1 /* 2 * Copyright 2016 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 24 #include <linux/delay.h> 25 #include <linux/firmware.h> 26 #include <linux/module.h> 27 #include <linux/pci.h> 28 29 #include "amdgpu.h" 30 #include "amdgpu_ucode.h" 31 #include "amdgpu_trace.h" 32 33 #include "sdma0/sdma0_4_2_offset.h" 34 #include "sdma0/sdma0_4_2_sh_mask.h" 35 #include "sdma1/sdma1_4_2_offset.h" 36 #include "sdma1/sdma1_4_2_sh_mask.h" 37 #include "sdma2/sdma2_4_2_2_offset.h" 38 #include "sdma2/sdma2_4_2_2_sh_mask.h" 39 #include "sdma3/sdma3_4_2_2_offset.h" 40 #include "sdma3/sdma3_4_2_2_sh_mask.h" 41 #include "sdma4/sdma4_4_2_2_offset.h" 42 #include "sdma4/sdma4_4_2_2_sh_mask.h" 43 #include "sdma5/sdma5_4_2_2_offset.h" 44 #include "sdma5/sdma5_4_2_2_sh_mask.h" 45 #include "sdma6/sdma6_4_2_2_offset.h" 46 #include "sdma6/sdma6_4_2_2_sh_mask.h" 47 #include "sdma7/sdma7_4_2_2_offset.h" 48 #include "sdma7/sdma7_4_2_2_sh_mask.h" 49 #include "hdp/hdp_4_0_offset.h" 50 #include "sdma0/sdma0_4_1_default.h" 51 52 #include "soc15_common.h" 53 #include "soc15.h" 54 #include "vega10_sdma_pkt_open.h" 55 56 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h" 57 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h" 58 59 #include "amdgpu_ras.h" 60 61 MODULE_FIRMWARE("amdgpu/vega10_sdma.bin"); 62 MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin"); 63 MODULE_FIRMWARE("amdgpu/vega12_sdma.bin"); 64 MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin"); 65 MODULE_FIRMWARE("amdgpu/vega20_sdma.bin"); 66 MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin"); 67 MODULE_FIRMWARE("amdgpu/raven_sdma.bin"); 68 MODULE_FIRMWARE("amdgpu/picasso_sdma.bin"); 69 MODULE_FIRMWARE("amdgpu/raven2_sdma.bin"); 70 MODULE_FIRMWARE("amdgpu/arcturus_sdma.bin"); 71 MODULE_FIRMWARE("amdgpu/renoir_sdma.bin"); 72 73 #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK 0x000000F8L 74 #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L 75 76 #define WREG32_SDMA(instance, offset, value) \ 77 WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value) 78 #define RREG32_SDMA(instance, offset) \ 79 RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset))) 80 81 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev); 82 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev); 83 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev); 84 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev); 85 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev); 86 87 static const struct soc15_reg_golden golden_settings_sdma_4[] = { 88 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07), 89 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100), 90 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100), 91 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 92 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100), 93 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), 94 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000), 95 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100), 96 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), 97 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100), 98 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), 99 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0), 100 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000), 101 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100), 102 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100), 103 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), 104 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100), 105 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), 106 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000), 107 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100), 108 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), 109 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100), 110 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), 111 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0), 112 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000) 113 }; 114 115 static const struct soc15_reg_golden golden_settings_sdma_vg10[] = { 116 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002), 117 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002), 118 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07), 119 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002), 120 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002) 121 }; 122 123 static const struct soc15_reg_golden golden_settings_sdma_vg12[] = { 124 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001), 125 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001), 126 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07), 127 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001), 128 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001) 129 }; 130 131 static const struct soc15_reg_golden golden_settings_sdma_4_1[] = { 132 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07), 133 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100), 134 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100), 135 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 136 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051), 137 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100), 138 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 139 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100), 140 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 141 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0), 142 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000) 143 }; 144 145 static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = { 146 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000), 147 }; 148 149 static const struct soc15_reg_golden golden_settings_sdma0_4_2[] = 150 { 151 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 152 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100), 153 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 154 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 155 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 156 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 157 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 158 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 159 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003), 160 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 161 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000), 162 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 163 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 164 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 165 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 166 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 167 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 168 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 169 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 170 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 171 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 172 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 173 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 174 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 175 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 176 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0), 177 }; 178 179 static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = { 180 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 181 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100), 182 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 183 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 184 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 185 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 186 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 187 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 188 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003), 189 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 190 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000), 191 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 192 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 193 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 194 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 195 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 196 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 197 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 198 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 199 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 200 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 201 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 202 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 203 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 204 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 205 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0), 206 }; 207 208 static const struct soc15_reg_golden golden_settings_sdma_rv1[] = 209 { 210 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002), 211 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002) 212 }; 213 214 static const struct soc15_reg_golden golden_settings_sdma_rv2[] = 215 { 216 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001), 217 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001) 218 }; 219 220 static const struct soc15_reg_golden golden_settings_sdma_arct[] = 221 { 222 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 223 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 224 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 225 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 226 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 227 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 228 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 229 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 230 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 231 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 232 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 233 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 234 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 235 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 236 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 237 SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 238 SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 239 SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 240 SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 241 SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 242 SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 243 SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 244 SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 245 SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002) 246 }; 247 248 static const struct