1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: Alex Deucher 23 */ 24 25 #include <linux/delay.h> 26 #include <linux/firmware.h> 27 #include <linux/module.h> 28 29 #include "amdgpu.h" 30 #include "amdgpu_ucode.h" 31 #include "amdgpu_trace.h" 32 #include "vi.h" 33 #include "vid.h" 34 35 #include "oss/oss_3_0_d.h" 36 #include "oss/oss_3_0_sh_mask.h" 37 38 #include "gmc/gmc_8_1_d.h" 39 #include "gmc/gmc_8_1_sh_mask.h" 40 41 #include "gca/gfx_8_0_d.h" 42 #include "gca/gfx_8_0_enum.h" 43 #include "gca/gfx_8_0_sh_mask.h" 44 45 #include "bif/bif_5_0_d.h" 46 #include "bif/bif_5_0_sh_mask.h" 47 48 #include "tonga_sdma_pkt_open.h" 49 50 #include "ivsrcid/ivsrcid_vislands30.h" 51 52 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev); 53 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev); 54 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev); 55 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev); 56 57 MODULE_FIRMWARE("amdgpu/tonga_sdma.bin"); 58 MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin"); 59 MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin"); 60 MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin"); 61 MODULE_FIRMWARE("amdgpu/fiji_sdma.bin"); 62 MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin"); 63 MODULE_FIRMWARE("amdgpu/stoney_sdma.bin"); 64 MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin"); 65 MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin"); 66 MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin"); 67 MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin"); 68 MODULE_FIRMWARE("amdgpu/polaris12_sdma.bin"); 69 MODULE_FIRMWARE("amdgpu/polaris12_sdma1.bin"); 70 MODULE_FIRMWARE("amdgpu/vegam_sdma.bin"); 71 MODULE_FIRMWARE("amdgpu/vegam_sdma1.bin"); 72 73 74 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] = 75 { 76 SDMA0_REGISTER_OFFSET, 77 SDMA1_REGISTER_OFFSET 78 }; 79 80 static const u32 golden_settings_tonga_a11[] = 81 { 82 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007, 83 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000, 84 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100, 85 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100, 86 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100, 87 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007, 88 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000, 89 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100, 90 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100, 91 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100, 92 }; 93 94 static const u32 tonga_mgcg_cgcg_init[] = 95 { 96 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100, 97 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100 98 }; 99 100 static const u32 golden_settings_fiji_a10[] = 101 { 102 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007, 103 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100, 104 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100, 105 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100, 106 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007, 107 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100, 108 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100, 109 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100, 110 }; 111 112 static const u32 fiji_mgcg_cgcg_init[] = 113 { 114 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100, 115 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100 116 }; 117 118 static const u32 golden_settings_polaris11_a11[] = 119 { 120 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007, 121 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000, 122 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100, 123 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100, 124 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100, 125 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007, 126 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000, 127 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100, 128 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100, 129 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100, 130 }; 131 132 static const u32 golden_settings_polaris10_a11[] = 133 { 134 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007, 135 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000, 136 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100, 137 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100, 138 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100, 139 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007, 140 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000, 141 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100, 142 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100, 143 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100, 144 }; 145 146 static const u32 cz_golden_settings_a11[] = 147 { 148 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007, 149 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000, 150 mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100, 151 mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800, 152 mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100, 153 mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100, 154 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007, 155 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000, 156 mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100, 157 mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800, 158 mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100, 159 mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100, 160 }; 161 162 static const u32 cz_mgcg_cgcg_init[] = 163 { 164 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100, 165 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100 166 }; 167 168 static const u32 stoney_golden_settings_a11[] = 169 { 170 mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100, 171 mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800, 172 mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100, 173 mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100, 174 }; 175 176 static const u32 stoney_mgcg_cgcg_init[] = 177 { 178 mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100, 179 }; 180 181 /* 182 * sDMA - System DMA 183 * Starting with CIK, the GPU has new asynchronous 184 * DMA engines. These engines are used for compute 185 * and gfx. There are two DMA engines (SDMA0, SDMA1) 186 * and each one supports 1 ring buffer used for gfx 187 * and 2 queues used for compute. 