client_id) {
300 	case SOC15_IH_CLIENTID_SDMA0:
301 		return 0;
302 	case SOC15_IH_CLIENTID_SDMA1:
303 		return 1;
304 	case SOC15_IH_CLIENTID_SDMA2:
305 		return 2;
306 	case SOC15_IH_CLIENTID_SDMA3:
307 		return 3;
308 	case SOC15_IH_CLIENTID_SDMA4:
309 		return 4;
310 	case SOC15_IH_CLIENTID_SDMA5:
311 		return 5;
312 	case SOC15_IH_CLIENTID_SDMA6:
313 		return 6;
314 	case SOC15_IH_CLIENTID_SDMA7:
315 		return 7;
316 	default:
317 		break;
318 	}
319 	return -EINVAL;
320 }
321 
322 static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
323 {
324 	switch (adev->asic_type) {
325 	case CHIP_VEGA10:
326 		soc15_program_register_sequence(adev,
327 						golden_settings_sdma_4,
328 						ARRAY_SIZE(golden_settings_sdma_4));
329 		soc15_program_register_sequence(adev,
330 						golden_settings_sdma_vg10,
331 						ARRAY_SIZE(golden_settings_sdma_vg10));
332 		break;
333 	case CHIP_VEGA12:
334 		soc15_program_register_sequence(adev,
335 						golden_settings_sdma_4,
336 						ARRAY_SIZE(golden_settings_sdma_4));
337 		soc15_program_register_sequence(adev,
338 						golden_settings_sdma_vg12,
339 						ARRAY_SIZE(golden_settings_sdma_vg12));
340 		break;
341 	case CHIP_VEGA20:
342 		soc15_program_register_sequence(adev,
343 						golden_settings_sdma0_4_2_init,
344 						ARRAY_SIZE(golden_settings_sdma0_4_2_init));
345 		soc15_program_register_sequence(adev,
346 						golden_settings_sdma0_4_2,
347 						ARRAY_SIZE(golden_settings_sdma0_4_2));
348 		soc15_program_register_sequence(adev,
349 						golden_settings_sdma1_4_2,
350 						ARRAY_SIZE(golden_settings_sdma1_4_2));
351 		break;
352 	case CHIP_ARCTURUS:
353 		soc15_program_register_sequence(adev,
354 						golden_settings_sdma_arct,
355 						ARRAY_SIZE(golden_settings_sdma_arct));
356 		break;
357 	case CHIP_RAVEN:
358 		soc15_program_register_sequence(adev,
359 						golden_settings_sdma_4_1,
360 						ARRAY_SIZE(golden_settings_sdma_4_1));
361 		if (adev->rev_id >= 8)
362 			soc15_program_register_sequence(adev,
363 							golden_settings_sdma_rv2,
364 							ARRAY_SIZE(golden_settings_sdma_rv2));
365 		else
366 			soc15_program_register_sequence(adev,
367 							golden_settings_sdma_rv1,
368 							ARRAY_SIZE(golden_settings_sdma_rv1));
369 		break;
370 	default:
371 		break;
372 	}
373 }
374 
375 static int sdma_v4_0_init_inst_ctx(struct amdgpu_sdma_instance *sdma_inst)
376 {
377 	int err = 0;
378 	const struct sdma_firmware_header_v1_0 *hdr;
379 
380 	err = amdgpu_ucode_validate(sdma_inst->fw);
381 	if (err)
382 		return err;
383 
384 	hdr = (const struct sdma_firmware_header_v1_0 *)sdma_inst->fw->data;
385 	sdma_inst->fw_version = le32_to_cpu(hdr->header.ucode_version);
386 	sdma_inst->feature_version = le32_to_cpu(hdr->ucode_feature_version);
387 
388 	if (sdma_inst->feature_version >= 20)
389 		sdma_inst->burst_nop = true;
390 
391 	return 0;
392 }
393 
394 static void sdma_v4_0_destroy_inst_ctx(struct amdgpu_device *adev)
395 {
396 	int i;
397 
398 	for (i = 0; i < adev->sdma.num_instances; i++) {
399 		if (adev->sdma.instance[i].fw != NULL)
400 			release_firmware(adev->sdma.instance[i].fw);
401 
402 		/* arcturus shares the same FW memory across
403 		   all SDMA isntances */
404 		if (adev->asic_type == CHIP_ARCTURUS)
405 			break;
406 	}
407 
408 	memset((void*)adev->sdma.instance, 0,
409 		sizeof(struct amdgpu_sdma_instance) * AMDGPU_MAX_SDMA_INSTANCES);
410 }
411 
412 /**
413  * sdma_v4_0_init_microcode - load ucode images from disk
414  *
415  * @adev: amdgpu_device pointer
416  *
417  * Use the firmware interface to load the ucode images into
418  * the driver (not loaded into hw).
419  * Returns 0 on success, error on failure.
420  */
421 
422 // emulation only, won't work on real chip
423 // vega10 real chip need to use PSP to load firmware
424 static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
425 {
426 	const char *chip_name;
427 	char fw_name[30];
428 	int err = 0, i;
429 	struct amdgpu_firmware_info *info = NULL;
430 	const struct common_firmware_header *header = NULL;
431 
432 	DRM_DEBUG("\n");
433 
434 	switch (adev->asic_type) {
435 	case CHIP_VEGA10:
436 		chip_name = "vega10";
437 		break;
438 	case CHIP_VEGA12:
439 		chip_name = "vega12";
440 		break;
441 	case CHIP_VEGA20:
442 		chip_name = "vega20";
443 		break;
444 	case CHIP_RAVEN:
445 		if (adev->rev_id >= 8)
446 			chip_name = "raven2";
447 		else if (adev->pdev->device == 0x15d8)
448 			chip_name = "picasso";
449 		else
450 			chip_name = "raven";
451 		break;
452 	case CHIP_ARCTURUS:
453 		chip_name = "arcturus";
454 		break;
455 	default:
456 		BUG();
457 	}
458 
459 	snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
460 
461 	err = request_firmware(&adev->sdma.instance[0].fw, fw_name, adev->dev);
462 	if (err)
463 		goto out;
464 
465 	err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[0]);
466 	if (err)
467 		goto out;
468 
469 	for (i = 1; i < adev->sdma.num_instances; i++) {
470 		if (adev->asic_type == CHIP_ARCTURUS) {
471 			/* Acturus will leverage the same FW memory
472 			   for every SDMA instance */
473 			memcpy((void*)&adev->sdma.instance[i],
474 			       (void*)&adev->sdma.instance[0],
475 			       sizeof(struct amdgpu_sdma_instance));
476 		}
477 		else {
478 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma%d.bin", chip_name, i);
479 
480 			err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
481 			if (err)
482 				goto out;
483 
484 			err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[i]);
485 			if (err)
486 				goto out;
487 		}
488 	}
489 
490 	DRM_DEBUG("psp_load == '%s'\n",
491 		adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
492 
493 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
494 		for (i = 0; i < adev->sdma.num_instances; i++) {
495 			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
496 			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
497 			info->fw = adev->sdma.instance[i].fw;
498 			header = (const struct common_firmware_header *)info->fw->data;
499 			adev->firmware.fw_size +=
500 				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
501 		}
502 	}
503 
504 out:
505 	if (err) {
506 		DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
507 		sdma_v4_0_destroy_inst_ctx(adev);
508 	}
509 	return err;
510 }
511 
512 /**
513  * sdma_v4_0_ring_get_rptr - get the current read pointer
514  *
515  * @ring: amdgpu ring pointer
516  *
517  * Get the current rptr from the hardware (VEGA10+).
518  */
519 static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
520 {
521 	u64 *rptr;
522 
523 	/* XXX check if swapping is necessary on BE */
524 	rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
525 
526 	DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
527 	return ((*rptr) >> 2);
528 }
529 
530 /**
531  * sdma_v4_0_ring_get_wptr - get the current write pointer
532  *
533  * @ring: amdgpu ring pointer
534  *
535  * Get the current wptr from the hardware (VEGA10+).
536  */
537 static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
538 {
539 	struct amdgpu_device *adev = ring->adev;
540 	u64 wptr;
541 
542 	if (ring->use_doorbell) {
543 		/* XXX check if swapping is necessary on BE */
544 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
545 		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
546 	} else {
547 		wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI);
548 		wptr = wptr << 32;
549 		wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR);
550 		DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
551 				ring->me, wptr);
552 	}
553 
554 	return wptr >> 2;
555 }
556 
557 /**
558  * sdma_v4_0_ring_set_wptr - commit the write pointer
559  *
560  * @ring: amdgpu ring pointer
561  *
562  * Write the wptr back to the hardware (VEGA10+).