soc15_reg_golden golden_settings_sdma_4_3[] = { 249 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 250 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100), 251 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002), 252 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002), 253 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 254 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003fff07, 0x40000051), 255 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 256 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 257 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0), 258 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x03fbe1fe) 259 }; 260 261 static const struct soc15_ras_field_entry sdma_v4_0_ras_fields[] = { 262 { "SDMA_UCODE_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 263 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UCODE_BUF_SED), 264 0, 0, 265 }, 266 { "SDMA_RB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 267 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_RB_CMD_BUF_SED), 268 0, 0, 269 }, 270 { "SDMA_IB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 271 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_IB_CMD_BUF_SED), 272 0, 0, 273 }, 274 { "SDMA_UTCL1_RD_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 275 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RD_FIFO_SED), 276 0, 0, 277 }, 278 { "SDMA_UTCL1_RDBST_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 279 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RDBST_FIFO_SED), 280 0, 0, 281 }, 282 { "SDMA_DATA_LUT_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 283 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_DATA_LUT_FIFO_SED), 284 0, 0, 285 }, 286 { "SDMA_MBANK_DATA_BUF0_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 287 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF0_SED), 288 0, 0, 289 }, 290 { "SDMA_MBANK_DATA_BUF1_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 291 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF1_SED), 292 0, 0, 293 }, 294 { "SDMA_MBANK_DATA_BUF2_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 295 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF2_SED), 296 0, 0, 297 }, 298 { "SDMA_MBANK_DATA_BUF3_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 299 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF3_SED), 300 0, 0, 301 }, 302 { "SDMA_MBANK_DATA_BUF4_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 303 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF4_SED), 304 0, 0, 305 }, 306 { "SDMA_MBANK_DATA_BUF5_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 307 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF5_SED), 308 0, 0, 309 }, 310 { "SDMA_MBANK_DATA_BUF6_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 311 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF6_SED), 312 0, 0, 313 }, 314 { "SDMA_MBANK_DATA_BUF7_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 315 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF7_SED), 316 0, 0, 317 }, 318 { "SDMA_MBANK_DATA_BUF8_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 319 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF8_SED), 320 0, 0, 321 }, 322 { "SDMA_MBANK_DATA_BUF9_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 323 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF9_SED), 324 0, 0, 325 }, 326 { "SDMA_MBANK_DATA_BUF10_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 327 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF10_SED), 328 0, 0, 329 }, 330 { "SDMA_MBANK_DATA_BUF11_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 331 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF11_SED), 332 0, 0, 333 }, 334 { "SDMA_MBANK_DATA_BUF12_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 335 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF12_SED), 336 0, 0, 337 }, 338 { "SDMA_MBANK_DATA_BUF13_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 339 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF13_SED), 340 0, 0, 341 }, 342 { "SDMA_MBANK_DATA_BUF14_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 343 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF14_SED), 344 0, 0, 345 }, 346 { "SDMA_MBANK_DATA_BUF15_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 347 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF15_SED), 348 0, 0, 349 }, 350 { "SDMA_SPLIT_DAT_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 351 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_SPLIT_DAT_BUF_SED), 352 0, 0, 353 }, 354 { "SDMA_MC_WR_ADDR_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 355 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MC_WR_ADDR_FIFO_SED), 356 0, 0, 357 }, 358 }; 359 360 static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev, 361 u32 instance, u32 offset) 362 { 363 switch (instance) { 364 case 0: 365 return (adev->reg_offset[SDMA0_HWIP][0][0] + offset); 366 case 1: 367 return (adev->reg_offset[SDMA1_HWIP][0][0] + offset); 368 case 2: 369 return (adev->reg_offset[SDMA2_HWIP][0][1] + offset); 370 case 3: 371 return (adev->reg_offset[SDMA3_HWIP][0][1] + offset); 372 case 4: 373 return (adev->reg_offset[SDMA4_HWIP][0][1] + offset); 374 case 5: 375 return (adev->reg_offset[SDMA5_HWIP][0][1] + offset); 376 case 6: 377 return (adev->reg_offset[SDMA6_HWIP][0][1] + offset); 378 case 7: 379 return (adev->reg_offset[SDMA7_HWIP][0][1] + offset); 380 default: 381 break; 382 } 383 return 0; 384 } 385 386 static unsigned sdma_v4_0_seq_to_irq_id(int seq_num) 387 { 388 switch (seq_num) { 389 case 0: 390 return SOC15_IH_CLIENTID_SDMA0; 391 case 1: 392 return SOC15_IH_CLIENTID_SDMA1; 393 case 2: 394 return SOC15_IH_CLIENTID_SDMA2; 395 case 3: 396 return SOC15_IH_CLIENTID_SDMA3; 397 case 4: 398 return SOC15_IH_CLIENTID_SDMA4; 399 case 5: 400 return SOC15_IH_CLIENTID_SDMA5; 401 case 6: 402 return SOC15_IH_CLIENTID_SDMA6; 403 case 7: 404 return SOC15_IH_CLIENTID_SDMA7; 405 default: 406 break; 407 } 408 return -EINVAL; 409 } 410 411 static int sdma_v4_0_irq_id_to_seq(unsigned client_id) 412 { 413 switch (client_id) { 414 case SOC15_IH_CLIENTID_SDMA0: 415 return 0; 416 case SOC15_IH_CLIENTID_SDMA1: 417 return 1; 418 case SOC15_IH_CLIENTID_SDMA2: 419 return 2; 420 case SOC15_IH_CLIENTID_SDMA3: 421 return 3; 422 case SOC15_IH_CLIENTID_SDMA4: 423 return 4; 424 case SOC15_IH_CLIENTID_SDMA5: 425 return 5; 426 case SOC15_IH_CLIENTID_SDMA6: 427 return 6; 428 case SOC15_IH_CLIENTID_SDMA7: 429 return 7; 430 default: 431 break; 432 } 433 return -EINVAL; 434 } 435 436 static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev) 437 { 438 switch (adev->asic_type) { 439 case CHIP_VEGA10: 440 soc15_program_register_sequence(adev, 441 golden_settings_sdma_4, 442 ARRAY_SIZE(golden_settings_sdma_4)); 443 soc15_program_register_sequence(adev, 444 golden_settings_sdma_vg10, 445 ARRAY_SIZE(golden_settings_sdma_vg10)); 446 break; 447 case CHIP_VEGA12: 448 soc15_program_register_sequence(adev, 449 golden_settings_sdma_4, 450 ARRAY_SIZE(golden_settings_sdma_4)); 451 soc15_program_register_sequence(adev, 452 golden_settings_sdma_vg12, 453 ARRAY_SIZE(golden_settings_sdma_vg12)); 454 break; 455 case CHIP_VEGA20: 456 soc15_program_register_sequence(adev, 457 golden_settings_sdma0_4_2_init, 458 ARRAY_SIZE(golden_settings_sdma0_4_2_init)); 459 soc15_program_register_sequence(adev, 460 golden_settings_sdma0_4_2, 461 ARRAY_SIZE(golden_settings_sdma0_4_2)); 462 soc15_program_register_sequence(adev, 463 golden_settings_sdma1_4_2, 464 ARRAY_SIZE(golden_settings_sdma1_4_2)); 465 break; 466 case CHIP_ARCTURUS: 467 soc15_program_register_sequence(adev, 468 golden_settings_sdma_arct, 469 ARRAY_SIZE(golden_settings_sdma_arct)); 470 break; 471 case CHIP_RAVEN: 472 soc15_program_register_sequence(adev, 473 golden_settings_sdma_4_1, 474 ARRAY_SIZE(golden_settings_sdma_4_1)); 475 if (adev->rev_id >= 8) 476 soc15_program_register_sequence(adev, 477 golden_settings_sdma_rv2, 478 ARRAY_SIZE(golden_settings_sdma_rv2)); 479 else 480 soc15_program_register_sequence(adev, 481 golden_settings_sdma_rv1, 482 ARRAY_SIZE(golden_settings_sdma_rv1)); 483 break; 484 case CHIP_RENOIR: 485 soc15_program_register_sequence(adev, 486 golden_settings_sdma_4_3, 487 ARRAY_SIZE(golden_settings_sdma_4_3)); 488 break; 489 default: 490 break; 491 } 492 } 493 494 static int sdma_v4_0_init_inst_ctx(struct amdgpu_sdma_instance *sdma_inst) 495 { 496 int err = 0; 497 const struct sdma_firmware_header_v1_0 *hdr; 498 499 err = amdgpu_ucode_validate(sdma_inst->fw); 500 if (err) 501 return err; 502 503 hdr = (const struct sdma_firmware_header_v1_0 *)sdma_inst->fw->data; 504 sdma_inst->fw_version = le32_to_cpu(hdr->header.ucode_version); 505 sdma_inst->feature_version = le32_to_cpu(hdr->ucode_feature_version); 506 507 if (sdma_inst->feature_version >= 20) 508 sdma_inst->burst_nop = true; 509 510 return 0; 511 } 512 513 static void sdma_v4_0_destroy_inst_ctx(struct amdgpu_device *adev) 514 { 515 int i; 516 517 for (i = 0; i < adev->sdma.num_instances; i++) { 518 if (adev->sdma.instance[i].fw != NULL) 519 release_firmware(adev->sdma.instance[i].fw); 520 521 /* arcturus shares the same FW memory across 522 all SDMA isntances */ 523 if (adev->asic_type == CHIP_ARCTURUS) 524 break; 525 } 526 527 memset((void*)adev->sdma.instance, 0, 528 sizeof(struct amdgpu_sdma_instance) * AMDGPU_MAX_SDMA_INSTANCES); 529 } 530 531 /** 532 * sdma_v4_0_init_microcode - load ucode images from disk 533 * 534 * @adev: amdgpu_device pointer 535 * 536 * Use the firmware interface to load the ucode images into 537 * the driver (not loaded into hw). 538 * Returns 0 on success, error on failure. 