188 * 189 * The programming model is very similar to the CP 190 * (ring buffer, IBs, etc.), but sDMA has it's own 191 * packet format that is different from the PM4 format 192 * used by the CP. sDMA supports copying data, writing 193 * embedded data, solid fills, and a number of other 194 * things. It also has support for tiling/detiling of 195 * buffers. 196 */ 197 198 static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev) 199 { 200 switch (adev->asic_type) { 201 case CHIP_FIJI: 202 amdgpu_device_program_register_sequence(adev, 203 fiji_mgcg_cgcg_init, 204 ARRAY_SIZE(fiji_mgcg_cgcg_init)); 205 amdgpu_device_program_register_sequence(adev, 206 golden_settings_fiji_a10, 207 ARRAY_SIZE(golden_settings_fiji_a10)); 208 break; 209 case CHIP_TONGA: 210 amdgpu_device_program_register_sequence(adev, 211 tonga_mgcg_cgcg_init, 212 ARRAY_SIZE(tonga_mgcg_cgcg_init)); 213 amdgpu_device_program_register_sequence(adev, 214 golden_settings_tonga_a11, 215 ARRAY_SIZE(golden_settings_tonga_a11)); 216 break; 217 case CHIP_POLARIS11: 218 case CHIP_POLARIS12: 219 case CHIP_VEGAM: 220 amdgpu_device_program_register_sequence(adev, 221 golden_settings_polaris11_a11, 222 ARRAY_SIZE(golden_settings_polaris11_a11)); 223 break; 224 case CHIP_POLARIS10: 225 amdgpu_device_program_register_sequence(adev, 226 golden_settings_polaris10_a11, 227 ARRAY_SIZE(golden_settings_polaris10_a11)); 228 break; 229 case CHIP_CARRIZO: 230 amdgpu_device_program_register_sequence(adev, 231 cz_mgcg_cgcg_init, 232 ARRAY_SIZE(cz_mgcg_cgcg_init)); 233 amdgpu_device_program_register_sequence(adev, 234 cz_golden_settings_a11, 235 ARRAY_SIZE(cz_golden_settings_a11)); 236 break; 237 case CHIP_STONEY: 238 amdgpu_device_program_register_sequence(adev, 239 stoney_mgcg_cgcg_init, 240 ARRAY_SIZE(stoney_mgcg_cgcg_init)); 241 amdgpu_device_program_register_sequence(adev, 242 stoney_golden_settings_a11, 243 ARRAY_SIZE(stoney_golden_settings_a11)); 244 break; 245 default: 246 break; 247 } 248 } 249 250 static void sdma_v3_0_free_microcode(struct amdgpu_device *adev) 251 { 252 int i; 253 254 for (i = 0; i < adev->sdma.num_instances; i++) 255 amdgpu_ucode_release(&adev->sdma.instance[i].fw); 256 } 257 258 /** 259 * sdma_v3_0_init_microcode - load ucode images from disk 260 * 261 * @adev: amdgpu_device pointer 262 * 263 * Use the firmware interface to load the ucode images into 264 * the driver (not loaded into hw). 265 * Returns 0 on success, error on failure. 266 */ 267 static int sdma_v3_0_init_microcode(struct amdgpu_device *adev) 268 { 269 const char *chip_name; 270 char fw_name[30]; 271 int err = 0, i; 272 struct amdgpu_firmware_info *info = NULL; 273 const struct common_firmware_header *header = NULL; 274 const struct sdma_firmware_header_v1_0 *hdr; 275 276 DRM_DEBUG("\n"); 277 278 switch (adev->asic_type) { 279 case CHIP_TONGA: 280 chip_name = "tonga"; 281 break; 282 case CHIP_FIJI: 283 chip_name = "fiji"; 284 break; 285 case CHIP_POLARIS10: 286 chip_name = "polaris10"; 287 break; 288 case CHIP_POLARIS11: 289 chip_name = "polaris11"; 290 break; 291 case CHIP_POLARIS12: 292 chip_name = "polaris12"; 293 break; 294 case CHIP_VEGAM: 295 chip_name = "vegam"; 296 break; 297 case CHIP_CARRIZO: 298 chip_name = "carrizo"; 299 break; 300 case CHIP_STONEY: 301 chip_name = "stoney"; 302 break; 303 default: BUG(); 304 } 305 306 for (i = 0; i < adev->sdma.num_instances; i++) { 307 if (i == 0) 308 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name); 309 else 310 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name); 311 err = amdgpu_ucode_request(adev, &adev->sdma.instance[i].fw, fw_name); 312 if (err) 313 goto out; 314 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data; 315 adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version); 316 adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version); 317 if (adev->sdma.instance[i].feature_version >= 20) 318 adev->sdma.instance[i].burst_nop = true; 319 320 info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i]; 321 info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i; 322 info->fw = adev->sdma.instance[i].fw; 323 header = (const struct common_firmware_header *)info->fw->data; 324 adev->firmware.fw_size += 325 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE); 326 327 } 328 out: 329 if (err) { 330 pr_err("sdma_v3_0: Failed to load firmware \"%s\"\n", fw_name); 331 for (i = 0; i < adev->sdma.num_instances; i++) 332 amdgpu_ucode_release(&adev->sdma.instance[i].fw); 333 } 334 return err; 335 } 336 337 /** 338 * sdma_v3_0_ring_get_rptr - get the current read pointer 339 * 340 * @ring: amdgpu ring pointer 341 * 342 * Get the current rptr from the hardware (VI+). 343 */ 344 static uint64_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring) 345 { 346 /* XXX check if swapping is necessary on BE */ 347 return *ring->rptr_cpu_addr >> 2; 348 } 349 350 /** 351 * sdma_v3_0_ring_get_wptr - get the current write pointer 352 * 353 * @ring: amdgpu ring pointer 354 * 355 * Get the current wptr from the hardware (VI+). 356 */ 357 static uint64_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring) 358 { 359 struct amdgpu_device *adev = ring->adev; 360 u32 wptr; 361 362 if (ring->use_doorbell || ring->use_pollmem) { 363 /* XXX check if swapping is necessary on BE */ 364 wptr = *ring->wptr_cpu_addr >> 2; 365 } else { 366 wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me]) >> 2; 367 } 368 369 return wptr; 370 } 371 372 /** 373 * sdma_v3_0_ring_set_wptr - commit the write pointer 374 * 375 * @ring: amdgpu ring pointer 376 * 377 * Write the wptr back to the hardware (VI+). 378 */ 379 static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring) 380 { 381 struct amdgpu_device *adev = ring->adev; 382 383 if (ring->use_doorbell) { 384 u32 *wb = (u32 *)ring->wptr_cpu_addr; 385 /* XXX check if swapping is necessary on BE */ 386 WRITE_ONCE(*wb, ring->wptr << 2); 387 WDOORBELL32(ring->doorbell_index, ring->wptr << 2); 388 } else if (ring->use_pollmem) { 389 u32 *wb = (u32 *)ring->wptr_cpu_addr; 390 391 WRITE_ONCE(*wb, ring->wptr << 2); 392 } else { 393 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me], ring->wptr << 2); 394 } 395 } 396 397 static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count) 398 { 399 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); 400 int i; 401 402 for (i = 0; i < count; i++) 403 if (sdma && sdma->burst_nop && (i == 0)) 404 amdgpu_ring_write(ring, ring->funcs->nop | 405 SDMA_PKT_NOP_HEADER_COUNT(count - 1)); 406 else 407 amdgpu_ring_write(ring, ring->funcs->nop); 408 } 409 410 /** 411 * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine 412 * 413 * @ring: amdgpu ring pointer 414 * @job: job to retrieve vmid from 415 * @ib: IB object to schedule 416 * @flags: unused 417 * 418 * Schedule an IB in the DMA ring (VI). 