xref: /linux/drivers/gpu/drm/amd/amdgpu/sdma_v4_0.c (revision 25396684b57f7d16306ca149c545db60b2d08dda)
1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28 
29 #include "amdgpu.h"
30 #include "amdgpu_ucode.h"
31 #include "amdgpu_trace.h"
32 
33 #include "sdma0/sdma0_4_2_offset.h"
34 #include "sdma0/sdma0_4_2_sh_mask.h"
35 #include "sdma1/sdma1_4_2_offset.h"
36 #include "sdma1/sdma1_4_2_sh_mask.h"
37 #include "sdma2/sdma2_4_2_2_offset.h"
38 #include "sdma2/sdma2_4_2_2_sh_mask.h"
39 #include "sdma3/sdma3_4_2_2_offset.h"
40 #include "sdma3/sdma3_4_2_2_sh_mask.h"
41 #include "sdma4/sdma4_4_2_2_offset.h"
42 #include "sdma4/sdma4_4_2_2_sh_mask.h"
43 #include "sdma5/sdma5_4_2_2_offset.h"
44 #include "sdma5/sdma5_4_2_2_sh_mask.h"
45 #include "sdma6/sdma6_4_2_2_offset.h"
46 #include "sdma6/sdma6_4_2_2_sh_mask.h"
47 #include "sdma7/sdma7_4_2_2_offset.h"
48 #include "sdma7/sdma7_4_2_2_sh_mask.h"
49 #include "sdma0/sdma0_4_1_default.h"
50 
51 #include "soc15_common.h"
52 #include "soc15.h"
53 #include "vega10_sdma_pkt_open.h"
54 
55 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
56 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
57 
58 #include "amdgpu_ras.h"
59 #include "sdma_v4_4.h"
60 
61 MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
62 MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
63 MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
64 MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
65 MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
66 MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
67 MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
68 MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
69 MODULE_FIRMWARE("amdgpu/raven2_sdma.bin");
70 MODULE_FIRMWARE("amdgpu/arcturus_sdma.bin");
71 MODULE_FIRMWARE("amdgpu/renoir_sdma.bin");
72 MODULE_FIRMWARE("amdgpu/green_sardine_sdma.bin");
73 MODULE_FIRMWARE("amdgpu/aldebaran_sdma.bin");
74 
75 #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK  0x000000F8L
76 #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
77 
78 #define WREG32_SDMA(instance, offset, value) \
79 	WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value)
80 #define RREG32_SDMA(instance, offset) \
81 	RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)))
82 
83 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
84 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
85 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
86 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
87 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev);
88 
89 static const struct soc15_reg_golden golden_settings_sdma_4[] = {
90 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
91 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
92 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
93 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
94 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
95 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
96 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
97 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
98 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
99 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
100 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
101 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
102 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
103 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
104 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
105 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
106 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
107 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
108 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
109 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
110 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
111 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
112 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
113 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
114 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
115 };
116 
117 static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
118 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
119 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
120 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
121 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
122 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
123 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
124 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
125 };
126 
127 static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
128 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
129 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
130 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
131 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
132 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
133 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
134 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
135 };
136 
137 static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
138 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
139 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
140 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
141 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
142 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
143 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
144 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
145 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
146 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
147 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003e0),
148 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
149 };
150 
151 static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
152 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
153 };
154 
155 static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
156 {
157 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
158 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
159 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
160 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
161 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
162 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
163 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
164 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
165 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
166 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
167 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
168 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
169 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
170 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
171 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
172 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
173 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
174 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
175 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
176 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
177 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
178 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
179 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
180 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
181 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
182 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
183 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
184 };
185 
186 static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
187 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
188 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
189 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
190 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
191 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
192 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
193 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
194 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
195 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
196 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
197 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
198 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
199 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
200 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
201 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
202 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
203 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
204 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
205 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
206 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
207 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
208 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
209 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
210 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
211 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
212 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
213 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
214 };
215 
216 static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
217 {
218 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
219 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
220 };
221 
222 static const struct soc15_reg_golden golden_settings_sdma_rv2[] =
223 {
224 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001),
225 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001)
226 };
227 
228 static const struct soc15_reg_golden golden_settings_sdma_arct[] =
229 {
230 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
231 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
232 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
233 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
234 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
235 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
236 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
237 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
238 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
239 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
240 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
241 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
242 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
243 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
244 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
245 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
246 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
247 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
248 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
249 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
250 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
251 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
252 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
253 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
254 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
255 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
256 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
257 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
258 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
259 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
260 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
261 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_UTCL1_TIMEOUT, 0xffffffff, 0x00010001)
262 };
263 
264 static const struct soc15_reg_golden golden_settings_sdma_aldebaran[] = {
265 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
266 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
267 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
268 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
269 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
270 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
271 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
272 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
273 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
274 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
275 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
276 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
277 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
278 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
279 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
280 };
281 
282 static const struct soc15_reg_golden golden_settings_sdma_4_3[] = {
283 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
284 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
285 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
286 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002),
287 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
288 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003fff07, 0x40000051),
289 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
290 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
291 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003e0),
292 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x03fbe1fe)
293 };
294 
295 static const struct soc15_ras_field_entry sdma_v4_0_ras_fields[] = {
296 	{ "SDMA_UCODE_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
297 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UCODE_BUF_SED),
298 	0, 0,
299 	},
300 	{ "SDMA_RB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
301 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_RB_CMD_BUF_SED),
302 	0, 0,
303 	},
304 	{ "SDMA_IB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
305 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_IB_CMD_BUF_SED),
306 	0, 0,
307 	},
308 	{ "SDMA_UTCL1_RD_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
309 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RD_FIFO_SED),
310 	0, 0,
311 	},
312 	{ "SDMA_UTCL1_RDBST_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
313 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RDBST_FIFO_SED),
314 	0, 0,
315 	},