563  */
564 static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
565 {
566 	struct amdgpu_device *adev = ring->adev;
567 
568 	DRM_DEBUG("Setting write pointer\n");
569 	if (ring->use_doorbell) {
570 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
571 
572 		DRM_DEBUG("Using doorbell -- "
573 				"wptr_offs == 0x%08x "
574 				"lower_32_bits(ring->wptr) << 2 == 0x%08x "
575 				"upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
576 				ring->wptr_offs,
577 				lower_32_bits(ring->wptr << 2),
578 				upper_32_bits(ring->wptr << 2));
579 		/* XXX check if swapping is necessary on BE */
580 		WRITE_ONCE(*wb, (ring->wptr << 2));
581 		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
582 				ring->doorbell_index, ring->wptr << 2);
583 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
584 	} else {
585 		DRM_DEBUG("Not using doorbell -- "
586 				"mmSDMA%i_GFX_RB_WPTR == 0x%08x "
587 				"mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
588 				ring->me,
589 				lower_32_bits(ring->wptr << 2),
590 				ring->me,
591 				upper_32_bits(ring->wptr << 2));
592 		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR,
593 			    lower_32_bits(ring->wptr << 2));
594 		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI,
595 			    upper_32_bits(ring->wptr << 2));
596 	}
597 }
598 
599 /**
600  * sdma_v4_0_page_ring_get_wptr - get the current write pointer
601  *
602  * @ring: amdgpu ring pointer
603  *
604  * Get the current wptr from the hardware (VEGA10+).
605  */
606 static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring)
607 {
608 	struct amdgpu_device *adev = ring->adev;
609 	u64 wptr;
610 
611 	if (ring->use_doorbell) {
612 		/* XXX check if swapping is necessary on BE */
613 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
614 	} else {
615 		wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI);
616 		wptr = wptr << 32;
617 		wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR);
618 	}
619 
620 	return wptr >> 2;
621 }
622 
623 /**
624  * sdma_v4_0_ring_set_wptr - commit the write pointer
625  *
626  * @ring: amdgpu ring pointer
627  *
628  * Write the wptr back to the hardware (VEGA10+).
629  */
630 static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring)
631 {
632 	struct amdgpu_device *adev = ring->adev;
633 
634 	if (ring->use_doorbell) {
635 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
636 
637 		/* XXX check if swapping is necessary on BE */
638 		WRITE_ONCE(*wb, (ring->wptr << 2));
639 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
640 	} else {
641 		uint64_t wptr = ring->wptr << 2;
642 
643 		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR,
644 			    lower_32_bits(wptr));
645 		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI,
646 			    upper_32_bits(wptr));
647 	}
648 }
649 
650 static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
651 {
652 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
653 	int i;
654 
655 	for (i = 0; i < count; i++)
656 		if (sdma && sdma->burst_nop && (i == 0))
657 			amdgpu_ring_write(ring, ring->funcs->nop |
658 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
659 		else
660 			amdgpu_ring_write(ring, ring->funcs->nop);
661 }
662 
663 /**
664  * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
665  *
666  * @ring: amdgpu ring pointer
667  * @ib: IB object to schedule
668  *
669  * Schedule an IB in the DMA ring (VEGA10).
670  */
671 static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
672 				   struct amdgpu_job *job,
673 				   struct amdgpu_ib *ib,
674 				   uint32_t flags)
675 {
676 	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
677 
678 	/* IB packet must end on a 8 DW boundary */
679 	sdma_v4_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
680 
681 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
682 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
683 	/* base must be 32 byte aligned */
684 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
685 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
686 	amdgpu_ring_write(ring, ib->length_dw);
687 	amdgpu_ring_write(ring, 0);
688 	amdgpu_ring_write(ring, 0);
689 
690 }
691 
692 static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
693 				   int mem_space, int hdp,
694 				   uint32_t addr0, uint32_t addr1,
695 				   uint32_t ref, uint32_t mask,
696 				   uint32_t inv)
697 {
698 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
699 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
700 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
701 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
702 	if (mem_space) {
703 		/* memory */
704 		amdgpu_ring_write(ring, addr0);
705 		amdgpu_ring_write(ring, addr1);
706 	} else {
707 		/* registers */
708 		amdgpu_ring_write(ring, addr0 << 2);
709 		amdgpu_ring_write(ring, addr1 << 2);
710 	}
711 	amdgpu_ring_write(ring, ref); /* reference */
712 	amdgpu_ring_write(ring, mask); /* mask */
713 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
714 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
715 }
716 
717 /**
718  * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
719  *
720  * @ring: amdgpu ring pointer
721  *
722  * Emit an hdp flush packet on the requested DMA ring.
723  */
724 static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
725 {
726 	struct amdgpu_device *adev = ring->adev;
727 	u32 ref_and_mask = 0;
728 	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio_funcs->hdp_flush_reg;
729 
730 	ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me;
731 
732 	sdma_v4_0_wait_reg_mem(ring, 0, 1,
733 			       adev->nbio_funcs->get_hdp_flush_done_offset(adev),
734 			       adev->nbio_funcs->get_hdp_flush_req_offset(adev),
735 			       ref_and_mask, ref_and_mask, 10);
736 }
737 
738 /**
739  * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
740  *
741  * @ring: amdgpu ring pointer
742  * @fence: amdgpu fence object
743  *
744  * Add a DMA fence packet to the ring to write
745  * the fence seq number and DMA trap packet to generate
746  * an interrupt if needed (VEGA10).
747  */
748 static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
749 				      unsigned flags)
750 {
751 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
752 	/* write the fence */
753 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
754 	/* zero in first two bits */
755 	BUG_ON(addr & 0x3);
756 	amdgpu_ring_write(ring, lower_32_bits(addr));
757 	amdgpu_ring_write(ring, upper_32_bits(addr));
758 	amdgpu_ring_write(ring, lower_32_bits(seq));
759 
760 	/* optionally write high bits as well */
761 	if (write64bit) {
762 		addr += 4;
763 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
764 		/* zero in first two bits */
765 		BUG_ON(addr & 0x3);
766 		amdgpu_ring_write(ring, lower_32_bits(addr));
767 		amdgpu_ring_write(ring, upper_32_bits(addr));
768 		amdgpu_ring_write(ring, upper_32_bits(seq));
769 	}
770 
771 	/* generate an interrupt */
772 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
773 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
774 }
775 
776 
777 /**
778  * sdma_v4_0_gfx_stop - stop the gfx async dma engines
779  *
780  * @adev: amdgpu_device pointer
781  *
782  * Stop the gfx async dma ring buffers (VEGA10).
783  */
784 static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
785 {
786 	struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
787 	u32 rb_cntl, ib_cntl;
788 	int i, unset = 0;
789 
790 	for (i = 0; i < adev->sdma.num_instances; i++) {
791 		sdma[i] = &adev->sdma.instance[i].ring;
792 
793 		if ((adev->mman.buffer_funcs_ring == sdma[i]) && unset != 1) {
794 			amdgpu_ttm_set_buffer_funcs_status(adev, false);
795 			unset = 1;
796 		}
797 
798 		rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
799 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
800 		WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
801 		ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
802 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
803 		WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
804 
805 		sdma[i]->sched.ready = false;
806 	}
807 }
808 
809 /**
810  * sdma_v4_0_rlc_stop - stop the compute async dma engines
811  *
812  * @adev: amdgpu_device pointer
813  *
814  * Stop the compute async dma queues (VEGA10).
815  */
816 static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
817 {
818 	/* XXX todo */
819 }
820 
821 /**
822  * sdma_v4_0_page_stop - stop the page async dma engines
823  *
824  * @adev: amdgpu_device pointer
825  *
826  * Stop the page async dma ring buffers (VEGA10).
827  */
828 static void sdma_v4_0_page_stop(struct amdgpu_device *adev)
829 {
830 	struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
831 	u32 rb_cntl, ib_cntl;
832 	int i;
833 	bool unset = false;
834 
835 	for (i = 0; i < adev->sdma.num_instances; i++) {
836 		sdma[i] = &adev->sdma.instance[i].page;
837 
838 		if ((adev->mman.buffer_funcs_ring == sdma[i]) &&
839 			(unset == false)) {
840 			amdgpu_ttm_set_buffer_funcs_status(adev, false);
841 			unset = true;
842 		}
843 
844 		rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
845 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
846 					RB_ENABLE, 0);
847 		WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
848 		ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
849 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL,
850 					IB_ENABLE, 0);
851 		WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
852 
853 		sdma[i]->sched.ready = false;
854 	}
855 }
856 
857 /**
858  * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch
859  *
860  * @adev: amdgpu_device pointer
861  * @enable: enable/disable the DMA MEs context switch.
862  *
863  * Halt or unhalt the async dma engines context switch (VEGA10).