419 */ 420 static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring, 421 struct amdgpu_job *job, 422 struct amdgpu_ib *ib, 423 uint32_t flags) 424 { 425 unsigned vmid = AMDGPU_JOB_GET_VMID(job); 426 427 /* IB packet must end on a 8 DW boundary */ 428 sdma_v3_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7); 429 430 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) | 431 SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf)); 432 /* base must be 32 byte aligned */ 433 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0); 434 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr)); 435 amdgpu_ring_write(ring, ib->length_dw); 436 amdgpu_ring_write(ring, 0); 437 amdgpu_ring_write(ring, 0); 438 439 } 440 441 /** 442 * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring 443 * 444 * @ring: amdgpu ring pointer 445 * 446 * Emit an hdp flush packet on the requested DMA ring. 447 */ 448 static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring) 449 { 450 u32 ref_and_mask = 0; 451 452 if (ring->me == 0) 453 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1); 454 else 455 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1); 456 457 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | 458 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) | 459 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */ 460 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2); 461 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2); 462 amdgpu_ring_write(ring, ref_and_mask); /* reference */ 463 amdgpu_ring_write(ring, ref_and_mask); /* mask */ 464 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 465 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */ 466 } 467 468 /** 469 * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring 470 * 471 * @ring: amdgpu ring pointer 472 * @addr: address 473 * @seq: sequence number 474 * @flags: fence related flags 475 * 476 * Add a DMA fence packet to the ring to write 477 * the fence seq number and DMA trap packet to generate 478 * an interrupt if needed (VI). 479 */ 480 static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq, 481 unsigned flags) 482 { 483 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT; 484 /* write the fence */ 485 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); 486 amdgpu_ring_write(ring, lower_32_bits(addr)); 487 amdgpu_ring_write(ring, upper_32_bits(addr)); 488 amdgpu_ring_write(ring, lower_32_bits(seq)); 489 490 /* optionally write high bits as well */ 491 if (write64bit) { 492 addr += 4; 493 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); 494 amdgpu_ring_write(ring, lower_32_bits(addr)); 495 amdgpu_ring_write(ring, upper_32_bits(addr)); 496 amdgpu_ring_write(ring, upper_32_bits(seq)); 497 } 498 499 /* generate an interrupt */ 500 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP)); 501 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0)); 502 } 503 504 /** 505 * sdma_v3_0_gfx_stop - stop the gfx async dma engines 506 * 507 * @adev: amdgpu_device pointer 508 * 509 * Stop the gfx async dma ring buffers (VI). 510 */ 511 static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev) 512 { 513 u32 rb_cntl, ib_cntl; 514 int i; 515 516 amdgpu_sdma_unset_buffer_funcs_helper(adev); 517 518 for (i = 0; i < adev->sdma.num_instances; i++) { 519 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]); 520 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0); 521 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl); 522 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]); 523 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0); 524 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl); 525 } 526 } 527 528 /** 529 * sdma_v3_0_rlc_stop - stop the compute async dma engines 530 * 531 * @adev: amdgpu_device pointer 532 * 533 * Stop the compute async dma queues (VI). 534 */ 535 static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev) 536 { 537 /* XXX todo */ 538 } 539 540 /** 541 * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch 542 * 543 * @adev: amdgpu_device pointer 544 * @enable: enable/disable the DMA MEs context switch. 545 * 546 * Halt or unhalt the async dma engines context switch (VI). 547 */ 548 static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable) 549 { 550 u32 f32_cntl, phase_quantum = 0; 551 int i; 552 553 if (amdgpu_sdma_phase_quantum) { 554 unsigned value = amdgpu_sdma_phase_quantum; 555 unsigned unit = 0; 556 557 while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >> 558 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) { 559 value = (value + 1) >> 1; 560 unit++; 561 } 562 if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >> 563 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) { 564 value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >> 565 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT); 566 unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >> 567 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT); 568 WARN_ONCE(1, 569 "clamping sdma_phase_quantum to %uK clock cycles\n", 570 value << unit); 571 } 572 phase_quantum = 573 value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT | 574 unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT; 575 } 576 577 for (i = 0; i < adev->sdma.num_instances; i++) { 578 f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]); 579 if (enable) { 580 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL, 581 AUTO_CTXSW_ENABLE, 1); 582 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL, 583 ATC_L1_ENABLE, 1); 584 if (amdgpu_sdma_phase_quantum) { 585 WREG32(mmSDMA0_PHASE0_QUANTUM + sdma_offsets[i], 586 phase_quantum); 587 WREG32(mmSDMA0_PHASE1_QUANTUM + sdma_offsets[i], 588 phase_quantum); 589 } 590 } else { 591 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL, 592 AUTO_CTXSW_ENABLE, 0); 593 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL, 594 ATC_L1_ENABLE, 1); 595 } 596 597 WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl); 598 } 599 } 600 601 /** 602 * sdma_v3_0_enable - stop the async dma engines 603 * 604 * @adev: amdgpu_device pointer 605 * @enable: enable/disable the DMA MEs. 606 * 607 * Halt or unhalt the async dma engines (VI). 608 */ 609 static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable) 610 { 611 u32 f32_cntl; 612 int i; 613 614 if (!enable) { 615 sdma_v3_0_gfx_stop(adev); 616 sdma_v3_0_rlc_stop(adev); 617 } 618 619 for (i = 0; i < adev->sdma.num_instances; i++) { 620 f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]); 621 if (enable) 622 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0); 623 else 624 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1); 625 WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl); 626 } 627 } 628 629 /** 630 * sdma_v3_0_gfx_resume - setup and start the async dma engines 631 * 632 * @adev: amdgpu_device pointer 633 * 634 * Set up the gfx DMA ring buffers and enable them (VI). 