539 */ 540 541 // emulation only, won't work on real chip 542 // vega10 real chip need to use PSP to load firmware 543 static int sdma_v4_0_init_microcode(struct amdgpu_device *adev) 544 { 545 const char *chip_name; 546 char fw_name[30]; 547 int err = 0, i; 548 struct amdgpu_firmware_info *info = NULL; 549 const struct common_firmware_header *header = NULL; 550 551 DRM_DEBUG("\n"); 552 553 switch (adev->asic_type) { 554 case CHIP_VEGA10: 555 chip_name = "vega10"; 556 break; 557 case CHIP_VEGA12: 558 chip_name = "vega12"; 559 break; 560 case CHIP_VEGA20: 561 chip_name = "vega20"; 562 break; 563 case CHIP_RAVEN: 564 if (adev->rev_id >= 8) 565 chip_name = "raven2"; 566 else if (adev->pdev->device == 0x15d8) 567 chip_name = "picasso"; 568 else 569 chip_name = "raven"; 570 break; 571 case CHIP_ARCTURUS: 572 chip_name = "arcturus"; 573 break; 574 case CHIP_RENOIR: 575 chip_name = "renoir"; 576 break; 577 default: 578 BUG(); 579 } 580 581 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name); 582 583 err = request_firmware(&adev->sdma.instance[0].fw, fw_name, adev->dev); 584 if (err) 585 goto out; 586 587 err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[0]); 588 if (err) 589 goto out; 590 591 for (i = 1; i < adev->sdma.num_instances; i++) { 592 if (adev->asic_type == CHIP_ARCTURUS) { 593 /* Acturus will leverage the same FW memory 594 for every SDMA instance */ 595 memcpy((void*)&adev->sdma.instance[i], 596 (void*)&adev->sdma.instance[0], 597 sizeof(struct amdgpu_sdma_instance)); 598 } 599 else { 600 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma%d.bin", chip_name, i); 601 602 err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev); 603 if (err) 604 goto out; 605 606 err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[i]); 607 if (err) 608 goto out; 609 } 610 } 611 612 DRM_DEBUG("psp_load == '%s'\n", 613 adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false"); 614 615 if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { 616 for (i = 0; i < adev->sdma.num_instances; i++) { 617 info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i]; 618 info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i; 619 info->fw = adev->sdma.instance[i].fw; 620 header = (const struct common_firmware_header *)info->fw->data; 621 adev->firmware.fw_size += 622 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE); 623 } 624 } 625 626 out: 627 if (err) { 628 DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name); 629 sdma_v4_0_destroy_inst_ctx(adev); 630 } 631 return err; 632 } 633 634 /** 635 * sdma_v4_0_ring_get_rptr - get the current read pointer 636 * 637 * @ring: amdgpu ring pointer 638 * 639 * Get the current rptr from the hardware (VEGA10+). 640 */ 641 static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring) 642 { 643 u64 *rptr; 644 645 /* XXX check if swapping is necessary on BE */ 646 rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]); 647 648 DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr); 649 return ((*rptr) >> 2); 650 } 651 652 /** 653 * sdma_v4_0_ring_get_wptr - get the current write pointer 654 * 655 * @ring: amdgpu ring pointer 656 * 657 * Get the current wptr from the hardware (VEGA10+). 658 */ 659 static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring) 660 { 661 struct amdgpu_device *adev = ring->adev; 662 u64 wptr; 663 664 if (ring->use_doorbell) { 665 /* XXX check if swapping is necessary on BE */ 666 wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs])); 667 DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr); 668 } else { 669 wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI); 670 wptr = wptr << 32; 671 wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR); 672 DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n", 673 ring->me, wptr); 674 } 675 676 return wptr >> 2; 677 } 678 679 /** 680 * sdma_v4_0_ring_set_wptr - commit the write pointer 681 * 682 * @ring: amdgpu ring pointer 683 * 684 * Write the wptr back to the hardware (VEGA10+). 685 */ 686 static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring) 687 { 688 struct amdgpu_device *adev = ring->adev; 689 690 DRM_DEBUG("Setting write pointer\n"); 691 if (ring->use_doorbell) { 692 u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs]; 693 694 DRM_DEBUG("Using doorbell -- " 695 "wptr_offs == 0x%08x " 696 "lower_32_bits(ring->wptr) << 2 == 0x%08x " 697 "upper_32_bits(ring->wptr) << 2 == 0x%08x\n", 698 ring->wptr_offs, 699 lower_32_bits(ring->wptr << 2), 700 upper_32_bits(ring->wptr << 2)); 701 /* XXX check if swapping is necessary on BE */ 702 WRITE_ONCE(*wb, (ring->wptr << 2)); 703 DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n", 704 ring->doorbell_index, ring->wptr << 2); 705 WDOORBELL64(ring->doorbell_index, ring->wptr << 2); 706 } else { 707 DRM_DEBUG("Not using doorbell -- " 708 "mmSDMA%i_GFX_RB_WPTR == 0x%08x " 709 "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n", 710 ring->me, 711 lower_32_bits(ring->wptr << 2), 712 ring->me, 713 upper_32_bits(ring->wptr << 2)); 714 WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR, 715 lower_32_bits(ring->wptr << 2)); 716 WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI, 717 upper_32_bits(ring->wptr << 2)); 718 } 719 } 720 721 /** 722 * sdma_v4_0_page_ring_get_wptr - get the current write pointer 723 * 724 * @ring: amdgpu ring pointer 725 * 726 * Get the current wptr from the hardware (VEGA10+). 727 */ 728 static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring) 729 { 730 struct amdgpu_device *adev = ring->adev; 731 u64 wptr; 732 733 if (ring->use_doorbell) { 734 /* XXX check if swapping is necessary on BE */ 735 wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs])); 736 } else { 737 wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI); 738 wptr = wptr << 32; 739 wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR); 740 } 741 742 return wptr >> 2; 743 } 744 745 /** 746 * sdma_v4_0_ring_set_wptr - commit the write pointer 747 * 748 * @ring: amdgpu ring pointer 749 * 750 * Write the wptr back to the hardware (VEGA10+). 751 */ 752 static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring) 753 { 754 struct amdgpu_device *adev = ring->adev; 755 756 if (ring->use_doorbell) { 757 u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs]; 758 759 /* XXX check if swapping is necessary on BE */ 760 WRITE_ONCE(*wb, (ring->wptr << 2)); 761 WDOORBELL64(ring->doorbell_index, ring->wptr << 2); 762 } else { 763 uint64_t wptr = ring->wptr << 2; 764 765 WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR, 766 lower_32_bits(wptr)); 767 WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI, 768 upper_32_bits(wptr)); 769 } 770 } 771 772 static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count) 773 { 774 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); 775 int i; 776 777 for (i = 0; i < count; i++) 778 if (sdma && sdma->burst_nop && (i == 0)) 779 amdgpu_ring_write(ring, ring->funcs->nop | 780 SDMA_PKT_NOP_HEADER_COUNT(count - 1)); 781 else 782 amdgpu_ring_write(ring, ring->funcs->nop); 783 } 784 785 /** 786 * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine 787 * 788 * @ring: amdgpu ring pointer 789 * @ib: IB object to schedule 790 * 791 * Schedule an IB in the DMA ring (VEGA10). 792 */ 793 static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring, 794 struct amdgpu_job *job, 795 struct amdgpu_ib *ib, 796 uint32_t flags) 797 { 798 unsigned vmid = AMDGPU_JOB_GET_VMID(job); 799 800 /* IB packet must end on a 8 DW boundary */ 801 sdma_v4_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7); 802 803 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) | 804 SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf)); 805 /* base must be 32 byte aligned */ 806 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0); 807 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr)); 808 amdgpu_ring_write(ring, ib->length_dw); 809 amdgpu_ring_write(ring, 0); 810 amdgpu_ring_write(ring, 0); 811 812 } 813 814 static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring, 815 int mem_space, int hdp, 816 uint32_t addr0, uint32_t addr1, 817 uint32_t ref, uint32_t mask, 818 uint32_t inv) 819 { 820 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | 821 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) | 822 SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) | 823 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */ 824 if (mem_space) { 825 /* memory */ 826 amdgpu_ring_write(ring, addr0); 827 amdgpu_ring_write(ring, addr1); 828 } else { 829 /* registers */ 830 amdgpu_ring_write(ring, addr0 << 2); 831 amdgpu_ring_write(ring, addr1 << 2); 832 } 833 amdgpu_ring_write(ring, ref); /* reference */ 834 amdgpu_ring_write(ring, mask); /* mask */ 835 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 836 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */ 837 } 838 839 /** 840 * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring 841 * 842 * @ring: amdgpu ring pointer 843 * 844 * Emit an hdp flush packet on the requested DMA ring. 845 */ 846 static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring) 847 { 848 struct amdgpu_device *adev = ring->adev; 849 u32 ref_and_mask = 0; 850 const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg; 851 852 ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me; 853 854 sdma_v4_0_wait_reg_mem(ring, 0, 1, 855 adev->nbio.funcs->get_hdp_flush_done_offset(adev), 856 adev->nbio.funcs->get_hdp_flush_req_offset(adev), 857 ref_and_mask, ref_and_mask, 10); 858 } 859 860 /** 861 * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring 862 * 863 * @ring: amdgpu ring pointer 864 * @fence: amdgpu fence object 865 * 866 * Add a DMA fence packet to the ring to write 867 * the fence seq number and DMA trap packet to generate 868 * an interrupt if needed (VEGA10). 869 */ 870 static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq, 871 unsigned flags) 872 { 873 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT; 874 /* write the fence */ 875 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); 876 /* zero in first two bits */ 877 BUG_ON(addr & 0x3); 878 amdgpu_ring_write(ring, lower_32_bits(addr)); 879 amdgpu_ring_write(ring, upper_32_bits(addr)); 880 amdgpu_ring_write(ring, lower_32_bits(seq)); 881 882 /* optionally write high bits as well */ 883 if (write64bit) { 884 addr += 4; 885 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); 886 /* zero in first two bits */ 887 BUG_ON(addr & 0x3); 888 amdgpu_ring_write(ring, lower_32_bits(addr)); 889 amdgpu_ring_write(ring, upper_32_bits(addr)); 890 amdgpu_ring_write(ring, upper_32_bits(seq)); 891 } 892 893 /* generate an interrupt */ 894 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP)); 895 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0)); 896 } 897 898 899 /** 900 * sdma_v4_0_gfx_stop - stop the gfx async dma engines 901 * 902 * @adev: amdgpu_device pointer 903 * 904 * Stop the gfx async dma ring buffers (VEGA10). 905 */ 906 static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev) 907 { 908 struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES]; 909 u32 rb_cntl, ib_cntl; 910 int i, unset = 0; 911 912 for (i = 0; i < adev->sdma.num_instances; i++) { 913 sdma[i] = &adev->sdma.instance[i].ring; 914 915 if ((adev->mman.buffer_funcs_ring == sdma[i]) && unset != 1) { 916 amdgpu_ttm_set_buffer_funcs_status(adev, false); 917 unset = 1; 918 } 919 920 rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL); 921 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0); 922 WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl); 923 ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL); 924 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0); 925 WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl); 926 927 sdma[i]->sched.ready = false; 928 } 929 } 930 931 /** 932 * sdma_v4_0_rlc_stop - stop the compute async dma engines 933 * 934 * @adev: amdgpu_device pointer 935 * 936 * Stop the compute async dma queues (VEGA10). 937 */ 938 static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev) 939 { 940 /* XXX todo */ 941 } 942 943 /** 944 * sdma_v4_0_page_stop - stop the page async dma engines 945 * 946 * @adev: amdgpu_device pointer 947 * 948 * Stop the page async dma ring buffers (VEGA10). 