316 	{ "SDMA_DATA_LUT_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
317 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_DATA_LUT_FIFO_SED),
318 	0, 0,
319 	},
320 	{ "SDMA_MBANK_DATA_BUF0_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
321 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF0_SED),
322 	0, 0,
323 	},
324 	{ "SDMA_MBANK_DATA_BUF1_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
325 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF1_SED),
326 	0, 0,
327 	},
328 	{ "SDMA_MBANK_DATA_BUF2_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
329 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF2_SED),
330 	0, 0,
331 	},
332 	{ "SDMA_MBANK_DATA_BUF3_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
333 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF3_SED),
334 	0, 0,
335 	},
336 	{ "SDMA_MBANK_DATA_BUF4_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
337 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF4_SED),
338 	0, 0,
339 	},
340 	{ "SDMA_MBANK_DATA_BUF5_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
341 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF5_SED),
342 	0, 0,
343 	},
344 	{ "SDMA_MBANK_DATA_BUF6_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
345 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF6_SED),
346 	0, 0,
347 	},
348 	{ "SDMA_MBANK_DATA_BUF7_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
349 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF7_SED),
350 	0, 0,
351 	},
352 	{ "SDMA_MBANK_DATA_BUF8_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
353 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF8_SED),
354 	0, 0,
355 	},
356 	{ "SDMA_MBANK_DATA_BUF9_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
357 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF9_SED),
358 	0, 0,
359 	},
360 	{ "SDMA_MBANK_DATA_BUF10_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
361 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF10_SED),
362 	0, 0,
363 	},
364 	{ "SDMA_MBANK_DATA_BUF11_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
365 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF11_SED),
366 	0, 0,
367 	},
368 	{ "SDMA_MBANK_DATA_BUF12_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
369 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF12_SED),
370 	0, 0,
371 	},
372 	{ "SDMA_MBANK_DATA_BUF13_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
373 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF13_SED),
374 	0, 0,
375 	},
376 	{ "SDMA_MBANK_DATA_BUF14_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
377 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF14_SED),
378 	0, 0,
379 	},
380 	{ "SDMA_MBANK_DATA_BUF15_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
381 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF15_SED),
382 	0, 0,
383 	},
384 	{ "SDMA_SPLIT_DAT_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
385 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_SPLIT_DAT_BUF_SED),
386 	0, 0,
387 	},
388 	{ "SDMA_MC_WR_ADDR_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
389 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MC_WR_ADDR_FIFO_SED),
390 	0, 0,
391 	},
392 };
393 
394 static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
395 		u32 instance, u32 offset)
396 {
397 	switch (instance) {
398 	case 0:
399 		return (adev->reg_offset[SDMA0_HWIP][0][0] + offset);
400 	case 1:
401 		return (adev->reg_offset[SDMA1_HWIP][0][0] + offset);
402 	case 2:
403 		return (adev->reg_offset[SDMA2_HWIP][0][1] + offset);
404 	case 3:
405 		return (adev->reg_offset[SDMA3_HWIP][0][1] + offset);
406 	case 4:
407 		return (adev->reg_offset[SDMA4_HWIP][0][1] + offset);
408 	case 5:
409 		return (adev->reg_offset[SDMA5_HWIP][0][1] + offset);
410 	case 6:
411 		return (adev->reg_offset[SDMA6_HWIP][0][1] + offset);
412 	case 7:
413 		return (adev->reg_offset[SDMA7_HWIP][0][1] + offset);
414 	default:
415 		break;
416 	}
417 	return 0;
418 }
419 
420 static unsigned sdma_v4_0_seq_to_irq_id(int seq_num)
421 {
422 	switch (seq_num) {
423 	case 0:
424 		return SOC15_IH_CLIENTID_SDMA0;
425 	case 1:
426 		return SOC15_IH_CLIENTID_SDMA1;
427 	case 2:
428 		return SOC15_IH_CLIENTID_SDMA2;
429 	case 3:
430 		return SOC15_IH_CLIENTID_SDMA3;
431 	case 4:
432 		return SOC15_IH_CLIENTID_SDMA4;
433 	case 5:
434 		return SOC15_IH_CLIENTID_SDMA5;
435 	case 6:
436 		return SOC15_IH_CLIENTID_SDMA6;
437 	case 7:
438 		return SOC15_IH_CLIENTID_SDMA7;
439 	default:
440 		break;
441 	}
442 	return -EINVAL;
443 }
444 
445 static int sdma_v4_0_irq_id_to_seq(unsigned client_id)
446 {
447 	switch (client_id) {
448 	case SOC15_IH_CLIENTID_SDMA0:
449 		return 0;
450 	case SOC15_IH_CLIENTID_SDMA1:
451 		return 1;
452 	case SOC15_IH_CLIENTID_SDMA2:
453 		return 2;
454 	case SOC15_IH_CLIENTID_SDMA3:
455 		return 3;
456 	case SOC15_IH_CLIENTID_SDMA4:
457 		return 4;
458 	case SOC15_IH_CLIENTID_SDMA5:
459 		return 5;
460 	case SOC15_IH_CLIENTID_SDMA6:
461 		return 6;
462 	case SOC15_IH_CLIENTID_SDMA7:
463 		return 7;
464 	default:
465 		break;
466 	}
467 	return -EINVAL;
468 }
469 
470 static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
471 {
472 	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
473 	case IP_VERSION(4, 0, 0):
474 		soc15_program_register_sequence(adev,
475 						golden_settings_sdma_4,
476 						ARRAY_SIZE(golden_settings_sdma_4));
477 		soc15_program_register_sequence(adev,
478 						golden_settings_sdma_vg10,
479 						ARRAY_SIZE(golden_settings_sdma_vg10));
480 		break;
481 	case IP_VERSION(4, 0, 1):
482 		soc15_program_register_sequence(adev,
483 						golden_settings_sdma_4,
484 						ARRAY_SIZE(golden_settings_sdma_4));
485 		soc15_program_register_sequence(adev,
486 						golden_settings_sdma_vg12,
487 						ARRAY_SIZE(golden_settings_sdma_vg12));
488 		break;
489 	case IP_VERSION(4, 2, 0):
490 		soc15_program_register_sequence(adev,
491 						golden_settings_sdma0_4_2_init,
492 						ARRAY_SIZE(golden_settings_sdma0_4_2_init));
493 		soc15_program_register_sequence(adev,
494 						golden_settings_sdma0_4_2,
495 						ARRAY_SIZE(golden_settings_sdma0_4_2));
496 		soc15_program_register_sequence(adev,
497 						golden_settings_sdma1_4_2,
498 						ARRAY_SIZE(golden_settings_sdma1_4_2));
499 		break;
500 	case IP_VERSION(4, 2, 2):
501 		soc15_program_register_sequence(adev,
502 						golden_settings_sdma_arct,
503 						ARRAY_SIZE(golden_settings_sdma_arct));
504 		break;
505 	case IP_VERSION(4, 4, 0):
506 		soc15_program_register_sequence(adev,
507 						golden_settings_sdma_aldebaran,
508 						ARRAY_SIZE(golden_settings_sdma_aldebaran));
509 		break;
510 	case IP_VERSION(4, 1, 0):
511 	case IP_VERSION(4, 1, 1):
512 		soc15_program_register_sequence(adev,
513 						golden_settings_sdma_4_1,
514 						ARRAY_SIZE(golden_settings_sdma_4_1));
515 		if (adev->apu_flags & AMD_APU_IS_RAVEN2)
516 			soc15_program_register_sequence(adev,
517 							golden_settings_sdma_rv2,
518 							ARRAY_SIZE(golden_settings_sdma_rv2));
519 		else
520 			soc15_program_register_sequence(adev,
521 							golden_settings_sdma_rv1,
522 							ARRAY_SIZE(golden_settings_sdma_rv1));
523 		break;
524 	case IP_VERSION(4, 1, 2):
525 		soc15_program_register_sequence(adev,
526 						golden_settings_sdma_4_3,
527 						ARRAY_SIZE(golden_settings_sdma_4_3));
528 		break;
529 	default:
530 		break;
531 	}
532 }
533 
534 static void sdma_v4_0_setup_ulv(struct amdgpu_device *adev)
535 {
536 	int i;
537 
538 	/*
539 	 * The only chips with SDMAv4 and ULV are VG10 and VG20.
540 	 * Server SKUs take a different hysteresis setting from other SKUs.
541 	 */
542 	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
543 	case IP_VERSION(4, 0, 0):
544 		if (adev->pdev->device == 0x6860)
545 			break;
546 		return;
547 	case IP_VERSION(4, 2, 0):
548 		if (adev->pdev->device == 0x66a1)
549 			break;
550 		return;
551 	default:
552 		return;
553 	}
554 
555 	for (i = 0; i < adev->sdma.num_instances; i++) {
556 		uint32_t temp;
557 
558 		temp = RREG32_SDMA(i, mmSDMA0_ULV_CNTL);
559 		temp = REG_SET_FIELD(temp, SDMA0_ULV_CNTL, HYSTERESIS, 0x0);
560 		WREG32_SDMA(i, mmSDMA0_ULV_CNTL, temp);
561 	}
562 }
563 
564 /**
565  * sdma_v4_0_init_microcode - load ucode images from disk
566  *
567  * @adev: amdgpu_device pointer
568  *
569  * Use the firmware interface to load the ucode images into
570  * the driver (not loaded into hw).
571  * Returns 0 on success, error on failure.
572  */
573 
574 // emulation only, won't work on real chip
575 // vega10 real chip need to use PSP to load firmware
576 static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
577 {
578 	int ret, i;
579 
580 	for (i = 0; i < adev->sdma.num_instances; i++) {
581 		if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) ==
582 			    IP_VERSION(4, 2, 2) ||
583 		    amdgpu_ip_version(adev, SDMA0_HWIP, 0) ==
584 			    IP_VERSION(4, 4, 0)) {
585 			/* Acturus & Aldebaran will leverage the same FW memory
586 			   for every SDMA instance */
587 			ret = amdgpu_sdma_init_microcode(adev, 0, true);
588 			break;
589 		} else {
590 			ret = amdgpu_sdma_init_microcode(adev, i, false);
591 			if (ret)
592 				return ret;
593 		}
594 	}
595 
596 	return ret;
597 }
598 
599 /**
600  * sdma_v4_0_ring_get_rptr - get the current read pointer
601  *
602  * @ring: amdgpu ring pointer
603  *
604  * Get the current rptr from the hardware (VEGA10+).
605  */
606 static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
607 {
608 	u64 *rptr;
609 
610 	/* XXX check if swapping is necessary on BE */
611 	rptr = ((u64 *)ring->rptr_cpu_addr);
612 
613 	DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
614 	return ((*rptr) >> 2);
615 }
616 
617 /**
618  * sdma_v4_0_ring_get_wptr - get the current write pointer
619  *
620  * @ring: amdgpu ring pointer
621  *
622  * Get the current wptr from the hardware (VEGA10+).
623  */
624 static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
625 {
626 	struct amdgpu_device *adev = ring->adev;
627 	u64 wptr;
628 
629 	if (ring->use_doorbell) {
630 		/* XXX check if swapping is necessary on BE */
631 		wptr = READ_ONCE(*((u64 *)ring->wptr_cpu_addr));
632 		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
633 	} else {
634 		wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI);
635 		wptr = wptr << 32;
636 		wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR);
637 		DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
638 				ring->me, wptr);
639 	}
640 
641 	return wptr >> 2;
642 }
643 
644 /**
645  * sdma_v4_0_ring_set_wptr - commit the write pointer
646  *
647  * @ring: amdgpu ring pointer
648  *
649  * Write the wptr back to the hardware (VEGA10+).
650  */
651 static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
652 {
653 	struct amdgpu_device *adev = ring->adev;
654 
655 	DRM_DEBUG("Setting write pointer\n");
656 	if (ring->use_doorbell) {
657 		u64 *wb = (u64 *)ring->wptr_cpu_addr;
658 
659 		DRM_DEBUG("Using doorbell -- "
660 				"wptr_offs == 0x%08x "
661 				"lower_32_bits(ring->wptr << 2) == 0x%08x "
662 				"upper_32_bits(ring->wptr << 2) == 0x%08x\n",
663 				ring->wptr_offs,
664 				lower_32_bits(ring->wptr << 2),
665 				upper_32_bits(ring->wptr << 2));
666 		/* XXX check if swapping is necessary on BE */
667 		WRITE_ONCE(*wb, (ring->wptr << 2));
668 		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
669 				ring->doorbell_index, ring->wptr << 2);
670 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
671 	} else {
672 		DRM_DEBUG("Not using doorbell -- "
673 				"mmSDMA%i_GFX_RB_WPTR == 0x%08x "
674 				"mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
675 				ring->me,
676 				lower_32_bits(ring->wptr << 2),
677 				ring->me,
678 				upper_32_bits(ring->wptr << 2));
679 		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR,
680 			    lower_32_bits(ring->wptr << 2));
681 		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI,
682 			    upper_32_bits(ring->wptr << 2));
683 	}
684 }
685 
686 /**
687  * sdma_v4_0_page_ring_get_wptr - get the current write pointer
688  *
689  * @ring: amdgpu ring pointer
690  *
691  * Get the current wptr from the hardware (VEGA10+).
692  */
693 static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring)
694 {
695 	struct amdgpu_device *adev = ring->adev;
696 	u64 wptr;
697 
698 	if (ring->use_doorbell) {
699 		/* XXX check if swapping is necessary on BE */
700 		wptr = READ_ONCE(*((u64 *)ring->wptr_cpu_addr));
701 	} else {
702 		wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI);
703 		wptr = wptr << 32;
704 		wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR);
705 	}
706 
707 	return wptr >> 2;
708 }
709 
710 /**
711  * sdma_v4_0_page_ring_set_wptr - commit the write pointer
712  *
713  * @ring: amdgpu ring pointer
714  *
715  * Write the wptr back to the hardware (VEGA10+).
716  */
717 static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring)
718 {
719 	struct amdgpu_device *adev = ring->adev;
720 
721 	if (ring->use_doorbell) {
722 		u64 *wb = (u64 *)ring->wptr_cpu_addr;
723 
724 		/* XXX check if swapping is necessary on BE */
725 		WRITE_ONCE(*wb, (ring->wptr << 2));
726 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
727 	} else {
728 		uint64_t wptr = ring->wptr << 2;
729 
730 		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR,
731 			    lower_32_bits(wptr));
732 		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI,
733 			    upper_32_bits(wptr));
734 	}
735 }
736 
737 static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
738 {
739 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
740 	int i;
741 
742 	for (i = 0; i < count; i++)
743 		if (sdma && sdma->burst_nop && (i == 0))
744 			amdgpu_ring_write(ring, ring->funcs->nop |
745 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
746 		else
747 			amdgpu_ring_write(ring, ring->funcs->nop);
748 }
749 
750 /**
751  * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
752  *
753  * @ring: amdgpu ring pointer
754  * @job: job to retrieve vmid from
755  * @ib: IB object to schedule
756  * @flags: unused
757  *
758  * Schedule an IB in the DMA ring (VEGA10).