635 * Returns 0 for success, error for failure. 636 */ 637 static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev) 638 { 639 struct amdgpu_ring *ring; 640 u32 rb_cntl, ib_cntl, wptr_poll_cntl; 641 u32 rb_bufsz; 642 u32 doorbell; 643 u64 wptr_gpu_addr; 644 int i, j, r; 645 646 for (i = 0; i < adev->sdma.num_instances; i++) { 647 ring = &adev->sdma.instance[i].ring; 648 amdgpu_ring_clear_ring(ring); 649 650 mutex_lock(&adev->srbm_mutex); 651 for (j = 0; j < 16; j++) { 652 vi_srbm_select(adev, 0, 0, 0, j); 653 /* SDMA GFX */ 654 WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0); 655 WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0); 656 } 657 vi_srbm_select(adev, 0, 0, 0, 0); 658 mutex_unlock(&adev->srbm_mutex); 659 660 WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i], 661 adev->gfx.config.gb_addr_config & 0x70); 662 663 WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0); 664 665 /* Set ring buffer size in dwords */ 666 rb_bufsz = order_base_2(ring->ring_size / 4); 667 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]); 668 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz); 669 #ifdef __BIG_ENDIAN 670 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1); 671 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, 672 RPTR_WRITEBACK_SWAP_ENABLE, 1); 673 #endif 674 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl); 675 676 /* Initialize the ring buffer's read and write pointers */ 677 ring->wptr = 0; 678 WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0); 679 sdma_v3_0_ring_set_wptr(ring); 680 WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0); 681 WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0); 682 683 /* set the wb address whether it's enabled or not */ 684 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i], 685 upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF); 686 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i], 687 lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC); 688 689 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1); 690 691 WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8); 692 WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40); 693 694 doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]); 695 696 if (ring->use_doorbell) { 697 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, 698 OFFSET, ring->doorbell_index); 699 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1); 700 } else { 701 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0); 702 } 703 WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell); 704 705 /* setup the wptr shadow polling */ 706 wptr_gpu_addr = ring->wptr_gpu_addr; 707 708 WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO + sdma_offsets[i], 709 lower_32_bits(wptr_gpu_addr)); 710 WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI + sdma_offsets[i], 711 upper_32_bits(wptr_gpu_addr)); 712 wptr_poll_cntl = RREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i]); 713 if (ring->use_pollmem) { 714 /*wptr polling is not enogh fast, directly clean the wptr register */ 715 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0); 716 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, 717 SDMA0_GFX_RB_WPTR_POLL_CNTL, 718 ENABLE, 1); 719 } else { 720 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, 721 SDMA0_GFX_RB_WPTR_POLL_CNTL, 722 ENABLE, 0); 723 } 724 WREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i], wptr_poll_cntl); 725 726 /* enable DMA RB */ 727 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1); 728 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl); 729 730 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]); 731 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1); 732 #ifdef __BIG_ENDIAN 733 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1); 734 #endif 735 /* enable DMA IBs */ 736 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl); 737 } 738 739 /* unhalt the MEs */ 740 sdma_v3_0_enable(adev, true); 741 /* enable sdma ring preemption */ 742 sdma_v3_0_ctx_switch_enable(adev, true); 743 744 for (i = 0; i < adev->sdma.num_instances; i++) { 745 ring = &adev->sdma.instance[i].ring; 746 r = amdgpu_ring_test_helper(ring); 747 if (r) 748 return r; 749 750 if (adev->mman.buffer_funcs_ring == ring) 751 amdgpu_ttm_set_buffer_funcs_status(adev, true); 752 } 753 754 return 0; 755 } 756 757 /** 758 * sdma_v3_0_rlc_resume - setup and start the async dma engines 759 * 760 * @adev: amdgpu_device pointer 761 * 762 * Set up the compute DMA queues and enable them (VI). 763 * Returns 0 for success, error for failure. 764 */ 765 static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev) 766 { 767 /* XXX todo */ 768 return 0; 769 } 770 771 /** 772 * sdma_v3_0_start - setup and start the async dma engines 773 * 774 * @adev: amdgpu_device pointer 775 * 776 * Set up the DMA engines and enable them (VI). 777 * Returns 0 for success, error for failure. 778 */ 779 static int sdma_v3_0_start(struct amdgpu_device *adev) 780 { 781 int r; 782 783 /* disable sdma engine before programing it */ 784 sdma_v3_0_ctx_switch_enable(adev, false); 785 sdma_v3_0_enable(adev, false); 786 787 /* start the gfx rings and rlc compute queues */ 788 r = sdma_v3_0_gfx_resume(adev); 789 if (r) 790 return r; 791 r = sdma_v3_0_rlc_resume(adev); 792 if (r) 793 return r; 794 795 return 0; 796 } 797 798 /** 799 * sdma_v3_0_ring_test_ring - simple async dma engine test 800 * 801 * @ring: amdgpu_ring structure holding ring information 802 * 803 * Test the DMA engine by writing using it to write an 804 * value to memory. (VI). 805 * Returns 0 for success, error for failure. 806 */ 807 static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring) 808 { 809 struct amdgpu_device *adev = ring->adev; 810 unsigned i; 811 unsigned index; 812 int r; 813 u32 tmp; 814 u64 gpu_addr; 815 816 r = amdgpu_device_wb_get(adev, &index); 817 if (r) 818 return r; 819 820 gpu_addr = adev->wb.gpu_addr + (index * 4); 821 tmp = 0xCAFEDEAD; 822 adev->wb.wb[index] = cpu_to_le32(tmp); 823 824 r = amdgpu_ring_alloc(ring, 5); 825 if (r) 826 goto error_free_wb; 827 828 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 829 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR)); 830 amdgpu_ring_write(ring, lower_32_bits(gpu_addr)); 831 amdgpu_ring_write(ring, upper_32_bits(gpu_addr)); 832 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1)); 833 amdgpu_ring_write(ring, 0xDEADBEEF); 834 amdgpu_ring_commit(ring); 835 836 for (i = 0; i < adev->usec_timeout; i++) { 837 tmp = le32_to_cpu(adev->wb.wb[index]); 838 if (tmp == 0xDEADBEEF) 839 break; 840 udelay(1); 841 } 842 843 if (i >= adev->usec_timeout) 844 r = -ETIMEDOUT; 845 846 error_free_wb: 847 amdgpu_device_wb_free(adev, index); 848 return r; 849 } 850 851 /** 852 * sdma_v3_0_ring_test_ib - test an IB on the DMA engine 853 * 854 * @ring: amdgpu_ring structure holding ring information 855 * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT 856 * 857 * Test a simple IB in the DMA ring (VI). 