949 */ 950 static void sdma_v4_0_page_stop(struct amdgpu_device *adev) 951 { 952 struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES]; 953 u32 rb_cntl, ib_cntl; 954 int i; 955 bool unset = false; 956 957 for (i = 0; i < adev->sdma.num_instances; i++) { 958 sdma[i] = &adev->sdma.instance[i].page; 959 960 if ((adev->mman.buffer_funcs_ring == sdma[i]) && 961 (unset == false)) { 962 amdgpu_ttm_set_buffer_funcs_status(adev, false); 963 unset = true; 964 } 965 966 rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL); 967 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, 968 RB_ENABLE, 0); 969 WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl); 970 ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL); 971 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, 972 IB_ENABLE, 0); 973 WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl); 974 975 sdma[i]->sched.ready = false; 976 } 977 } 978 979 /** 980 * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch 981 * 982 * @adev: amdgpu_device pointer 983 * @enable: enable/disable the DMA MEs context switch. 984 * 985 * Halt or unhalt the async dma engines context switch (VEGA10). 986 */ 987 static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable) 988 { 989 u32 f32_cntl, phase_quantum = 0; 990 int i; 991 992 if (amdgpu_sdma_phase_quantum) { 993 unsigned value = amdgpu_sdma_phase_quantum; 994 unsigned unit = 0; 995 996 while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >> 997 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) { 998 value = (value + 1) >> 1; 999 unit++; 1000 } 1001 if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >> 1002 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) { 1003 value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >> 1004 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT); 1005 unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >> 1006 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT); 1007 WARN_ONCE(1, 1008 "clamping sdma_phase_quantum to %uK clock cycles\n", 1009 value << unit); 1010 } 1011 phase_quantum = 1012 value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT | 1013 unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT; 1014 } 1015 1016 for (i = 0; i < adev->sdma.num_instances; i++) { 1017 f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL); 1018 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL, 1019 AUTO_CTXSW_ENABLE, enable ? 1 : 0); 1020 if (enable && amdgpu_sdma_phase_quantum) { 1021 WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum); 1022 WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum); 1023 WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum); 1024 } 1025 WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl); 1026 } 1027 1028 } 1029 1030 /** 1031 * sdma_v4_0_enable - stop the async dma engines 1032 * 1033 * @adev: amdgpu_device pointer 1034 * @enable: enable/disable the DMA MEs. 1035 * 1036 * Halt or unhalt the async dma engines (VEGA10). 1037 */ 1038 static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable) 1039 { 1040 u32 f32_cntl; 1041 int i; 1042 1043 if (enable == false) { 1044 sdma_v4_0_gfx_stop(adev); 1045 sdma_v4_0_rlc_stop(adev); 1046 if (adev->sdma.has_page_queue) 1047 sdma_v4_0_page_stop(adev); 1048 } 1049 1050 for (i = 0; i < adev->sdma.num_instances; i++) { 1051 f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL); 1052 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1); 1053 WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl); 1054 } 1055 } 1056 1057 /** 1058 * sdma_v4_0_rb_cntl - get parameters for rb_cntl 1059 */ 1060 static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl) 1061 { 1062 /* Set ring buffer size in dwords */ 1063 uint32_t rb_bufsz = order_base_2(ring->ring_size / 4); 1064 1065 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz); 1066 #ifdef __BIG_ENDIAN 1067 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1); 1068 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, 1069 RPTR_WRITEBACK_SWAP_ENABLE, 1); 1070 #endif 1071 return rb_cntl; 1072 } 1073 1074 /** 1075 * sdma_v4_0_gfx_resume - setup and start the async dma engines 1076 * 1077 * @adev: amdgpu_device pointer 1078 * @i: instance to resume 1079 * 1080 * Set up the gfx DMA ring buffers and enable them (VEGA10). 1081 * Returns 0 for success, error for failure. 1082 */ 1083 static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i) 1084 { 1085 struct amdgpu_ring *ring = &adev->sdma.instance[i].ring; 1086 u32 rb_cntl, ib_cntl, wptr_poll_cntl; 1087 u32 wb_offset; 1088 u32 doorbell; 1089 u32 doorbell_offset; 1090 u64 wptr_gpu_addr; 1091 1092 wb_offset = (ring->rptr_offs * 4); 1093 1094 rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL); 1095 rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl); 1096 WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl); 1097 1098 /* Initialize the ring buffer's read and write pointers */ 1099 WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0); 1100 WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0); 1101 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0); 1102 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0); 1103 1104 /* set the wb address whether it's enabled or not */ 1105 WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI, 1106 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF); 1107 WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 1108 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC); 1109 1110 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, 1111 RPTR_WRITEBACK_ENABLE, 1); 1112 1113 WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8); 1114 WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40); 1115 1116 ring->wptr = 0; 1117 1118 /* before programing wptr to a less value, need set minor_ptr_update first */ 1119 WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1); 1120 1121 doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL); 1122 doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET); 1123 1124 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1125 ring->use_doorbell); 1126 doorbell_offset = REG_SET_FIELD(doorbell_offset, 1127 SDMA0_GFX_DOORBELL_OFFSET, 1128 OFFSET, ring->doorbell_index); 1129 WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell); 1130 WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset); 1131 1132 sdma_v4_0_ring_set_wptr(ring); 1133 1134 /* set minor_ptr_update to 0 after wptr programed */ 1135 WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0); 1136 1137 /* setup the wptr shadow polling */ 1138 wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4); 1139 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO, 1140 lower_32_bits(wptr_gpu_addr)); 1141 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI, 1142 upper_32_bits(wptr_gpu_addr)); 1143 wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL); 1144 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, 1145 SDMA0_GFX_RB_WPTR_POLL_CNTL, 1146 F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0); 1147 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl); 1148 1149 /* enable DMA RB */ 1150 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1); 1151 WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl); 1152 1153 ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL); 1154 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1); 1155 #ifdef __BIG_ENDIAN 1156 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1); 1157 #endif 1158 /* enable DMA IBs */ 1159 WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl); 1160 1161 ring->sched.ready = true; 1162 } 1163 1164 /** 1165 * sdma_v4_0_page_resume - setup and start the async dma engines 1166 * 1167 * @adev: amdgpu_device pointer 1168 * @i: instance to resume 1169 * 1170 * Set up the page DMA ring buffers and enable them (VEGA10). 1171 * Returns 0 for success, error for failure. 1172 */ 1173 static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i) 1174 { 1175 struct amdgpu_ring *ring = &adev->sdma.instance[i].page; 1176 u32 rb_cntl, ib_cntl, wptr_poll_cntl; 1177 u32 wb_offset; 1178 u32 doorbell; 1179 u32 doorbell_offset; 1180 u64 wptr_gpu_addr; 1181 1182 wb_offset = (ring->rptr_offs * 4); 1183 1184 rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL); 1185 rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl); 1186 WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl); 1187 1188 /* Initialize the ring buffer's read and write pointers */ 1189 WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0); 1190 WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0); 1191 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0); 1192 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0); 1193 1194 /* set the wb address whether it's enabled or not */ 1195 WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI, 1196 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF); 1197 WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 1198 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC); 1199 1200 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, 1201 RPTR_WRITEBACK_ENABLE, 1); 1202 1203 WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8); 1204 WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40); 1205 1206 ring->wptr = 0; 1207 1208 /* before programing wptr to a less value, need set minor_ptr_update first */ 1209 WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1); 1210 1211 doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL); 1212 doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET); 1213 1214 doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE, 1215 ring->use_doorbell); 1216 doorbell_offset = REG_SET_FIELD(doorbell_offset, 1217 SDMA0_PAGE_DOORBELL_OFFSET, 1218 OFFSET, ring->doorbell_index); 1219 WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell); 1220 WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset); 1221 1222 /* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */ 1223 sdma_v4_0_page_ring_set_wptr(ring); 1224 1225 /* set minor_ptr_update to 0 after wptr programed */ 1226 WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0); 1227 1228 /* setup the wptr shadow polling */ 1229 wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4); 1230 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO, 1231 lower_32_bits(wptr_gpu_addr)); 1232 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI, 1233 upper_32_bits(wptr_gpu_addr)); 1234 wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL); 1235 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, 1236 SDMA0_PAGE_RB_WPTR_POLL_CNTL, 1237 F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0); 1238 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl); 1239 1240 /* enable DMA RB */ 1241 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1); 