759  */
760 static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
761 				   struct amdgpu_job *job,
762 				   struct amdgpu_ib *ib,
763 				   uint32_t flags)
764 {
765 	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
766 
767 	/* IB packet must end on a 8 DW boundary */
768 	sdma_v4_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
769 
770 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
771 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
772 	/* base must be 32 byte aligned */
773 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
774 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
775 	amdgpu_ring_write(ring, ib->length_dw);
776 	amdgpu_ring_write(ring, 0);
777 	amdgpu_ring_write(ring, 0);
778 
779 }
780 
781 static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
782 				   int mem_space, int hdp,
783 				   uint32_t addr0, uint32_t addr1,
784 				   uint32_t ref, uint32_t mask,
785 				   uint32_t inv)
786 {
787 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
788 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
789 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
790 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
791 	if (mem_space) {
792 		/* memory */
793 		amdgpu_ring_write(ring, addr0);
794 		amdgpu_ring_write(ring, addr1);
795 	} else {
796 		/* registers */
797 		amdgpu_ring_write(ring, addr0 << 2);
798 		amdgpu_ring_write(ring, addr1 << 2);
799 	}
800 	amdgpu_ring_write(ring, ref); /* reference */
801 	amdgpu_ring_write(ring, mask); /* mask */
802 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
803 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
804 }
805 
806 /**
807  * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
808  *
809  * @ring: amdgpu ring pointer
810  *
811  * Emit an hdp flush packet on the requested DMA ring.
812  */
813 static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
814 {
815 	struct amdgpu_device *adev = ring->adev;
816 	u32 ref_and_mask = 0;
817 	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
818 
819 	ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me;
820 
821 	sdma_v4_0_wait_reg_mem(ring, 0, 1,
822 			       adev->nbio.funcs->get_hdp_flush_done_offset(adev),
823 			       adev->nbio.funcs->get_hdp_flush_req_offset(adev),
824 			       ref_and_mask, ref_and_mask, 10);
825 }
826 
827 /**
828  * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
829  *
830  * @ring: amdgpu ring pointer
831  * @addr: address
832  * @seq: sequence number
833  * @flags: fence related flags
834  *
835  * Add a DMA fence packet to the ring to write
836  * the fence seq number and DMA trap packet to generate
837  * an interrupt if needed (VEGA10).
838  */
839 static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
840 				      unsigned flags)
841 {
842 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
843 	/* write the fence */
844 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
845 	/* zero in first two bits */
846 	BUG_ON(addr & 0x3);
847 	amdgpu_ring_write(ring, lower_32_bits(addr));
848 	amdgpu_ring_write(ring, upper_32_bits(addr));
849 	amdgpu_ring_write(ring, lower_32_bits(seq));
850 
851 	/* optionally write high bits as well */
852 	if (write64bit) {
853 		addr += 4;
854 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
855 		/* zero in first two bits */
856 		BUG_ON(addr & 0x3);
857 		amdgpu_ring_write(ring, lower_32_bits(addr));
858 		amdgpu_ring_write(ring, upper_32_bits(addr));
859 		amdgpu_ring_write(ring, upper_32_bits(seq));
860 	}
861 
862 	/* generate an interrupt */
863 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
864 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
865 }
866 
867 
868 /**
869  * sdma_v4_0_gfx_enable - enable the gfx async dma engines
870  *
871  * @adev: amdgpu_device pointer
872  * @enable: enable SDMA RB/IB
873  * control the gfx async dma ring buffers (VEGA10).
874  */
875 static void sdma_v4_0_gfx_enable(struct amdgpu_device *adev, bool enable)
876 {
877 	u32 rb_cntl, ib_cntl;
878 	int i;
879 
880 	amdgpu_sdma_unset_buffer_funcs_helper(adev);
881 
882 	for (i = 0; i < adev->sdma.num_instances; i++) {
883 		rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
884 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, enable ? 1 : 0);
885 		WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
886 		ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
887 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, enable ? 1 : 0);
888 		WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
889 	}
890 }
891 
892 /**
893  * sdma_v4_0_rlc_stop - stop the compute async dma engines
894  *
895  * @adev: amdgpu_device pointer
896  *
897  * Stop the compute async dma queues (VEGA10).
898  */
899 static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
900 {
901 	/* XXX todo */
902 }
903 
904 /**
905  * sdma_v4_0_page_stop - stop the page async dma engines
906  *
907  * @adev: amdgpu_device pointer
908  *
909  * Stop the page async dma ring buffers (VEGA10).
910  */
911 static void sdma_v4_0_page_stop(struct amdgpu_device *adev)
912 {
913 	u32 rb_cntl, ib_cntl;
914 	int i;
915 
916 	amdgpu_sdma_unset_buffer_funcs_helper(adev);
917 
918 	for (i = 0; i < adev->sdma.num_instances; i++) {
919 		rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
920 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
921 					RB_ENABLE, 0);
922 		WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
923 		ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
924 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL,
925 					IB_ENABLE, 0);
926 		WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
927 	}
928 }
929 
930 /**
931  * sdma_v4_0_ctx_switch_enable - stop the async dma engines context switch
932  *
933  * @adev: amdgpu_device pointer
934  * @enable: enable/disable the DMA MEs context switch.
935  *
936  * Halt or unhalt the async dma engines context switch (VEGA10).
937  */
938 static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
939 {
940 	u32 f32_cntl, phase_quantum = 0;
941 	int i;
942 
943 	if (amdgpu_sdma_phase_quantum) {
944 		unsigned value = amdgpu_sdma_phase_quantum;
945 		unsigned unit = 0;
946 
947 		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
948 				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
949 			value = (value + 1) >> 1;
950 			unit++;
951 		}
952 		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
953 			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
954 			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
955 				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
956 			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
957 				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
958 			WARN_ONCE(1,
959 			"clamping sdma_phase_quantum to %uK clock cycles\n",
960 				  value << unit);
961 		}
962 		phase_quantum =
963 			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
964 			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
965 	}
966 
967 	for (i = 0; i < adev->sdma.num_instances; i++) {
968 		f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL);
969 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
970 				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
971 		if (enable && amdgpu_sdma_phase_quantum) {
972 			WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum);
973 			WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum);
974 			WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum);
975 		}
976 		WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl);
977 
978 		/*
979 		 * Enable SDMA utilization. Its only supported on
980 		 * Arcturus for the moment and firmware version 14
981 		 * and above.
982 		 */
983 		if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) ==
984 			    IP_VERSION(4, 2, 2) &&
985 		    adev->sdma.instance[i].fw_version >= 14)
986 			WREG32_SDMA(i, mmSDMA0_PUB_DUMMY_REG2, enable);
987 		/* Extend page fault timeout to avoid interrupt storm */
988 		WREG32_SDMA(i, mmSDMA0_UTCL1_TIMEOUT, 0x00800080);
989 	}
990 
991 }
992 
993 /**
994  * sdma_v4_0_enable - stop the async dma engines
995  *
996  * @adev: amdgpu_device pointer
997  * @enable: enable/disable the DMA MEs.
998  *
999  * Halt or unhalt the async dma engines (VEGA10).
1000  */
1001 static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
1002 {
1003 	u32 f32_cntl;
1004 	int i;
1005 
1006 	if (!enable) {
1007 		sdma_v4_0_gfx_enable(adev, enable);
1008 		sdma_v4_0_rlc_stop(adev);
1009 		if (adev->sdma.has_page_queue)
1010 			sdma_v4_0_page_stop(adev);
1011 	}
1012 
1013 	for (i = 0; i < adev->sdma.num_instances; i++) {
1014 		f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1015 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
1016 		WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl);
1017 	}
1018 }
1019 
1020 /*
1021  * sdma_v4_0_rb_cntl - get parameters for rb_cntl
1022  */
1023 static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
1024 {
1025 	/* Set ring buffer size in dwords */
1026 	uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
1027 
1028 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
1029 #ifdef __BIG_ENDIAN
1030 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
1031 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1032 				RPTR_WRITEBACK_SWAP_ENABLE, 1);
1033 #endif
1034 	return rb_cntl;
1035 }
1036 
1037 /**
1038  * sdma_v4_0_gfx_resume - setup and start the async dma engines
1039  *
1040  * @adev: amdgpu_device pointer
1041  * @i: instance to resume
1042  *
1043  * Set up the gfx DMA ring buffers and enable them (VEGA10).
1044  * Returns 0 for success, error for failure.
1045  */
1046 static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i)
1047 {
1048 	struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
1049 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1050 	u32 doorbell;
1051 	u32 doorbell_offset;
1052 	u64 wptr_gpu_addr;
1053 
1054 	rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
1055 	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1056 	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1057 
1058 	/* Initialize the ring buffer's read and write pointers */
1059 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0);
1060 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0);
1061 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0);
1062 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0);
1063 
1064 	/* set the wb address whether it's enabled or not */
1065 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI,
1066 	       upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF);
1067 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO,
1068 	       lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC);
1069 
1070 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1071 				RPTR_WRITEBACK_ENABLE, 1);
1072 
1073 	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8);
1074 	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
1075 
1076 	ring->wptr = 0;
1077 
1078 	/* before programing wptr to a less value, need set minor_ptr_update first */
1079 	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1);
1080 
1081 	doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL);
1082 	doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET);
1083 
1084 	doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE,
1085 				 ring->use_doorbell);
1086 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
1087 					SDMA0_GFX_DOORBELL_OFFSET,
1088 					OFFSET, ring->doorbell_index);
1089 	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell);
1090 	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset);
1091 
1092 	sdma_v4_0_ring_set_wptr(ring);
1093 
1094 	/* set minor_ptr_update to 0 after wptr programed */
1095 	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0);
1096 
1097 	/* setup the wptr shadow polling */
1098 	wptr_gpu_addr = ring->wptr_gpu_addr;
1099 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO,
1100 		    lower_32_bits(wptr_gpu_addr));
1101 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI,
1102 		    upper_32_bits(wptr_gpu_addr));
1103 	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL);
1104 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1105 				       SDMA0_GFX_RB_WPTR_POLL_CNTL,
1106 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1107 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1108 
1109 	/* enable DMA RB */
1110 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
1111 	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1112 
1113 	ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
1114 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
1115 #ifdef __BIG_ENDIAN
1116 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
1117 #endif
1118 	/* enable DMA IBs */
1119 	WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
1120 }
1121 
1122 /**
1123  * sdma_v4_0_page_resume - setup and start the async dma engines
1124  *
1125  * @adev: amdgpu_device pointer
1126  * @i: instance to resume
1127  *
1128  * Set up the page DMA ring buffers and enable them (VEGA10).