864  */
865 static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
866 {
867 	u32 f32_cntl, phase_quantum = 0;
868 	int i;
869 
870 	if (amdgpu_sdma_phase_quantum) {
871 		unsigned value = amdgpu_sdma_phase_quantum;
872 		unsigned unit = 0;
873 
874 		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
875 				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
876 			value = (value + 1) >> 1;
877 			unit++;
878 		}
879 		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
880 			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
881 			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
882 				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
883 			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
884 				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
885 			WARN_ONCE(1,
886 			"clamping sdma_phase_quantum to %uK clock cycles\n",
887 				  value << unit);
888 		}
889 		phase_quantum =
890 			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
891 			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
892 	}
893 
894 	for (i = 0; i < adev->sdma.num_instances; i++) {
895 		f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL);
896 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
897 				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
898 		if (enable && amdgpu_sdma_phase_quantum) {
899 			WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum);
900 			WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum);
901 			WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum);
902 		}
903 		WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl);
904 	}
905 
906 }
907 
908 /**
909  * sdma_v4_0_enable - stop the async dma engines
910  *
911  * @adev: amdgpu_device pointer
912  * @enable: enable/disable the DMA MEs.
913  *
914  * Halt or unhalt the async dma engines (VEGA10).
915  */
916 static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
917 {
918 	u32 f32_cntl;
919 	int i;
920 
921 	if (enable == false) {
922 		sdma_v4_0_gfx_stop(adev);
923 		sdma_v4_0_rlc_stop(adev);
924 		if (adev->sdma.has_page_queue)
925 			sdma_v4_0_page_stop(adev);
926 	}
927 
928 	for (i = 0; i < adev->sdma.num_instances; i++) {
929 		f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
930 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
931 		WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl);
932 	}
933 }
934 
935 /**
936  * sdma_v4_0_rb_cntl - get parameters for rb_cntl
937  */
938 static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
939 {
940 	/* Set ring buffer size in dwords */
941 	uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
942 
943 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
944 #ifdef __BIG_ENDIAN
945 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
946 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
947 				RPTR_WRITEBACK_SWAP_ENABLE, 1);
948 #endif
949 	return rb_cntl;
950 }
951 
952 /**
953  * sdma_v4_0_gfx_resume - setup and start the async dma engines
954  *
955  * @adev: amdgpu_device pointer
956  * @i: instance to resume
957  *
958  * Set up the gfx DMA ring buffers and enable them (VEGA10).
959  * Returns 0 for success, error for failure.
960  */
961 static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i)
962 {
963 	struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
964 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
965 	u32 wb_offset;
966 	u32 doorbell;
967 	u32 doorbell_offset;
968 	u64 wptr_gpu_addr;
969 
970 	wb_offset = (ring->rptr_offs * 4);
971 
972 	rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
973 	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
974 	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
975 
976 	/* Initialize the ring buffer's read and write pointers */
977 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0);
978 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0);
979 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0);
980 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0);
981 
982 	/* set the wb address whether it's enabled or not */
983 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI,
984 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
985 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO,
986 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
987 
988 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
989 				RPTR_WRITEBACK_ENABLE, 1);
990 
991 	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8);
992 	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
993 
994 	ring->wptr = 0;
995 
996 	/* before programing wptr to a less value, need set minor_ptr_update first */
997 	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1);
998 
999 	doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL);
1000 	doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET);
1001 
1002 	doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE,
1003 				 ring->use_doorbell);
1004 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
1005 					SDMA0_GFX_DOORBELL_OFFSET,
1006 					OFFSET, ring->doorbell_index);
1007 	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell);
1008 	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset);
1009 
1010 	sdma_v4_0_ring_set_wptr(ring);
1011 
1012 	/* set minor_ptr_update to 0 after wptr programed */
1013 	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0);
1014 
1015 	/* setup the wptr shadow polling */
1016 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
1017 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO,
1018 		    lower_32_bits(wptr_gpu_addr));
1019 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI,
1020 		    upper_32_bits(wptr_gpu_addr));
1021 	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL);
1022 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1023 				       SDMA0_GFX_RB_WPTR_POLL_CNTL,
1024 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1025 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1026 
1027 	/* enable DMA RB */
1028 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
1029 	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1030 
1031 	ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
1032 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
1033 #ifdef __BIG_ENDIAN
1034 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
1035 #endif
1036 	/* enable DMA IBs */
1037 	WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
1038 
1039 	ring->sched.ready = true;
1040 }
1041 
1042 /**
1043  * sdma_v4_0_page_resume - setup and start the async dma engines
1044  *
1045  * @adev: amdgpu_device pointer
1046  * @i: instance to resume
1047  *
1048  * Set up the page DMA ring buffers and enable them (VEGA10).
1049  * Returns 0 for success, error for failure.
1050  */
1051 static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i)
1052 {
1053 	struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
1054 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1055 	u32 wb_offset;
1056 	u32 doorbell;
1057 	u32 doorbell_offset;
1058 	u64 wptr_gpu_addr;
1059 
1060 	wb_offset = (ring->rptr_offs * 4);
1061 
1062 	rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
1063 	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1064 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1065 
1066 	/* Initialize the ring buffer's read and write pointers */
1067 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0);
1068 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0);
1069 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0);
1070 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0);
1071 
1072 	/* set the wb address whether it's enabled or not */
1073 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI,
1074 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
1075 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO,
1076 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
1077 
1078 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
1079 				RPTR_WRITEBACK_ENABLE, 1);
1080 
1081 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8);
1082 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
1083 
1084 	ring->wptr = 0;
1085 
1086 	/* before programing wptr to a less value, need set minor_ptr_update first */
1087 	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1);
1088 
1089 	doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL);
1090 	doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET);
1091 
1092 	doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE,
1093 				 ring->use_doorbell);
1094 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
1095 					SDMA0_PAGE_DOORBELL_OFFSET,
1096 					OFFSET, ring->doorbell_index);
1097 	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell);
1098 	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset);
1099 
1100 	/* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */
1101 	sdma_v4_0_page_ring_set_wptr(ring);
1102 
1103 	/* set minor_ptr_update to 0 after wptr programed */
1104 	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0);
1105 
1106 	/* setup the wptr shadow polling */
1107 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
1108 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO,
1109 		    lower_32_bits(wptr_gpu_addr));
1110 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI,
1111 		    upper_32_bits(wptr_gpu_addr));
1112 	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL);
1113 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1114 				       SDMA0_PAGE_RB_WPTR_POLL_CNTL,
1115 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1116 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1117 
1118 	/* enable DMA RB */
1119 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1);
1120 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1121 
1122 	ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
1123 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1);
1124 #ifdef __BIG_ENDIAN
1125 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
1126 #endif
1127 	/* enable DMA IBs */
1128 	WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
1129 
1130 	ring->sched.ready = true;
1131 }
1132 
1133 static void
1134 sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
1135 {
1136 	uint32_t def, data;
1137 
1138 	if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
1139 		/* enable idle interrupt */
1140 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1141 		data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1142 
1143 		if (data != def)
1144 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1145 	} else {
1146 		/* disable idle interrupt */
1147 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1148 		data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1149 		if (data != def)
1150 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1151 	}
1152 }
1153 
1154 static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
1155 {
1156 	uint32_t def, data;
1157 
1158 	/* Enable HW based PG. */
1159 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1160 	data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
1161 	if (data != def)
1162 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1163 
1164 	/* enable interrupt */
1165 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1166 	data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1167 	if (data != def)
1168 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1169 
1170 	/* Configure hold time to filter in-valid power on/off request. Use default right now */
1171 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1172 	data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
1173 	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
1174 	/* Configure switch time for hysteresis purpose. Use default right now */
1175 	data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
1176 	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
1177 	if(data != def)
1178 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1179 }
1180 
1181 static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
1182 {
1183 	if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
1184 		return;
1185 
1186 	switch (adev->asic_type) {
1187 	case CHIP_RAVEN:
1188 		sdma_v4_1_init_power_gating(adev);
1189 		sdma_v4_1_update_power_gating(adev, true);
1190 		break;
1191 	default:
1192 		break;
1193 	}
1194 }
1195 
1196 /**
1197  * sdma_v4_0_rlc_resume - setup and start the async dma engines
1198  *
1199  * @adev: amdgpu_device pointer
1200  *
1201  * Set up the compute DMA queues and enable them (VEGA10).
1202  * Returns 0 for success, error for failure.
1203  */
1204 static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
1205 {
1206 	sdma_v4_0_init_pg(adev);
1207 
1208 	return 0;
1209 }
1210 
1211 /**
1212  * sdma_v4_0_load_microcode - load the sDMA ME ucode
1213  *
1214  * @adev: amdgpu_device pointer
1215  *
1216  * Loads the sDMA0/1 ucode.