1242 WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl); 1243 1244 ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL); 1245 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1); 1246 #ifdef __BIG_ENDIAN 1247 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1); 1248 #endif 1249 /* enable DMA IBs */ 1250 WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl); 1251 1252 ring->sched.ready = true; 1253 } 1254 1255 static void 1256 sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable) 1257 { 1258 uint32_t def, data; 1259 1260 if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) { 1261 /* enable idle interrupt */ 1262 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL)); 1263 data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK; 1264 1265 if (data != def) 1266 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data); 1267 } else { 1268 /* disable idle interrupt */ 1269 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL)); 1270 data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK; 1271 if (data != def) 1272 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data); 1273 } 1274 } 1275 1276 static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev) 1277 { 1278 uint32_t def, data; 1279 1280 /* Enable HW based PG. */ 1281 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL)); 1282 data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK; 1283 if (data != def) 1284 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data); 1285 1286 /* enable interrupt */ 1287 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL)); 1288 data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK; 1289 if (data != def) 1290 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data); 1291 1292 /* Configure hold time to filter in-valid power on/off request. Use default right now */ 1293 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL)); 1294 data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK; 1295 data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK); 1296 /* Configure switch time for hysteresis purpose. Use default right now */ 1297 data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK; 1298 data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK); 1299 if(data != def) 1300 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data); 1301 } 1302 1303 static void sdma_v4_0_init_pg(struct amdgpu_device *adev) 1304 { 1305 if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA)) 1306 return; 1307 1308 switch (adev->asic_type) { 1309 case CHIP_RAVEN: 1310 case CHIP_RENOIR: 1311 sdma_v4_1_init_power_gating(adev); 1312 sdma_v4_1_update_power_gating(adev, true); 1313 break; 1314 default: 1315 break; 1316 } 1317 } 1318 1319 /** 1320 * sdma_v4_0_rlc_resume - setup and start the async dma engines 1321 * 1322 * @adev: amdgpu_device pointer 1323 * 1324 * Set up the compute DMA queues and enable them (VEGA10). 1325 * Returns 0 for success, error for failure. 1326 */ 1327 static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev) 1328 { 1329 sdma_v4_0_init_pg(adev); 1330 1331 return 0; 1332 } 1333 1334 /** 1335 * sdma_v4_0_load_microcode - load the sDMA ME ucode 1336 * 1337 * @adev: amdgpu_device pointer 1338 * 1339 * Loads the sDMA0/1 ucode. 1340 * Returns 0 for success, -EINVAL if the ucode is not available. 1341 */ 1342 static int sdma_v4_0_load_microcode(struct amdgpu_device *adev) 1343 { 1344 const struct sdma_firmware_header_v1_0 *hdr; 1345 const __le32 *fw_data; 1346 u32 fw_size; 1347 int i, j; 1348 1349 /* halt the MEs */ 1350 sdma_v4_0_enable(adev, false); 1351 1352 for (i = 0; i < adev->sdma.num_instances; i++) { 1353 if (!adev->sdma.instance[i].fw) 1354 return -EINVAL; 1355 1356 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data; 1357 amdgpu_ucode_print_sdma_hdr(&hdr->header); 1358 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4; 1359 1360 fw_data = (const __le32 *) 1361 (adev->sdma.instance[i].fw->data + 1362 le32_to_cpu(hdr->header.ucode_array_offset_bytes)); 1363 1364 WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0); 1365 1366 for (j = 0; j < fw_size; j++) 1367 WREG32_SDMA(i, mmSDMA0_UCODE_DATA, 1368 le32_to_cpup(fw_data++)); 1369 1370 WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 1371 adev->sdma.instance[i].fw_version); 1372 } 1373 1374 return 0; 1375 } 1376 1377 /** 1378 * sdma_v4_0_start - setup and start the async dma engines 1379 * 1380 * @adev: amdgpu_device pointer 1381 * 1382 * Set up the DMA engines and enable them (VEGA10). 1383 * Returns 0 for success, error for failure. 1384 */ 1385 static int sdma_v4_0_start(struct amdgpu_device *adev) 1386 { 1387 struct amdgpu_ring *ring; 1388 int i, r = 0; 1389 1390 if (amdgpu_sriov_vf(adev)) { 1391 sdma_v4_0_ctx_switch_enable(adev, false); 1392 sdma_v4_0_enable(adev, false); 1393 } else { 1394 1395 if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) { 1396 r = sdma_v4_0_load_microcode(adev); 1397 if (r) 1398 return r; 1399 } 1400 1401 /* unhalt the MEs */ 1402 sdma_v4_0_enable(adev, true); 1403 /* enable sdma ring preemption */ 1404 sdma_v4_0_ctx_switch_enable(adev, true); 1405 } 1406 1407 /* start the gfx rings and rlc compute queues */ 1408 for (i = 0; i < adev->sdma.num_instances; i++) { 1409 uint32_t temp; 1410 1411 WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0); 1412 sdma_v4_0_gfx_resume(adev, i); 1413 if (adev->sdma.has_page_queue) 1414 sdma_v4_0_page_resume(adev, i); 1415 1416 /* set utc l1 enable flag always to 1 */ 1417 temp = RREG32_SDMA(i, mmSDMA0_CNTL); 1418 temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1); 1419 WREG32_SDMA(i, mmSDMA0_CNTL, temp); 1420 1421 if (!amdgpu_sriov_vf(adev)) { 1422 /* unhalt engine */ 1423 temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL); 1424 temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0); 1425 WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp); 1426 } 1427 } 1428 1429 if (amdgpu_sriov_vf(adev)) { 1430 sdma_v4_0_ctx_switch_enable(adev, true); 1431 sdma_v4_0_enable(adev, true); 1432 } else { 1433 r = sdma_v4_0_rlc_resume(adev); 1434 if (r) 1435 return r; 1436 } 1437 1438 for (i = 0; i < adev->sdma.num_instances; i++) { 1439 ring = &adev->sdma.instance[i].ring; 1440 1441 r = amdgpu_ring_test_helper(ring); 1442 if (r) 1443 return r; 1444 1445 if (adev->sdma.has_page_queue) { 1446 struct amdgpu_ring *page = &adev->sdma.instance[i].page; 1447 1448 r = amdgpu_ring_test_helper(page); 1449 if (r) 1450 return r; 1451 1452 if (adev->mman.buffer_funcs_ring == page) 1453 amdgpu_ttm_set_buffer_funcs_status(adev, true); 1454 } 1455 1456 if (adev->mman.buffer_funcs_ring == ring) 1457 amdgpu_ttm_set_buffer_funcs_status(adev, true); 1458 } 1459 1460 return r; 1461 } 1462 1463 /** 1464 * sdma_v4_0_ring_test_ring - simple async dma engine test 1465 * 1466 * @ring: amdgpu_ring structure holding ring information 1467 * 1468 * Test the DMA engine by writing using it to write an 1469 * value to memory. (VEGA10). 1470 * Returns 0 for success, error for failure. 1471 */ 1472 static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring) 1473 { 1474 struct amdgpu_device *adev = ring->adev; 1475 unsigned i; 1476 unsigned index; 1477 int r; 1478 u32 tmp; 1479 u64 gpu_addr; 1480 1481 r = amdgpu_device_wb_get(adev, &index); 1482 if (r) 1483 return r; 1484 1485 gpu_addr = adev->wb.gpu_addr + (index * 4); 1486 tmp = 0xCAFEDEAD; 1487 adev->wb.wb[index] = cpu_to_le32(tmp); 1488 1489 r = amdgpu_ring_alloc(ring, 5); 1490 if (r) 1491 goto error_free_wb; 1492 1493 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 1494 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR)); 1495 amdgpu_ring_write(ring, lower_32_bits(gpu_addr)); 1496 amdgpu_ring_write(ring, upper_32_bits(gpu_addr)); 1497 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0)); 1498 amdgpu_ring_write(ring, 0xDEADBEEF); 1499 amdgpu_ring_commit(ring); 1500 1501 for (i = 0; i < adev->usec_timeout; i++) { 1502 tmp = le32_to_cpu(adev->wb.wb[index]); 1503 if (tmp == 0xDEADBEEF) 1504 break; 1505 udelay(1); 1506 } 1507 1508 if (i >= adev->usec_timeout) 1509 r = -ETIMEDOUT; 1510 1511 error_free_wb: 1512 amdgpu_device_wb_free(adev, index); 1513 return r; 1514 } 1515 1516 /** 1517 * sdma_v4_0_ring_test_ib - test an IB on the DMA engine 1518 * 1519 * @ring: amdgpu_ring structure holding ring information 1520 * 1521 * Test a simple IB in the DMA ring (VEGA10). 1522 * Returns 0 on success, error on failure. 1523 */ 1524 static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout) 1525 { 1526 struct amdgpu_device *adev = ring->adev; 1527 struct amdgpu_ib ib; 1528 struct dma_fence *f = NULL; 1529 unsigned index; 1530 long r; 1531 u32 tmp = 0; 1532 u64 gpu_addr; 1533 1534 r = amdgpu_device_wb_get(adev, &index); 1535 if (r) 1536 return r; 1537 1538 gpu_addr = adev->wb.gpu_addr + (index * 4); 1539 tmp = 0xCAFEDEAD; 1540 adev->wb.wb[index] = cpu_to_le32(tmp); 1541 memset(&ib, 0, sizeof(ib)); 1542 r = amdgpu_ib_get(adev, NULL, 256, &ib); 1543 if (r) 1544 goto err0; 1545 1546 ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 1547 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); 1548 ib.ptr[1] = lower_32_bits(gpu_addr); 1549 ib.ptr[2] = upper_32_bits(gpu_addr); 1550 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0); 1551 ib.ptr[4] = 0xDEADBEEF; 1552 ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 1553 ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 1554 ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 1555 ib.length_dw = 8; 1556 1557 r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f); 1558 if (r) 1559 goto err1; 1560 1561 r = dma_fence_wait_timeout(f, false, timeout); 1562 if (r == 0) { 1563 r = -ETIMEDOUT; 1564 goto err1; 1565 } else if (r < 0) { 1566 goto err1; 1567 } 1568 tmp = le32_to_cpu(adev->wb.wb[index]); 1569 if (tmp == 0xDEADBEEF) 1570 r = 0; 1571 else 1572 r = -EINVAL; 1573 1574 err1: 1575 amdgpu_ib_free(adev, &ib, NULL); 1576 dma_fence_put(f); 1577 err0: 1578 amdgpu_device_wb_free(adev, index); 1579 return r; 1580 } 1581 1582 1583 /** 1584 * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART 1585 * 1586 * @ib: indirect buffer to fill with commands 1587 * @pe: addr of the page entry 1588 * @src: src addr to copy from 1589 * @count: number of page entries to update 1590 * 1591 * Update PTEs by copying them from the GART using sDMA (VEGA10). 1592 */ 1593 static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib, 1594 uint64_t pe, uint64_t src, 1595 unsigned count) 1596 { 1597 unsigned bytes = count * 8; 1598 1599 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | 1600 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); 1601 ib->ptr[ib->length_dw++] = bytes - 1; 1602 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 1603 ib->ptr[ib->length_dw++] = lower_32_bits(src); 1604 ib->ptr[ib->length_dw++] = upper_32_bits(src); 1605 ib->ptr[ib->length_dw++] = lower_32_bits(pe); 1606 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1607 1608 } 1609 1610 /** 1611 * sdma_v4_0_vm_write_pte - update PTEs by writing them manually 1612 * 1613 * @ib: indirect buffer to fill with commands 1614 * @pe: addr of the page entry 1615 * @addr: dst addr to write into pe 1616 * @count: number of page entries to update 1617 * @incr: increase next addr by incr bytes 1618 * @flags: access flags 1619 * 1620 * Update PTEs by writing them manually using sDMA (VEGA10). 