1129  * Returns 0 for success, error for failure.
1130  */
1131 static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i)
1132 {
1133 	struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
1134 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1135 	u32 doorbell;
1136 	u32 doorbell_offset;
1137 	u64 wptr_gpu_addr;
1138 
1139 	rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
1140 	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1141 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1142 
1143 	/* Initialize the ring buffer's read and write pointers */
1144 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0);
1145 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0);
1146 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0);
1147 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0);
1148 
1149 	/* set the wb address whether it's enabled or not */
1150 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI,
1151 	       upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF);
1152 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO,
1153 	       lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC);
1154 
1155 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
1156 				RPTR_WRITEBACK_ENABLE, 1);
1157 
1158 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8);
1159 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
1160 
1161 	ring->wptr = 0;
1162 
1163 	/* before programing wptr to a less value, need set minor_ptr_update first */
1164 	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1);
1165 
1166 	doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL);
1167 	doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET);
1168 
1169 	doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE,
1170 				 ring->use_doorbell);
1171 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
1172 					SDMA0_PAGE_DOORBELL_OFFSET,
1173 					OFFSET, ring->doorbell_index);
1174 	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell);
1175 	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset);
1176 
1177 	/* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */
1178 	sdma_v4_0_page_ring_set_wptr(ring);
1179 
1180 	/* set minor_ptr_update to 0 after wptr programed */
1181 	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0);
1182 
1183 	/* setup the wptr shadow polling */
1184 	wptr_gpu_addr = ring->wptr_gpu_addr;
1185 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO,
1186 		    lower_32_bits(wptr_gpu_addr));
1187 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI,
1188 		    upper_32_bits(wptr_gpu_addr));
1189 	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL);
1190 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1191 				       SDMA0_PAGE_RB_WPTR_POLL_CNTL,
1192 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1193 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1194 
1195 	/* enable DMA RB */
1196 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1);
1197 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1198 
1199 	ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
1200 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1);
1201 #ifdef __BIG_ENDIAN
1202 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
1203 #endif
1204 	/* enable DMA IBs */
1205 	WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
1206 }
1207 
1208 static void
1209 sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
1210 {
1211 	uint32_t def, data;
1212 
1213 	if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
1214 		/* enable idle interrupt */
1215 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1216 		data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1217 
1218 		if (data != def)
1219 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1220 	} else {
1221 		/* disable idle interrupt */
1222 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1223 		data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1224 		if (data != def)
1225 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1226 	}
1227 }
1228 
1229 static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
1230 {
1231 	uint32_t def, data;
1232 
1233 	/* Enable HW based PG. */
1234 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1235 	data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
1236 	if (data != def)
1237 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1238 
1239 	/* enable interrupt */
1240 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1241 	data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1242 	if (data != def)
1243 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1244 
1245 	/* Configure hold time to filter in-valid power on/off request. Use default right now */
1246 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1247 	data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
1248 	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
1249 	/* Configure switch time for hysteresis purpose. Use default right now */
1250 	data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
1251 	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
1252 	if(data != def)
1253 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1254 }
1255 
1256 static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
1257 {
1258 	if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
1259 		return;
1260 
1261 	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
1262 	case IP_VERSION(4, 1, 0):
1263         case IP_VERSION(4, 1, 1):
1264 	case IP_VERSION(4, 1, 2):
1265 		sdma_v4_1_init_power_gating(adev);
1266 		sdma_v4_1_update_power_gating(adev, true);
1267 		break;
1268 	default:
1269 		break;
1270 	}
1271 }
1272 
1273 /**
1274  * sdma_v4_0_rlc_resume - setup and start the async dma engines
1275  *
1276  * @adev: amdgpu_device pointer
1277  *
1278  * Set up the compute DMA queues and enable them (VEGA10).
1279  * Returns 0 for success, error for failure.
1280  */
1281 static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
1282 {
1283 	sdma_v4_0_init_pg(adev);
1284 
1285 	return 0;
1286 }
1287 
1288 /**
1289  * sdma_v4_0_load_microcode - load the sDMA ME ucode
1290  *
1291  * @adev: amdgpu_device pointer
1292  *
1293  * Loads the sDMA0/1 ucode.
1294  * Returns 0 for success, -EINVAL if the ucode is not available.
1295  */
1296 static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
1297 {
1298 	const struct sdma_firmware_header_v1_0 *hdr;
1299 	const __le32 *fw_data;
1300 	u32 fw_size;
1301 	int i, j;
1302 
1303 	/* halt the MEs */
1304 	sdma_v4_0_enable(adev, false);
1305 
1306 	for (i = 0; i < adev->sdma.num_instances; i++) {
1307 		if (!adev->sdma.instance[i].fw)
1308 			return -EINVAL;
1309 
1310 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
1311 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
1312 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
1313 
1314 		fw_data = (const __le32 *)
1315 			(adev->sdma.instance[i].fw->data +
1316 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
1317 
1318 		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0);
1319 
1320 		for (j = 0; j < fw_size; j++)
1321 			WREG32_SDMA(i, mmSDMA0_UCODE_DATA,
1322 				    le32_to_cpup(fw_data++));
1323 
1324 		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR,
1325 			    adev->sdma.instance[i].fw_version);
1326 	}
1327 
1328 	return 0;
1329 }
1330 
1331 /**
1332  * sdma_v4_0_start - setup and start the async dma engines
1333  *
1334  * @adev: amdgpu_device pointer
1335  *
1336  * Set up the DMA engines and enable them (VEGA10).
1337  * Returns 0 for success, error for failure.
1338  */
1339 static int sdma_v4_0_start(struct amdgpu_device *adev)
1340 {
1341 	struct amdgpu_ring *ring;
1342 	int i, r = 0;
1343 
1344 	if (amdgpu_sriov_vf(adev)) {
1345 		sdma_v4_0_ctx_switch_enable(adev, false);
1346 		sdma_v4_0_enable(adev, false);
1347 	} else {
1348 
1349 		if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
1350 			r = sdma_v4_0_load_microcode(adev);
1351 			if (r)
1352 				return r;
1353 		}
1354 
1355 		/* unhalt the MEs */
1356 		sdma_v4_0_enable(adev, true);
1357 		/* enable sdma ring preemption */
1358 		sdma_v4_0_ctx_switch_enable(adev, true);
1359 	}
1360 
1361 	/* start the gfx rings and rlc compute queues */
1362 	for (i = 0; i < adev->sdma.num_instances; i++) {
1363 		uint32_t temp;
1364 
1365 		WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0);
1366 		sdma_v4_0_gfx_resume(adev, i);
1367 		if (adev->sdma.has_page_queue)
1368 			sdma_v4_0_page_resume(adev, i);
1369 
1370 		/* set utc l1 enable flag always to 1 */
1371 		temp = RREG32_SDMA(i, mmSDMA0_CNTL);
1372 		temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
1373 		WREG32_SDMA(i, mmSDMA0_CNTL, temp);
1374 
1375 		if (!amdgpu_sriov_vf(adev)) {
1376 			/* unhalt engine */
1377 			temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1378 			temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
1379 			WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp);
1380 		}
1381 	}
1382 
1383 	if (amdgpu_sriov_vf(adev)) {
1384 		sdma_v4_0_ctx_switch_enable(adev, true);
1385 		sdma_v4_0_enable(adev, true);
1386 	} else {
1387 		r = sdma_v4_0_rlc_resume(adev);
1388 		if (r)
1389 			return r;
1390 	}
1391 
1392 	for (i = 0; i < adev->sdma.num_instances; i++) {
1393 		ring = &adev->sdma.instance[i].ring;
1394 
1395 		r = amdgpu_ring_test_helper(ring);
1396 		if (r)
1397 			return r;
1398 
1399 		if (adev->sdma.has_page_queue) {
1400 			struct amdgpu_ring *page = &adev->sdma.instance[i].page;
1401 
1402 			r = amdgpu_ring_test_helper(page);
1403 			if (r)
1404 				return r;
1405 
1406 			if (adev->mman.buffer_funcs_ring == page)
1407 				amdgpu_ttm_set_buffer_funcs_status(adev, true);
1408 		}
1409 
1410 		if (adev->mman.buffer_funcs_ring == ring)
1411 			amdgpu_ttm_set_buffer_funcs_status(adev, true);
1412 	}
1413 
1414 	return r;
1415 }
1416 
1417 /**
1418  * sdma_v4_0_ring_test_ring - simple async dma engine test
1419  *
1420  * @ring: amdgpu_ring structure holding ring information
1421  *
1422  * Test the DMA engine by writing using it to write an
1423  * value to memory. (VEGA10).
1424  * Returns 0 for success, error for failure.
1425  */
1426 static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
1427 {
1428 	struct amdgpu_device *adev = ring->adev;
1429 	unsigned i;
1430 	unsigned index;
1431 	int r;
1432 	u32 tmp;
1433 	u64 gpu_addr;
1434 
1435 	r = amdgpu_device_wb_get(adev, &index);
1436 	if (r)
1437 		return r;
1438 
1439 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1440 	tmp = 0xCAFEDEAD;
1441 	adev->wb.wb[index] = cpu_to_le32(tmp);
1442 
1443 	r = amdgpu_ring_alloc(ring, 5);
1444 	if (r)
1445 		goto error_free_wb;
1446 
1447 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1448 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1449 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1450 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1451 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1452 	amdgpu_ring_write(ring, 0xDEADBEEF);
1453 	amdgpu_ring_commit(ring);
1454 
1455 	for (i = 0; i < adev->usec_timeout; i++) {
1456 		tmp = le32_to_cpu(adev->wb.wb[index]);
1457 		if (tmp == 0xDEADBEEF)
1458 			break;
1459 		udelay(1);
1460 	}
1461 
1462 	if (i >= adev->usec_timeout)
1463 		r = -ETIMEDOUT;
1464 
1465 error_free_wb:
1466 	amdgpu_device_wb_free(adev, index);
1467 	return r;
1468 }
1469 
1470 /**
1471  * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
1472  *
1473  * @ring: amdgpu_ring structure holding ring information
1474  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
1475  *
1476  * Test a simple IB in the DMA ring (VEGA10).