858 * Returns 0 on success, error on failure. 859 */ 860 static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout) 861 { 862 struct amdgpu_device *adev = ring->adev; 863 struct amdgpu_ib ib; 864 struct dma_fence *f = NULL; 865 unsigned index; 866 u32 tmp = 0; 867 u64 gpu_addr; 868 long r; 869 870 r = amdgpu_device_wb_get(adev, &index); 871 if (r) 872 return r; 873 874 gpu_addr = adev->wb.gpu_addr + (index * 4); 875 tmp = 0xCAFEDEAD; 876 adev->wb.wb[index] = cpu_to_le32(tmp); 877 memset(&ib, 0, sizeof(ib)); 878 r = amdgpu_ib_get(adev, NULL, 256, 879 AMDGPU_IB_POOL_DIRECT, &ib); 880 if (r) 881 goto err0; 882 883 ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 884 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); 885 ib.ptr[1] = lower_32_bits(gpu_addr); 886 ib.ptr[2] = upper_32_bits(gpu_addr); 887 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1); 888 ib.ptr[4] = 0xDEADBEEF; 889 ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 890 ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 891 ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 892 ib.length_dw = 8; 893 894 r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f); 895 if (r) 896 goto err1; 897 898 r = dma_fence_wait_timeout(f, false, timeout); 899 if (r == 0) { 900 r = -ETIMEDOUT; 901 goto err1; 902 } else if (r < 0) { 903 goto err1; 904 } 905 tmp = le32_to_cpu(adev->wb.wb[index]); 906 if (tmp == 0xDEADBEEF) 907 r = 0; 908 else 909 r = -EINVAL; 910 err1: 911 amdgpu_ib_free(adev, &ib, NULL); 912 dma_fence_put(f); 913 err0: 914 amdgpu_device_wb_free(adev, index); 915 return r; 916 } 917 918 /** 919 * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART 920 * 921 * @ib: indirect buffer to fill with commands 922 * @pe: addr of the page entry 923 * @src: src addr to copy from 924 * @count: number of page entries to update 925 * 926 * Update PTEs by copying them from the GART using sDMA (CIK). 927 */ 928 static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib, 929 uint64_t pe, uint64_t src, 930 unsigned count) 931 { 932 unsigned bytes = count * 8; 933 934 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | 935 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); 936 ib->ptr[ib->length_dw++] = bytes; 937 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 938 ib->ptr[ib->length_dw++] = lower_32_bits(src); 939 ib->ptr[ib->length_dw++] = upper_32_bits(src); 940 ib->ptr[ib->length_dw++] = lower_32_bits(pe); 941 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 942 } 943 944 /** 945 * sdma_v3_0_vm_write_pte - update PTEs by writing them manually 946 * 947 * @ib: indirect buffer to fill with commands 948 * @pe: addr of the page entry 949 * @value: dst addr to write into pe 950 * @count: number of page entries to update 951 * @incr: increase next addr by incr bytes 952 * 953 * Update PTEs by writing them manually using sDMA (CIK). 954 */ 955 static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe, 956 uint64_t value, unsigned count, 957 uint32_t incr) 958 { 959 unsigned ndw = count * 2; 960 961 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 962 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); 963 ib->ptr[ib->length_dw++] = lower_32_bits(pe); 964 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 965 ib->ptr[ib->length_dw++] = ndw; 966 for (; ndw > 0; ndw -= 2) { 967 ib->ptr[ib->length_dw++] = lower_32_bits(value); 968 ib->ptr[ib->length_dw++] = upper_32_bits(value); 969 value += incr; 970 } 971 } 972 973 /** 974 * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA 975 * 976 * @ib: indirect buffer to fill with commands 977 * @pe: addr of the page entry 978 * @addr: dst addr to write into pe 979 * @count: number of page entries to update 980 * @incr: increase next addr by incr bytes 981 * @flags: access flags 982 * 983 * Update the page tables using sDMA (CIK). 984 */ 985 static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe, 986 uint64_t addr, unsigned count, 987 uint32_t incr, uint64_t flags) 988 { 989 /* for physically contiguous pages (vram) */ 990 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE); 991 ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */ 992 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 993 ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */ 994 ib->ptr[ib->length_dw++] = upper_32_bits(flags); 995 ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */ 996 ib->ptr[ib->length_dw++] = upper_32_bits(addr); 997 ib->ptr[ib->length_dw++] = incr; /* increment size */ 998 ib->ptr[ib->length_dw++] = 0; 999 ib->ptr[ib->length_dw++] = count; /* number of entries */ 1000 } 1001 1002 /** 1003 * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw 1004 * 1005 * @ring: amdgpu_ring structure holding ring information 1006 * @ib: indirect buffer to fill with padding 1007 * 1008 */ 1009 static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib) 1010 { 1011 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); 1012 u32 pad_count; 1013 int i; 1014 1015 pad_count = (-ib->length_dw) & 7; 1016 for (i = 0; i < pad_count; i++) 1017 if (sdma && sdma->burst_nop && (i == 0)) 1018 ib->ptr[ib->length_dw++] = 1019 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) | 1020 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1); 1021 else 1022 ib->ptr[ib->length_dw++] = 1023 SDMA_PKT_HEADER_OP(SDMA_OP_NOP); 1024 } 1025 1026 /** 1027 * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline 1028 * 1029 * @ring: amdgpu_ring pointer 1030 * 1031 * Make sure all previous operations are completed (CIK). 1032 */ 1033 static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring) 1034 { 1035 uint32_t seq = ring->fence_drv.sync_seq; 1036 uint64_t addr = ring->fence_drv.gpu_addr; 1037 1038 /* wait for idle */ 1039 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | 1040 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) | 1041 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */ 1042 SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1)); 1043 amdgpu_ring_write(ring, addr & 0xfffffffc); 1044 amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff); 1045 amdgpu_ring_write(ring, seq); /* reference */ 1046 amdgpu_ring_write(ring, 0xffffffff); /* mask */ 1047 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 1048 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */ 1049 } 1050 1051 /** 1052 * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA 1053 * 1054 * @ring: amdgpu_ring pointer 1055 * @vmid: vmid number to use 1056 * @pd_addr: address 1057 * 1058 * Update the page table base and flush the VM TLB 1059 * using sDMA (VI). 