1217  * Returns 0 for success, -EINVAL if the ucode is not available.
1218  */
1219 static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
1220 {
1221 	const struct sdma_firmware_header_v1_0 *hdr;
1222 	const __le32 *fw_data;
1223 	u32 fw_size;
1224 	int i, j;
1225 
1226 	/* halt the MEs */
1227 	sdma_v4_0_enable(adev, false);
1228 
1229 	for (i = 0; i < adev->sdma.num_instances; i++) {
1230 		if (!adev->sdma.instance[i].fw)
1231 			return -EINVAL;
1232 
1233 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
1234 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
1235 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
1236 
1237 		fw_data = (const __le32 *)
1238 			(adev->sdma.instance[i].fw->data +
1239 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
1240 
1241 		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0);
1242 
1243 		for (j = 0; j < fw_size; j++)
1244 			WREG32_SDMA(i, mmSDMA0_UCODE_DATA,
1245 				    le32_to_cpup(fw_data++));
1246 
1247 		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR,
1248 			    adev->sdma.instance[i].fw_version);
1249 	}
1250 
1251 	return 0;
1252 }
1253 
1254 /**
1255  * sdma_v4_0_start - setup and start the async dma engines
1256  *
1257  * @adev: amdgpu_device pointer
1258  *
1259  * Set up the DMA engines and enable them (VEGA10).
1260  * Returns 0 for success, error for failure.
1261  */
1262 static int sdma_v4_0_start(struct amdgpu_device *adev)
1263 {
1264 	struct amdgpu_ring *ring;
1265 	int i, r = 0;
1266 
1267 	if (amdgpu_sriov_vf(adev)) {
1268 		sdma_v4_0_ctx_switch_enable(adev, false);
1269 		sdma_v4_0_enable(adev, false);
1270 	} else {
1271 
1272 		if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
1273 			r = sdma_v4_0_load_microcode(adev);
1274 			if (r)
1275 				return r;
1276 		}
1277 
1278 		/* unhalt the MEs */
1279 		sdma_v4_0_enable(adev, true);
1280 		/* enable sdma ring preemption */
1281 		sdma_v4_0_ctx_switch_enable(adev, true);
1282 	}
1283 
1284 	/* start the gfx rings and rlc compute queues */
1285 	for (i = 0; i < adev->sdma.num_instances; i++) {
1286 		uint32_t temp;
1287 
1288 		WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0);
1289 		sdma_v4_0_gfx_resume(adev, i);
1290 		if (adev->sdma.has_page_queue)
1291 			sdma_v4_0_page_resume(adev, i);
1292 
1293 		/* set utc l1 enable flag always to 1 */
1294 		temp = RREG32_SDMA(i, mmSDMA0_CNTL);
1295 		temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
1296 		WREG32_SDMA(i, mmSDMA0_CNTL, temp);
1297 
1298 		if (!amdgpu_sriov_vf(adev)) {
1299 			/* unhalt engine */
1300 			temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1301 			temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
1302 			WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp);
1303 		}
1304 	}
1305 
1306 	if (amdgpu_sriov_vf(adev)) {
1307 		sdma_v4_0_ctx_switch_enable(adev, true);
1308 		sdma_v4_0_enable(adev, true);
1309 	} else {
1310 		r = sdma_v4_0_rlc_resume(adev);
1311 		if (r)
1312 			return r;
1313 	}
1314 
1315 	for (i = 0; i < adev->sdma.num_instances; i++) {
1316 		ring = &adev->sdma.instance[i].ring;
1317 
1318 		r = amdgpu_ring_test_helper(ring);
1319 		if (r)
1320 			return r;
1321 
1322 		if (adev->sdma.has_page_queue) {
1323 			struct amdgpu_ring *page = &adev->sdma.instance[i].page;
1324 
1325 			r = amdgpu_ring_test_helper(page);
1326 			if (r)
1327 				return r;
1328 
1329 			if (adev->mman.buffer_funcs_ring == page)
1330 				amdgpu_ttm_set_buffer_funcs_status(adev, true);
1331 		}
1332 
1333 		if (adev->mman.buffer_funcs_ring == ring)
1334 			amdgpu_ttm_set_buffer_funcs_status(adev, true);
1335 	}
1336 
1337 	return r;
1338 }
1339 
1340 /**
1341  * sdma_v4_0_ring_test_ring - simple async dma engine test
1342  *
1343  * @ring: amdgpu_ring structure holding ring information
1344  *
1345  * Test the DMA engine by writing using it to write an
1346  * value to memory. (VEGA10).
1347  * Returns 0 for success, error for failure.
1348  */
1349 static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
1350 {
1351 	struct amdgpu_device *adev = ring->adev;
1352 	unsigned i;
1353 	unsigned index;
1354 	int r;
1355 	u32 tmp;
1356 	u64 gpu_addr;
1357 
1358 	r = amdgpu_device_wb_get(adev, &index);
1359 	if (r)
1360 		return r;
1361 
1362 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1363 	tmp = 0xCAFEDEAD;
1364 	adev->wb.wb[index] = cpu_to_le32(tmp);
1365 
1366 	r = amdgpu_ring_alloc(ring, 5);
1367 	if (r)
1368 		goto error_free_wb;
1369 
1370 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1371 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1372 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1373 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1374 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1375 	amdgpu_ring_write(ring, 0xDEADBEEF);
1376 	amdgpu_ring_commit(ring);
1377 
1378 	for (i = 0; i < adev->usec_timeout; i++) {
1379 		tmp = le32_to_cpu(adev->wb.wb[index]);
1380 		if (tmp == 0xDEADBEEF)
1381 			break;
1382 		udelay(1);
1383 	}
1384 
1385 	if (i >= adev->usec_timeout)
1386 		r = -ETIMEDOUT;
1387 
1388 error_free_wb:
1389 	amdgpu_device_wb_free(adev, index);
1390 	return r;
1391 }
1392 
1393 /**
1394  * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
1395  *
1396  * @ring: amdgpu_ring structure holding ring information
1397  *
1398  * Test a simple IB in the DMA ring (VEGA10).
1399  * Returns 0 on success, error on failure.
1400  */
1401 static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1402 {
1403 	struct amdgpu_device *adev = ring->adev;
1404 	struct amdgpu_ib ib;
1405 	struct dma_fence *f = NULL;
1406 	unsigned index;
1407 	long r;
1408 	u32 tmp = 0;
1409 	u64 gpu_addr;
1410 
1411 	r = amdgpu_device_wb_get(adev, &index);
1412 	if (r)
1413 		return r;
1414 
1415 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1416 	tmp = 0xCAFEDEAD;
1417 	adev->wb.wb[index] = cpu_to_le32(tmp);
1418 	memset(&ib, 0, sizeof(ib));
1419 	r = amdgpu_ib_get(adev, NULL, 256, &ib);
1420 	if (r)
1421 		goto err0;
1422 
1423 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1424 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1425 	ib.ptr[1] = lower_32_bits(gpu_addr);
1426 	ib.ptr[2] = upper_32_bits(gpu_addr);
1427 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1428 	ib.ptr[4] = 0xDEADBEEF;
1429 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1430 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1431 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1432 	ib.length_dw = 8;
1433 
1434 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1435 	if (r)
1436 		goto err1;
1437 
1438 	r = dma_fence_wait_timeout(f, false, timeout);
1439 	if (r == 0) {
1440 		r = -ETIMEDOUT;
1441 		goto err1;
1442 	} else if (r < 0) {
1443 		goto err1;
1444 	}
1445 	tmp = le32_to_cpu(adev->wb.wb[index]);
1446 	if (tmp == 0xDEADBEEF)
1447 		r = 0;
1448 	else
1449 		r = -EINVAL;
1450 
1451 err1:
1452 	amdgpu_ib_free(adev, &ib, NULL);
1453 	dma_fence_put(f);
1454 err0:
1455 	amdgpu_device_wb_free(adev, index);
1456 	return r;
1457 }
1458 
1459 
1460 /**
1461  * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
1462  *
1463  * @ib: indirect buffer to fill with commands
1464  * @pe: addr of the page entry
1465  * @src: src addr to copy from
1466  * @count: number of page entries to update
1467  *
1468  * Update PTEs by copying them from the GART using sDMA (VEGA10).
1469  */
1470 static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
1471 				  uint64_t pe, uint64_t src,
1472 				  unsigned count)
1473 {
1474 	unsigned bytes = count * 8;
1475 
1476 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1477 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1478 	ib->ptr[ib->length_dw++] = bytes - 1;
1479 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1480 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1481 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1482 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1483 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1484 
1485 }
1486 
1487 /**
1488  * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
1489  *
1490  * @ib: indirect buffer to fill with commands
1491  * @pe: addr of the page entry
1492  * @addr: dst addr to write into pe
1493  * @count: number of page entries to update
1494  * @incr: increase next addr by incr bytes
1495  * @flags: access flags
1496  *
1497  * Update PTEs by writing them manually using sDMA (VEGA10).
