xref: /linux/drivers/gpu/drm/amd/amdgpu/sdma_v4_0.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28 
29 #include "amdgpu.h"
30 #include "amdgpu_ucode.h"
31 #include "amdgpu_trace.h"
32 
33 #include "sdma0/sdma0_4_2_offset.h"
34 #include "sdma0/sdma0_4_2_sh_mask.h"
35 #include "sdma1/sdma1_4_2_offset.h"
36 #include "sdma1/sdma1_4_2_sh_mask.h"
37 #include "sdma2/sdma2_4_2_2_offset.h"
38 #include "sdma2/sdma2_4_2_2_sh_mask.h"
39 #include "sdma3/sdma3_4_2_2_offset.h"
40 #include "sdma3/sdma3_4_2_2_sh_mask.h"
41 #include "sdma4/sdma4_4_2_2_offset.h"
42 #include "sdma4/sdma4_4_2_2_sh_mask.h"
43 #include "sdma5/sdma5_4_2_2_offset.h"
44 #include "sdma5/sdma5_4_2_2_sh_mask.h"
45 #include "sdma6/sdma6_4_2_2_offset.h"
46 #include "sdma6/sdma6_4_2_2_sh_mask.h"
47 #include "sdma7/sdma7_4_2_2_offset.h"
48 #include "sdma7/sdma7_4_2_2_sh_mask.h"
49 #include "sdma0/sdma0_4_1_default.h"
50 
51 #include "soc15_common.h"
52 #include "soc15.h"
53 #include "vega10_sdma_pkt_open.h"
54 
55 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
56 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
57 
58 #include "amdgpu_ras.h"
59 #include "sdma_v4_4.h"
60 
61 MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
62 MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
63 MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
64 MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
65 MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
66 MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
67 MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
68 MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
69 MODULE_FIRMWARE("amdgpu/raven2_sdma.bin");
70 MODULE_FIRMWARE("amdgpu/arcturus_sdma.bin");
71 MODULE_FIRMWARE("amdgpu/renoir_sdma.bin");
72 MODULE_FIRMWARE("amdgpu/green_sardine_sdma.bin");
73 MODULE_FIRMWARE("amdgpu/aldebaran_sdma.bin");
74 
75 static const struct amdgpu_hwip_reg_entry sdma_reg_list_4_0[] = {
76 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_STATUS_REG),
77 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_STATUS1_REG),
78 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_STATUS2_REG),
79 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_STATUS3_REG),
80 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_UCODE_CHECKSUM),
81 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RB_RPTR_FETCH_HI),
82 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RB_RPTR_FETCH),
83 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_UTCL1_RD_STATUS),
84 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_UTCL1_WR_STATUS),
85 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_UTCL1_RD_XNACK0),
86 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_UTCL1_RD_XNACK1),
87 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_UTCL1_WR_XNACK0),
88 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_UTCL1_WR_XNACK1),
89 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_RB_CNTL),
90 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_RB_RPTR),
91 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_RB_RPTR_HI),
92 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_RB_WPTR),
93 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_RB_WPTR_HI),
94 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_IB_OFFSET),
95 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_IB_BASE_LO),
96 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_IB_BASE_HI),
97 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_IB_CNTL),
98 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_IB_RPTR),
99 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_IB_SUB_REMAIN),
100 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_DUMMY_REG),
101 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_RB_CNTL),
102 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_RB_RPTR),
103 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_RB_RPTR_HI),
104 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_RB_WPTR),
105 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_RB_WPTR_HI),
106 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_IB_OFFSET),
107 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_IB_BASE_LO),
108 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_IB_BASE_HI),
109 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_DUMMY_REG),
110 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_RB_CNTL),
111 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_RB_RPTR),
112 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_RB_RPTR_HI),
113 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_RB_WPTR),
114 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_RB_WPTR_HI),
115 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_IB_OFFSET),
116 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_IB_BASE_LO),
117 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_IB_BASE_HI),
118 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_DUMMY_REG),
119 	SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_VM_CNTL)
120 };
121 
122 #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK  0x000000F8L
123 #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
124 
125 #define WREG32_SDMA(instance, offset, value) \
126 	WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value)
127 #define RREG32_SDMA(instance, offset) \
128 	RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)))
129 
130 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
131 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
132 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
133 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
134 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev);
135 
136 static const struct soc15_reg_golden golden_settings_sdma_4[] = {
137 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
138 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
139 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
140 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
141 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
142 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
143 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
144 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
145 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
146 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
147 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
148 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
149 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
150 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
151 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
152 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
153 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
154 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
155 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
156 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
157 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
158 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
159 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
160 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
161 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
162 };
163 
164 static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
165 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
166 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
167 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
168 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
169 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
170 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
171 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
172 };
173 
174 static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
175 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
176 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
177 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
178 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
179 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
180 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
181 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
182 };
183 
184 static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
185 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
186 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
187 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
188 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
189 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
190 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
191 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
192 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
193 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
194 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003e0),
195 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
196 };
197 
198 static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
199 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
200 };
201 
202 static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
203 {
204 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
205 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
206 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
207 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
208 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
209 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
210 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
211 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
212 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
213 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
214 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
215 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
216 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
217 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
218 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
219 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
220 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
221 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
222 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
223 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
224 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
225 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
226 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
227 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
228 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
229 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
230 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
231 };
232 
233 static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
234 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
235 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
236 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
237 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
238 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
239 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
240 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
241 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
242 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
243 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
244 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
245 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
246 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
247 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
248 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
249 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
250 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
251 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
252 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
253 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
254 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
255 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
256 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
257 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
258 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
259 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
260 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
261 };
262 
263 static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
264 {
265 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
266 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
267 };
268 
269 static const struct soc15_reg_golden golden_settings_sdma_rv2[] =
270 {
271 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001),
272 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001)
273 };
274 
275 static const struct soc15_reg_golden golden_settings_sdma_arct[] =
276 {
277 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
278 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
279 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
280 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
281 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
282 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
283 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
284 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
285 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
286 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
287 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
288 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
289 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
290 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
291 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
292 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
293 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
294 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
295 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
296 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
297 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
298 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
299 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
300 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
301 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
302 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
303 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
304 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
305 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
306 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
307 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
308 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_UTCL1_TIMEOUT, 0xffffffff, 0x00010001)
309 };
310 
311 static const struct soc15_reg_golden golden_settings_sdma_aldebaran[] = {
312 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
313 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
314 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
315 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
316 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