1060 */ 1061 static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring, 1062 unsigned vmid, uint64_t pd_addr) 1063 { 1064 amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr); 1065 1066 /* wait for flush */ 1067 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | 1068 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) | 1069 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */ 1070 amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2); 1071 amdgpu_ring_write(ring, 0); 1072 amdgpu_ring_write(ring, 0); /* reference */ 1073 amdgpu_ring_write(ring, 0); /* mask */ 1074 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 1075 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */ 1076 } 1077 1078 static void sdma_v3_0_ring_emit_wreg(struct amdgpu_ring *ring, 1079 uint32_t reg, uint32_t val) 1080 { 1081 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) | 1082 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf)); 1083 amdgpu_ring_write(ring, reg); 1084 amdgpu_ring_write(ring, val); 1085 } 1086 1087 static int sdma_v3_0_early_init(void *handle) 1088 { 1089 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1090 1091 switch (adev->asic_type) { 1092 case CHIP_STONEY: 1093 adev->sdma.num_instances = 1; 1094 break; 1095 default: 1096 adev->sdma.num_instances = SDMA_MAX_INSTANCE; 1097 break; 1098 } 1099 1100 sdma_v3_0_set_ring_funcs(adev); 1101 sdma_v3_0_set_buffer_funcs(adev); 1102 sdma_v3_0_set_vm_pte_funcs(adev); 1103 sdma_v3_0_set_irq_funcs(adev); 1104 1105 return 0; 1106 } 1107 1108 static int sdma_v3_0_sw_init(void *handle) 1109 { 1110 struct amdgpu_ring *ring; 1111 int r, i; 1112 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1113 1114 /* SDMA trap event */ 1115 r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_SDMA_TRAP, 1116 &adev->sdma.trap_irq); 1117 if (r) 1118 return r; 1119 1120 /* SDMA Privileged inst */ 1121 r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, 241, 1122 &adev->sdma.illegal_inst_irq); 1123 if (r) 1124 return r; 1125 1126 /* SDMA Privileged inst */ 1127 r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_SDMA_SRBM_WRITE, 1128 &adev->sdma.illegal_inst_irq); 1129 if (r) 1130 return r; 1131 1132 r = sdma_v3_0_init_microcode(adev); 1133 if (r) { 1134 DRM_ERROR("Failed to load sdma firmware!\n"); 1135 return r; 1136 } 1137 1138 for (i = 0; i < adev->sdma.num_instances; i++) { 1139 ring = &adev->sdma.instance[i].ring; 1140 ring->ring_obj = NULL; 1141 if (!amdgpu_sriov_vf(adev)) { 1142 ring->use_doorbell = true; 1143 ring->doorbell_index = adev->doorbell_index.sdma_engine[i]; 1144 } else { 1145 ring->use_pollmem = true; 1146 } 1147 1148 sprintf(ring->name, "sdma%d", i); 1149 r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq, 1150 (i == 0) ? AMDGPU_SDMA_IRQ_INSTANCE0 : 1151 AMDGPU_SDMA_IRQ_INSTANCE1, 1152 AMDGPU_RING_PRIO_DEFAULT, NULL); 1153 if (r) 1154 return r; 1155 } 1156 1157 return r; 1158 } 1159 1160 static int sdma_v3_0_sw_fini(void *handle) 1161 { 1162 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1163 int i; 1164 1165 for (i = 0; i < adev->sdma.num_instances; i++) 1166 amdgpu_ring_fini(&adev->sdma.instance[i].ring); 1167 1168 sdma_v3_0_free_microcode(adev); 1169 return 0; 1170 } 1171 1172 static int sdma_v3_0_hw_init(void *handle) 1173 { 1174 int r; 1175 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1176 1177 sdma_v3_0_init_golden_registers(adev); 1178 1179 r = sdma_v3_0_start(adev); 1180 if (r) 1181 return r; 1182 1183 return r; 1184 } 1185 1186 static int sdma_v3_0_hw_fini(void *handle) 1187 { 1188 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1189 1190 sdma_v3_0_ctx_switch_enable(adev, false); 1191 sdma_v3_0_enable(adev, false); 1192 1193 return 0; 1194 } 1195 1196 static int sdma_v3_0_suspend(void *handle) 1197 { 1198 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1199 1200 return sdma_v3_0_hw_fini(adev); 1201 } 1202 1203 static int sdma_v3_0_resume(void *handle) 1204 { 1205 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1206 1207 return sdma_v3_0_hw_init(adev); 1208 } 1209 1210 static bool sdma_v3_0_is_idle(void *handle) 1211 { 1212 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1213 u32 tmp = RREG32(mmSRBM_STATUS2); 1214 1215 if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK | 1216 SRBM_STATUS2__SDMA1_BUSY_MASK)) 1217 return false; 1218 1219 return true; 1220 } 1221 1222 static int sdma_v3_0_wait_for_idle(void *handle) 1223 { 1224 unsigned i; 1225 u32 tmp; 1226 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1227 1228 for (i = 0; i < adev->usec_timeout; i++) { 1229 tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK | 1230 SRBM_STATUS2__SDMA1_BUSY_MASK); 1231 1232 if (!tmp) 1233 return 0; 1234 udelay(1); 1235 } 1236 return -ETIMEDOUT; 1237 } 1238 1239 static bool sdma_v3_0_check_soft_reset(void *handle) 1240 { 1241 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1242 u32 srbm_soft_reset = 0; 1243 u32 tmp = RREG32(mmSRBM_STATUS2); 1244 1245 if ((tmp & SRBM_STATUS2__SDMA_BUSY_MASK) || 1246 (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK)) { 1247 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK; 1248 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK; 1249 } 1250 1251 if (srbm_soft_reset) { 1252 adev->sdma.srbm_soft_reset = srbm_soft_reset; 1253 return true; 1254 } else { 1255 adev->sdma.srbm_soft_reset = 0; 1256 return false; 1257 } 1258 } 1259 1260 static int sdma_v3_0_pre_soft_reset(void *handle) 1261 { 1262 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1263 u32 srbm_soft_reset = 0; 1264 1265 if (!adev->sdma.srbm_soft_reset) 1266 return 0; 1267 1268 srbm_soft_reset = adev->sdma.srbm_soft_reset; 1269 1270 if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) || 1271 REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) { 1272 sdma_v3_0_ctx_switch_enable(adev, false); 1273 sdma_v3_0_enable(adev, false); 1274 } 1275 1276 return 0; 1277 } 1278 1279 static int sdma_v3_0_post_soft_reset(void *handle) 1280 { 1281 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1282 u32 srbm_soft_reset = 0; 1283 1284 if (!adev->sdma.srbm_soft_reset) 1285 return 0; 1286 1287 srbm_soft_reset = adev->sdma.srbm_soft_reset; 1288 1289 if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) || 1290 REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) { 1291 sdma_v3_0_gfx_resume(adev); 1292 sdma_v3_0_rlc_resume(adev); 