1477  * Returns 0 on success, error on failure.
1478  */
1479 static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1480 {
1481 	struct amdgpu_device *adev = ring->adev;
1482 	struct amdgpu_ib ib;
1483 	struct dma_fence *f = NULL;
1484 	unsigned index;
1485 	long r;
1486 	u32 tmp = 0;
1487 	u64 gpu_addr;
1488 
1489 	r = amdgpu_device_wb_get(adev, &index);
1490 	if (r)
1491 		return r;
1492 
1493 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1494 	tmp = 0xCAFEDEAD;
1495 	adev->wb.wb[index] = cpu_to_le32(tmp);
1496 	memset(&ib, 0, sizeof(ib));
1497 	r = amdgpu_ib_get(adev, NULL, 256,
1498 					AMDGPU_IB_POOL_DIRECT, &ib);
1499 	if (r)
1500 		goto err0;
1501 
1502 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1503 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1504 	ib.ptr[1] = lower_32_bits(gpu_addr);
1505 	ib.ptr[2] = upper_32_bits(gpu_addr);
1506 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1507 	ib.ptr[4] = 0xDEADBEEF;
1508 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1509 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1510 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1511 	ib.length_dw = 8;
1512 
1513 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1514 	if (r)
1515 		goto err1;
1516 
1517 	r = dma_fence_wait_timeout(f, false, timeout);
1518 	if (r == 0) {
1519 		r = -ETIMEDOUT;
1520 		goto err1;
1521 	} else if (r < 0) {
1522 		goto err1;
1523 	}
1524 	tmp = le32_to_cpu(adev->wb.wb[index]);
1525 	if (tmp == 0xDEADBEEF)
1526 		r = 0;
1527 	else
1528 		r = -EINVAL;
1529 
1530 err1:
1531 	amdgpu_ib_free(adev, &ib, NULL);
1532 	dma_fence_put(f);
1533 err0:
1534 	amdgpu_device_wb_free(adev, index);
1535 	return r;
1536 }
1537 
1538 
1539 /**
1540  * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
1541  *
1542  * @ib: indirect buffer to fill with commands
1543  * @pe: addr of the page entry
1544  * @src: src addr to copy from
1545  * @count: number of page entries to update
1546  *
1547  * Update PTEs by copying them from the GART using sDMA (VEGA10).
1548  */
1549 static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
1550 				  uint64_t pe, uint64_t src,
1551 				  unsigned count)
1552 {
1553 	unsigned bytes = count * 8;
1554 
1555 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1556 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1557 	ib->ptr[ib->length_dw++] = bytes - 1;
1558 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1559 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1560 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1561 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1562 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1563 
1564 }
1565 
1566 /**
1567  * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
1568  *
1569  * @ib: indirect buffer to fill with commands
1570  * @pe: addr of the page entry
1571  * @value: dst addr to write into pe
1572  * @count: number of page entries to update
1573  * @incr: increase next addr by incr bytes
1574  *
1575  * Update PTEs by writing them manually using sDMA (VEGA10).
1576  */
1577 static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1578 				   uint64_t value, unsigned count,
1579 				   uint32_t incr)
1580 {
1581 	unsigned ndw = count * 2;
1582 
1583 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1584 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1585 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1586 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1587 	ib->ptr[ib->length_dw++] = ndw - 1;
1588 	for (; ndw > 0; ndw -= 2) {
1589 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1590 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1591 		value += incr;
1592 	}
1593 }
1594 
1595 /**
1596  * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
1597  *
1598  * @ib: indirect buffer to fill with commands
1599  * @pe: addr of the page entry
1600  * @addr: dst addr to write into pe
1601  * @count: number of page entries to update
1602  * @incr: increase next addr by incr bytes
1603  * @flags: access flags
1604  *
1605  * Update the page tables using sDMA (VEGA10).
1606  */
1607 static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1608 				     uint64_t pe,
1609 				     uint64_t addr, unsigned count,
1610 				     uint32_t incr, uint64_t flags)
1611 {
1612 	/* for physically contiguous pages (vram) */
1613 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1614 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1615 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1616 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1617 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1618 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1619 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1620 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1621 	ib->ptr[ib->length_dw++] = 0;
1622 	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1623 }
1624 
1625 /**
1626  * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
1627  *
1628  * @ring: amdgpu_ring structure holding ring information
1629  * @ib: indirect buffer to fill with padding
1630  */
1631 static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1632 {
1633 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1634 	u32 pad_count;
1635 	int i;
1636 
1637 	pad_count = (-ib->length_dw) & 7;
1638 	for (i = 0; i < pad_count; i++)
1639 		if (sdma && sdma->burst_nop && (i == 0))
1640 			ib->ptr[ib->length_dw++] =
1641 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1642 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1643 		else
1644 			ib->ptr[ib->length_dw++] =
1645 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1646 }
1647 
1648 
1649 /**
1650  * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1651  *
1652  * @ring: amdgpu_ring pointer
1653  *
1654  * Make sure all previous operations are completed (CIK).
1655  */
1656 static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1657 {
1658 	uint32_t seq = ring->fence_drv.sync_seq;
1659 	uint64_t addr = ring->fence_drv.gpu_addr;
1660 
1661 	/* wait for idle */
1662 	sdma_v4_0_wait_reg_mem(ring, 1, 0,
1663 			       addr & 0xfffffffc,
1664 			       upper_32_bits(addr) & 0xffffffff,
1665 			       seq, 0xffffffff, 4);
1666 }
1667 
1668 
1669 /**
1670  * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1671  *
1672  * @ring: amdgpu_ring pointer
1673  * @vmid: vmid number to use
1674  * @pd_addr: address
1675  *
1676  * Update the page table base and flush the VM TLB
1677  * using sDMA (VEGA10).
1678  */
1679 static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1680 					 unsigned vmid, uint64_t pd_addr)
1681 {
1682 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1683 }
1684 
1685 static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
1686 				     uint32_t reg, uint32_t val)
1687 {
1688 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1689 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1690 	amdgpu_ring_write(ring, reg);
1691 	amdgpu_ring_write(ring, val);
1692 }
1693 
1694 static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1695 					 uint32_t val, uint32_t mask)
1696 {
1697 	sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1698 }
1699 
1700 static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev)
1701 {
1702 	uint fw_version = adev->sdma.instance[0].fw_version;
1703 
1704 	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
1705 	case IP_VERSION(4, 0, 0):
1706 		return fw_version >= 430;
1707 	case IP_VERSION(4, 0, 1):
1708 		/*return fw_version >= 31;*/
1709 		return false;
1710 	case IP_VERSION(4, 2, 0):
1711 		return fw_version >= 123;
1712 	default:
1713 		return false;
1714 	}
1715 }
1716 
1717 static int sdma_v4_0_early_init(void *handle)
1718 {
1719 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1720 	int r;
1721 
1722 	r = sdma_v4_0_init_microcode(adev);
1723 	if (r) {
1724 		DRM_ERROR("Failed to load sdma firmware!\n");
1725 		return r;
1726 	}
1727 
1728 	/* TODO: Page queue breaks driver reload under SRIOV */
1729 	if ((amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 0, 0)) &&
1730 	    amdgpu_sriov_vf((adev)))
1731 		adev->sdma.has_page_queue = false;
1732 	else if (sdma_v4_0_fw_support_paging_queue(adev))
1733 		adev->sdma.has_page_queue = true;
1734 
1735 	sdma_v4_0_set_ring_funcs(adev);
1736 	sdma_v4_0_set_buffer_funcs(adev);
1737 	sdma_v4_0_set_vm_pte_funcs(adev);
1738 	sdma_v4_0_set_irq_funcs(adev);
1739 	sdma_v4_0_set_ras_funcs(adev);
1740 
1741 	return 0;
1742 }
1743 
1744 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
1745 		void *err_data,
1746 		struct amdgpu_iv_entry *entry);
1747 
1748 static int sdma_v4_0_late_init(void *handle)
1749 {
1750 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1751 
1752 	sdma_v4_0_setup_ulv(adev);
1753 
1754 	if (!amdgpu_persistent_edc_harvesting_supported(adev)) {
1755 		if (adev->sdma.ras && adev->sdma.ras->ras_block.hw_ops &&
1756 		    adev->sdma.ras->ras_block.hw_ops->reset_ras_error_count)
1757 			adev->sdma.ras->ras_block.hw_ops->reset_ras_error_count(adev);
1758 	}
1759 
1760 	return 0;
1761 }
1762 
1763 static int sdma_v4_0_sw_init(void *handle)
1764 {
1765 	struct amdgpu_ring *ring;
1766 	int r, i;
1767 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1768 
1769 	/* SDMA trap event */
1770 	for (i = 0; i < adev->sdma.num_instances; i++) {
1771 		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1772 				      SDMA0_4_0__SRCID__SDMA_TRAP,
1773 				      &adev->sdma.trap_irq);
1774 		if (r)
1775 			return r;
1776 	}
1777 
1778 	/* SDMA SRAM ECC event */
1779 	for (i = 0; i < adev->sdma.num_instances; i++) {
1780 		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1781 				      SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
1782 				      &adev->sdma.ecc_irq);
1783 		if (r)
1784 			return r;
1785 	}
1786 
1787 	/* SDMA VM_HOLE/DOORBELL_INV/POLL_TIMEOUT/SRBM_WRITE_PROTECTION event*/
1788 	for (i = 0; i < adev->sdma.num_instances; i++) {
1789 		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1790 				      SDMA0_4_0__SRCID__SDMA_VM_HOLE,
1791 				      &adev->sdma.vm_hole_irq);
1792 		if (r)
1793 			return r;
1794 
1795 		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1796 				      SDMA0_4_0__SRCID__SDMA_DOORBELL_INVALID,
1797 				      &adev->sdma.doorbell_invalid_irq);
1798 		if (r)
1799 			return r;
1800 
1801 		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1802 				      SDMA0_4_0__SRCID__SDMA_POLL_TIMEOUT,
1803 				      &adev->sdma.pool_timeout_irq);
1804 		if (r)
1805 			return r;
1806 
1807 		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1808 				      SDMA0_4_0__SRCID__SDMA_SRBMWRITE,
1809 				      &adev->sdma.srbm_write_irq);
1810 		if (r)
1811 			return r;
1812 	}
1813 
1814 	for (i = 0; i < adev->sdma.num_instances; i++) {
1815 		ring = &adev->sdma.instance[i].ring;
1816 		ring->ring_obj = NULL;
1817 		ring->use_doorbell = true;
1818 
1819 		DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i,
1820 				ring->use_doorbell?"true":"false");
1821 
1822 		/* doorbell size is 2 dwords, get DWORD offset */
1823 		ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1824 
1825 		/*
1826 		 * On Arcturus, SDMA instance 5~7 has a different vmhub
1827 		 * type(AMDGPU_MMHUB1).