317 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
318 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
319 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
320 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
321 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
322 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
323 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
324 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
325 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
326 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
327 };
328 
329 static const struct soc15_reg_golden golden_settings_sdma_4_3[] = {
330 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
331 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
332 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
333 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002),
334 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
335 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003fff07, 0x40000051),
336 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
337 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
338 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003e0),
339 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x03fbe1fe)
340 };
341 
342 static const struct soc15_ras_field_entry sdma_v4_0_ras_fields[] = {
343 	{ "SDMA_UCODE_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
344 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UCODE_BUF_SED),
345 	0, 0,
346 	},
347 	{ "SDMA_RB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
348 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_RB_CMD_BUF_SED),
349 	0, 0,
350 	},
351 	{ "SDMA_IB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
352 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_IB_CMD_BUF_SED),
353 	0, 0,
354 	},
355 	{ "SDMA_UTCL1_RD_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
356 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RD_FIFO_SED),
357 	0, 0,
358 	},
359 	{ "SDMA_UTCL1_RDBST_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
360 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RDBST_FIFO_SED),
361 	0, 0,
362 	},
363 	{ "SDMA_DATA_LUT_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
364 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_DATA_LUT_FIFO_SED),
365 	0, 0,
366 	},
367 	{ "SDMA_MBANK_DATA_BUF0_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
368 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF0_SED),
369 	0, 0,
370 	},
371 	{ "SDMA_MBANK_DATA_BUF1_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
372 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF1_SED),
373 	0, 0,
374 	},
375 	{ "SDMA_MBANK_DATA_BUF2_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
376 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF2_SED),
377 	0, 0,
378 	},
379 	{ "SDMA_MBANK_DATA_BUF3_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
380 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF3_SED),
381 	0, 0,
382 	},
383 	{ "SDMA_MBANK_DATA_BUF4_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
384 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF4_SED),
385 	0, 0,
386 	},
387 	{ "SDMA_MBANK_DATA_BUF5_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
388 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF5_SED),
389 	0, 0,
390 	},
391 	{ "SDMA_MBANK_DATA_BUF6_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
392 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF6_SED),
393 	0, 0,
394 	},
395 	{ "SDMA_MBANK_DATA_BUF7_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
396 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF7_SED),
397 	0, 0,
398 	},
399 	{ "SDMA_MBANK_DATA_BUF8_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
400 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF8_SED),
401 	0, 0,
402 	},
403 	{ "SDMA_MBANK_DATA_BUF9_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
404 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF9_SED),
405 	0, 0,
406 	},
407 	{ "SDMA_MBANK_DATA_BUF10_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
408 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF10_SED),
409 	0, 0,
410 	},
411 	{ "SDMA_MBANK_DATA_BUF11_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
412 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF11_SED),
413 	0, 0,
414 	},
415 	{ "SDMA_MBANK_DATA_BUF12_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
416 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF12_SED),
417 	0, 0,
418 	},
419 	{ "SDMA_MBANK_DATA_BUF13_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
420 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF13_SED),
421 	0, 0,
422 	},
423 	{ "SDMA_MBANK_DATA_BUF14_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
424 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF14_SED),
425 	0, 0,
426 	},
427 	{ "SDMA_MBANK_DATA_BUF15_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
428 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF15_SED),
429 	0, 0,
430 	},
431 	{ "SDMA_SPLIT_DAT_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
432 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_SPLIT_DAT_BUF_SED),
433 	0, 0,
434 	},
435 	{ "SDMA_MC_WR_ADDR_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
436 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MC_WR_ADDR_FIFO_SED),
437 	0, 0,
438 	},
439 };
440 
441 static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
442 		u32 instance, u32 offset)
443 {
444 	switch (instance) {
445 	case 0:
446 		return (adev->reg_offset[SDMA0_HWIP][0][0] + offset);
447 	case 1:
448 		return (adev->reg_offset[SDMA1_HWIP][0][0] + offset);
449 	case 2:
450 		return (adev->reg_offset[SDMA2_HWIP][0][1] + offset);
451 	case 3:
452 		return (adev->reg_offset[SDMA3_HWIP][0][1] + offset);
453 	case 4:
454 		return (adev->reg_offset[SDMA4_HWIP][0][1] + offset);
455 	case 5:
456 		return (adev->reg_offset[SDMA5_HWIP][0][1] + offset);
457 	case 6:
458 		return (adev->reg_offset[SDMA6_HWIP][0][1] + offset);
459 	case 7:
460 		return (adev->reg_offset[SDMA7_HWIP][0][1] + offset);
461 	default:
462 		break;
463 	}
464 	return 0;
465 }
466 
467 static unsigned sdma_v4_0_seq_to_irq_id(int seq_num)
468 {
469 	switch (seq_num) {
470 	case 0:
471 		return SOC15_IH_CLIENTID_SDMA0;
472 	case 1:
473 		return SOC15_IH_CLIENTID_SDMA1;
474 	case 2:
475 		return SOC15_IH_CLIENTID_SDMA2;
476 	case 3:
477 		return SOC15_IH_CLIENTID_SDMA3;
478 	case 4:
479 		return SOC15_IH_CLIENTID_SDMA4;
480 	case 5:
481 		return SOC15_IH_CLIENTID_SDMA5;
482 	case 6:
483 		return SOC15_IH_CLIENTID_SDMA6;
484 	case 7:
485 		return SOC15_IH_CLIENTID_SDMA7;
486 	default:
487 		break;
488 	}
489 	return -EINVAL;
490 }
491 
492 static int sdma_v4_0_irq_id_to_seq(unsigned client_id)
493 {
494 	switch (client_id) {
495 	case SOC15_IH_CLIENTID_SDMA0:
496 		return 0;
497 	case SOC15_IH_CLIENTID_SDMA1:
498 		return 1;
499 	case SOC15_IH_CLIENTID_SDMA2:
500 		return 2;
501 	case SOC15_IH_CLIENTID_SDMA3:
502 		return 3;
503 	case SOC15_IH_CLIENTID_SDMA4:
504 		return 4;
505 	case SOC15_IH_CLIENTID_SDMA5:
506 		return 5;
507 	case SOC15_IH_CLIENTID_SDMA6:
508 		return 6;
509 	case SOC15_IH_CLIENTID_SDMA7:
510 		return 7;
511 	default:
512 		break;
513 	}
514 	return -EINVAL;
515 }
516 
517 static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
518 {
519 	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
520 	case IP_VERSION(4, 0, 0):
521 		soc15_program_register_sequence(adev,
522 						golden_settings_sdma_4,
523 						ARRAY_SIZE(golden_settings_sdma_4));
524 		soc15_program_register_sequence(adev,
525 						golden_settings_sdma_vg10,
526 						ARRAY_SIZE(golden_settings_sdma_vg10));
527 		break;
528 	case IP_VERSION(4, 0, 1):
529 		soc15_program_register_sequence(adev,
530 						golden_settings_sdma_4,
531 						ARRAY_SIZE(golden_settings_sdma_4));
532 		soc15_program_register_sequence(adev,
533 						golden_settings_sdma_vg12,
534 						ARRAY_SIZE(golden_settings_sdma_vg12));
535 		break;
536 	case IP_VERSION(4, 2, 0):
537 		soc15_program_register_sequence(adev,
538 						golden_settings_sdma0_4_2_init,
539 						ARRAY_SIZE(golden_settings_sdma0_4_2_init));
540 		soc15_program_register_sequence(adev,
541 						golden_settings_sdma0_4_2,
542 						ARRAY_SIZE(golden_settings_sdma0_4_2));
543 		soc15_program_register_sequence(adev,
544 						golden_settings_sdma1_4_2,
545 						ARRAY_SIZE(golden_settings_sdma1_4_2));
546 		break;
547 	case IP_VERSION(4, 2, 2):
548 		soc15_program_register_sequence(adev,
549 						golden_settings_sdma_arct,
550 						ARRAY_SIZE(golden_settings_sdma_arct));
551 		break;
552 	case IP_VERSION(4, 4, 0):
553 		soc15_program_register_sequence(adev,
554 						golden_settings_sdma_aldebaran,
555 						ARRAY_SIZE(golden_settings_sdma_aldebaran));
556 		break;
557 	case IP_VERSION(4, 1, 0):
558 	case IP_VERSION(4, 1, 1):
559 		soc15_program_register_sequence(adev,
560 						golden_settings_sdma_4_1,
561 						ARRAY_SIZE(golden_settings_sdma_4_1));
562 		if (adev->apu_flags & AMD_APU_IS_RAVEN2)
563 			soc15_program_register_sequence(adev,
564 							golden_settings_sdma_rv2,
565 							ARRAY_SIZE(golden_settings_sdma_rv2));
566 		else
567 			soc15_program_register_sequence(adev,
568 							golden_settings_sdma_rv1,
569 							ARRAY_SIZE(golden_settings_sdma_rv1));
570 		break;
571 	case IP_VERSION(4, 1, 2):
572 		soc15_program_register_sequence(adev,
573 						golden_settings_sdma_4_3,
574 						ARRAY_SIZE(golden_settings_sdma_4_3));
575 		break;
576 	default:
577 		break;
578 	}
579 }
580 
581 static void sdma_v4_0_setup_ulv(struct amdgpu_device *adev)
582 {
583 	int i;
584 
585 	/*
586 	 * The only chips with SDMAv4 and ULV are VG10 and VG20.
587 	 * Server SKUs take a different hysteresis setting from other SKUs.
588 	 */
589 	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
590 	case IP_VERSION(4, 0, 0):
591 		if (adev->pdev->device == 0x6860)
592 			break;
593 		return;
594 	case IP_VERSION(4, 2, 0):
595 		if (adev->pdev->device == 0x66a1)
596 			break;
597 		return;
598 	default:
599 		return;
600 	}
601 
602 	for (i = 0; i < adev->sdma.num_instances; i++) {
603 		uint32_t temp;
604 
605 		temp = RREG32_SDMA(i, mmSDMA0_ULV_CNTL);
606 		temp = REG_SET_FIELD(temp, SDMA0_ULV_CNTL, HYSTERESIS, 0x0);
607 		WREG32_SDMA(i, mmSDMA0_ULV_CNTL, temp);
608 	}
609 }
610 
611 /**
612  * sdma_v4_0_init_microcode - load ucode images from disk
613  *
614  * @adev: amdgpu_device pointer
615  *
616  * Use the firmware interface to load the ucode images into
617  * the driver (not loaded into hw).
618  * Returns 0 on success, error on failure.
619  */
620 
621 // emulation only, won't work on real chip
622 // vega10 real chip need to use PSP to load firmware
623 static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
624 {
625 	int ret, i;
626 
627 	for (i = 0; i < adev->sdma.num_instances; i++) {
628 		if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) ==
629 			    IP_VERSION(4, 2, 2) ||
630 		    amdgpu_ip_version(adev, SDMA0_HWIP, 0) ==
631 			    IP_VERSION(4, 4, 0)) {
632 			/* Acturus & Aldebaran will leverage the same FW memory
633 			   for every SDMA instance */
634 			ret = amdgpu_sdma_init_microcode(adev, 0, true);
635 			break;
636 		} else {
637 			ret = amdgpu_sdma_init_microcode(adev, i, false);
638 			if (ret)
639 				return ret;
640 		}
641 	}
642 
643 	return ret;
644 }
645 
646 /**
647  * sdma_v4_0_ring_get_rptr - get the current read pointer
648  *
649  * @ring: amdgpu ring pointer
650  *
651  * Get the current rptr from the hardware (VEGA10+).
652  */
653 static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
654 {
655 	u64 *rptr;
656 
657 	/* XXX check if swapping is necessary on BE */
658 	rptr = ((u64 *)ring->rptr_cpu_addr);
659 
660 	DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
661 	return ((*rptr) >> 2);
662 }
663 
664 /**
665  * sdma_v4_0_ring_get_wptr - get the current write pointer
666  *
667  * @ring: amdgpu ring pointer
668  *
669  * Get the current wptr from the hardware (VEGA10+).
670  */
671 static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
672 {
673 	struct amdgpu_device *adev = ring->adev;
674 	u64 wptr;
675 
676 	if (ring->use_doorbell) {
677 		/* XXX check if swapping is necessary on BE */
678 		wptr = READ_ONCE(*((u64 *)ring->wptr_cpu_addr));
679 		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
680 	} else {
681 		wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI);
682 		wptr = wptr << 32;
683 		wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR);
684 		DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
685 				ring->me, wptr);
686 	}
687 
688 	return wptr >> 2;
689 }
690 
691 /**
692  * sdma_v4_0_ring_set_wptr - commit the write pointer
693  *
694  * @ring: amdgpu ring pointer
695  *
696  * Write the wptr back to the hardware (VEGA10+).
697  */
698 static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
699 {
700 	struct amdgpu_device *adev = ring->adev;
701 
702 	DRM_DEBUG("Setting write pointer\n");
703 	if (ring->use_doorbell) {
704 		u64 *wb = (u64 *)ring->wptr_cpu_addr;
705 
706 		DRM_DEBUG("Using doorbell -- "
707 				"wptr_offs == 0x%08x "
708 				"lower_32_bits(ring->wptr << 2) == 0x%08x "
709 				"upper_32_bits(ring->wptr << 2) == 0x%08x\n",
710 				ring->wptr_offs,
711 				lower_32_bits(ring->wptr << 2),
712 				upper_32_bits(ring->wptr << 2));
713 		/* XXX check if swapping is necessary on BE */
714 		WRITE_ONCE(*wb, (ring->wptr << 2));
715 		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
716 				ring->doorbell_index, ring->wptr << 2);
717 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
718 	} else {
719 		DRM_DEBUG("Not using doorbell -- "
720 				"mmSDMA%i_GFX_RB_WPTR == 0x%08x "
721 				"mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
722 				ring->me,
723 				lower_32_bits(ring->wptr << 2),
724 				ring->me,
725 				upper_32_bits(ring->wptr << 2));
726 		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR,
727 			    lower_32_bits(ring->wptr << 2));
728 		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI,
729 			    upper_32_bits(ring->wptr << 2));
730 	}
731 }
732 
733 /**
734  * sdma_v4_0_page_ring_get_wptr - get the current write pointer
735  *
736  * @ring: amdgpu ring pointer
737  *
738  * Get the current wptr from the hardware (VEGA10+).
739  */
740 static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring)
741 {
742 	struct amdgpu_device *adev = ring->adev;
743 	u64 wptr;
744 
745 	if (ring->use_doorbell) {
746 		/* XXX check if swapping is necessary on BE */
747 		wptr = READ_ONCE(*((u64 *)ring->wptr_cpu_addr));
748 	} else {
749 		wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI);
750 		wptr = wptr << 32;
751 		wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR);
752 	}
753 
754 	return wptr >> 2;
755 }
756 
757 /**
758  * sdma_v4_0_page_ring_set_wptr - commit the write pointer
759  *
760  * @ring: amdgpu ring pointer
761  *
762  * Write the wptr back to the hardware (VEGA10+).