1498  */
1499 static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1500 				   uint64_t value, unsigned count,
1501 				   uint32_t incr)
1502 {
1503 	unsigned ndw = count * 2;
1504 
1505 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1506 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1507 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1508 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1509 	ib->ptr[ib->length_dw++] = ndw - 1;
1510 	for (; ndw > 0; ndw -= 2) {
1511 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1512 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1513 		value += incr;
1514 	}
1515 }
1516 
1517 /**
1518  * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
1519  *
1520  * @ib: indirect buffer to fill with commands
1521  * @pe: addr of the page entry
1522  * @addr: dst addr to write into pe
1523  * @count: number of page entries to update
1524  * @incr: increase next addr by incr bytes
1525  * @flags: access flags
1526  *
1527  * Update the page tables using sDMA (VEGA10).
1528  */
1529 static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1530 				     uint64_t pe,
1531 				     uint64_t addr, unsigned count,
1532 				     uint32_t incr, uint64_t flags)
1533 {
1534 	/* for physically contiguous pages (vram) */
1535 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1536 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1537 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1538 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1539 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1540 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1541 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1542 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1543 	ib->ptr[ib->length_dw++] = 0;
1544 	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1545 }
1546 
1547 /**
1548  * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
1549  *
1550  * @ib: indirect buffer to fill with padding
1551  *
1552  */
1553 static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1554 {
1555 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1556 	u32 pad_count;
1557 	int i;
1558 
1559 	pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1560 	for (i = 0; i < pad_count; i++)
1561 		if (sdma && sdma->burst_nop && (i == 0))
1562 			ib->ptr[ib->length_dw++] =
1563 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1564 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1565 		else
1566 			ib->ptr[ib->length_dw++] =
1567 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1568 }
1569 
1570 
1571 /**
1572  * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1573  *
1574  * @ring: amdgpu_ring pointer
1575  *
1576  * Make sure all previous operations are completed (CIK).
1577  */
1578 static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1579 {
1580 	uint32_t seq = ring->fence_drv.sync_seq;
1581 	uint64_t addr = ring->fence_drv.gpu_addr;
1582 
1583 	/* wait for idle */
1584 	sdma_v4_0_wait_reg_mem(ring, 1, 0,
1585 			       addr & 0xfffffffc,
1586 			       upper_32_bits(addr) & 0xffffffff,
1587 			       seq, 0xffffffff, 4);
1588 }
1589 
1590 
1591 /**
1592  * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1593  *
1594  * @ring: amdgpu_ring pointer
1595  * @vm: amdgpu_vm pointer
1596  *
1597  * Update the page table base and flush the VM TLB
1598  * using sDMA (VEGA10).
1599  */
1600 static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1601 					 unsigned vmid, uint64_t pd_addr)
1602 {
1603 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1604 }
1605 
1606 static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
1607 				     uint32_t reg, uint32_t val)
1608 {
1609 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1610 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1611 	amdgpu_ring_write(ring, reg);
1612 	amdgpu_ring_write(ring, val);
1613 }
1614 
1615 static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1616 					 uint32_t val, uint32_t mask)
1617 {
1618 	sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1619 }
1620 
1621 static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev)
1622 {
1623 	uint fw_version = adev->sdma.instance[0].fw_version;
1624 
1625 	switch (adev->asic_type) {
1626 	case CHIP_VEGA10:
1627 		return fw_version >= 430;
1628 	case CHIP_VEGA12:
1629 		/*return fw_version >= 31;*/
1630 		return false;
1631 	case CHIP_VEGA20:
1632 		return fw_version >= 123;
1633 	default:
1634 		return false;
1635 	}
1636 }
1637 
1638 static int sdma_v4_0_early_init(void *handle)
1639 {
1640 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1641 	int r;
1642 
1643 	if (adev->asic_type == CHIP_RAVEN)
1644 		adev->sdma.num_instances = 1;
1645 	else if (adev->asic_type == CHIP_ARCTURUS)
1646 		adev->sdma.num_instances = 8;
1647 	else
1648 		adev->sdma.num_instances = 2;
1649 
1650 	r = sdma_v4_0_init_microcode(adev);
1651 	if (r) {
1652 		DRM_ERROR("Failed to load sdma firmware!\n");
1653 		return r;
1654 	}
1655 
1656 	/* TODO: Page queue breaks driver reload under SRIOV */
1657 	if ((adev->asic_type == CHIP_VEGA10) && amdgpu_sriov_vf((adev)))
1658 		adev->sdma.has_page_queue = false;
1659 	else if (sdma_v4_0_fw_support_paging_queue(adev))
1660 		adev->sdma.has_page_queue = true;
1661 
1662 	sdma_v4_0_set_ring_funcs(adev);
1663 	sdma_v4_0_set_buffer_funcs(adev);
1664 	sdma_v4_0_set_vm_pte_funcs(adev);
1665 	sdma_v4_0_set_irq_funcs(adev);
1666 
1667 	return 0;
1668 }
1669 
1670 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
1671 		struct ras_err_data *err_data,
1672 		struct amdgpu_iv_entry *entry);
1673 
1674 static int sdma_v4_0_late_init(void *handle)
1675 {
1676 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1677 	struct ras_common_if **ras_if = &adev->sdma.ras_if;
1678 	struct ras_ih_if ih_info = {
1679 		.cb = sdma_v4_0_process_ras_data_cb,
1680 	};
1681 	struct ras_fs_if fs_info = {
1682 		.sysfs_name = "sdma_err_count",
1683 		.debugfs_name = "sdma_err_inject",
1684 	};
1685 	struct ras_common_if ras_block = {
1686 		.block = AMDGPU_RAS_BLOCK__SDMA,
1687 		.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE,
1688 		.sub_block_index = 0,
1689 		.name = "sdma",
1690 	};
1691 	int r, i;
1692 
1693 	if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
1694 		amdgpu_ras_feature_enable_on_boot(adev, &ras_block, 0);
1695 		return 0;
1696 	}
1697 
1698 	/* handle resume path. */
1699 	if (*ras_if) {
1700 		/* resend ras TA enable cmd during resume.
1701 		 * prepare to handle failure.