1293 } 1294 1295 return 0; 1296 } 1297 1298 static int sdma_v3_0_soft_reset(void *handle) 1299 { 1300 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1301 u32 srbm_soft_reset = 0; 1302 u32 tmp; 1303 1304 if (!adev->sdma.srbm_soft_reset) 1305 return 0; 1306 1307 srbm_soft_reset = adev->sdma.srbm_soft_reset; 1308 1309 if (srbm_soft_reset) { 1310 tmp = RREG32(mmSRBM_SOFT_RESET); 1311 tmp |= srbm_soft_reset; 1312 dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp); 1313 WREG32(mmSRBM_SOFT_RESET, tmp); 1314 tmp = RREG32(mmSRBM_SOFT_RESET); 1315 1316 udelay(50); 1317 1318 tmp &= ~srbm_soft_reset; 1319 WREG32(mmSRBM_SOFT_RESET, tmp); 1320 tmp = RREG32(mmSRBM_SOFT_RESET); 1321 1322 /* Wait a little for things to settle down */ 1323 udelay(50); 1324 } 1325 1326 return 0; 1327 } 1328 1329 static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev, 1330 struct amdgpu_irq_src *source, 1331 unsigned type, 1332 enum amdgpu_interrupt_state state) 1333 { 1334 u32 sdma_cntl; 1335 1336 switch (type) { 1337 case AMDGPU_SDMA_IRQ_INSTANCE0: 1338 switch (state) { 1339 case AMDGPU_IRQ_STATE_DISABLE: 1340 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET); 1341 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0); 1342 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl); 1343 break; 1344 case AMDGPU_IRQ_STATE_ENABLE: 1345 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET); 1346 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1); 1347 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl); 1348 break; 1349 default: 1350 break; 1351 } 1352 break; 1353 case AMDGPU_SDMA_IRQ_INSTANCE1: 1354 switch (state) { 1355 case AMDGPU_IRQ_STATE_DISABLE: 1356 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET); 1357 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0); 1358 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl); 1359 break; 1360 case AMDGPU_IRQ_STATE_ENABLE: 1361 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET); 1362 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1); 1363 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl); 1364 break; 1365 default: 1366 break; 1367 } 1368 break; 1369 default: 1370 break; 1371 } 1372 return 0; 1373 } 1374 1375 static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev, 1376 struct amdgpu_irq_src *source, 1377 struct amdgpu_iv_entry *entry) 1378 { 1379 u8 instance_id, queue_id; 1380 1381 instance_id = (entry->ring_id & 0x3) >> 0; 1382 queue_id = (entry->ring_id & 0xc) >> 2; 1383 DRM_DEBUG("IH: SDMA trap\n"); 1384 switch (instance_id) { 1385 case 0: 1386 switch (queue_id) { 1387 case 0: 1388 amdgpu_fence_process(&adev->sdma.instance[0].ring); 1389 break; 1390 case 1: 1391 /* XXX compute */ 1392 break; 1393 case 2: 1394 /* XXX compute */ 1395 break; 1396 } 1397 break; 1398 case 1: 1399 switch (queue_id) { 1400 case 0: 1401 amdgpu_fence_process(&adev->sdma.instance[1].ring); 1402 break; 1403 case 1: 1404 /* XXX compute */ 1405 break; 1406 case 2: 1407 /* XXX compute */ 1408 break; 1409 } 1410 break; 1411 } 1412 return 0; 1413 } 1414 1415 static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev, 1416 struct amdgpu_irq_src *source, 1417 struct amdgpu_iv_entry *entry) 1418 { 1419 u8 instance_id, queue_id; 1420 1421 DRM_ERROR("Illegal instruction in SDMA command stream\n"); 1422 instance_id = (entry->ring_id & 0x3) >> 0; 1423 queue_id = (entry->ring_id & 0xc) >> 2; 1424 1425 if (instance_id <= 1 && queue_id == 0) 1426 drm_sched_fault(&adev->sdma.instance[instance_id].ring.sched); 1427 return 0; 1428 } 1429 1430 static void sdma_v3_0_update_sdma_medium_grain_clock_gating( 1431 struct amdgpu_device *adev, 1432 bool enable) 1433 { 1434 uint32_t temp, data; 1435 int i; 1436 1437 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) { 1438 for (i = 0; i < adev->sdma.num_instances; i++) { 1439 temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]); 1440 data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK | 1441 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK | 1442 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK | 1443 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK | 1444 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK | 1445 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK | 1446 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK | 1447 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK); 1448 if (data != temp) 1449 WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data); 1450 } 1451 } else { 1452 for (i = 0; i < adev->sdma.num_instances; i++) { 1453 temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]); 1454 data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK | 1455 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK | 1456 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK | 1457 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK | 1458 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK | 1459 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK | 1460 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK | 1461 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK; 1462 1463 if (data != temp) 1464 WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data); 1465 } 1466 } 1467 } 1468 1469 static void sdma_v3_0_update_sdma_medium_grain_light_sleep( 1470 struct amdgpu_device *adev, 1471 bool enable) 1472 { 1473 uint32_t temp, data; 1474 int i; 1475 1476 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) { 1477 for (i = 0; i < adev->sdma.num_instances; i++) { 1478 temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]); 1479 data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; 1480 1481 if (temp != data) 1482 WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data); 1483 } 1484 } else { 1485 for (i = 0; i < adev->sdma.num_instances; i++) { 1486 temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]); 1487 data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; 1488 1489 if (temp != data) 1490 WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data); 1491 } 1492 } 1493 } 1494 1495 static int sdma_v3_0_set_clockgating_state(void *handle, 1496 enum amd_clockgating_state state) 1497 { 1498 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1499 1500 if (amdgpu_sriov_vf(adev)) 1501 return 0; 1502 1503 switch (adev->asic_type) { 1504 case CHIP_FIJI: 1505 case CHIP_CARRIZO: 1506 case CHIP_STONEY: 1507 sdma_v3_0_update_sdma_medium_grain_clock_gating(adev, 1508 state == AMD_CG_STATE_GATE); 1509 sdma_v3_0_update_sdma_medium_grain_light_sleep(adev, 1510 state == AMD_CG_STATE_GATE); 1511 break; 1512 default: 1513 break; 1514 } 1515 return 0; 1516 } 1517 1518 static int sdma_v3_0_set_powergating_state(void *handle, 1519 enum