1828 		 */
1829 		if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) ==
1830 			    IP_VERSION(4, 2, 2) &&
1831 		    i >= 5)
1832 			ring->vm_hub = AMDGPU_MMHUB1(0);
1833 		else
1834 			ring->vm_hub = AMDGPU_MMHUB0(0);
1835 
1836 		sprintf(ring->name, "sdma%d", i);
1837 		r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1838 				     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1839 				     AMDGPU_RING_PRIO_DEFAULT, NULL);
1840 		if (r)
1841 			return r;
1842 
1843 		if (adev->sdma.has_page_queue) {
1844 			ring = &adev->sdma.instance[i].page;
1845 			ring->ring_obj = NULL;
1846 			ring->use_doorbell = true;
1847 
1848 			/* paging queue use same doorbell index/routing as gfx queue
1849 			 * with 0x400 (4096 dwords) offset on second doorbell page
1850 			 */
1851 			if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) >=
1852 				    IP_VERSION(4, 0, 0) &&
1853 			    amdgpu_ip_version(adev, SDMA0_HWIP, 0) <
1854 				    IP_VERSION(4, 2, 0)) {
1855 				ring->doorbell_index =
1856 					adev->doorbell_index.sdma_engine[i] << 1;
1857 				ring->doorbell_index += 0x400;
1858 			} else {
1859 				/* From vega20, the sdma_doorbell_range in 1st
1860 				 * doorbell page is reserved for page queue.
1861 				 */
1862 				ring->doorbell_index =
1863 					(adev->doorbell_index.sdma_engine[i] + 1) << 1;
1864 			}
1865 
1866 			if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) ==
1867 				    IP_VERSION(4, 2, 2) &&
1868 			    i >= 5)
1869 				ring->vm_hub = AMDGPU_MMHUB1(0);
1870 			else
1871 				ring->vm_hub = AMDGPU_MMHUB0(0);
1872 
1873 			sprintf(ring->name, "page%d", i);
1874 			r = amdgpu_ring_init(adev, ring, 1024,
1875 					     &adev->sdma.trap_irq,
1876 					     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1877 					     AMDGPU_RING_PRIO_DEFAULT, NULL);
1878 			if (r)
1879 				return r;
1880 		}
1881 	}
1882 
1883 	if (amdgpu_sdma_ras_sw_init(adev)) {
1884 		dev_err(adev->dev, "Failed to initialize sdma ras block!\n");
1885 		return -EINVAL;
1886 	}
1887 
1888 	return r;
1889 }
1890 
1891 static int sdma_v4_0_sw_fini(void *handle)
1892 {
1893 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1894 	int i;
1895 
1896 	for (i = 0; i < adev->sdma.num_instances; i++) {
1897 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1898 		if (adev->sdma.has_page_queue)
1899 			amdgpu_ring_fini(&adev->sdma.instance[i].page);
1900 	}
1901 
1902 	if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 2, 2) ||
1903 	    amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 0))
1904 		amdgpu_sdma_destroy_inst_ctx(adev, true);
1905 	else
1906 		amdgpu_sdma_destroy_inst_ctx(adev, false);
1907 
1908 	return 0;
1909 }
1910 
1911 static int sdma_v4_0_hw_init(void *handle)
1912 {
1913 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1914 
1915 	if (adev->flags & AMD_IS_APU)
1916 		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false);
1917 
1918 	if (!amdgpu_sriov_vf(adev))
1919 		sdma_v4_0_init_golden_registers(adev);
1920 
1921 	return sdma_v4_0_start(adev);
1922 }
1923 
1924 static int sdma_v4_0_hw_fini(void *handle)
1925 {
1926 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1927 	int i;
1928 
1929 	if (amdgpu_sriov_vf(adev)) {
1930 		/* disable the scheduler for SDMA */
1931 		amdgpu_sdma_unset_buffer_funcs_helper(adev);
1932 		return 0;
1933 	}
1934 
1935 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
1936 		for (i = 0; i < adev->sdma.num_instances; i++) {
1937 			amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
1938 				       AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1939 		}
1940 	}
1941 
1942 	sdma_v4_0_ctx_switch_enable(adev, false);
1943 	sdma_v4_0_enable(adev, false);
1944 
1945 	if (adev->flags & AMD_IS_APU)
1946 		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true);
1947 
1948 	return 0;
1949 }
1950 
1951 static int sdma_v4_0_suspend(void *handle)
1952 {
1953 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1954 
1955 	/* SMU saves SDMA state for us */
1956 	if (adev->in_s0ix) {
1957 		sdma_v4_0_gfx_enable(adev, false);
1958 		return 0;
1959 	}
1960 
1961 	return sdma_v4_0_hw_fini(adev);
1962 }
1963 
1964 static int sdma_v4_0_resume(void *handle)
1965 {
1966 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1967 
1968 	/* SMU restores SDMA state for us */
1969 	if (adev->in_s0ix) {
1970 		sdma_v4_0_enable(adev, true);
1971 		sdma_v4_0_gfx_enable(adev, true);
1972 		amdgpu_ttm_set_buffer_funcs_status(adev, true);
1973 		return 0;
1974 	}
1975 
1976 	return sdma_v4_0_hw_init(adev);
1977 }
1978 
1979 static bool sdma_v4_0_is_idle(void *handle)
1980 {
1981 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1982 	u32 i;
1983 
1984 	for (i = 0; i < adev->sdma.num_instances; i++) {
1985 		u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG);
1986 
1987 		if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1988 			return false;
1989 	}
1990 
1991 	return true;
1992 }
1993 
1994 static int sdma_v4_0_wait_for_idle(void *handle)
1995 {
1996 	unsigned i, j;
1997 	u32 sdma[AMDGPU_MAX_SDMA_INSTANCES];
1998 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1999 
2000 	for (i = 0; i < adev->usec_timeout; i++) {
2001 		for (j = 0; j < adev->sdma.num_instances; j++) {
2002 			sdma[j] = RREG32_SDMA(j, mmSDMA0_STATUS_REG);
2003 			if (!(sdma[j] & SDMA0_STATUS_REG__IDLE_MASK))
2004 				break;
2005 		}
2006 		if (j == adev->sdma.num_instances)
2007 			return 0;
2008 		udelay(1);
2009 	}
2010 	return -ETIMEDOUT;
2011 }
2012 
2013 static int sdma_v4_0_soft_reset(void *handle)
2014 {
2015 	/* todo */
2016 
2017 	return 0;
2018 }
2019 
2020 static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
2021 					struct amdgpu_irq_src *source,
2022 					unsigned type,
2023 					enum amdgpu_interrupt_state state)
2024 {
2025 	u32 sdma_cntl;
2026 
2027 	sdma_cntl = RREG32_SDMA(type, mmSDMA0_CNTL);
2028 	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
2029 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2030 	WREG32_SDMA(type, mmSDMA0_CNTL, sdma_cntl);
2031 
2032 	return 0;
2033 }
2034 
2035 static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
2036 				      struct amdgpu_irq_src *source,
2037 				      struct amdgpu_iv_entry *entry)
2038 {
2039 	uint32_t instance;
2040 
2041 	DRM_DEBUG("IH: SDMA trap\n");
2042 	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2043 	switch (entry->ring_id) {
2044 	case 0:
2045 		amdgpu_fence_process(&adev->sdma.instance[instance].ring);
2046 		break;
2047 	case 1:
2048 		if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) ==
2049 		    IP_VERSION(4, 2, 0))
2050 			amdgpu_fence_process(&adev->sdma.instance[instance].page);
2051 		break;
2052 	case 2:
2053 		/* XXX compute */
2054 		break;
2055 	case 3:
2056 		if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) !=
2057 		    IP_VERSION(4, 2, 0))
2058 			amdgpu_fence_process(&adev->sdma.instance[instance].page);
2059 		break;
2060 	}
2061 	return 0;
2062 }
2063 
2064 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
2065 		void *err_data,
2066 		struct amdgpu_iv_entry *entry)
2067 {
2068 	int instance;
2069 
2070 	/* When “Full RAS” is enabled, the per-IP interrupt sources should
2071 	 * be disabled and the driver should only look for the aggregated
2072 	 * interrupt via sync flood
2073 	 */
2074 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX))
2075 		goto out;
2076 
2077 	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2078 	if (instance < 0)
2079 		goto out;
2080 
2081 	amdgpu_sdma_process_ras_data_cb(adev, err_data, entry);
2082 
2083 out:
2084 	return AMDGPU_RAS_SUCCESS;
2085 }
2086 
2087 static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
2088 					      struct amdgpu_irq_src *source,
2089 					      struct amdgpu_iv_entry *entry)
2090 {
2091 	int instance;
2092 
2093 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
2094 
2095 	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2096 	if (instance < 0)
2097 		return 0;
2098 
2099 	switch (entry->ring_id) {
2100 	case 0:
2101 		drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
2102 		break;
2103 	}
2104 	return 0;
2105 }
2106 
2107 static int sdma_v4_0_set_ecc_irq_state(struct amdgpu_device *adev,
2108 					struct amdgpu_irq_src *source,
2109 					unsigned type,
2110 					enum amdgpu_interrupt_state state)
2111 {
2112 	u32 sdma_edc_config;
2113 
2114 	sdma_edc_config = RREG32_SDMA(type, mmSDMA0_EDC_CONFIG);
2115 	sdma_edc_config = REG_SET_FIELD(sdma_edc_config, SDMA0_EDC_CONFIG, ECC_INT_ENABLE,
2116 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2117 	WREG32_SDMA(type, mmSDMA0_EDC_CONFIG, sdma_edc_config);
2118 
2119 	return 0;
2120 }
2121 
2122 static int sdma_v4_0_print_iv_entry(struct amdgpu_device *adev,
2123 					      struct amdgpu_iv_entry *entry)
2124 {
2125 	int instance;
2126 	struct amdgpu_task_info task_info;
2127 	u64 addr;
2128 
2129 	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2130 	if (instance < 0 || instance >= adev->sdma.num_instances) {
2131 		dev_err(adev->dev, "sdma instance invalid %d\n", instance);
2132 		return -EINVAL;
2133 	}
2134 
2135 	addr = (u64)entry->src_data[0] << 12;
2136 	addr |= ((u64)entry->src_data[1] & 0xf) << 44;
2137 
2138 	memset(&task_info, 0, sizeof(struct amdgpu_task_info));
2139 	amdgpu_vm_get_task_info(adev, entry->pasid, &task_info);
2140 
2141 	dev_dbg_ratelimited(adev->dev,
2142 		   "[sdma%d] address:0x%016llx src_id:%u ring:%u vmid:%u "