763  */
764 static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring)
765 {
766 	struct amdgpu_device *adev = ring->adev;
767 
768 	if (ring->use_doorbell) {
769 		u64 *wb = (u64 *)ring->wptr_cpu_addr;
770 
771 		/* XXX check if swapping is necessary on BE */
772 		WRITE_ONCE(*wb, (ring->wptr << 2));
773 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
774 	} else {
775 		uint64_t wptr = ring->wptr << 2;
776 
777 		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR,
778 			    lower_32_bits(wptr));
779 		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI,
780 			    upper_32_bits(wptr));
781 	}
782 }
783 
784 static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
785 {
786 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
787 	int i;
788 
789 	for (i = 0; i < count; i++)
790 		if (sdma && sdma->burst_nop && (i == 0))
791 			amdgpu_ring_write(ring, ring->funcs->nop |
792 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
793 		else
794 			amdgpu_ring_write(ring, ring->funcs->nop);
795 }
796 
797 /**
798  * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
799  *
800  * @ring: amdgpu ring pointer
801  * @job: job to retrieve vmid from
802  * @ib: IB object to schedule
803  * @flags: unused
804  *
805  * Schedule an IB in the DMA ring (VEGA10).
806  */
807 static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
808 				   struct amdgpu_job *job,
809 				   struct amdgpu_ib *ib,
810 				   uint32_t flags)
811 {
812 	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
813 
814 	/* IB packet must end on a 8 DW boundary */
815 	sdma_v4_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
816 
817 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
818 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
819 	/* base must be 32 byte aligned */
820 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
821 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
822 	amdgpu_ring_write(ring, ib->length_dw);
823 	amdgpu_ring_write(ring, 0);
824 	amdgpu_ring_write(ring, 0);
825 
826 }
827 
828 static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
829 				   int mem_space, int hdp,
830 				   uint32_t addr0, uint32_t addr1,
831 				   uint32_t ref, uint32_t mask,
832 				   uint32_t inv)
833 {
834 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
835 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
836 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
837 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
838 	if (mem_space) {
839 		/* memory */
840 		amdgpu_ring_write(ring, addr0);
841 		amdgpu_ring_write(ring, addr1);
842 	} else {
843 		/* registers */
844 		amdgpu_ring_write(ring, addr0 << 2);
845 		amdgpu_ring_write(ring, addr1 << 2);
846 	}
847 	amdgpu_ring_write(ring, ref); /* reference */
848 	amdgpu_ring_write(ring, mask); /* mask */
849 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
850 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
851 }
852 
853 /**
854  * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
855  *
856  * @ring: amdgpu ring pointer
857  *
858  * Emit an hdp flush packet on the requested DMA ring.
859  */
860 static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
861 {
862 	struct amdgpu_device *adev = ring->adev;
863 	u32 ref_and_mask = 0;
864 	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
865 
866 	ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me;
867 
868 	sdma_v4_0_wait_reg_mem(ring, 0, 1,
869 			       adev->nbio.funcs->get_hdp_flush_done_offset(adev),
870 			       adev->nbio.funcs->get_hdp_flush_req_offset(adev),
871 			       ref_and_mask, ref_and_mask, 10);
872 }
873 
874 /**
875  * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
876  *
877  * @ring: amdgpu ring pointer
878  * @addr: address
879  * @seq: sequence number
880  * @flags: fence related flags
881  *
882  * Add a DMA fence packet to the ring to write
883  * the fence seq number and DMA trap packet to generate
884  * an interrupt if needed (VEGA10).
885  */
886 static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
887 				      unsigned flags)
888 {
889 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
890 	/* write the fence */
891 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
892 	/* zero in first two bits */
893 	BUG_ON(addr & 0x3);
894 	amdgpu_ring_write(ring, lower_32_bits(addr));
895 	amdgpu_ring_write(ring, upper_32_bits(addr));
896 	amdgpu_ring_write(ring, lower_32_bits(seq));
897 
898 	/* optionally write high bits as well */
899 	if (write64bit) {
900 		addr += 4;
901 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
902 		/* zero in first two bits */
903 		BUG_ON(addr & 0x3);
904 		amdgpu_ring_write(ring, lower_32_bits(addr));
905 		amdgpu_ring_write(ring, upper_32_bits(addr));
906 		amdgpu_ring_write(ring, upper_32_bits(seq));
907 	}
908 
909 	/* generate an interrupt */
910 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
911 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
912 }
913 
914 
915 /**
916  * sdma_v4_0_gfx_enable - enable the gfx async dma engines
917  *
918  * @adev: amdgpu_device pointer
919  * @enable: enable SDMA RB/IB
920  * control the gfx async dma ring buffers (VEGA10).
921  */
922 static void sdma_v4_0_gfx_enable(struct amdgpu_device *adev, bool enable)
923 {
924 	u32 rb_cntl, ib_cntl;
925 	int i;
926 
927 	for (i = 0; i < adev->sdma.num_instances; i++) {
928 		rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
929 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, enable ? 1 : 0);
930 		WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
931 		ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
932 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, enable ? 1 : 0);
933 		WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
934 	}
935 }
936 
937 /**
938  * sdma_v4_0_rlc_stop - stop the compute async dma engines
939  *
940  * @adev: amdgpu_device pointer
941  *
942  * Stop the compute async dma queues (VEGA10).
943  */
944 static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
945 {
946 	/* XXX todo */
947 }
948 
949 /**
950  * sdma_v4_0_page_stop - stop the page async dma engines
951  *
952  * @adev: amdgpu_device pointer
953  *
954  * Stop the page async dma ring buffers (VEGA10).
955  */
956 static void sdma_v4_0_page_stop(struct amdgpu_device *adev)
957 {
958 	u32 rb_cntl, ib_cntl;
959 	int i;
960 
961 	for (i = 0; i < adev->sdma.num_instances; i++) {
962 		rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
963 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
964 					RB_ENABLE, 0);
965 		WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
966 		ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
967 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL,
968 					IB_ENABLE, 0);
969 		WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
970 	}
971 }
972 
973 /**
974  * sdma_v4_0_ctx_switch_enable - stop the async dma engines context switch
975  *
976  * @adev: amdgpu_device pointer
977  * @enable: enable/disable the DMA MEs context switch.
978  *
979  * Halt or unhalt the async dma engines context switch (VEGA10).
980  */
981 static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
982 {
983 	u32 f32_cntl, phase_quantum = 0;
984 	int i;
985 
986 	if (amdgpu_sdma_phase_quantum) {
987 		unsigned value = amdgpu_sdma_phase_quantum;
988 		unsigned unit = 0;
989 
990 		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
991 				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
992 			value = (value + 1) >> 1;
993 			unit++;
994 		}
995 		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
996 			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
997 			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
998 				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
999 			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
1000 				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
1001 			WARN_ONCE(1,
1002 			"clamping sdma_phase_quantum to %uK clock cycles\n",
1003 				  value << unit);
1004 		}
1005 		phase_quantum =
1006 			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
1007 			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
1008 	}
1009 
1010 	for (i = 0; i < adev->sdma.num_instances; i++) {
1011 		f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL);
1012 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
1013 				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
1014 		if (enable && amdgpu_sdma_phase_quantum) {
1015 			WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum);
1016 			WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum);
1017 			WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum);
1018 		}
1019 		WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl);
1020 
1021 		/*
1022 		 * Enable SDMA utilization. Its only supported on
1023 		 * Arcturus for the moment and firmware version 14
1024 		 * and above.
1025 		 */
1026 		if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) ==
1027 			    IP_VERSION(4, 2, 2) &&
1028 		    adev->sdma.instance[i].fw_version >= 14)
1029 			WREG32_SDMA(i, mmSDMA0_PUB_DUMMY_REG2, enable);
1030 		/* Extend page fault timeout to avoid interrupt storm */
1031 		WREG32_SDMA(i, mmSDMA0_UTCL1_TIMEOUT, 0x00800080);
1032 	}
1033 
1034 }
1035 
1036 /**
1037  * sdma_v4_0_enable - stop the async dma engines
1038  *
1039  * @adev: amdgpu_device pointer
1040  * @enable: enable/disable the DMA MEs.
1041  *
1042  * Halt or unhalt the async dma engines (VEGA10).
1043  */
1044 static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
1045 {
1046 	u32 f32_cntl;
1047 	int i;
1048 
1049 	if (!enable) {
1050 		sdma_v4_0_gfx_enable(adev, enable);
1051 		sdma_v4_0_rlc_stop(adev);
1052 		if (adev->sdma.has_page_queue)
1053 			sdma_v4_0_page_stop(adev);
1054 	}
1055 
1056 	for (i = 0; i < adev->sdma.num_instances; i++) {
1057 		f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1058 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
1059 		WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl);
1060 	}
1061 }
1062 
1063 /*
1064  * sdma_v4_0_rb_cntl - get parameters for rb_cntl
1065  */
1066 static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
1067 {
1068 	/* Set ring buffer size in dwords */
1069 	uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
1070 
1071 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
1072 #ifdef __BIG_ENDIAN
1073 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
1074 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1075 				RPTR_WRITEBACK_SWAP_ENABLE, 1);
1076 #endif
1077 	return rb_cntl;
1078 }
1079 
1080 /**
1081  * sdma_v4_0_gfx_resume - setup and start the async dma engines
1082  *
1083  * @adev: amdgpu_device pointer
1084  * @i: instance to resume
1085  *
1086  * Set up the gfx DMA ring buffers and enable them (VEGA10).
1087  * Returns 0 for success, error for failure.
1088  */
1089 static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i)
1090 {
1091 	struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
1092 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1093 	u32 doorbell;
1094 	u32 doorbell_offset;
1095 	u64 wptr_gpu_addr;
1096 
1097 	rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
1098 	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1099 	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1100 
1101 	/* Initialize the ring buffer's read and write pointers */
1102 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0);
1103 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0);
1104 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0);
1105 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0);
1106 
1107 	/* set the wb address whether it's enabled or not */
1108 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI,
1109 	       upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF);
1110 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO,
1111 	       lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC);
1112 
1113 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1114 				RPTR_WRITEBACK_ENABLE, 1);
1115 
1116 	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8);
1117 	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
1118 
1119 	ring->wptr = 0;
1120 
1121 	/* before programing wptr to a less value, need set minor_ptr_update first */
1122 	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1);
1123 
1124 	doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL);
1125 	doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET);
1126 
1127 	doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE,
1128 				 ring->use_doorbell);
1129 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
1130 					SDMA0_GFX_DOORBELL_OFFSET,
1131 					OFFSET, ring->doorbell_index);
1132 	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell);
1133 	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset);
1134 
1135 	sdma_v4_0_ring_set_wptr(ring);
1136 
1137 	/* set minor_ptr_update to 0 after wptr programed */
1138 	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0);
1139 
1140 	/* setup the wptr shadow polling */
1141 	wptr_gpu_addr = ring->wptr_gpu_addr;
1142 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO,
1143 		    lower_32_bits(wptr_gpu_addr));
1144 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI,
1145 		    upper_32_bits(wptr_gpu_addr));
1146 	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL);
1147 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1148 				       SDMA0_GFX_RB_WPTR_POLL_CNTL,
1149 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1150 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1151 
1152 	/* enable DMA RB */
1153 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
1154 	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1155 
1156 	ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
1157 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
1158 #ifdef __BIG_ENDIAN
1159 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
1160 #endif
1161 	/* enable DMA IBs */
1162 	WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
1163 }
1164 
1165 /**
1166  * sdma_v4_0_page_resume - setup and start the async dma engines
1167  *
1168  * @adev: amdgpu_device pointer
1169  * @i: instance to resume
1170  *
1171  * Set up the page DMA ring buffers and enable them (VEGA10).