1702 		 */
1703 		ih_info.head = **ras_if;
1704 		r = amdgpu_ras_feature_enable_on_boot(adev, *ras_if, 1);
1705 		if (r) {
1706 			if (r == -EAGAIN) {
1707 				/* request a gpu reset. will run again. */
1708 				amdgpu_ras_request_reset_on_boot(adev,
1709 						AMDGPU_RAS_BLOCK__SDMA);
1710 				return 0;
1711 			}
1712 			/* fail to enable ras, cleanup all. */
1713 			goto irq;
1714 		}
1715 		/* enable successfully. continue. */
1716 		goto resume;
1717 	}
1718 
1719 	*ras_if = kmalloc(sizeof(**ras_if), GFP_KERNEL);
1720 	if (!*ras_if)
1721 		return -ENOMEM;
1722 
1723 	**ras_if = ras_block;
1724 
1725 	r = amdgpu_ras_feature_enable_on_boot(adev, *ras_if, 1);
1726 	if (r) {
1727 		if (r == -EAGAIN) {
1728 			amdgpu_ras_request_reset_on_boot(adev,
1729 					AMDGPU_RAS_BLOCK__SDMA);
1730 			r = 0;
1731 		}
1732 		goto feature;
1733 	}
1734 
1735 	ih_info.head = **ras_if;
1736 	fs_info.head = **ras_if;
1737 
1738 	r = amdgpu_ras_interrupt_add_handler(adev, &ih_info);
1739 	if (r)
1740 		goto interrupt;
1741 
1742 	amdgpu_ras_debugfs_create(adev, &fs_info);
1743 
1744 	r = amdgpu_ras_sysfs_create(adev, &fs_info);
1745 	if (r)
1746 		goto sysfs;
1747 resume:
1748 	for (i = 0; i < adev->sdma.num_instances; i++) {
1749 		r = amdgpu_irq_get(adev, &adev->sdma.ecc_irq,
1750 				   AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1751 		if (r)
1752 			goto irq;
1753 	}
1754 
1755 	return 0;
1756 irq:
1757 	amdgpu_ras_sysfs_remove(adev, *ras_if);
1758 sysfs:
1759 	amdgpu_ras_debugfs_remove(adev, *ras_if);
1760 	amdgpu_ras_interrupt_remove_handler(adev, &ih_info);
1761 interrupt:
1762 	amdgpu_ras_feature_enable(adev, *ras_if, 0);
1763 feature:
1764 	kfree(*ras_if);
1765 	*ras_if = NULL;
1766 	return r;
1767 }
1768 
1769 static int sdma_v4_0_sw_init(void *handle)
1770 {
1771 	struct amdgpu_ring *ring;
1772 	int r, i;
1773 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1774 
1775 	/* SDMA trap event */
1776 	for (i = 0; i < adev->sdma.num_instances; i++) {
1777 		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1778 				      SDMA0_4_0__SRCID__SDMA_TRAP,
1779 				      &adev->sdma.trap_irq);
1780 		if (r)
1781 			return r;
1782 	}
1783 
1784 	/* SDMA SRAM ECC event */
1785 	for (i = 0; i < adev->sdma.num_instances; i++) {
1786 		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1787 				      SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
1788 				      &adev->sdma.ecc_irq);
1789 		if (r)
1790 			return r;
1791 	}
1792 
1793 	for (i = 0; i < adev->sdma.num_instances; i++) {
1794 		ring = &adev->sdma.instance[i].ring;
1795 		ring->ring_obj = NULL;
1796 		ring->use_doorbell = true;
1797 
1798 		DRM_INFO("use_doorbell being set to: [%s]\n",
1799 				ring->use_doorbell?"true":"false");
1800 
1801 		/* doorbell size is 2 dwords, get DWORD offset */
1802 		ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1803 
1804 		sprintf(ring->name, "sdma%d", i);
1805 		r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1806 				     AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1807 		if (r)
1808 			return r;
1809 
1810 		if (adev->sdma.has_page_queue) {
1811 			ring = &adev->sdma.instance[i].page;
1812 			ring->ring_obj = NULL;
1813 			ring->use_doorbell = true;
1814 
1815 			/* paging queue use same doorbell index/routing as gfx queue
1816 			 * with 0x400 (4096 dwords) offset on second doorbell page
1817 			 */
1818 			ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1819 			ring->doorbell_index += 0x400;
1820 
1821 			sprintf(ring->name, "page%d", i);
1822 			r = amdgpu_ring_init(adev, ring, 1024,
1823 					     &adev->sdma.trap_irq,
1824 					     AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1825 			if (r)
1826 				return r;
1827 		}
1828 	}
1829 
1830 	return r;
1831 }
1832 
1833 static int sdma_v4_0_sw_fini(void *handle)
1834 {
1835 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1836 	int i;
1837 
1838 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA) &&
1839 			adev->sdma.ras_if) {
1840 		struct ras_common_if *ras_if = adev->sdma.ras_if;
1841 		struct ras_ih_if ih_info = {
1842 			.head = *ras_if,
1843 		};
1844 
1845 		/*remove fs first*/
1846 		amdgpu_ras_debugfs_remove(adev, ras_if);
1847 		amdgpu_ras_sysfs_remove(adev, ras_if);
1848 		/*remove the IH*/
1849 		amdgpu_ras_interrupt_remove_handler(adev, &ih_info);
1850 		amdgpu_ras_feature_enable(adev, ras_if, 0);
1851 		kfree(ras_if);
1852 	}
1853 
1854 	for (i = 0; i < adev->sdma.num_instances; i++) {
1855 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1856 		if (adev->sdma.has_page_queue)
1857 			amdgpu_ring_fini(&adev->sdma.instance[i].page);
1858 	}
1859 
1860 	sdma_v4_0_destroy_inst_ctx(adev);
1861 
1862 	return 0;
1863 }
1864 
1865 static int sdma_v4_0_hw_init(void *handle)
1866 {
1867 	int r;
1868 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1869 
1870 	if (adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs &&
1871 			adev->powerplay.pp_funcs->set_powergating_by_smu)
1872 		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false);
1873 
1874 	if (!amdgpu_sriov_vf(adev))
1875 		sdma_v4_0_init_golden_registers(adev);
1876 
1877 	r = sdma_v4_0_start(adev);
1878 
1879 	return r;
1880 }
1881 
1882 static int sdma_v4_0_hw_fini(void *handle)
1883 {
1884 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1885 	int i;
1886 
1887 	if (amdgpu_sriov_vf(adev))
1888 		return 0;
1889 
1890 	for (i = 0; i < adev->sdma.num_instances; i++) {
1891 		amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
1892 			       AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1893 	}
1894 
1895 	sdma_v4_0_ctx_switch_enable(adev, false);
1896 	sdma_v4_0_enable(adev, false);
1897 
1898 	if (adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs
1899 			&& adev->powerplay.pp_funcs->set_powergating_by_smu)
1900 		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true);
1901 
1902 	return 0;
1903 }
1904 
1905 static int sdma_v4_0_suspend(void *handle)
1906 {
1907 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1908 
1909 	return sdma_v4_0_hw_fini(adev);
1910 }
1911 
1912 static int sdma_v4_0_resume(void *handle)
1913 {
1914 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1915 
1916 	return sdma_v4_0_hw_init(adev);
1917 }
1918 
1919 static bool sdma_v4_0_is_idle(void *handle)
1920 {
1921 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1922 	u32 i;
1923 
1924 	for (i = 0; i < adev->sdma.num_instances; i++) {
1925 		u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG);
1926 
1927 		if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1928 			return false;
1929 	}
1930 
1931 	return true;
1932 }
1933 
1934 static int sdma_v4_0_wait_for_idle(void *handle)
1935 {
1936 	unsigned i, j;
1937 	u32 sdma[AMDGPU_MAX_SDMA_INSTANCES];
1938 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1939 
1940 	for (i = 0; i < adev->usec_timeout; i++) {
1941 		for (j = 0; j < adev->sdma.num_instances; j++) {
1942 			sdma[j] = RREG32_SDMA(j, mmSDMA0_STATUS_REG);
1943 			if (!(sdma[j] & SDMA0_STATUS_REG__IDLE_MASK))
1944 				break;
1945 		}
1946 		if (j == adev->sdma.num_instances)
1947 			return 0;
1948 		udelay(1);
1949 	}
1950 	return -ETIMEDOUT;
1951 }
1952 
1953 static int sdma_v4_0_soft_reset(void *handle)
1954 {
1955 	/* todo */
1956 
1957 	return 0;
1958 }
1959 
1960 static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
1961 					struct amdgpu_irq_src *source,
1962 					unsigned type,
1963 					enum amdgpu_interrupt_state state)
1964 {
1965 	u32 sdma_cntl;
1966 
1967 	sdma_cntl = RREG32_SDMA(type, mmSDMA0_CNTL);
1968 	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
1969 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1970 	WREG32_SDMA(type, mmSDMA0_CNTL, sdma_cntl);
1971 
1972 	return 0;
1973 }
1974 
1975 static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
1976 				      struct amdgpu_irq_src *source,
1977 				      struct amdgpu_iv_entry *entry)
1978 {
1979 	uint32_t instance;
1980 
1981 	DRM_DEBUG("IH: SDMA trap\n");
1982 	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
1983 	switch (entry->ring_id) {
1984 	case 0:
1985 		amdgpu_fence_process(&adev->sdma.instance[instance].ring);
1986 		break;
1987 	case 1:
1988 		if (adev->asic_type == CHIP_VEGA20)
1989 			amdgpu_fence_process(&adev->sdma.instance[instance].page);
1990 		break;
1991 	case 2:
1992 		/* XXX compute */
1993 		break;
1994 	case 3:
1995 		if (adev->asic_type != CHIP_VEGA20)
1996 			amdgpu_fence_process(&adev->sdma.instance[instance].page);
1997 		break;
1998 	}
1999 	return 0;
2000 }
2001 
2002 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
2003 		struct ras_err_data *err_data,
2004 		struct amdgpu_iv_entry *entry)
2005 {
2006 	uint32_t err_source;
2007 	int instance;
2008 
2009 	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2010 	if (instance < 0)
2011 		return 0;
2012 
2013 	switch (entry->src_id) {
2014 	case SDMA0_4_0__SRCID__SDMA_SRAM_ECC:
2015 		err_source = 0;
2016 		break;
2017 	case SDMA0_4_0__SRCID__SDMA_ECC:
2018 		err_source = 1;
2019 		break;
2020 	default:
2021 		return 0;
2022 	}
2023 
2024 	kgd2kfd_set_sram_ecc_flag(adev->kfd.dev);
2025 
2026 	amdgpu_ras_reset_gpu(adev, 0);
2027 
2028 	return AMDGPU_RAS_SUCCESS;
2029 }
2030 
2031 static int sdma_v4_0_process_ecc_irq(struct amdgpu_device *adev,
2032 				      struct amdgpu_irq_src *source,
2033 				      struct amdgpu_iv_entry *entry)
2034 {
2035 	struct ras_common_if *ras_if = adev->sdma.ras_if;
2036 	struct ras_dispatch_if ih_data = {
2037 		.entry = entry,
2038 	};
2039 
2040 	if (!ras_if)
2041 		return 0;
2042 