1621 */ 1622 static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe, 1623 uint64_t value, unsigned count, 1624 uint32_t incr) 1625 { 1626 unsigned ndw = count * 2; 1627 1628 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 1629 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); 1630 ib->ptr[ib->length_dw++] = lower_32_bits(pe); 1631 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1632 ib->ptr[ib->length_dw++] = ndw - 1; 1633 for (; ndw > 0; ndw -= 2) { 1634 ib->ptr[ib->length_dw++] = lower_32_bits(value); 1635 ib->ptr[ib->length_dw++] = upper_32_bits(value); 1636 value += incr; 1637 } 1638 } 1639 1640 /** 1641 * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA 1642 * 1643 * @ib: indirect buffer to fill with commands 1644 * @pe: addr of the page entry 1645 * @addr: dst addr to write into pe 1646 * @count: number of page entries to update 1647 * @incr: increase next addr by incr bytes 1648 * @flags: access flags 1649 * 1650 * Update the page tables using sDMA (VEGA10). 1651 */ 1652 static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib, 1653 uint64_t pe, 1654 uint64_t addr, unsigned count, 1655 uint32_t incr, uint64_t flags) 1656 { 1657 /* for physically contiguous pages (vram) */ 1658 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE); 1659 ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */ 1660 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1661 ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */ 1662 ib->ptr[ib->length_dw++] = upper_32_bits(flags); 1663 ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */ 1664 ib->ptr[ib->length_dw++] = upper_32_bits(addr); 1665 ib->ptr[ib->length_dw++] = incr; /* increment size */ 1666 ib->ptr[ib->length_dw++] = 0; 1667 ib->ptr[ib->length_dw++] = count - 1; /* number of entries */ 1668 } 1669 1670 /** 1671 * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw 1672 * 1673 * @ib: indirect buffer to fill with padding 1674 * 1675 */ 1676 static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib) 1677 { 1678 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); 1679 u32 pad_count; 1680 int i; 1681 1682 pad_count = (-ib->length_dw) & 7; 1683 for (i = 0; i < pad_count; i++) 1684 if (sdma && sdma->burst_nop && (i == 0)) 1685 ib->ptr[ib->length_dw++] = 1686 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) | 1687 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1); 1688 else 1689 ib->ptr[ib->length_dw++] = 1690 SDMA_PKT_HEADER_OP(SDMA_OP_NOP); 1691 } 1692 1693 1694 /** 1695 * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline 1696 * 1697 * @ring: amdgpu_ring pointer 1698 * 1699 * Make sure all previous operations are completed (CIK). 1700 */ 1701 static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring) 1702 { 1703 uint32_t seq = ring->fence_drv.sync_seq; 1704 uint64_t addr = ring->fence_drv.gpu_addr; 1705 1706 /* wait for idle */ 1707 sdma_v4_0_wait_reg_mem(ring, 1, 0, 1708 addr & 0xfffffffc, 1709 upper_32_bits(addr) & 0xffffffff, 1710 seq, 0xffffffff, 4); 1711 } 1712 1713 1714 /** 1715 * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA 1716 * 1717 * @ring: amdgpu_ring pointer 1718 * @vm: amdgpu_vm pointer 1719 * 1720 * Update the page table base and flush the VM TLB 1721 * using sDMA (VEGA10). 1722 */ 1723 static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring, 1724 unsigned vmid, uint64_t pd_addr) 1725 { 1726 amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr); 1727 } 1728 1729 static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring, 1730 uint32_t reg, uint32_t val) 1731 { 1732 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) | 1733 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf)); 1734 amdgpu_ring_write(ring, reg); 1735 amdgpu_ring_write(ring, val); 1736 } 1737 1738 static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg, 1739 uint32_t val, uint32_t mask) 1740 { 1741 sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10); 1742 } 1743 1744 static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev) 1745 { 1746 uint fw_version = adev->sdma.instance[0].fw_version; 1747 1748 switch (adev->asic_type) { 1749 case CHIP_VEGA10: 1750 return fw_version >= 430; 1751 case CHIP_VEGA12: 1752 /*return fw_version >= 31;*/ 1753 return false; 1754 case CHIP_VEGA20: 1755 return fw_version >= 123; 1756 default: 1757 return false; 1758 } 1759 } 1760 1761 static int sdma_v4_0_early_init(void *handle) 1762 { 1763 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1764 int r; 1765 1766 if (adev->asic_type == CHIP_RAVEN || adev->asic_type == CHIP_RENOIR) 1767 adev->sdma.num_instances = 1; 1768 else if (adev->asic_type == CHIP_ARCTURUS) 1769 adev->sdma.num_instances = 8; 1770 else 1771 adev->sdma.num_instances = 2; 1772 1773 r = sdma_v4_0_init_microcode(adev); 1774 if (r) { 1775 DRM_ERROR("Failed to load sdma firmware!\n"); 1776 return r; 1777 } 1778 1779 /* TODO: Page queue breaks driver reload under SRIOV */ 1780 if ((adev->asic_type == CHIP_VEGA10) && amdgpu_sriov_vf((adev))) 1781 adev->sdma.has_page_queue = false; 1782 else if (sdma_v4_0_fw_support_paging_queue(adev)) 1783 adev->sdma.has_page_queue = true; 1784 1785 sdma_v4_0_set_ring_funcs(adev); 1786 sdma_v4_0_set_buffer_funcs(adev); 1787 sdma_v4_0_set_vm_pte_funcs(adev); 1788 sdma_v4_0_set_irq_funcs(adev); 1789 sdma_v4_0_set_ras_funcs(adev); 1790 1791 return 0; 1792 } 1793 1794 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev, 1795 void *err_data, 1796 struct amdgpu_iv_entry *entry); 1797 1798 static int sdma_v4_0_late_init(void *handle) 1799 { 1800 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1801 struct ras_ih_if ih_info = { 1802 .cb = sdma_v4_0_process_ras_data_cb, 1803 }; 1804 1805 if (adev->sdma.funcs && adev->sdma.funcs->reset_ras_error_count) 1806 adev->sdma.funcs->reset_ras_error_count(adev); 1807 1808 if (adev->sdma.funcs && adev->sdma.funcs->ras_late_init) 1809 return adev->sdma.funcs->ras_late_init(adev, &ih_info); 1810 else 1811 return 0; 1812 } 1813 1814 static int sdma_v4_0_sw_init(void *handle) 1815 { 1816 struct amdgpu_ring *ring; 1817 int r, i; 1818 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1819 1820 /* SDMA trap event */ 1821 for (i = 0; i < adev->sdma.num_instances; i++) { 1822 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i), 1823 SDMA0_4_0__SRCID__SDMA_TRAP, 1824 &adev->sdma.trap_irq); 1825 if (r) 1826 return r; 1827 } 1828 1829 /* SDMA SRAM ECC event */ 1830 for (i = 0; i < adev->sdma.num_instances; i++) { 1831 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i), 1832 SDMA0_4_0__SRCID__SDMA_SRAM_ECC, 1833 &adev->sdma.ecc_irq); 1834 if (r) 1835 return r; 1836 } 1837 1838 for (i = 0; i < adev->sdma.num_instances; i++) { 1839 ring = &adev->sdma.instance[i].ring; 1840 ring->ring_obj = NULL; 1841 ring->use_doorbell = true; 1842 1843 DRM_INFO("use_doorbell being set to: [%s]\n", 1844 ring->use_doorbell?"true":"false"); 1845 1846 /* doorbell size is 2 dwords, get DWORD offset */ 1847 ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1; 1848 1849 sprintf(ring->name, "sdma%d", i); 1850 r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq, 1851 AMDGPU_SDMA_IRQ_INSTANCE0 + i); 1852 if (r) 1853 return r; 1854 1855 if (adev->sdma.has_page_queue) { 1856 ring = &adev->sdma.instance[i].page; 1857 ring->ring_obj = NULL; 1858 ring->use_doorbell = true; 1859 1860 /* paging queue use same doorbell index/routing as gfx queue 1861 * with 0x400 (4096 dwords) offset on second doorbell page 1862 */ 1863 ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1; 1864 ring->doorbell_index += 0x400; 1865 1866 sprintf(ring->name, "page%d", i); 1867 r = amdgpu_ring_init(adev, ring, 1024, 1868 &adev->sdma.trap_irq, 1869 AMDGPU_SDMA_IRQ_INSTANCE0 + i); 1870 if (r) 1871 return r; 1872 } 1873 } 1874 1875 return r; 1876 } 1877 1878 static int sdma_v4_0_sw_fini(void *handle) 1879 { 1880 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1881 int i; 1882 1883 if (adev->sdma.funcs && adev->sdma.funcs->ras_fini) 1884 adev->sdma.funcs->ras_fini(adev); 1885 1886 for (i = 0; i < adev->sdma.num_instances; i++) { 1887 amdgpu_ring_fini(&adev->sdma.instance[i].ring); 1888 if (adev->sdma.has_page_queue) 1889 amdgpu_ring_fini(&adev->sdma.instance[i].page); 1890 } 1891 1892 sdma_v4_0_destroy_inst_ctx(adev); 1893 1894 return 0; 1895 } 1896 1897 static int sdma_v4_0_hw_init(void *handle) 1898 { 1899 int r; 1900 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1901 1902 if ((adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs && 1903 adev->powerplay.pp_funcs->set_powergating_by_smu) || 1904 (adev->asic_type == CHIP_RENOIR && !adev->in_gpu_reset)) 1905 amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false); 1906 1907 if (!amdgpu_sriov_vf(adev)) 1908 sdma_v4_0_init_golden_registers(adev); 1909 1910 r = sdma_v4_0_start(adev); 1911 1912 return r; 1913 } 1914 1915 static int sdma_v4_0_hw_fini(void *handle) 1916 { 1917 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1918 int i; 1919 1920 if (amdgpu_sriov_vf(adev)) 1921 return 0; 1922 1923 for (i = 0; i < adev->sdma.num_instances; i++) { 1924 amdgpu_irq_put(adev, &adev->sdma.ecc_irq, 1925 AMDGPU_SDMA_IRQ_INSTANCE0 + i); 1926 } 1927 1928 sdma_v4_0_ctx_switch_enable(adev, false); 1929 sdma_v4_0_enable(adev, false); 1930 1931 if ((adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs 1932 && adev->powerplay.pp_funcs->set_powergating_by_smu) || 1933 adev->asic_type == CHIP_RENOIR) 1934 amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true); 1935 1936 return 0; 1937 } 1938 1939 static int sdma_v4_0_suspend(void *handle) 1940 { 1941 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1942 1943 return sdma_v4_0_hw_fini(adev); 1944 } 1945 1946 static int sdma_v4_0_resume(void *handle) 1947 { 1948 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1949 1950 return sdma_v4_0_hw_init(adev); 1951 } 1952 1953 static bool sdma_v4_0_is_idle(void *handle) 1954 { 1955 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1956 u32 i; 1957 1958 for (i = 0; i < adev->sdma.num_instances; i++) { 1959 u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG); 1960 1961 if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK)) 1962 return false; 1963 } 1964 1965 return true; 1966 } 1967 1968 static int sdma_v4_0_wait_for_idle(void *handle) 1969 { 1970 unsigned i, j; 1971 u32 sdma[AMDGPU_MAX_SDMA_INSTANCES]; 1972 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1973 1974 for (i = 0; i < adev->usec_timeout; i++) { 1975 for (j = 0; j < adev->sdma.num_instances; j++) { 1976 sdma[j] = RREG32_SDMA(j, mmSDMA0_STATUS_REG); 1977 if (!