1172  * Returns 0 for success, error for failure.
1173  */
1174 static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i)
1175 {
1176 	struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
1177 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1178 	u32 doorbell;
1179 	u32 doorbell_offset;
1180 	u64 wptr_gpu_addr;
1181 
1182 	rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
1183 	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1184 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1185 
1186 	/* Initialize the ring buffer's read and write pointers */
1187 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0);
1188 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0);
1189 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0);
1190 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0);
1191 
1192 	/* set the wb address whether it's enabled or not */
1193 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI,
1194 	       upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF);
1195 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO,
1196 	       lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC);
1197 
1198 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
1199 				RPTR_WRITEBACK_ENABLE, 1);
1200 
1201 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8);
1202 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
1203 
1204 	ring->wptr = 0;
1205 
1206 	/* before programing wptr to a less value, need set minor_ptr_update first */
1207 	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1);
1208 
1209 	doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL);
1210 	doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET);
1211 
1212 	doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE,
1213 				 ring->use_doorbell);
1214 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
1215 					SDMA0_PAGE_DOORBELL_OFFSET,
1216 					OFFSET, ring->doorbell_index);
1217 	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell);
1218 	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset);
1219 
1220 	/* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */
1221 	sdma_v4_0_page_ring_set_wptr(ring);
1222 
1223 	/* set minor_ptr_update to 0 after wptr programed */
1224 	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0);
1225 
1226 	/* setup the wptr shadow polling */
1227 	wptr_gpu_addr = ring->wptr_gpu_addr;
1228 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO,
1229 		    lower_32_bits(wptr_gpu_addr));
1230 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI,
1231 		    upper_32_bits(wptr_gpu_addr));
1232 	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL);
1233 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1234 				       SDMA0_PAGE_RB_WPTR_POLL_CNTL,
1235 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1236 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1237 
1238 	/* enable DMA RB */
1239 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1);
1240 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1241 
1242 	ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
1243 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1);
1244 #ifdef __BIG_ENDIAN
1245 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
1246 #endif
1247 	/* enable DMA IBs */
1248 	WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
1249 }
1250 
1251 static void
1252 sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
1253 {
1254 	uint32_t def, data;
1255 
1256 	if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
1257 		/* enable idle interrupt */
1258 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1259 		data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1260 
1261 		if (data != def)
1262 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1263 	} else {
1264 		/* disable idle interrupt */
1265 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1266 		data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1267 		if (data != def)
1268 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1269 	}
1270 }
1271 
1272 static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
1273 {
1274 	uint32_t def, data;
1275 
1276 	/* Enable HW based PG. */
1277 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1278 	data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
1279 	if (data != def)
1280 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1281 
1282 	/* enable interrupt */
1283 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1284 	data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1285 	if (data != def)
1286 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1287 
1288 	/* Configure hold time to filter in-valid power on/off request. Use default right now */
1289 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1290 	data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
1291 	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
1292 	/* Configure switch time for hysteresis purpose. Use default right now */
1293 	data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
1294 	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
1295 	if(data != def)
1296 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1297 }
1298 
1299 static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
1300 {
1301 	if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
1302 		return;
1303 
1304 	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
1305 	case IP_VERSION(4, 1, 0):
1306         case IP_VERSION(4, 1, 1):
1307 	case IP_VERSION(4, 1, 2):
1308 		sdma_v4_1_init_power_gating(adev);
1309 		sdma_v4_1_update_power_gating(adev, true);
1310 		break;
1311 	default:
1312 		break;
1313 	}
1314 }
1315 
1316 /**
1317  * sdma_v4_0_rlc_resume - setup and start the async dma engines
1318  *
1319  * @adev: amdgpu_device pointer
1320  *
1321  * Set up the compute DMA queues and enable them (VEGA10).
1322  * Returns 0 for success, error for failure.
1323  */
1324 static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
1325 {
1326 	sdma_v4_0_init_pg(adev);
1327 
1328 	return 0;
1329 }
1330 
1331 /**
1332  * sdma_v4_0_load_microcode - load the sDMA ME ucode
1333  *
1334  * @adev: amdgpu_device pointer
1335  *
1336  * Loads the sDMA0/1 ucode.
1337  * Returns 0 for success, -EINVAL if the ucode is not available.
1338  */
1339 static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
1340 {
1341 	const struct sdma_firmware_header_v1_0 *hdr;
1342 	const __le32 *fw_data;
1343 	u32 fw_size;
1344 	int i, j;
1345 
1346 	/* halt the MEs */
1347 	sdma_v4_0_enable(adev, false);
1348 
1349 	for (i = 0; i < adev->sdma.num_instances; i++) {
1350 		if (!adev->sdma.instance[i].fw)
1351 			return -EINVAL;
1352 
1353 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
1354 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
1355 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
1356 
1357 		fw_data = (const __le32 *)
1358 			(adev->sdma.instance[i].fw->data +
1359 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
1360 
1361 		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0);
1362 
1363 		for (j = 0; j < fw_size; j++)
1364 			WREG32_SDMA(i, mmSDMA0_UCODE_DATA,
1365 				    le32_to_cpup(fw_data++));
1366 
1367 		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR,
1368 			    adev->sdma.instance[i].fw_version);
1369 	}
1370 
1371 	return 0;
1372 }
1373 
1374 /**
1375  * sdma_v4_0_start - setup and start the async dma engines
1376  *
1377  * @adev: amdgpu_device pointer
1378  *
1379  * Set up the DMA engines and enable them (VEGA10).
1380  * Returns 0 for success, error for failure.
1381  */
1382 static int sdma_v4_0_start(struct amdgpu_device *adev)
1383 {
1384 	struct amdgpu_ring *ring;
1385 	int i, r = 0;
1386 
1387 	if (amdgpu_sriov_vf(adev)) {
1388 		sdma_v4_0_ctx_switch_enable(adev, false);
1389 		sdma_v4_0_enable(adev, false);
1390 	} else {
1391 
1392 		if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
1393 			r = sdma_v4_0_load_microcode(adev);
1394 			if (r)
1395 				return r;
1396 		}
1397 
1398 		/* unhalt the MEs */
1399 		sdma_v4_0_enable(adev, true);
1400 		/* enable sdma ring preemption */
1401 		sdma_v4_0_ctx_switch_enable(adev, true);
1402 	}
1403 
1404 	/* start the gfx rings and rlc compute queues */
1405 	for (i = 0; i < adev->sdma.num_instances; i++) {
1406 		uint32_t temp;
1407 
1408 		WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0);
1409 		sdma_v4_0_gfx_resume(adev, i);
1410 		if (adev->sdma.has_page_queue)
1411 			sdma_v4_0_page_resume(adev, i);
1412 
1413 		/* set utc l1 enable flag always to 1 */
1414 		temp = RREG32_SDMA(i, mmSDMA0_CNTL);
1415 		temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
1416 		WREG32_SDMA(i, mmSDMA0_CNTL, temp);
1417 
1418 		if (!amdgpu_sriov_vf(adev)) {
1419 			/* unhalt engine */
1420 			temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1421 			temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
1422 			WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp);
1423 		}
1424 	}
1425 
1426 	if (amdgpu_sriov_vf(adev)) {
1427 		sdma_v4_0_ctx_switch_enable(adev, true);
1428 		sdma_v4_0_enable(adev, true);
1429 	} else {
1430 		r = sdma_v4_0_rlc_resume(adev);
1431 		if (r)
1432 			return r;
1433 	}
1434 
1435 	for (i = 0; i < adev->sdma.num_instances; i++) {
1436 		ring = &adev->sdma.instance[i].ring;
1437 
1438 		r = amdgpu_ring_test_helper(ring);
1439 		if (r)
1440 			return r;
1441 
1442 		if (adev->sdma.has_page_queue) {
1443 			struct amdgpu_ring *page = &adev->sdma.instance[i].page;
1444 
1445 			r = amdgpu_ring_test_helper(page);
1446 			if (r)
1447 				return r;
1448 		}
1449 	}
1450 
1451 	return r;
1452 }
1453 
1454 /**
1455  * sdma_v4_0_ring_test_ring - simple async dma engine test
1456  *
1457  * @ring: amdgpu_ring structure holding ring information
1458  *
1459  * Test the DMA engine by writing using it to write an
1460  * value to memory. (VEGA10).
1461  * Returns 0 for success, error for failure.
1462  */
1463 static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
1464 {
1465 	struct amdgpu_device *adev = ring->adev;
1466 	unsigned i;
1467 	unsigned index;
1468 	int r;
1469 	u32 tmp;
1470 	u64 gpu_addr;
1471 
1472 	r = amdgpu_device_wb_get(adev, &index);
1473 	if (r)
1474 		return r;
1475 
1476 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1477 	tmp = 0xCAFEDEAD;
1478 	adev->wb.wb[index] = cpu_to_le32(tmp);
1479 
1480 	r = amdgpu_ring_alloc(ring, 5);
1481 	if (r)
1482 		goto error_free_wb;
1483 
1484 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1485 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1486 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1487 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1488 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1489 	amdgpu_ring_write(ring, 0xDEADBEEF);
1490 	amdgpu_ring_commit(ring);
1491 
1492 	for (i = 0; i < adev->usec_timeout; i++) {
1493 		tmp = le32_to_cpu(adev->wb.wb[index]);
1494 		if (tmp == 0xDEADBEEF)
1495 			break;
1496 		udelay(1);
1497 	}
1498 
1499 	if (i >= adev->usec_timeout)
1500 		r = -ETIMEDOUT;
1501 
1502 error_free_wb:
1503 	amdgpu_device_wb_free(adev, index);
1504 	return r;
1505 }
1506 
1507 /**
1508  * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
1509  *
1510  * @ring: amdgpu_ring structure holding ring information
1511  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
1512  *
1513  * Test a simple IB in the DMA ring (VEGA10).