2043 	ih_data.head = *ras_if;
2044 
2045 	amdgpu_ras_interrupt_dispatch(adev, &ih_data);
2046 	return 0;
2047 }
2048 
2049 static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
2050 					      struct amdgpu_irq_src *source,
2051 					      struct amdgpu_iv_entry *entry)
2052 {
2053 	int instance;
2054 
2055 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
2056 
2057 	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2058 	if (instance < 0)
2059 		return 0;
2060 
2061 	switch (entry->ring_id) {
2062 	case 0:
2063 		drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
2064 		break;
2065 	}
2066 	return 0;
2067 }
2068 
2069 static int sdma_v4_0_set_ecc_irq_state(struct amdgpu_device *adev,
2070 					struct amdgpu_irq_src *source,
2071 					unsigned type,
2072 					enum amdgpu_interrupt_state state)
2073 {
2074 	u32 sdma_edc_config;
2075 
2076 	sdma_edc_config = RREG32_SDMA(type, mmSDMA0_EDC_CONFIG);
2077 	sdma_edc_config = REG_SET_FIELD(sdma_edc_config, SDMA0_EDC_CONFIG, ECC_INT_ENABLE,
2078 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2079 	WREG32_SDMA(type, mmSDMA0_EDC_CONFIG, sdma_edc_config);
2080 
2081 	return 0;
2082 }
2083 
2084 static void sdma_v4_0_update_medium_grain_clock_gating(
2085 		struct amdgpu_device *adev,
2086 		bool enable)
2087 {
2088 	uint32_t data, def;
2089 
2090 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
2091 		/* enable sdma0 clock gating */
2092 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
2093 		data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2094 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2095 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2096 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2097 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2098 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2099 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2100 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2101 		if (def != data)
2102 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
2103 
2104 		if (adev->sdma.num_instances > 1) {
2105 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
2106 			data &= ~(SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2107 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2108 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2109 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2110 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2111 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2112 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2113 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2114 			if (def != data)
2115 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
2116 		}
2117 	} else {
2118 		/* disable sdma0 clock gating */
2119 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
2120 		data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2121 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2122 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2123 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2124 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2125 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2126 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2127 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2128 
2129 		if (def != data)
2130 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
2131 
2132 		if (adev->sdma.num_instances > 1) {
2133 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
2134 			data |= (SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2135 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2136 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2137 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2138 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2139 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2140 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2141 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2142 			if (def != data)
2143 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
2144 		}
2145 	}
2146 }
2147 
2148 
2149 static void sdma_v4_0_update_medium_grain_light_sleep(
2150 		struct amdgpu_device *adev,
2151 		bool enable)
2152 {
2153 	uint32_t data, def;
2154 
2155 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
2156 		/* 1-not override: enable sdma0 mem light sleep */
2157 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2158 		data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2159 		if (def != data)
2160 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
2161 
2162 		/* 1-not override: enable sdma1 mem light sleep */
2163 		if (adev->sdma.num_instances > 1) {
2164 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
2165 			data |= SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2166 			if (def != data)
2167 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
2168 		}
2169 	} else {
2170 		/* 0-override:disable sdma0 mem light sleep */
2171 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2172 		data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2173 		if (def != data)
2174 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
2175 
2176 		/* 0-override:disable sdma1 mem light sleep */
2177 		if (adev->sdma.num_instances > 1) {
2178 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
2179 			data &= ~SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2180 			if (def != data)
2181 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
2182 		}
2183 	}
2184 }
2185 
2186 static int sdma_v4_0_set_clockgating_state(void *handle,
2187 					  enum amd_clockgating_state state)
2188 {
2189 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2190 
2191 	if (amdgpu_sriov_vf(adev))
2192 		return 0;
2193 
2194 	switch (adev->asic_type) {
2195 	case CHIP_VEGA10:
2196 	case CHIP_VEGA12:
2197 	case CHIP_VEGA20:
2198 	case CHIP_RAVEN:
2199 		sdma_v4_0_update_medium_grain_clock_gating(adev,
2200 				state == AMD_CG_STATE_GATE ? true : false);
2201 		sdma_v4_0_update_medium_grain_light_sleep(adev,
2202 				state == AMD_CG_STATE_GATE ? true : false);
2203 		break;
2204 	default:
2205 		break;
2206 	}
2207 	return 0;
2208 }
2209 
2210 static int sdma_v4_0_set_powergating_state(void *handle,
2211 					  enum amd_powergating_state state)
2212 {
2213 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2214 
2215 	switch (adev->asic_type) {
2216 	case CHIP_RAVEN:
2217 		sdma_v4_1_update_power_gating(adev,
2218 				state == AMD_PG_STATE_GATE ? true : false);
2219 		break;
2220 	default:
2221 		break;
2222 	}
2223 
2224 	return 0;
2225 }
2226 
2227 static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
2228 {
2229 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2230 	int data;
2231 
2232 	if (amdgpu_sriov_vf(adev))
2233 		*flags = 0;
2234 
2235 	/* AMD_CG_SUPPORT_SDMA_MGCG */
2236 	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
2237 	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
2238 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
2239 
2240 	/* AMD_CG_SUPPORT_SDMA_LS */
2241 	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2242 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
2243 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
2244 }
2245 
2246 const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
2247 	.name = "sdma_v4_0",
2248 	.early_init = sdma_v4_0_early_init,
2249 	.late_init = sdma_v4_0_late_init,
2250 	.sw_init = sdma_v4_0_sw_init,
2251 	.sw_fini = sdma_v4_0_sw_fini,
2252 	.hw_init = sdma_v4_0_hw_init,
2253 	.hw_fini = sdma_v4_0_hw_fini,
2254 	.suspend = sdma_v4_0_suspend,
2255 	.resume = sdma_v4_0_resume,
2256 	.is_idle = sdma_v4_0_is_idle,
2257 	.wait_for_idle = sdma_v4_0_wait_for_idle,
2258 	.soft_reset = sdma_v4_0_soft_reset,
2259 	.set_clockgating_state = sdma_v4_0_set_clockgating_state,
2260 	.set_powergating_state = sdma_v4_0_set_powergating_state,
2261 	.get_clockgating_state = sdma_v4_0_get_clockgating_state,
2262 };
2263 
2264 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
2265 	.type = AMDGPU_RING_TYPE_SDMA,
2266 	.align_mask = 0xf,
2267 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2268 	.support_64bit_ptrs = true,
2269 	.vmhub = AMDGPU_MMHUB_0,
2270 	.get_rptr = sdma_v4_0_ring_get_rptr,
2271 	.get_wptr = sdma_v4_0_ring_get_wptr,
2272 	.set_wptr = sdma_v4_0_ring_set_wptr,
2273 	.emit_frame_size =
2274 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2275 		3 + /* hdp invalidate */
2276 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2277 		/* sdma_v4_0_ring_emit_vm_flush */
2278 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2279 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2280 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2281 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2282 	.emit_ib = sdma_v4_0_ring_emit_ib,
2283 	.emit_fence = sdma_v4_0_ring_emit_fence,
2284 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2285 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2286 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2287 	.test_ring = sdma_v4_0_ring_test_ring,
2288 	.test_ib = sdma_v4_0_ring_test_ib,
2289 	.insert_nop = sdma_v4_0_ring_insert_nop,
2290 	.pad_ib = sdma_v4_0_ring_pad_ib,
2291 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2292 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2293 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2294 };
2295 
2296 /*
2297  * On Arcturus, SDMA instance 5~7 has a different vmhub type(AMDGPU_MMHUB_1).
2298  * So create a individual constant ring_funcs for those instances.