(sdma[j] & SDMA0_STATUS_REG__IDLE_MASK)) 1978 break; 1979 } 1980 if (j == adev->sdma.num_instances) 1981 return 0; 1982 udelay(1); 1983 } 1984 return -ETIMEDOUT; 1985 } 1986 1987 static int sdma_v4_0_soft_reset(void *handle) 1988 { 1989 /* todo */ 1990 1991 return 0; 1992 } 1993 1994 static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev, 1995 struct amdgpu_irq_src *source, 1996 unsigned type, 1997 enum amdgpu_interrupt_state state) 1998 { 1999 u32 sdma_cntl; 2000 2001 sdma_cntl = RREG32_SDMA(type, mmSDMA0_CNTL); 2002 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 2003 state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0); 2004 WREG32_SDMA(type, mmSDMA0_CNTL, sdma_cntl); 2005 2006 return 0; 2007 } 2008 2009 static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev, 2010 struct amdgpu_irq_src *source, 2011 struct amdgpu_iv_entry *entry) 2012 { 2013 uint32_t instance; 2014 2015 DRM_DEBUG("IH: SDMA trap\n"); 2016 instance = sdma_v4_0_irq_id_to_seq(entry->client_id); 2017 switch (entry->ring_id) { 2018 case 0: 2019 amdgpu_fence_process(&adev->sdma.instance[instance].ring); 2020 break; 2021 case 1: 2022 if (adev->asic_type == CHIP_VEGA20) 2023 amdgpu_fence_process(&adev->sdma.instance[instance].page); 2024 break; 2025 case 2: 2026 /* XXX compute */ 2027 break; 2028 case 3: 2029 if (adev->asic_type != CHIP_VEGA20) 2030 amdgpu_fence_process(&adev->sdma.instance[instance].page); 2031 break; 2032 } 2033 return 0; 2034 } 2035 2036 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev, 2037 void *err_data, 2038 struct amdgpu_iv_entry *entry) 2039 { 2040 int instance; 2041 2042 /* When “Full RAS” is enabled, the per-IP interrupt sources should 2043 * be disabled and the driver should only look for the aggregated 2044 * interrupt via sync flood 2045 */ 2046 if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) 2047 goto out; 2048 2049 instance = sdma_v4_0_irq_id_to_seq(entry->client_id); 2050 if (instance < 0) 2051 goto out; 2052 2053 amdgpu_sdma_process_ras_data_cb(adev, err_data, entry); 2054 2055 out: 2056 return AMDGPU_RAS_SUCCESS; 2057 } 2058 2059 static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev, 2060 struct amdgpu_irq_src *source, 2061 struct amdgpu_iv_entry *entry) 2062 { 2063 int instance; 2064 2065 DRM_ERROR("Illegal instruction in SDMA command stream\n"); 2066 2067 instance = sdma_v4_0_irq_id_to_seq(entry->client_id); 2068 if (instance < 0) 2069 return 0; 2070 2071 switch (entry->ring_id) { 2072 case 0: 2073 drm_sched_fault(&adev->sdma.instance[instance].ring.sched); 2074 break; 2075 } 2076 return 0; 2077 } 2078 2079 static int sdma_v4_0_set_ecc_irq_state(struct amdgpu_device *adev, 2080 struct amdgpu_irq_src *source, 2081 unsigned type, 2082 enum amdgpu_interrupt_state state) 2083 { 2084 u32 sdma_edc_config; 2085 2086 sdma_edc_config = RREG32_SDMA(type, mmSDMA0_EDC_CONFIG); 2087 sdma_edc_config = REG_SET_FIELD(sdma_edc_config, SDMA0_EDC_CONFIG, ECC_INT_ENABLE, 2088 state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0); 2089 WREG32_SDMA(type, mmSDMA0_EDC_CONFIG, sdma_edc_config); 2090 2091 return 0; 2092 } 2093 2094 static void sdma_v4_0_update_medium_grain_clock_gating( 2095 struct amdgpu_device *adev, 2096 bool enable) 2097 { 2098 uint32_t data, def; 2099 int i; 2100 2101 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) { 2102 for (i = 0; i < adev->sdma.num_instances; i++) { 2103 def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL); 2104 data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK | 2105 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK | 2106 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK | 2107 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK | 2108 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK | 2109 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK | 2110 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK | 2111 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK); 2112 if (def != data) 2113 WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data); 2114 } 2115 } else { 2116 for (i = 0; i < adev->sdma.num_instances; i++) { 2117 def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL); 2118 data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK | 2119 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK | 2120 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK | 2121 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK | 2122 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK | 2123 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK | 2124 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK | 2125 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK); 2126 if (def != data) 2127 WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data); 2128 } 2129 } 2130 } 2131 2132 2133 static void sdma_v4_0_update_medium_grain_light_sleep( 2134 struct amdgpu_device *adev, 2135 bool enable) 2136 { 2137 uint32_t data, def; 2138 int i; 2139 2140 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) { 2141 for (i = 0; i < adev->sdma.num_instances; i++) { 2142 /* 1-not override: enable sdma mem light sleep */ 2143 def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL); 2144 data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; 2145 if (def != data) 2146 WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data); 2147 } 2148 } else { 2149 for (i = 0; i < adev->sdma.num_instances; i++) { 2150 /* 0-override:disable sdma mem light sleep */ 2151 def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL); 2152 data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; 2153 if (def != data) 2154 WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data); 2155 } 2156 } 2157 } 2158 2159 static int sdma_v4_0_set_clockgating_state(void *handle, 2160 enum amd_clockgating_state state) 2161 { 2162 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2163 2164 if (amdgpu_sriov_vf(adev)) 2165 return 0; 2166 2167 switch (adev->asic_type) { 2168 case CHIP_VEGA10: 2169 case CHIP_VEGA12: 2170 case CHIP_VEGA20: 2171 case CHIP_RAVEN: 2172 case CHIP_ARCTURUS: 2173 case CHIP_RENOIR: 2174 sdma_v4_0_update_medium_grain_clock_gating(adev, 2175 state == AMD_CG_STATE_GATE); 2176 sdma_v4_0_update_medium_grain_light_sleep(adev, 2177 state == AMD_CG_STATE_GATE); 2178 break; 2179 default: 2180 break; 2181 } 2182 return 0; 2183 } 2184 2185 static int sdma_v4_0_set_powergating_state(void *handle, 2186 enum amd_powergating_state state) 2187 { 2188 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2189 2190 switch (adev->asic_type) { 2191 case CHIP_RAVEN: 2192 sdma_v4_1_update_power_gating(adev, 2193 state == AMD_PG_STATE_GATE ? true : false); 2194 break; 2195 default: 2196 break; 2197 } 2198 2199 return 0; 2200 } 2201 2202 static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags) 2203 { 2204 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2205 int data; 2206 2207 if (amdgpu_sriov_vf(adev)) 2208 *flags = 0; 2209 2210 /* AMD_CG_SUPPORT_SDMA_MGCG */ 2211 data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL)); 2212 if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK)) 2213 *flags |= AMD_CG_SUPPORT_SDMA_MGCG; 2214 2215 /* AMD_CG_SUPPORT_SDMA_LS */ 2216 data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL)); 2217 if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK) 2218 *flags |= AMD_CG_SUPPORT_SDMA_LS; 2219 } 2220 2221 const struct amd_ip_funcs sdma_v4_0_ip_funcs = { 2222 .name = "sdma_v4_0", 2223 .early_init = sdma_v4_0_early_init, 2224 .late_init = sdma_v4_0_late_init, 2225 .sw_init = sdma_v4_0_sw_init, 2226 .sw_fini = sdma_v4_0_sw_fini, 2227 .hw_init = sdma_v4_0_hw_init, 2228 .hw_fini = sdma_v4_0_hw_fini, 2229 .suspend = sdma_v4_0_suspend, 2230 .resume = sdma_v4_0_resume, 2231 .is_idle = sdma_v4_0_is_idle, 2232 .wait_for_idle = sdma_v4_0_wait_for_idle, 2233 .soft_reset = sdma_v4_0_soft_reset, 2234 .set_clockgating_state = sdma_v4_0_set_clockgating_state, 2235 .set_powergating_state = sdma_v4_0_set_powergating_state, 2236 .get_clockgating_state = sdma_v4_0_get_clockgating_state, 2237 }; 2238 2239 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = { 2240 .type = AMDGPU_RING_TYPE_SDMA, 2241 .align_mask = 0xf, 2242 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 2243 .support_64bit_ptrs = true, 2244 .vmhub = AMDGPU_MMHUB_0, 2245 .get_rptr = sdma_v4_0_ring_get_rptr, 2246 .get_wptr = sdma_v4_0_ring_get_wptr, 2247 .set_wptr = sdma_v4_0_ring_set_wptr, 2248 .emit_frame_size = 2249 6 + /* sdma_v4_0_ring_emit_hdp_flush */ 2250 3 + /* hdp invalidate */ 2251 6 + /* sdma_v4_0_ring_emit_pipeline_sync */ 2252 /* sdma_v4_0_ring_emit_vm_flush */ 2253 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + 2254 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 + 2255 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */ 2256 .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */ 2257 .emit_ib = sdma_v4_0_ring_emit_ib, 2258 .emit_fence = sdma_v4_0_ring_emit_fence, 2259 .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync, 2260 .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush, 2261 .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush, 2262 .test_ring = sdma_v4_0_ring_test_ring, 2263 .test_ib = sdma_v4_0_ring_test_ib, 2264 .insert_nop = sdma_v4_0_ring_insert_nop, 2265 .pad_ib = sdma_v4_0_ring_pad_ib, 2266 .emit_wreg = sdma_v4_0_ring_emit_wreg, 2267 .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait, 2268 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper, 2269 }; 2270 2271 /* 2272 * On Arcturus, SDMA instance 5~7 has a different vmhub type(AMDGPU_MMHUB_1). 2273 * So create a individual constant ring_funcs for those instances. 2274 */ 2275 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs_2nd_mmhub = { 2276 .type = AMDGPU_RING_TYPE_SDMA, 2277 .align_mask = 0xf, 2278 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 2279 .support_64bit_ptrs = true, 2280 .vmhub = AMDGPU_MMHUB_1, 2281 .get_rptr = sdma_v4_0_ring_get_rptr, 2282 .get_wptr = sdma_v4_0_ring_get_wptr, 2283 .set_wptr = sdma_v4_0_ring_set_wptr, 2284 .emit_frame_size = 2285 6 + /* sdma_v4_0_ring_emit_hdp_flush */ 2286 3 + /* hdp invalidate */ 2287 6 + /* sdma_v4_0_ring_emit_pipeline_sync */ 2288 /* sdma_v4_0_ring_emit_vm_flush */ 2289 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + 2290 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 + 2291 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */ 2292 .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */ 2293 .emit_ib = sdma_v4_0_ring_emit_ib, 2294 .emit_fence = sdma_v4_0_ring_emit_fence, 2295 .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync, 2296 .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush, 2297 .