1514  * Returns 0 on success, error on failure.
1515  */
1516 static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1517 {
1518 	struct amdgpu_device *adev = ring->adev;
1519 	struct amdgpu_ib ib;
1520 	struct dma_fence *f = NULL;
1521 	unsigned index;
1522 	long r;
1523 	u32 tmp = 0;
1524 	u64 gpu_addr;
1525 
1526 	r = amdgpu_device_wb_get(adev, &index);
1527 	if (r)
1528 		return r;
1529 
1530 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1531 	tmp = 0xCAFEDEAD;
1532 	adev->wb.wb[index] = cpu_to_le32(tmp);
1533 	memset(&ib, 0, sizeof(ib));
1534 	r = amdgpu_ib_get(adev, NULL, 256,
1535 					AMDGPU_IB_POOL_DIRECT, &ib);
1536 	if (r)
1537 		goto err0;
1538 
1539 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1540 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1541 	ib.ptr[1] = lower_32_bits(gpu_addr);
1542 	ib.ptr[2] = upper_32_bits(gpu_addr);
1543 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1544 	ib.ptr[4] = 0xDEADBEEF;
1545 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1546 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1547 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1548 	ib.length_dw = 8;
1549 
1550 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1551 	if (r)
1552 		goto err1;
1553 
1554 	r = dma_fence_wait_timeout(f, false, timeout);
1555 	if (r == 0) {
1556 		r = -ETIMEDOUT;
1557 		goto err1;
1558 	} else if (r < 0) {
1559 		goto err1;
1560 	}
1561 	tmp = le32_to_cpu(adev->wb.wb[index]);
1562 	if (tmp == 0xDEADBEEF)
1563 		r = 0;
1564 	else
1565 		r = -EINVAL;
1566 
1567 err1:
1568 	amdgpu_ib_free(adev, &ib, NULL);
1569 	dma_fence_put(f);
1570 err0:
1571 	amdgpu_device_wb_free(adev, index);
1572 	return r;
1573 }
1574 
1575 
1576 /**
1577  * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
1578  *
1579  * @ib: indirect buffer to fill with commands
1580  * @pe: addr of the page entry
1581  * @src: src addr to copy from
1582  * @count: number of page entries to update
1583  *
1584  * Update PTEs by copying them from the GART using sDMA (VEGA10).
1585  */
1586 static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
1587 				  uint64_t pe, uint64_t src,
1588 				  unsigned count)
1589 {
1590 	unsigned bytes = count * 8;
1591 
1592 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1593 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1594 	ib->ptr[ib->length_dw++] = bytes - 1;
1595 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1596 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1597 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1598 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1599 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1600 
1601 }
1602 
1603 /**
1604  * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
1605  *
1606  * @ib: indirect buffer to fill with commands
1607  * @pe: addr of the page entry
1608  * @value: dst addr to write into pe
1609  * @count: number of page entries to update
1610  * @incr: increase next addr by incr bytes
1611  *
1612  * Update PTEs by writing them manually using sDMA (VEGA10).
1613  */
1614 static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1615 				   uint64_t value, unsigned count,
1616 				   uint32_t incr)
1617 {
1618 	unsigned ndw = count * 2;
1619 
1620 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1621 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1622 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1623 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1624 	ib->ptr[ib->length_dw++] = ndw - 1;
1625 	for (; ndw > 0; ndw -= 2) {
1626 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1627 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1628 		value += incr;
1629 	}
1630 }
1631 
1632 /**
1633  * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
1634  *
1635  * @ib: indirect buffer to fill with commands
1636  * @pe: addr of the page entry
1637  * @addr: dst addr to write into pe
1638  * @count: number of page entries to update
1639  * @incr: increase next addr by incr bytes
1640  * @flags: access flags
1641  *
1642  * Update the page tables using sDMA (VEGA10).
1643  */
1644 static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1645 				     uint64_t pe,
1646 				     uint64_t addr, unsigned count,
1647 				     uint32_t incr, uint64_t flags)
1648 {
1649 	/* for physically contiguous pages (vram) */
1650 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1651 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1652 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1653 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1654 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1655 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1656 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1657 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1658 	ib->ptr[ib->length_dw++] = 0;
1659 	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1660 }
1661 
1662 /**
1663  * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
1664  *
1665  * @ring: amdgpu_ring structure holding ring information
1666  * @ib: indirect buffer to fill with padding
1667  */
1668 static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1669 {
1670 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1671 	u32 pad_count;
1672 	int i;
1673 
1674 	pad_count = (-ib->length_dw) & 7;
1675 	for (i = 0; i < pad_count; i++)
1676 		if (sdma && sdma->burst_nop && (i == 0))
1677 			ib->ptr[ib->length_dw++] =
1678 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1679 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1680 		else
1681 			ib->ptr[ib->length_dw++] =
1682 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1683 }
1684 
1685 
1686 /**
1687  * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1688  *
1689  * @ring: amdgpu_ring pointer
1690  *
1691  * Make sure all previous operations are completed (CIK).
1692  */
1693 static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1694 {
1695 	uint32_t seq = ring->fence_drv.sync_seq;
1696 	uint64_t addr = ring->fence_drv.gpu_addr;
1697 
1698 	/* wait for idle */
1699 	sdma_v4_0_wait_reg_mem(ring, 1, 0,
1700 			       addr & 0xfffffffc,
1701 			       upper_32_bits(addr) & 0xffffffff,
1702 			       seq, 0xffffffff, 4);
1703 }
1704 
1705 
1706 /**
1707  * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1708  *
1709  * @ring: amdgpu_ring pointer
1710  * @vmid: vmid number to use
1711  * @pd_addr: address
1712  *
1713  * Update the page table base and flush the VM TLB
1714  * using sDMA (VEGA10).
1715  */
1716 static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1717 					 unsigned vmid, uint64_t pd_addr)
1718 {
1719 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1720 }
1721 
1722 static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
1723 				     uint32_t reg, uint32_t val)
1724 {
1725 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1726 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1727 	amdgpu_ring_write(ring, reg);
1728 	amdgpu_ring_write(ring, val);
1729 }
1730 
1731 static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1732 					 uint32_t val, uint32_t mask)
1733 {
1734 	sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1735 }
1736 
1737 static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev)
1738 {
1739 	uint fw_version = adev->sdma.instance[0].fw_version;
1740 
1741 	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
1742 	case IP_VERSION(4, 0, 0):
1743 		return fw_version >= 430;
1744 	case IP_VERSION(4, 0, 1):
1745 		/*return fw_version >= 31;*/
1746 		return false;
1747 	case IP_VERSION(4, 2, 0):
1748 		return fw_version >= 123;
1749 	default:
1750 		return false;
1751 	}
1752 }
1753 
1754 static int sdma_v4_0_early_init(void *handle)
1755 {
1756 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1757 	int r;
1758 
1759 	r = sdma_v4_0_init_microcode(adev);
1760 	if (r)
1761 		return r;
1762 
1763 	/* TODO: Page queue breaks driver reload under SRIOV */
1764 	if ((amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 0, 0)) &&
1765 	    amdgpu_sriov_vf((adev)))
1766 		adev->sdma.has_page_queue = false;
1767 	else if (sdma_v4_0_fw_support_paging_queue(adev))
1768 		adev->sdma.has_page_queue = true;
1769 
1770 	sdma_v4_0_set_ring_funcs(adev);
1771 	sdma_v4_0_set_buffer_funcs(adev);
1772 	sdma_v4_0_set_vm_pte_funcs(adev);
1773 	sdma_v4_0_set_irq_funcs(adev);
1774 	sdma_v4_0_set_ras_funcs(adev);
1775 
1776 	return 0;
1777 }
1778 
1779 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
1780 		void *err_data,
1781 		struct amdgpu_iv_entry *entry);
1782 
1783 static int sdma_v4_0_late_init(void *handle)
1784 {
1785 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1786 
1787 	sdma_v4_0_setup_ulv(adev);
1788 
1789 	if (!amdgpu_persistent_edc_harvesting_supported(adev))
1790 		amdgpu_ras_reset_error_count(adev, AMDGPU_RAS_BLOCK__SDMA);
1791 
1792 	return 0;
1793 }
1794 
1795 static int sdma_v4_0_sw_init(void *handle)
1796 {
1797 	struct amdgpu_ring *ring;
1798 	int r, i;
1799 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1800 	uint32_t reg_count = ARRAY_SIZE(sdma_reg_list_4_0);
1801 	uint32_t *ptr;
1802 
1803 	/* SDMA trap event */
1804 	for (i = 0; i < adev->sdma.num_instances; i++) {
1805 		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1806 				      SDMA0_4_0__SRCID__SDMA_TRAP,
1807 				      &adev->sdma.trap_irq);
1808 		if (r)
1809 			return r;
1810 	}
1811 
1812 	/* SDMA SRAM ECC event */
1813 	for (i = 0; i < adev->sdma.num_instances; i++) {
1814 		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1815 				      SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
1816 				      &adev->sdma.ecc_irq);
1817 		if (r)
1818 			return r;
1819 	}
1820 
1821 	/* SDMA VM_HOLE/DOORBELL_INV/POLL_TIMEOUT/SRBM_WRITE_PROTECTION event*/
1822 	for (i = 0; i < adev->sdma.num_instances; i++) {
1823 		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1824 				      SDMA0_4_0__SRCID__SDMA_VM_HOLE,
1825 				      &adev->sdma.vm_hole_irq);
1826 		if (r)
1827 			return r;
1828 
1829 		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1830 				      SDMA0_4_0__SRCID__SDMA_DOORBELL_INVALID,
1831 				      &adev->sdma.doorbell_invalid_irq);
1832 		if (r)
1833 			return r;
1834 
1835 		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1836 				      SDMA0_4_0__SRCID__SDMA_POLL_TIMEOUT,
1837 				      &adev->sdma.pool_timeout_irq);
1838 		if (r)
1839 			return r;
1840 
1841 		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1842 				      SDMA0_4_0__SRCID__SDMA_SRBMWRITE,
1843 				      &adev->sdma.srbm_write_irq);
1844 		if (r)
1845 			return r;
1846 	}
1847 
1848 	for (i = 0; i < adev->sdma.num_instances; i++) {
1849 		ring = &adev->sdma.instance[i].ring;
1850 		ring->ring_obj = NULL;
1851 		ring->use_doorbell = true;
1852 
1853 		DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i,
1854 				ring->use_doorbell?"true":"false");
1855 
1856 		/* doorbell size is 2 dwords, get DWORD offset */
1857 		ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1858 
1859 		/*
1860 		 * On Arcturus, SDMA instance 5~7 has a different vmhub
1861 		 * type(AMDGPU_MMHUB1).