2299  */
2300 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs_2nd_mmhub = {
2301 	.type = AMDGPU_RING_TYPE_SDMA,
2302 	.align_mask = 0xf,
2303 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2304 	.support_64bit_ptrs = true,
2305 	.vmhub = AMDGPU_MMHUB_1,
2306 	.get_rptr = sdma_v4_0_ring_get_rptr,
2307 	.get_wptr = sdma_v4_0_ring_get_wptr,
2308 	.set_wptr = sdma_v4_0_ring_set_wptr,
2309 	.emit_frame_size =
2310 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2311 		3 + /* hdp invalidate */
2312 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2313 		/* sdma_v4_0_ring_emit_vm_flush */
2314 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2315 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2316 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2317 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2318 	.emit_ib = sdma_v4_0_ring_emit_ib,
2319 	.emit_fence = sdma_v4_0_ring_emit_fence,
2320 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2321 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2322 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2323 	.test_ring = sdma_v4_0_ring_test_ring,
2324 	.test_ib = sdma_v4_0_ring_test_ib,
2325 	.insert_nop = sdma_v4_0_ring_insert_nop,
2326 	.pad_ib = sdma_v4_0_ring_pad_ib,
2327 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2328 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2329 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2330 };
2331 
2332 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = {
2333 	.type = AMDGPU_RING_TYPE_SDMA,
2334 	.align_mask = 0xf,
2335 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2336 	.support_64bit_ptrs = true,
2337 	.vmhub = AMDGPU_MMHUB_0,
2338 	.get_rptr = sdma_v4_0_ring_get_rptr,
2339 	.get_wptr = sdma_v4_0_page_ring_get_wptr,
2340 	.set_wptr = sdma_v4_0_page_ring_set_wptr,
2341 	.emit_frame_size =
2342 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2343 		3 + /* hdp invalidate */
2344 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2345 		/* sdma_v4_0_ring_emit_vm_flush */
2346 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2347 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2348 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2349 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2350 	.emit_ib = sdma_v4_0_ring_emit_ib,
2351 	.emit_fence = sdma_v4_0_ring_emit_fence,
2352 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2353 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2354 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2355 	.test_ring = sdma_v4_0_ring_test_ring,
2356 	.test_ib = sdma_v4_0_ring_test_ib,
2357 	.insert_nop = sdma_v4_0_ring_insert_nop,
2358 	.pad_ib = sdma_v4_0_ring_pad_ib,
2359 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2360 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2361 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2362 };
2363 
2364 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs_2nd_mmhub = {
2365 	.type = AMDGPU_RING_TYPE_SDMA,
2366 	.align_mask = 0xf,
2367 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2368 	.support_64bit_ptrs = true,
2369 	.vmhub = AMDGPU_MMHUB_1,
2370 	.get_rptr = sdma_v4_0_ring_get_rptr,
2371 	.get_wptr = sdma_v4_0_page_ring_get_wptr,
2372 	.set_wptr = sdma_v4_0_page_ring_set_wptr,
2373 	.emit_frame_size =
2374 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2375 		3 + /* hdp invalidate */
2376 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2377 		/* sdma_v4_0_ring_emit_vm_flush */
2378 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2379 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2380 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2381 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2382 	.emit_ib = sdma_v4_0_ring_emit_ib,
2383 	.emit_fence = sdma_v4_0_ring_emit_fence,
2384 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2385 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2386 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2387 	.test_ring = sdma_v4_0_ring_test_ring,
2388 	.test_ib = sdma_v4_0_ring_test_ib,
2389 	.insert_nop = sdma_v4_0_ring_insert_nop,
2390 	.pad_ib = sdma_v4_0_ring_pad_ib,
2391 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2392 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2393 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2394 };
2395 
2396 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
2397 {
2398 	int i;
2399 
2400 	for (i = 0; i < adev->sdma.num_instances; i++) {
2401 		if (adev->asic_type == CHIP_ARCTURUS && i >= 5)
2402 			adev->sdma.instance[i].ring.funcs =
2403 					&sdma_v4_0_ring_funcs_2nd_mmhub;
2404 		else
2405 			adev->sdma.instance[i].ring.funcs =
2406 					&sdma_v4_0_ring_funcs;
2407 		adev->sdma.instance[i].ring.me = i;
2408 		if (adev->sdma.has_page_queue) {
2409 			if (adev->asic_type == CHIP_ARCTURUS && i >= 5)
2410 				adev->sdma.instance[i].page.funcs =
2411 					&sdma_v4_0_page_ring_funcs_2nd_mmhub;
2412 			else
2413 				adev->sdma.instance[i].page.funcs =
2414 					&sdma_v4_0_page_ring_funcs;
2415 			adev->sdma.instance[i].page.me = i;
2416 		}
2417 	}
2418 }
2419 
2420 static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
2421 	.set = sdma_v4_0_set_trap_irq_state,
2422 	.process = sdma_v4_0_process_trap_irq,
2423 };
2424 
2425 static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
2426 	.process = sdma_v4_0_process_illegal_inst_irq,
2427 };
2428 
2429 static const struct amdgpu_irq_src_funcs sdma_v4_0_ecc_irq_funcs = {
2430 	.set = sdma_v4_0_set_ecc_irq_state,
2431 	.process = sdma_v4_0_process_ecc_irq,
2432 };
2433 
2434 
2435 
2436 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
2437 {
2438 	switch (adev->sdma.num_instances) {
2439 	case 1:
2440 		adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE1;
2441 		adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE1;
2442 		break;
2443 	case 8:
2444 		adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2445 		adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2446 		break;
2447 	case 2:
2448 	default:
2449 		adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE2;
2450 		adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE2;
2451 		break;
2452 	}
2453 	adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
2454 	adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
2455 	adev->sdma.ecc_irq.funcs = &sdma_v4_0_ecc_irq_funcs;
2456 }
2457 
2458 /**
2459  * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
2460  *
2461  * @ring: amdgpu_ring structure holding ring information
2462  * @src_offset: src GPU address
2463  * @dst_offset: dst GPU address
2464  * @byte_count: number of bytes to xfer
2465  *
2466  * Copy GPU buffers using the DMA engine (VEGA10/12).
2467  * Used by the amdgpu ttm implementation to move pages if
2468  * registered as the asic copy callback.
2469  */
2470 static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
2471 				       uint64_t src_offset,
2472 				       uint64_t dst_offset,
2473 				       uint32_t byte_count)
2474 {
2475 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
2476 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
2477 	ib->ptr[ib->length_dw++] = byte_count - 1;
2478 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
2479 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
2480 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
2481 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2482 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2483 }
2484 
2485 /**
2486  * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
2487  *
2488  * @ring: amdgpu_ring structure holding ring information
2489  * @src_data: value to write to buffer
2490  * @dst_offset: dst GPU address
2491  * @byte_count: number of bytes to xfer
2492  *
2493  * Fill GPU buffers using the DMA engine (VEGA10/12).
2494  */
2495 static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
2496 				       uint32_t src_data,
2497 				       uint64_t dst_offset,
2498 				       uint32_t byte_count)
2499 {
2500 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2501 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2502 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2503 	ib->ptr[ib->length_dw++] = src_data;
2504 	ib->ptr[ib->length_dw++] = byte_count - 1;
2505 }
2506 
2507 static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
2508 	.copy_max_bytes = 0x400000,
2509 	.copy_num_dw = 7,
2510 	.emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
2511 
2512 	.fill_max_bytes = 0x400000,
2513 	.fill_num_dw = 5,
2514 	.emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
2515 };
2516 
2517 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
2518 {
2519 	adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
2520 	if (adev->sdma.has_page_queue && adev->sdma.num_instances > 1)
2521 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[1].page;
2522 	else
2523 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2524 }
2525 
2526 static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
2527 	.copy_pte_num_dw = 7,
2528 	.copy_pte = sdma_v4_0_vm_copy_pte,
2529 
2530 	.write_pte = sdma_v4_0_vm_write_pte,
2531 	.set_pte_pde = sdma_v4_0_vm_set_pte_pde,
2532 };
2533 
2534 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
2535 {
2536 	struct drm_gpu_scheduler *sched;
2537 	unsigned i;
2538 
2539 	adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
2540 	if (adev->sdma.has_page_queue && adev->sdma.num_instances > 1) {
2541 		for (i = 1; i < adev->sdma.num_instances; i++) {
2542 			sched = &adev->sdma.instance[i].page.sched;
2543 			adev->vm_manager.vm_pte_rqs[i - 1] =
2544 				&sched->sched_rq[DRM_SCHED_PRIORITY_KERNEL];
2545 		}
2546 		adev->vm_manager.vm_pte_num_rqs = adev->sdma.num_instances - 1;
2547 		adev->vm_manager.page_fault = &adev->sdma.instance[0].page;
2548 	} else {
2549 		for (i = 0; i < adev->sdma.num_instances; i++) {
2550 			sched = &adev->sdma.instance[i].ring.sched;
2551 			adev->vm_manager.vm_pte_rqs[i] =
2552 				&sched->sched_rq[DRM_SCHED_PRIORITY_KERNEL];
2553 		}
2554 		adev->vm_manager.vm_pte_num_rqs = adev->sdma.num_instances;
2555 	}
2556 }
2557 
2558 const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
2559 	.type = AMD_IP_BLOCK_TYPE_SDMA,
2560 	.major = 4,
2561 	.minor = 0,
2562 	.rev = 0,
2563 	.funcs = &sdma_v4_0_ip_funcs,
2564 };
2565