2143 		   "pasid:%u, for process %s pid %d thread %s pid %d\n",
2144 		   instance, addr, entry->src_id, entry->ring_id, entry->vmid,
2145 		   entry->pasid, task_info.process_name, task_info.tgid,
2146 		   task_info.task_name, task_info.pid);
2147 	return 0;
2148 }
2149 
2150 static int sdma_v4_0_process_vm_hole_irq(struct amdgpu_device *adev,
2151 					      struct amdgpu_irq_src *source,
2152 					      struct amdgpu_iv_entry *entry)
2153 {
2154 	dev_dbg_ratelimited(adev->dev, "MC or SEM address in VM hole\n");
2155 	sdma_v4_0_print_iv_entry(adev, entry);
2156 	return 0;
2157 }
2158 
2159 static int sdma_v4_0_process_doorbell_invalid_irq(struct amdgpu_device *adev,
2160 					      struct amdgpu_irq_src *source,
2161 					      struct amdgpu_iv_entry *entry)
2162 {
2163 	dev_dbg_ratelimited(adev->dev, "SDMA received a doorbell from BIF with byte_enable !=0xff\n");
2164 	sdma_v4_0_print_iv_entry(adev, entry);
2165 	return 0;
2166 }
2167 
2168 static int sdma_v4_0_process_pool_timeout_irq(struct amdgpu_device *adev,
2169 					      struct amdgpu_irq_src *source,
2170 					      struct amdgpu_iv_entry *entry)
2171 {
2172 	dev_dbg_ratelimited(adev->dev,
2173 		"Polling register/memory timeout executing POLL_REG/MEM with finite timer\n");
2174 	sdma_v4_0_print_iv_entry(adev, entry);
2175 	return 0;
2176 }
2177 
2178 static int sdma_v4_0_process_srbm_write_irq(struct amdgpu_device *adev,
2179 					      struct amdgpu_irq_src *source,
2180 					      struct amdgpu_iv_entry *entry)
2181 {
2182 	dev_dbg_ratelimited(adev->dev,
2183 		"SDMA gets an Register Write SRBM_WRITE command in non-privilege command buffer\n");
2184 	sdma_v4_0_print_iv_entry(adev, entry);
2185 	return 0;
2186 }
2187 
2188 static void sdma_v4_0_update_medium_grain_clock_gating(
2189 		struct amdgpu_device *adev,
2190 		bool enable)
2191 {
2192 	uint32_t data, def;
2193 	int i;
2194 
2195 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
2196 		for (i = 0; i < adev->sdma.num_instances; i++) {
2197 			def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2198 			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2199 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2200 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2201 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2202 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2203 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2204 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2205 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2206 			if (def != data)
2207 				WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2208 		}
2209 	} else {
2210 		for (i = 0; i < adev->sdma.num_instances; i++) {
2211 			def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2212 			data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2213 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2214 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2215 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2216 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2217 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2218 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2219 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2220 			if (def != data)
2221 				WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2222 		}
2223 	}
2224 }
2225 
2226 
2227 static void sdma_v4_0_update_medium_grain_light_sleep(
2228 		struct amdgpu_device *adev,
2229 		bool enable)
2230 {
2231 	uint32_t data, def;
2232 	int i;
2233 
2234 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
2235 		for (i = 0; i < adev->sdma.num_instances; i++) {
2236 			/* 1-not override: enable sdma mem light sleep */
2237 			def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2238 			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2239 			if (def != data)
2240 				WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2241 		}
2242 	} else {
2243 		for (i = 0; i < adev->sdma.num_instances; i++) {
2244 		/* 0-override:disable sdma mem light sleep */
2245 			def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2246 			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2247 			if (def != data)
2248 				WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2249 		}
2250 	}
2251 }
2252 
2253 static int sdma_v4_0_set_clockgating_state(void *handle,
2254 					  enum amd_clockgating_state state)
2255 {
2256 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2257 
2258 	if (amdgpu_sriov_vf(adev))
2259 		return 0;
2260 
2261 	sdma_v4_0_update_medium_grain_clock_gating(adev,
2262 			state == AMD_CG_STATE_GATE);
2263 	sdma_v4_0_update_medium_grain_light_sleep(adev,
2264 			state == AMD_CG_STATE_GATE);
2265 	return 0;
2266 }
2267 
2268 static int sdma_v4_0_set_powergating_state(void *handle,
2269 					  enum amd_powergating_state state)
2270 {
2271 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2272 
2273 	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
2274 	case IP_VERSION(4, 1, 0):
2275 	case IP_VERSION(4, 1, 1):
2276 	case IP_VERSION(4, 1, 2):
2277 		sdma_v4_1_update_power_gating(adev,
2278 				state == AMD_PG_STATE_GATE);
2279 		break;
2280 	default:
2281 		break;
2282 	}
2283 
2284 	return 0;
2285 }
2286 
2287 static void sdma_v4_0_get_clockgating_state(void *handle, u64 *flags)
2288 {
2289 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2290 	int data;
2291 
2292 	if (amdgpu_sriov_vf(adev))
2293 		*flags = 0;
2294 
2295 	/* AMD_CG_SUPPORT_SDMA_MGCG */
2296 	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
2297 	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
2298 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
2299 
2300 	/* AMD_CG_SUPPORT_SDMA_LS */
2301 	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2302 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
2303 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
2304 }
2305 
2306 const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
2307 	.name = "sdma_v4_0",
2308 	.early_init = sdma_v4_0_early_init,
2309 	.late_init = sdma_v4_0_late_init,
2310 	.sw_init = sdma_v4_0_sw_init,
2311 	.sw_fini = sdma_v4_0_sw_fini,
2312 	.hw_init = sdma_v4_0_hw_init,
2313 	.hw_fini = sdma_v4_0_hw_fini,
2314 	.suspend = sdma_v4_0_suspend,
2315 	.resume = sdma_v4_0_resume,
2316 	.is_idle = sdma_v4_0_is_idle,
2317 	.wait_for_idle = sdma_v4_0_wait_for_idle,
2318 	.soft_reset = sdma_v4_0_soft_reset,
2319 	.set_clockgating_state = sdma_v4_0_set_clockgating_state,
2320 	.set_powergating_state = sdma_v4_0_set_powergating_state,
2321 	.get_clockgating_state = sdma_v4_0_get_clockgating_state,
2322 };
2323 
2324 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
2325 	.type = AMDGPU_RING_TYPE_SDMA,
2326 	.align_mask = 0xff,
2327 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2328 	.support_64bit_ptrs = true,
2329 	.secure_submission_supported = true,
2330 	.get_rptr = sdma_v4_0_ring_get_rptr,
2331 	.get_wptr = sdma_v4_0_ring_get_wptr,
2332 	.set_wptr = sdma_v4_0_ring_set_wptr,
2333 	.emit_frame_size =
2334 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2335 		3 + /* hdp invalidate */
2336 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2337 		/* sdma_v4_0_ring_emit_vm_flush */
2338 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2339 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2340 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2341 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2342 	.emit_ib = sdma_v4_0_ring_emit_ib,
2343 	.emit_fence = sdma_v4_0_ring_emit_fence,
2344 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2345 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2346 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2347 	.test_ring = sdma_v4_0_ring_test_ring,
2348 	.test_ib = sdma_v4_0_ring_test_ib,
2349 	.insert_nop = sdma_v4_0_ring_insert_nop,
2350 	.pad_ib = sdma_v4_0_ring_pad_ib,
2351 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2352 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2353 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2354 };
2355 
2356 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = {
2357 	.type = AMDGPU_RING_TYPE_SDMA,
2358 	.align_mask = 0xff,
2359 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2360 	.support_64bit_ptrs = true,
2361 	.secure_submission_supported = true,
2362 	.get_rptr = sdma_v4_0_ring_get_rptr,
2363 	.get_wptr = sdma_v4_0_page_ring_get_wptr,
2364 	.set_wptr = sdma_v4_0_page_ring_set_wptr,
2365 	.emit_frame_size =
2366 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2367 		3 + /* hdp invalidate */
2368 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2369 		/* sdma_v4_0_ring_emit_vm_flush */
2370 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2371 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2372 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2373 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2374 	.emit_ib = sdma_v4_0_ring_emit_ib,
2375 	.emit_fence = sdma_v4_0_ring_emit_fence,
2376 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2377 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2378 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2379 	.test_ring = sdma_v4_0_ring_test_ring,
2380 	.test_ib = sdma_v4_0_ring_test_ib,
2381 	.insert_nop = sdma_v4_0_ring_insert_nop,
2382 	.pad_ib = sdma_v4_0_ring_pad_ib,