1862 		 */
1863 		if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) ==
1864 			    IP_VERSION(4, 2, 2) &&
1865 		    i >= 5)
1866 			ring->vm_hub = AMDGPU_MMHUB1(0);
1867 		else
1868 			ring->vm_hub = AMDGPU_MMHUB0(0);
1869 
1870 		sprintf(ring->name, "sdma%d", i);
1871 		r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1872 				     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1873 				     AMDGPU_RING_PRIO_DEFAULT, NULL);
1874 		if (r)
1875 			return r;
1876 
1877 		if (adev->sdma.has_page_queue) {
1878 			ring = &adev->sdma.instance[i].page;
1879 			ring->ring_obj = NULL;
1880 			ring->use_doorbell = true;
1881 
1882 			/* paging queue use same doorbell index/routing as gfx queue
1883 			 * with 0x400 (4096 dwords) offset on second doorbell page
1884 			 */
1885 			if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) >=
1886 				    IP_VERSION(4, 0, 0) &&
1887 			    amdgpu_ip_version(adev, SDMA0_HWIP, 0) <
1888 				    IP_VERSION(4, 2, 0)) {
1889 				ring->doorbell_index =
1890 					adev->doorbell_index.sdma_engine[i] << 1;
1891 				ring->doorbell_index += 0x400;
1892 			} else {
1893 				/* From vega20, the sdma_doorbell_range in 1st
1894 				 * doorbell page is reserved for page queue.
1895 				 */
1896 				ring->doorbell_index =
1897 					(adev->doorbell_index.sdma_engine[i] + 1) << 1;
1898 			}
1899 
1900 			if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) ==
1901 				    IP_VERSION(4, 2, 2) &&
1902 			    i >= 5)
1903 				ring->vm_hub = AMDGPU_MMHUB1(0);
1904 			else
1905 				ring->vm_hub = AMDGPU_MMHUB0(0);
1906 
1907 			sprintf(ring->name, "page%d", i);
1908 			r = amdgpu_ring_init(adev, ring, 1024,
1909 					     &adev->sdma.trap_irq,
1910 					     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1911 					     AMDGPU_RING_PRIO_DEFAULT, NULL);
1912 			if (r)
1913 				return r;
1914 		}
1915 	}
1916 
1917 	if (amdgpu_sdma_ras_sw_init(adev)) {
1918 		dev_err(adev->dev, "Failed to initialize sdma ras block!\n");
1919 		return -EINVAL;
1920 	}
1921 
1922 	/* Allocate memory for SDMA IP Dump buffer */
1923 	ptr = kcalloc(adev->sdma.num_instances * reg_count, sizeof(uint32_t), GFP_KERNEL);
1924 	if (ptr)
1925 		adev->sdma.ip_dump = ptr;
1926 	else
1927 		DRM_ERROR("Failed to allocated memory for SDMA IP Dump\n");
1928 
1929 	return r;
1930 }
1931 
1932 static int sdma_v4_0_sw_fini(void *handle)
1933 {
1934 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1935 	int i;
1936 
1937 	for (i = 0; i < adev->sdma.num_instances; i++) {
1938 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1939 		if (adev->sdma.has_page_queue)
1940 			amdgpu_ring_fini(&adev->sdma.instance[i].page);
1941 	}
1942 
1943 	if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 2, 2) ||
1944 	    amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 0))
1945 		amdgpu_sdma_destroy_inst_ctx(adev, true);
1946 	else
1947 		amdgpu_sdma_destroy_inst_ctx(adev, false);
1948 
1949 	kfree(adev->sdma.ip_dump);
1950 
1951 	return 0;
1952 }
1953 
1954 static int sdma_v4_0_hw_init(void *handle)
1955 {
1956 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1957 
1958 	if (adev->flags & AMD_IS_APU)
1959 		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false);
1960 
1961 	if (!amdgpu_sriov_vf(adev))
1962 		sdma_v4_0_init_golden_registers(adev);
1963 
1964 	return sdma_v4_0_start(adev);
1965 }
1966 
1967 static int sdma_v4_0_hw_fini(void *handle)
1968 {
1969 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1970 	int i;
1971 
1972 	if (amdgpu_sriov_vf(adev))
1973 		return 0;
1974 
1975 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
1976 		for (i = 0; i < adev->sdma.num_instances; i++) {
1977 			amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
1978 				       AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1979 		}
1980 	}
1981 
1982 	sdma_v4_0_ctx_switch_enable(adev, false);
1983 	sdma_v4_0_enable(adev, false);
1984 
1985 	if (adev->flags & AMD_IS_APU)
1986 		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true);
1987 
1988 	return 0;
1989 }
1990 
1991 static int sdma_v4_0_suspend(void *handle)
1992 {
1993 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1994 
1995 	/* SMU saves SDMA state for us */
1996 	if (adev->in_s0ix) {
1997 		sdma_v4_0_gfx_enable(adev, false);
1998 		return 0;
1999 	}
2000 
2001 	return sdma_v4_0_hw_fini(adev);
2002 }
2003 
2004 static int sdma_v4_0_resume(void *handle)
2005 {
2006 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2007 
2008 	/* SMU restores SDMA state for us */
2009 	if (adev->in_s0ix) {
2010 		sdma_v4_0_enable(adev, true);
2011 		sdma_v4_0_gfx_enable(adev, true);
2012 		return 0;
2013 	}
2014 
2015 	return sdma_v4_0_hw_init(adev);
2016 }
2017 
2018 static bool sdma_v4_0_is_idle(void *handle)
2019 {
2020 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2021 	u32 i;
2022 
2023 	for (i = 0; i < adev->sdma.num_instances; i++) {
2024 		u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG);
2025 
2026 		if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
2027 			return false;
2028 	}
2029 
2030 	return true;
2031 }
2032 
2033 static int sdma_v4_0_wait_for_idle(void *handle)
2034 {
2035 	unsigned i, j;
2036 	u32 sdma[AMDGPU_MAX_SDMA_INSTANCES];
2037 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2038 
2039 	for (i = 0; i < adev->usec_timeout; i++) {
2040 		for (j = 0; j < adev->sdma.num_instances; j++) {
2041 			sdma[j] = RREG32_SDMA(j, mmSDMA0_STATUS_REG);
2042 			if (!(sdma[j] & SDMA0_STATUS_REG__IDLE_MASK))
2043 				break;
2044 		}
2045 		if (j == adev->sdma.num_instances)
2046 			return 0;
2047 		udelay(1);
2048 	}
2049 	return -ETIMEDOUT;
2050 }
2051 
2052 static int sdma_v4_0_soft_reset(void *handle)
2053 {
2054 	/* todo */
2055 
2056 	return 0;
2057 }
2058 
2059 static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
2060 					struct amdgpu_irq_src *source,
2061 					unsigned type,
2062 					enum amdgpu_interrupt_state state)
2063 {
2064 	u32 sdma_cntl;
2065 
2066 	sdma_cntl = RREG32_SDMA(type, mmSDMA0_CNTL);
2067 	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
2068 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2069 	WREG32_SDMA(type, mmSDMA0_CNTL, sdma_cntl);
2070 
2071 	return 0;
2072 }
2073 
2074 static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
2075 				      struct amdgpu_irq_src *source,
2076 				      struct amdgpu_iv_entry *entry)
2077 {
2078 	int instance;
2079 
2080 	DRM_DEBUG("IH: SDMA trap\n");
2081 	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2082 	if (instance < 0)
2083 		return instance;
2084 
2085 	switch (entry->ring_id) {
2086 	case 0:
2087 		amdgpu_fence_process(&adev->sdma.instance[instance].ring);
2088 		break;
2089 	case 1:
2090 		if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) ==
2091 		    IP_VERSION(4, 2, 0))
2092 			amdgpu_fence_process(&adev->sdma.instance[instance].page);
2093 		break;
2094 	case 2:
2095 		/* XXX compute */
2096 		break;
2097 	case 3:
2098 		if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) !=
2099 		    IP_VERSION(4, 2, 0))
2100 			amdgpu_fence_process(&adev->sdma.instance[instance].page);
2101 		break;
2102 	}
2103 	return 0;
2104 }
2105 
2106 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
2107 		void *err_data,
2108 		struct amdgpu_iv_entry *entry)
2109 {
2110 	int instance;
2111 
2112 	/* When “Full RAS” is enabled, the per-IP interrupt sources should
2113 	 * be disabled and the driver should only look for the aggregated
2114 	 * interrupt via sync flood
2115 	 */
2116 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX))
2117 		goto out;
2118 
2119 	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2120 	if (instance < 0)
2121 		goto out;
2122 
2123 	amdgpu_sdma_process_ras_data_cb(adev, err_data, entry);
2124 
2125 out:
2126 	return AMDGPU_RAS_SUCCESS;
2127 }
2128 
2129 static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
2130 					      struct amdgpu_irq_src *source,
2131 					      struct amdgpu_iv_entry *entry)
2132 {
2133 	int instance;
2134 
2135 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
2136 
2137 	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2138 	if (instance < 0)
2139 		return 0;
2140 
2141 	switch (entry->ring_id) {
2142 	case 0:
2143 		drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
2144 		break;
2145 	}
2146 	return 0;
2147 }
2148 
2149 static int sdma_v4_0_set_ecc_irq_state(struct amdgpu_device *adev,
2150 					struct amdgpu_irq_src *source,
2151 					unsigned type,
2152 					enum amdgpu_interrupt_state state)
2153 {
2154 	u32 sdma_edc_config;
2155 
2156 	sdma_edc_config = RREG32_SDMA(type, mmSDMA0_EDC_CONFIG);
2157 	sdma_edc_config = REG_SET_FIELD(sdma_edc_config, SDMA0_EDC_CONFIG, ECC_INT_ENABLE,
2158 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2159 	WREG32_SDMA(type, mmSDMA0_EDC_CONFIG, sdma_edc_config);
2160 
2161 	return 0;
2162 }
2163 
2164 static int sdma_v4_0_print_iv_entry(struct amdgpu_device *adev,
2165 					      struct amdgpu_iv_entry *entry)
2166 {
2167 	int instance;
2168 	struct amdgpu_task_info *task_info;
2169 	u64 addr;
2170 
2171 	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2172 	if (instance < 0 || instance >= adev->sdma.num_instances) {
2173 		dev_err(adev->dev, "sdma instance invalid %d\n", instance);
2174 		return -EINVAL;
2175 	}
2176 
2177 	addr = (u64)entry->src_data[0] << 12;
2178 	addr |= ((u64)entry->src_data[1] & 0xf) << 44;
2179 
2180 	dev_dbg_ratelimited(adev->dev,
2181 			   "[sdma%d] address:0x%016llx src_id:%u ring:%u vmid:%u pasid:%u\n",
2182 			   instance, addr, entry->src_id, entry->ring_id, entry->vmid,
2183 			   entry->pasid);
2184 
2185 	task_info = amdgpu_vm_get_task_info_pasid(adev, entry->pasid);
2186 	if (task_info) {
2187 		dev_dbg_ratelimited(adev->dev,
2188 				    " for process %s pid %d thread %s pid %d\n",
2189 				    task_info->process_name, task_info->tgid,
2190 				    task_info->task_name, task_info->pid);
2191 		amdgpu_vm_put_task_info(task_info);
2192 	}
2193 
2194 	return 0;
2195 }
2196 