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush, 2298 .test_ring = sdma_v4_0_ring_test_ring, 2299 .test_ib = sdma_v4_0_ring_test_ib, 2300 .insert_nop = sdma_v4_0_ring_insert_nop, 2301 .pad_ib = sdma_v4_0_ring_pad_ib, 2302 .emit_wreg = sdma_v4_0_ring_emit_wreg, 2303 .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait, 2304 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper, 2305 }; 2306 2307 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = { 2308 .type = AMDGPU_RING_TYPE_SDMA, 2309 .align_mask = 0xf, 2310 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 2311 .support_64bit_ptrs = true, 2312 .vmhub = AMDGPU_MMHUB_0, 2313 .get_rptr = sdma_v4_0_ring_get_rptr, 2314 .get_wptr = sdma_v4_0_page_ring_get_wptr, 2315 .set_wptr = sdma_v4_0_page_ring_set_wptr, 2316 .emit_frame_size = 2317 6 + /* sdma_v4_0_ring_emit_hdp_flush */ 2318 3 + /* hdp invalidate */ 2319 6 + /* sdma_v4_0_ring_emit_pipeline_sync */ 2320 /* sdma_v4_0_ring_emit_vm_flush */ 2321 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + 2322 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 + 2323 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */ 2324 .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */ 2325 .emit_ib = sdma_v4_0_ring_emit_ib, 2326 .emit_fence = sdma_v4_0_ring_emit_fence, 2327 .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync, 2328 .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush, 2329 .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush, 2330 .test_ring = sdma_v4_0_ring_test_ring, 2331 .test_ib = sdma_v4_0_ring_test_ib, 2332 .insert_nop = sdma_v4_0_ring_insert_nop, 2333 .pad_ib = sdma_v4_0_ring_pad_ib, 2334 .emit_wreg = sdma_v4_0_ring_emit_wreg, 2335 .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait, 2336 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper, 2337 }; 2338 2339 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs_2nd_mmhub = { 2340 .type = AMDGPU_RING_TYPE_SDMA, 2341 .align_mask = 0xf, 2342 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 2343 .support_64bit_ptrs = true, 2344 .vmhub = AMDGPU_MMHUB_1, 2345 .get_rptr = sdma_v4_0_ring_get_rptr, 2346 .get_wptr = sdma_v4_0_page_ring_get_wptr, 2347 .set_wptr = sdma_v4_0_page_ring_set_wptr, 2348 .emit_frame_size = 2349 6 + /* sdma_v4_0_ring_emit_hdp_flush */ 2350 3 + /* hdp invalidate */ 2351 6 + /* sdma_v4_0_ring_emit_pipeline_sync */ 2352 /* sdma_v4_0_ring_emit_vm_flush */ 2353 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + 2354 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 + 2355 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */ 2356 .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */ 2357 .emit_ib = sdma_v4_0_ring_emit_ib, 2358 .emit_fence = sdma_v4_0_ring_emit_fence, 2359 .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync, 2360 .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush, 2361 .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush, 2362 .test_ring = sdma_v4_0_ring_test_ring, 2363 .test_ib = sdma_v4_0_ring_test_ib, 2364 .insert_nop = sdma_v4_0_ring_insert_nop, 2365 .pad_ib = sdma_v4_0_ring_pad_ib, 2366 .emit_wreg = sdma_v4_0_ring_emit_wreg, 2367 .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait, 2368 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper, 2369 }; 2370 2371 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev) 2372 { 2373 int i; 2374 2375 for (i = 0; i < adev->sdma.num_instances; i++) { 2376 if (adev->asic_type == CHIP_ARCTURUS && i >= 5) 2377 adev->sdma.instance[i].ring.funcs = 2378 &sdma_v4_0_ring_funcs_2nd_mmhub; 2379 else 2380 adev->sdma.instance[i].ring.funcs = 2381 &sdma_v4_0_ring_funcs; 2382 adev->sdma.instance[i].ring.me = i; 2383 if (adev->sdma.has_page_queue) { 2384 if (adev->asic_type == CHIP_ARCTURUS && i >= 5) 2385 adev->sdma.instance[i].page.funcs = 2386 &sdma_v4_0_page_ring_funcs_2nd_mmhub; 2387 else 2388 adev->sdma.instance[i].page.funcs = 2389 &sdma_v4_0_page_ring_funcs; 2390 adev->sdma.instance[i].page.me = i; 2391 } 2392 } 2393 } 2394 2395 static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = { 2396 .set = sdma_v4_0_set_trap_irq_state, 2397 .process = sdma_v4_0_process_trap_irq, 2398 }; 2399 2400 static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = { 2401 .process = sdma_v4_0_process_illegal_inst_irq, 2402 }; 2403 2404 static const struct amdgpu_irq_src_funcs sdma_v4_0_ecc_irq_funcs = { 2405 .set = sdma_v4_0_set_ecc_irq_state, 2406 .process = amdgpu_sdma_process_ecc_irq, 2407 }; 2408 2409 2410 2411 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev) 2412 { 2413 switch (adev->sdma.num_instances) { 2414 case 1: 2415 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE1; 2416 adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE1; 2417 break; 2418 case 8: 2419 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST; 2420 adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_LAST; 2421 break; 2422 case 2: 2423 default: 2424 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE2; 2425 adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE2; 2426 break; 2427 } 2428 adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs; 2429 adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs; 2430 adev->sdma.ecc_irq.funcs = &sdma_v4_0_ecc_irq_funcs; 2431 } 2432 2433 /** 2434 * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine 2435 * 2436 * @ring: amdgpu_ring structure holding ring information 2437 * @src_offset: src GPU address 2438 * @dst_offset: dst GPU address 2439 * @byte_count: number of bytes to xfer 2440 * 2441 * Copy GPU buffers using the DMA engine (VEGA10/12). 2442 * Used by the amdgpu ttm implementation to move pages if 2443 * registered as the asic copy callback. 2444 */ 2445 static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib, 2446 uint64_t src_offset, 2447 uint64_t dst_offset, 2448 uint32_t byte_count) 2449 { 2450 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | 2451 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); 2452 ib->ptr[ib->length_dw++] = byte_count - 1; 2453 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 2454 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset); 2455 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset); 2456 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 2457 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 2458 } 2459 2460 /** 2461 * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine 2462 * 2463 * @ring: amdgpu_ring structure holding ring information 2464 * @src_data: value to write to buffer 2465 * @dst_offset: dst GPU address 2466 * @byte_count: number of bytes to xfer 2467 * 2468 * Fill GPU buffers using the DMA engine (VEGA10/12). 2469 */ 2470 static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib, 2471 uint32_t src_data, 2472 uint64_t dst_offset, 2473 uint32_t byte_count) 2474 { 2475 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL); 2476 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 2477 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 2478 ib->ptr[ib->length_dw++] = src_data; 2479 ib->ptr[ib->length_dw++] = byte_count - 1; 2480 } 2481 2482 static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = { 2483 .copy_max_bytes = 0x400000, 2484 .copy_num_dw = 7, 2485 .emit_copy_buffer = sdma_v4_0_emit_copy_buffer, 2486 2487 .fill_max_bytes = 0x400000, 2488 .fill_num_dw = 5, 2489 .emit_fill_buffer = sdma_v4_0_emit_fill_buffer, 2490 }; 2491 2492 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev) 2493 { 2494 adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs; 2495 if (adev->sdma.has_page_queue) 2496 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page; 2497 else 2498 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring; 2499 } 2500 2501 static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = { 2502 .copy_pte_num_dw = 7, 2503 .copy_pte = sdma_v4_0_vm_copy_pte, 2504 2505 .write_pte = sdma_v4_0_vm_write_pte, 2506 .set_pte_pde = sdma_v4_0_vm_set_pte_pde, 2507 }; 2508 2509 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev) 2510 { 2511 struct drm_gpu_scheduler *sched; 2512 unsigned i; 2513 2514 adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs; 2515 for (i = 0; i < adev->sdma.num_instances; i++) { 2516 if (adev->sdma.has_page_queue) 2517 sched = &adev->sdma.instance[i].page.sched; 2518 else 2519 sched = &adev->sdma.instance[i].ring.sched; 2520 adev->vm_manager.vm_pte_scheds[i] = sched; 2521 } 2522 adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances; 2523 } 2524 2525 static void sdma_v4_0_get_ras_error_count(uint32_t value, 2526 uint32_t instance, 2527 uint32_t *sec_count) 2528 { 2529 uint32_t i; 2530 uint32_t sec_cnt; 2531 2532 /* double bits error (multiple bits) error detection is not supported */ 2533 for (i = 0; i < ARRAY_SIZE(sdma_v4_0_ras_fields); i++) { 2534 /* the SDMA_EDC_COUNTER register in each sdma instance 2535 * shares the same sed shift_mask 2536 * */ 2537 sec_cnt = (value & 2538 sdma_v4_0_ras_fields[i].sec_count_mask) >> 2539 sdma_v4_0_ras_fields[i].sec_count_shift; 2540 if (sec_cnt) { 2541 DRM_INFO("Detected %s in SDMA%d, SED %d\n", 2542 sdma_v4_0_ras_fields[i].name, 2543 instance, sec_cnt); 2544 *sec_count += sec_cnt; 2545 } 2546 } 2547 } 2548 2549 static int sdma_v4_0_query_ras_error_count(struct amdgpu_device *adev, 2550 uint32_t instance, void *ras_error_status) 2551 { 2552 struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status; 2553 uint32_t sec_count = 0; 2554 uint32_t reg_value = 0; 2555 2556 reg_value = RREG32_SDMA(instance, mmSDMA0_EDC_COUNTER); 2557 /* double bit error is not supported */ 2558 if (reg_value) 2559 sdma_v4_0_get_ras_error_count(reg_value, 2560 instance, &sec_count); 2561 /* err_data->ce_count should be initialized to 0 2562 * before calling into this function */ 2563 err_data->ce_count += sec_count; 2564 /* double bit error is not supported 2565 * set ue count to 0 */ 2566 err_data->ue_count = 0; 2567 2568 return 0; 2569 }; 2570 2571 static void sdma_v4_0_reset_ras_error_count(struct amdgpu_device *adev) 2572 { 2573 int i; 2574 2575 /* read back edc counter registers to clear the counters */ 2576 if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) { 2577 for (i = 0; i < adev->sdma.num_instances; i++) 2578 RREG32_SDMA(i, mmSDMA0_EDC_COUNTER); 2579 } 2580 } 2581 2582 static const struct amdgpu_sdma_ras_funcs sdma_v4_0_ras_funcs = { 2583 .ras_late_init = amdgpu_sdma_ras_late_init, 2584 .ras_fini = amdgpu_sdma_ras_fini, 2585 .query_ras_error_count = sdma_v4_0_query_ras_error_count, 2586 .reset_ras_error_count = sdma_v4_0_reset_ras_error_count, 2587 }; 2588 2589 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev) 2590 { 2591 switch (adev->asic_type) { 2592 case CHIP_VEGA20: 2593 case CHIP_ARCTURUS: 2594 adev->sdma.funcs = &sdma_v4_0_ras_funcs; 2595 break; 2596 default: 2597 break; 2598 } 2599 } 2600 2601 const struct amdgpu_ip_block_version sdma_v4_0_ip_block = { 2602 .type = AMD_IP_BLOCK_TYPE_SDMA, 2603 .major = 4, 2604 .minor = 0, 2605 .rev = 0, 2606 .funcs = &sdma_v4_0_ip_funcs, 2607 }; 2608