2383 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2384 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2385 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2386 };
2387 
2388 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
2389 {
2390 	int i;
2391 
2392 	for (i = 0; i < adev->sdma.num_instances; i++) {
2393 		adev->sdma.instance[i].ring.funcs = &sdma_v4_0_ring_funcs;
2394 		adev->sdma.instance[i].ring.me = i;
2395 		if (adev->sdma.has_page_queue) {
2396 			adev->sdma.instance[i].page.funcs =
2397 					&sdma_v4_0_page_ring_funcs;
2398 			adev->sdma.instance[i].page.me = i;
2399 		}
2400 	}
2401 }
2402 
2403 static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
2404 	.set = sdma_v4_0_set_trap_irq_state,
2405 	.process = sdma_v4_0_process_trap_irq,
2406 };
2407 
2408 static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
2409 	.process = sdma_v4_0_process_illegal_inst_irq,
2410 };
2411 
2412 static const struct amdgpu_irq_src_funcs sdma_v4_0_ecc_irq_funcs = {
2413 	.set = sdma_v4_0_set_ecc_irq_state,
2414 	.process = amdgpu_sdma_process_ecc_irq,
2415 };
2416 
2417 static const struct amdgpu_irq_src_funcs sdma_v4_0_vm_hole_irq_funcs = {
2418 	.process = sdma_v4_0_process_vm_hole_irq,
2419 };
2420 
2421 static const struct amdgpu_irq_src_funcs sdma_v4_0_doorbell_invalid_irq_funcs = {
2422 	.process = sdma_v4_0_process_doorbell_invalid_irq,
2423 };
2424 
2425 static const struct amdgpu_irq_src_funcs sdma_v4_0_pool_timeout_irq_funcs = {
2426 	.process = sdma_v4_0_process_pool_timeout_irq,
2427 };
2428 
2429 static const struct amdgpu_irq_src_funcs sdma_v4_0_srbm_write_irq_funcs = {
2430 	.process = sdma_v4_0_process_srbm_write_irq,
2431 };
2432 
2433 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
2434 {
2435 	adev->sdma.trap_irq.num_types = adev->sdma.num_instances;
2436 	adev->sdma.ecc_irq.num_types = adev->sdma.num_instances;
2437 	/*For Arcturus and Aldebaran, add another 4 irq handler*/
2438 	switch (adev->sdma.num_instances) {
2439 	case 5:
2440 	case 8:
2441 		adev->sdma.vm_hole_irq.num_types = adev->sdma.num_instances;
2442 		adev->sdma.doorbell_invalid_irq.num_types = adev->sdma.num_instances;
2443 		adev->sdma.pool_timeout_irq.num_types = adev->sdma.num_instances;
2444 		adev->sdma.srbm_write_irq.num_types = adev->sdma.num_instances;
2445 		break;
2446 	default:
2447 		break;
2448 	}
2449 	adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
2450 	adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
2451 	adev->sdma.ecc_irq.funcs = &sdma_v4_0_ecc_irq_funcs;
2452 	adev->sdma.vm_hole_irq.funcs = &sdma_v4_0_vm_hole_irq_funcs;
2453 	adev->sdma.doorbell_invalid_irq.funcs = &sdma_v4_0_doorbell_invalid_irq_funcs;
2454 	adev->sdma.pool_timeout_irq.funcs = &sdma_v4_0_pool_timeout_irq_funcs;
2455 	adev->sdma.srbm_write_irq.funcs = &sdma_v4_0_srbm_write_irq_funcs;
2456 }
2457 
2458 /**
2459  * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
2460  *
2461  * @ib: indirect buffer to copy to
2462  * @src_offset: src GPU address
2463  * @dst_offset: dst GPU address
2464  * @byte_count: number of bytes to xfer
2465  * @tmz: if a secure copy should be used
2466  *
2467  * Copy GPU buffers using the DMA engine (VEGA10/12).
2468  * Used by the amdgpu ttm implementation to move pages if
2469  * registered as the asic copy callback.
2470  */
2471 static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
2472 				       uint64_t src_offset,
2473 				       uint64_t dst_offset,
2474 				       uint32_t byte_count,
2475 				       bool tmz)
2476 {
2477 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
2478 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
2479 		SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0);
2480 	ib->ptr[ib->length_dw++] = byte_count - 1;
2481 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
2482 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
2483 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
2484 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2485 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2486 }
2487 
2488 /**
2489  * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
2490  *
2491  * @ib: indirect buffer to copy to
2492  * @src_data: value to write to buffer
2493  * @dst_offset: dst GPU address
2494  * @byte_count: number of bytes to xfer
2495  *
2496  * Fill GPU buffers using the DMA engine (VEGA10/12).
2497  */
2498 static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
2499 				       uint32_t src_data,
2500 				       uint64_t dst_offset,
2501 				       uint32_t byte_count)
2502 {
2503 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2504 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2505 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2506 	ib->ptr[ib->length_dw++] = src_data;
2507 	ib->ptr[ib->length_dw++] = byte_count - 1;
2508 }
2509 
2510 static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
2511 	.copy_max_bytes = 0x400000,
2512 	.copy_num_dw = 7,
2513 	.emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
2514 
2515 	.fill_max_bytes = 0x400000,
2516 	.fill_num_dw = 5,
2517 	.emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
2518 };
2519 
2520 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
2521 {
2522 	adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
2523 	if (adev->sdma.has_page_queue)
2524 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
2525 	else
2526 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2527 }
2528 
2529 static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
2530 	.copy_pte_num_dw = 7,
2531 	.copy_pte = sdma_v4_0_vm_copy_pte,
2532 
2533 	.write_pte = sdma_v4_0_vm_write_pte,
2534 	.set_pte_pde = sdma_v4_0_vm_set_pte_pde,
2535 };
2536 
2537 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
2538 {
2539 	struct drm_gpu_scheduler *sched;
2540 	unsigned i;
2541 
2542 	adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
2543 	for (i = 0; i < adev->sdma.num_instances; i++) {
2544 		if (adev->sdma.has_page_queue)
2545 			sched = &adev->sdma.instance[i].page.sched;
2546 		else
2547 			sched = &adev->sdma.instance[i].ring.sched;
2548 		adev->vm_manager.vm_pte_scheds[i] = sched;
2549 	}
2550 	adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
2551 }
2552 
2553 static void sdma_v4_0_get_ras_error_count(uint32_t value,
2554 					uint32_t instance,
2555 					uint32_t *sec_count)
2556 {
2557 	uint32_t i;
2558 	uint32_t sec_cnt;
2559 
2560 	/* double bits error (multiple bits) error detection is not supported */
2561 	for (i = 0; i < ARRAY_SIZE(sdma_v4_0_ras_fields); i++) {
2562 		/* the SDMA_EDC_COUNTER register in each sdma instance
2563 		 * shares the same sed shift_mask
2564 		 * */
2565 		sec_cnt = (value &
2566 			sdma_v4_0_ras_fields[i].sec_count_mask) >>
2567 			sdma_v4_0_ras_fields[i].sec_count_shift;
2568 		if (sec_cnt) {
2569 			DRM_INFO("Detected %s in SDMA%d, SED %d\n",
2570 				sdma_v4_0_ras_fields[i].name,
2571 				instance, sec_cnt);
2572 			*sec_count += sec_cnt;
2573 		}
2574 	}
2575 }
2576 
2577 static int sdma_v4_0_query_ras_error_count_by_instance(struct amdgpu_device *adev,
2578 			uint32_t instance, void *ras_error_status)
2579 {
2580 	struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
2581 	uint32_t sec_count = 0;
2582 	uint32_t reg_value = 0;
2583 
2584 	reg_value = RREG32_SDMA(instance, mmSDMA0_EDC_COUNTER);
2585 	/* double bit error is not supported */
2586 	if (reg_value)
2587 		sdma_v4_0_get_ras_error_count(reg_value,
2588 				instance, &sec_count);
2589 	/* err_data->ce_count should be initialized to 0
2590 	 * before calling into this function */
2591 	err_data->ce_count += sec_count;
2592 	/* double bit error is not supported
2593 	 * set ue count to 0 */
2594 	err_data->ue_count = 0;
2595 
2596 	return 0;
2597 };
2598 
2599 static void sdma_v4_0_query_ras_error_count(struct amdgpu_device *adev,  void *ras_error_status)
2600 {
2601 	int i = 0;
2602 
2603 	for (i = 0; i < adev->sdma.num_instances; i++) {
2604 		if (sdma_v4_0_query_ras_error_count_by_instance(adev, i, ras_error_status)) {
2605 			dev_err(adev->dev, "Query ras error count failed in SDMA%d\n", i);
2606 			return;
2607 		}
2608 	}
2609 }
2610 
2611 static void sdma_v4_0_reset_ras_error_count(struct amdgpu_device *adev)
2612 {
2613 	int i;
2614 
2615 	/* read back edc counter registers to clear the counters */
2616 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2617 		for (i = 0; i < adev->sdma.num_instances; i++)
2618 			RREG32_SDMA(i, mmSDMA0_EDC_COUNTER);
2619 	}
2620 }
2621 
2622 const struct amdgpu_ras_block_hw_ops sdma_v4_0_ras_hw_ops = {
2623 	.query_ras_error_count = sdma_v4_0_query_ras_error_count,
2624 	.reset_ras_error_count = sdma_v4_0_reset_ras_error_count,
2625 };
2626 
2627 static struct amdgpu_sdma_ras sdma_v4_0_ras = {
2628 	.ras_block = {
2629 		.hw_ops = &sdma_v4_0_ras_hw_ops,
2630 		.ras_cb = sdma_v4_0_process_ras_data_cb,
2631 	},
2632 };
2633 
2634 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev)
2635 {
2636 	switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
2637 	case IP_VERSION(4, 2, 0):
2638 	case IP_VERSION(4, 2, 2):
2639 		adev->sdma.ras = &sdma_v4_0_ras;
2640 		break;
2641 	case IP_VERSION(4, 4, 0):
2642 		adev->sdma.ras = &sdma_v4_4_ras;
2643 		break;
2644 	default:
2645 		break;
2646 	}
2647 }
2648 
2649 const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
2650 	.type = AMD_IP_BLOCK_TYPE_SDMA,
2651 	.major = 4,
2652 	.minor = 0,
2653 	.rev = 0,
2654 	.funcs = &sdma_v4_0_ip_funcs,
2655 };
2656