2197 static int sdma_v4_0_process_vm_hole_irq(struct amdgpu_device *adev,
2198 					      struct amdgpu_irq_src *source,
2199 					      struct amdgpu_iv_entry *entry)
2200 {
2201 	dev_dbg_ratelimited(adev->dev, "MC or SEM address in VM hole\n");
2202 	sdma_v4_0_print_iv_entry(adev, entry);
2203 	return 0;
2204 }
2205 
2206 static int sdma_v4_0_process_doorbell_invalid_irq(struct amdgpu_device *adev,
2207 					      struct amdgpu_irq_src *source,
2208 					      struct amdgpu_iv_entry *entry)
2209 {
2210 	dev_dbg_ratelimited(adev->dev, "SDMA received a doorbell from BIF with byte_enable !=0xff\n");
2211 	sdma_v4_0_print_iv_entry(adev, entry);
2212 	return 0;
2213 }
2214 
2215 static int sdma_v4_0_process_pool_timeout_irq(struct amdgpu_device *adev,
2216 					      struct amdgpu_irq_src *source,
2217 					      struct amdgpu_iv_entry *entry)
2218 {
2219 	dev_dbg_ratelimited(adev->dev,
2220 		"Polling register/memory timeout executing POLL_REG/MEM with finite timer\n");
2221 	sdma_v4_0_print_iv_entry(adev, entry);
2222 	return 0;
2223 }
2224 
2225 static int sdma_v4_0_process_srbm_write_irq(struct amdgpu_device *adev,
2226 					      struct amdgpu_irq_src *source,
2227 					      struct amdgpu_iv_entry *entry)
2228 {
2229 	dev_dbg_ratelimited(adev->dev,
2230 		"SDMA gets an Register Write SRBM_WRITE command in non-privilege command buffer\n");
2231 	sdma_v4_0_print_iv_entry(adev, entry);
2232 	return 0;
2233 }
2234 
2235 static void sdma_v4_0_update_medium_grain_clock_gating(
2236 		struct amdgpu_device *adev,
2237 		bool enable)
2238 {
2239 	uint32_t data, def;
2240 	int i;
2241 
2242 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
2243 		for (i = 0; i < adev->sdma.num_instances; i++) {
2244 			def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2245 			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2246 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2247 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2248 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2249 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2250 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2251 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2252 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2253 			if (def != data)
2254 				WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2255 		}
2256 	} else {
2257 		for (i = 0; i < adev->sdma.num_instances; i++) {
2258 			def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2259 			data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2260 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2261 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2262 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2263 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2264 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2265 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2266 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2267 			if (def != data)
2268 				WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2269 		}
2270 	}
2271 }
2272 
2273 
2274 static void sdma_v4_0_update_medium_grain_light_sleep(
2275 		struct amdgpu_device *adev,
2276 		bool enable)
2277 {
2278 	uint32_t data, def;
2279 	int i;
2280 
2281 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
2282 		for (i = 0; i < adev->sdma.num_instances; i++) {
2283 			/* 1-not override: enable sdma mem light sleep */
2284 			def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2285 			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2286 			if (def != data)
2287 				WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2288 		}
2289 	} else {
2290 		for (i = 0; i < adev->sdma.num_instances; i++) {
2291 		/* 0-override:disable sdma mem light sleep */
2292 			def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2293 			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2294 			if (def != data)
2295 				WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2296 		}
2297 	}
2298 }
2299 
2300 static int sdma_v4_0_set_clockgating_state(void *handle,
2301 					  enum amd_clockgating_state state)
2302 {
2303 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2304 
2305 	if (amdgpu_sriov_vf(adev))
2306 		return 0;
2307 
2308 	sdma_v4_0_update_medium_grain_clock_gating(adev,
2309 			state == AMD_CG_STATE_GATE);
2310 	sdma_v4_0_update_medium_grain_light_sleep(adev,
2311 			state == AMD_CG_STATE_GATE);
2312 	return 0;
2313 }
2314 
2315 static int sdma_v4_0_set_powergating_state(void *handle,
2316 					  enum amd_powergating_state state)
2317 {
2318 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2319 
2320 	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
2321 	case IP_VERSION(4, 1, 0):
2322 	case IP_VERSION(4, 1, 1):
2323 	case IP_VERSION(4, 1, 2):
2324 		sdma_v4_1_update_power_gating(adev,
2325 				state == AMD_PG_STATE_GATE);
2326 		break;
2327 	default:
2328 		break;
2329 	}
2330 
2331 	return 0;
2332 }
2333 
2334 static void sdma_v4_0_get_clockgating_state(void *handle, u64 *flags)
2335 {
2336 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2337 	int data;
2338 
2339 	if (amdgpu_sriov_vf(adev))
2340 		*flags = 0;
2341 
2342 	/* AMD_CG_SUPPORT_SDMA_MGCG */
2343 	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
2344 	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
2345 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
2346 
2347 	/* AMD_CG_SUPPORT_SDMA_LS */
2348 	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2349 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
2350 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
2351 }
2352 
2353 static void sdma_v4_0_print_ip_state(void *handle, struct drm_printer *p)
2354 {
2355 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2356 	int i, j;
2357 	uint32_t reg_count = ARRAY_SIZE(sdma_reg_list_4_0);
2358 	uint32_t instance_offset;
2359 
2360 	if (!adev->sdma.ip_dump)
2361 		return;
2362 
2363 	drm_printf(p, "num_instances:%d\n", adev->sdma.num_instances);
2364 	for (i = 0; i < adev->sdma.num_instances; i++) {
2365 		instance_offset = i * reg_count;
2366 		drm_printf(p, "\nInstance:%d\n", i);
2367 
2368 		for (j = 0; j < reg_count; j++)
2369 			drm_printf(p, "%-50s \t 0x%08x\n", sdma_reg_list_4_0[j].reg_name,
2370 				   adev->sdma.ip_dump[instance_offset + j]);
2371 	}
2372 }
2373 
2374 static void sdma_v4_0_dump_ip_state(void *handle)
2375 {
2376 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2377 	int i, j;
2378 	uint32_t instance_offset;
2379 	uint32_t reg_count = ARRAY_SIZE(sdma_reg_list_4_0);
2380 
2381 	if (!adev->sdma.ip_dump)
2382 		return;
2383 
2384 	amdgpu_gfx_off_ctrl(adev, false);
2385 	for (i = 0; i < adev->sdma.num_instances; i++) {
2386 		instance_offset = i * reg_count;
2387 		for (j = 0; j < reg_count; j++)
2388 			adev->sdma.ip_dump[instance_offset + j] =
2389 				RREG32(sdma_v4_0_get_reg_offset(adev, i,
2390 				       sdma_reg_list_4_0[j].reg_offset));
2391 	}
2392 	amdgpu_gfx_off_ctrl(adev, true);
2393 }
2394 
2395 const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
2396 	.name = "sdma_v4_0",
2397 	.early_init = sdma_v4_0_early_init,
2398 	.late_init = sdma_v4_0_late_init,
2399 	.sw_init = sdma_v4_0_sw_init,
2400 	.sw_fini = sdma_v4_0_sw_fini,
2401 	.hw_init = sdma_v4_0_hw_init,
2402 	.hw_fini = sdma_v4_0_hw_fini,
2403 	.suspend = sdma_v4_0_suspend,
2404 	.resume = sdma_v4_0_resume,
2405 	.is_idle = sdma_v4_0_is_idle,
2406 	.wait_for_idle = sdma_v4_0_wait_for_idle,
2407 	.soft_reset = sdma_v4_0_soft_reset,
2408 	.set_clockgating_state = sdma_v4_0_set_clockgating_state,
2409 	.set_powergating_state = sdma_v4_0_set_powergating_state,
2410 	.get_clockgating_state = sdma_v4_0_get_clockgating_state,
2411 	.dump_ip_state = sdma_v4_0_dump_ip_state,
2412 	.print_ip_state = sdma_v4_0_print_ip_state,
2413 };
2414 
2415 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
2416 	.type = AMDGPU_RING_TYPE_SDMA,
2417 	.align_mask = 0xff,
2418 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2419 	.support_64bit_ptrs = true,
2420 	.secure_submission_supported = true,
2421 	.get_rptr = sdma_v4_0_ring_get_rptr,
2422 	.get_wptr = sdma_v4_0_ring_get_wptr,
2423 	.set_wptr = sdma_v4_0_ring_set_wptr,
2424 	.emit_frame_size =
2425 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2426 		3 + /* hdp invalidate */
2427 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2428 		/* sdma_v4_0_ring_emit_vm_flush */
2429 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2430 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2431 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2432 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2433 	.emit_ib = sdma_v4_0_ring_emit_ib,
2434 	.emit_fence = sdma_v4_0_ring_emit_fence,
2435 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2436 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2437 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2438 	.test_ring = sdma_v4_0_ring_test_ring,
2439 	.test_ib = sdma_v4_0_ring_test_ib,
2440 	.insert_nop = sdma_v4_0_ring_insert_nop,
2441 	.pad_ib = sdma_v4_0_ring_pad_ib,
2442 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2443 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2444 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2445 };
2446 
2447 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = {
2448 	.type = AMDGPU_RING_TYPE_SDMA,
2449 	.align_mask = 0xff,
2450 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2451 	.support_64bit_ptrs = true,
2452 	.secure_submission_supported = true,
2453 	.get_rptr = sdma_v4_0_ring_get_rptr,
2454 	.get_wptr = sdma_v4_0_page_ring_get_wptr,
2455 	.set_wptr = sdma_v4_0_page_ring_set_wptr,
2456 	.emit_frame_size =
2457 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2458 		3 + /* hdp invalidate */
2459 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2460 		/* sdma_v4_0_ring_emit_vm_flush */
2461 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2462 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2463 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2464 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2465 	.emit_ib = sdma_v4_0_ring_emit_ib,
2466 	.emit_fence = sdma_v4_0_ring_emit_fence,
2467 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2468 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2469 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2470 	.test_ring = sdma_v4_0_ring_test_ring,
2471 	.test_ib = sdma_v4_0_ring_test_ib,
2472 	.insert_nop = sdma_v4_0_ring_insert_nop,
2473 	.pad_ib = sdma_v4_0_ring_pad_ib,
2474 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2475 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2476 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2477 };
2478 
2479 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
2480 {
2481 	int i;
2482 
2483 	for (i = 0; i < adev->sdma.num_instances; i++) {
2484 		adev->sdma.instance[i].ring.funcs = &sdma_v4_0_ring_funcs;
2485 		adev->sdma.instance[i].ring.me = i;
2486 		if (adev->sdma.has_page_queue) {
2487 			adev->sdma.instance[i].page.funcs =
2488 					&sdma_v4_0_page_ring_funcs;
2489 			adev->sdma.instance[i].page.me = i;
2490 		}
2491 	}
2492 }
2493 
2494 static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
2495 	.set = sdma_v4_0_set_trap_irq_state,
2496 	.process = sdma_v4_0_process_trap_irq,
2497 };
2498 
2499 static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
2500 	.process = sdma_v4_0_process_illegal_inst_irq,
2501 };
2502 
2503 static const struct amdgpu_irq_src_funcs sdma_v4_0_ecc_irq_funcs = {
2504 	.set = sdma_v4_0_set_ecc_irq_state,
2505 	.process = amdgpu_sdma_process_ecc_irq,
2506 };
2507 
2508 static const struct amdgpu_irq_src_funcs sdma_v4_0_vm_hole_irq_funcs = {
2509 	.process = sdma_v4_0_process_vm_hole_irq,
2510 };
2511 
2512 static const struct amdgpu_irq_src_funcs sdma_v4_0_doorbell_invalid_irq_funcs = {
2513 	.process = sdma_v4_0_process_doorbell_invalid_irq,
2514 };
2515 
2516 static const struct amdgpu_irq_src_funcs sdma_v4_0_pool_timeout_irq_funcs = {
2517 	.process = sdma_v4_0_process_pool_timeout_irq,
2518 };
2519 
2520 static const struct amdgpu_irq_src_funcs sdma_v4_0_srbm_write_irq_funcs = {
2521 	.process = sdma_v4_0_process_srbm_write_irq,
2522 };
2523 
2524 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
2525 {
2526 	adev->sdma.trap_irq.num_types = adev->sdma.num_instances;
2527 	adev->sdma.ecc_irq.num_types = adev->sdma.num_instances;
2528 	/*For Arcturus and Aldebaran, add another 4 irq handler*/
2529 	switch (adev->sdma.num_instances) {
2530 	case 5:
2531 	case 8:
2532 		adev->sdma.vm_hole_irq.num_types = adev->sdma.num_instances;
2533 		adev->sdma.doorbell_invalid_irq.num_types = adev->sdma.num_instances;
2534 		adev->sdma.pool_timeout_irq.num_types = adev->sdma.num_instances;
2535 		adev->sdma.srbm_write_irq.num_types = adev->sdma.num_instances;
2536 		break;
2537 	default:
2538 		break;
2539 	}
2540 	adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
2541 	adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
2542 	adev->sdma.ecc_irq.funcs = &sdma_v4_0_ecc_irq_funcs;
2543 	adev->sdma.vm_hole_irq.funcs = &sdma_v4_0_vm_hole_irq_funcs;
2544 	adev->sdma.doorbell_invalid_irq.funcs = &sdma_v4_0_doorbell_invalid_irq_funcs;
2545 	adev->sdma.pool_timeout_irq.funcs = &sdma_v4_0_pool_timeout_irq_funcs;
2546 	adev->sdma.srbm_write_irq.funcs = &sdma_v4_0_srbm_write_irq_funcs;
2547 }
2548 
2549 /**
2550  * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
2551  *
2552  * @ib: indirect buffer to copy to
2553  * @src_offset: src GPU address
2554  * @dst_offset: dst GPU address
2555  * @byte_count: number of bytes to xfer
2556  * @copy_flags: copy flags for the buffers
2557  *
2558  * Copy GPU buffers using the DMA engine (VEGA10/12).
2559  * Used by the amdgpu ttm implementation to move pages if
2560  * registered as the asic copy callback.
2561  */
2562 static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
2563 				       uint64_t src_offset,
2564 				       uint64_t dst_offset,
2565 				       uint32_t byte_count,
2566 				       uint32_t copy_flags)
2567 {
2568 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
2569 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
2570 		SDMA_PKT_COPY_LINEAR_HEADER_TMZ((copy_flags & AMDGPU_COPY_FLAGS_TMZ) ? 1 : 0);
2571 	ib->ptr[ib->length_dw++] = byte_count - 1;
2572 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
2573 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
2574 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
2575 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2576 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2577 }
2578 
2579 /**
2580  * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
2581  *
2582  * @ib: indirect buffer to copy to
2583  * @src_data: value to write to buffer
2584  * @dst_offset: dst GPU address
2585  * @byte_count: number of bytes to xfer
2586  *
2587  * Fill GPU buffers using the DMA engine (VEGA10/12).
2588  */
2589 static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
2590 				       uint32_t src_data,
2591 				       uint64_t dst_offset,
2592 				       uint32_t byte_count)
2593 {
2594 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2595 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2596 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2597 	ib->ptr[ib->length_dw++] = src_data;
2598 	ib->ptr[ib->length_dw++] = byte_count - 1;
2599 }
2600 
2601 static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
2602 	.copy_max_bytes = 0x400000,
2603 	.copy_num_dw = 7,
2604 	.emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
2605 
2606 	.fill_max_bytes = 0x400000,
2607 	.fill_num_dw = 5,
2608 	.emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
2609 };
2610 
2611 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
2612 {
2613 	adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
2614 	if (adev->sdma.has_page_queue)
2615 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
2616 	else
2617 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2618 }
2619 
2620 static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
2621 	.copy_pte_num_dw = 7,
2622 	.copy_pte = sdma_v4_0_vm_copy_pte,
2623 
2624 	.write_pte = sdma_v4_0_vm_write_pte,
2625 	.set_pte_pde = sdma_v4_0_vm_set_pte_pde,
2626 };
2627 
2628 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
2629 {
2630 	struct drm_gpu_scheduler *sched;
2631 	unsigned i;
2632 
2633 	adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
2634 	for (i = 0; i < adev->sdma.num_instances; i++) {
2635 		if (adev->sdma.has_page_queue)
2636 			sched = &adev->sdma.instance[i].page.sched;
2637 		else
2638 			sched = &adev->sdma.instance[i].ring.sched;
2639 		adev->vm_manager.vm_pte_scheds[i] = sched;
2640 	}
2641 	adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
2642 }
2643 
2644 static void sdma_v4_0_get_ras_error_count(uint32_t value,
2645 					uint32_t instance,
2646 					uint32_t *sec_count)
2647 {
2648 	uint32_t i;
2649 	uint32_t sec_cnt;
2650 
2651 	/* double bits error (multiple bits) error detection is not supported */
2652 	for (i = 0; i < ARRAY_SIZE(sdma_v4_0_ras_fields); i++) {
2653 		/* the SDMA_EDC_COUNTER register in each sdma instance
2654 		 * shares the same sed shift_mask
2655 		 * */
2656 		sec_cnt = (value &
2657 			sdma_v4_0_ras_fields[i].sec_count_mask) >>
2658 			sdma_v4_0_ras_fields[i].sec_count_shift;
2659 		if (sec_cnt) {
2660 			DRM_INFO("Detected %s in SDMA%d, SED %d\n",
2661 				sdma_v4_0_ras_fields[i].name,
2662 				instance, sec_cnt);
2663 			*sec_count += sec_cnt;
2664 		}
2665 	}
2666 }
2667 
2668 static int sdma_v4_0_query_ras_error_count_by_instance(struct amdgpu_device *adev,
2669 			uint32_t instance, void *ras_error_status)
2670 {
2671 	struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
2672 	uint32_t sec_count = 0;
2673 	uint32_t reg_value = 0;
2674 
2675 	reg_value = RREG32_SDMA(instance, mmSDMA0_EDC_COUNTER);
2676 	/* double bit error is not supported */
2677 	if (reg_value)
2678 		sdma_v4_0_get_ras_error_count(reg_value,
2679 				instance, &sec_count);
2680 	/* err_data->ce_count should be initialized to 0
2681 	 * before calling into this function */
2682 	err_data->ce_count += sec_count;
2683 	/* double bit error is not supported
2684 	 * set ue count to 0 */
2685 	err_data->ue_count = 0;
2686 
2687 	return 0;
2688 };
2689 
2690 static void sdma_v4_0_query_ras_error_count(struct amdgpu_device *adev,  void *ras_error_status)
2691 {
2692 	int i = 0;
2693 
2694 	for (i = 0; i < adev->sdma.num_instances; i++) {
2695 		if (sdma_v4_0_query_ras_error_count_by_instance(adev, i, ras_error_status)) {
2696 			dev_err(adev->dev, "Query ras error count failed in SDMA%d\n", i);
2697 			return;
2698 		}
2699 	}
2700 }
2701 
2702 static void sdma_v4_0_reset_ras_error_count(struct amdgpu_device *adev)
2703 {
2704 	int i;
2705 
2706 	/* read back edc counter registers to clear the counters */
2707 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2708 		for (i = 0; i < adev->sdma.num_instances; i++)
2709 			RREG32_SDMA(i, mmSDMA0_EDC_COUNTER);
2710 	}
2711 }
2712 
2713 const struct amdgpu_ras_block_hw_ops sdma_v4_0_ras_hw_ops = {
2714 	.query_ras_error_count = sdma_v4_0_query_ras_error_count,
2715 	.reset_ras_error_count = sdma_v4_0_reset_ras_error_count,
2716 };
2717 
2718 static struct amdgpu_sdma_ras sdma_v4_0_ras = {
2719 	.ras_block = {
2720 		.hw_ops = &sdma_v4_0_ras_hw_ops,
2721 		.ras_cb = sdma_v4_0_process_ras_data_cb,
2722 	},
2723 };
2724 
2725 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev)
2726 {
2727 	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
2728 	case IP_VERSION(4, 2, 0):
2729 	case IP_VERSION(4, 2, 2):
2730 		adev->sdma.ras = &sdma_v4_0_ras;
2731 		break;
2732 	case IP_VERSION(4, 4, 0):
2733 		adev->sdma.ras = &sdma_v4_4_ras;
2734 		break;
2735 	default:
2736 		break;
2737 	}
2738 }
2739 
2740 const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
2741 	.type = AMD_IP_BLOCK_TYPE_SDMA,
2742 	.major = 4,
2743 	.minor = 0,
2744 	.rev = 0,
2745 	.funcs = &sdma_v4_0_ip_funcs,
2746 };
2747