amd_powergating_state state) 1520 { 1521 return 0; 1522 } 1523 1524 static void sdma_v3_0_get_clockgating_state(void *handle, u64 *flags) 1525 { 1526 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1527 int data; 1528 1529 if (amdgpu_sriov_vf(adev)) 1530 *flags = 0; 1531 1532 /* AMD_CG_SUPPORT_SDMA_MGCG */ 1533 data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[0]); 1534 if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK)) 1535 *flags |= AMD_CG_SUPPORT_SDMA_MGCG; 1536 1537 /* AMD_CG_SUPPORT_SDMA_LS */ 1538 data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[0]); 1539 if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK) 1540 *flags |= AMD_CG_SUPPORT_SDMA_LS; 1541 } 1542 1543 static const struct amd_ip_funcs sdma_v3_0_ip_funcs = { 1544 .name = "sdma_v3_0", 1545 .early_init = sdma_v3_0_early_init, 1546 .late_init = NULL, 1547 .sw_init = sdma_v3_0_sw_init, 1548 .sw_fini = sdma_v3_0_sw_fini, 1549 .hw_init = sdma_v3_0_hw_init, 1550 .hw_fini = sdma_v3_0_hw_fini, 1551 .suspend = sdma_v3_0_suspend, 1552 .resume = sdma_v3_0_resume, 1553 .is_idle = sdma_v3_0_is_idle, 1554 .wait_for_idle = sdma_v3_0_wait_for_idle, 1555 .check_soft_reset = sdma_v3_0_check_soft_reset, 1556 .pre_soft_reset = sdma_v3_0_pre_soft_reset, 1557 .post_soft_reset = sdma_v3_0_post_soft_reset, 1558 .soft_reset = sdma_v3_0_soft_reset, 1559 .set_clockgating_state = sdma_v3_0_set_clockgating_state, 1560 .set_powergating_state = sdma_v3_0_set_powergating_state, 1561 .get_clockgating_state = sdma_v3_0_get_clockgating_state, 1562 }; 1563 1564 static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = { 1565 .type = AMDGPU_RING_TYPE_SDMA, 1566 .align_mask = 0xf, 1567 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 1568 .support_64bit_ptrs = false, 1569 .secure_submission_supported = true, 1570 .get_rptr = sdma_v3_0_ring_get_rptr, 1571 .get_wptr = sdma_v3_0_ring_get_wptr, 1572 .set_wptr = sdma_v3_0_ring_set_wptr, 1573 .emit_frame_size = 1574 6 + /* sdma_v3_0_ring_emit_hdp_flush */ 1575 3 + /* hdp invalidate */ 1576 6 + /* sdma_v3_0_ring_emit_pipeline_sync */ 1577 VI_FLUSH_GPU_TLB_NUM_WREG * 3 + 6 + /* sdma_v3_0_ring_emit_vm_flush */ 1578 10 + 10 + 10, /* sdma_v3_0_ring_emit_fence x3 for user fence, vm fence */ 1579 .emit_ib_size = 7 + 6, /* sdma_v3_0_ring_emit_ib */ 1580 .emit_ib = sdma_v3_0_ring_emit_ib, 1581 .emit_fence = sdma_v3_0_ring_emit_fence, 1582 .emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync, 1583 .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush, 1584 .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush, 1585 .test_ring = sdma_v3_0_ring_test_ring, 1586 .test_ib = sdma_v3_0_ring_test_ib, 1587 .insert_nop = sdma_v3_0_ring_insert_nop, 1588 .pad_ib = sdma_v3_0_ring_pad_ib, 1589 .emit_wreg = sdma_v3_0_ring_emit_wreg, 1590 }; 1591 1592 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev) 1593 { 1594 int i; 1595 1596 for (i = 0; i < adev->sdma.num_instances; i++) { 1597 adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs; 1598 adev->sdma.instance[i].ring.me = i; 1599 } 1600 } 1601 1602 static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = { 1603 .set = sdma_v3_0_set_trap_irq_state, 1604 .process = sdma_v3_0_process_trap_irq, 1605 }; 1606 1607 static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = { 1608 .process = sdma_v3_0_process_illegal_inst_irq, 1609 }; 1610 1611 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev) 1612 { 1613 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST; 1614 adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs; 1615 adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs; 1616 } 1617 1618 /** 1619 * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine 1620 * 1621 * @ib: indirect buffer to copy to 1622 * @src_offset: src GPU address 1623 * @dst_offset: dst GPU address 1624 * @byte_count: number of bytes to xfer 1625 * @tmz: unused 1626 * 1627 * Copy GPU buffers using the DMA engine (VI). 1628 * Used by the amdgpu ttm implementation to move pages if 1629 * registered as the asic copy callback. 1630 */ 1631 static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib, 1632 uint64_t src_offset, 1633 uint64_t dst_offset, 1634 uint32_t byte_count, 1635 bool tmz) 1636 { 1637 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | 1638 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); 1639 ib->ptr[ib->length_dw++] = byte_count; 1640 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 1641 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset); 1642 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset); 1643 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 1644 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 1645 } 1646 1647 /** 1648 * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine 1649 * 1650 * @ib: indirect buffer to copy to 1651 * @src_data: value to write to buffer 1652 * @dst_offset: dst GPU address 1653 * @byte_count: number of bytes to xfer 1654 * 1655 * Fill GPU buffers using the DMA engine (VI). 1656 */ 1657 static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib, 1658 uint32_t src_data, 1659 uint64_t dst_offset, 1660 uint32_t byte_count) 1661 { 1662 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL); 1663 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 1664 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 1665 ib->ptr[ib->length_dw++] = src_data; 1666 ib->ptr[ib->length_dw++] = byte_count; 1667 } 1668 1669 static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = { 1670 .copy_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */ 1671 .copy_num_dw = 7, 1672 .emit_copy_buffer = sdma_v3_0_emit_copy_buffer, 1673 1674 .fill_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */ 1675 .fill_num_dw = 5, 1676 .emit_fill_buffer = sdma_v3_0_emit_fill_buffer, 1677 }; 1678 1679 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev) 1680 { 1681 adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs; 1682 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring; 1683 } 1684 1685 static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = { 1686 .copy_pte_num_dw = 7, 1687 .copy_pte = sdma_v3_0_vm_copy_pte, 1688 1689 .write_pte = sdma_v3_0_vm_write_pte, 1690 .set_pte_pde = sdma_v3_0_vm_set_pte_pde, 1691 }; 1692 1693 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev) 1694 { 1695 unsigned i; 1696 1697 adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs; 1698 for (i = 0; i < adev->sdma.num_instances; i++) { 1699 adev->vm_manager.vm_pte_scheds[i] = 1700 &adev->sdma.instance[i].ring.sched; 1701 } 1702 adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances; 1703 } 1704 1705 const struct amdgpu_ip_block_version sdma_v3_0_ip_block = 1706 { 1707 .type = AMD_IP_BLOCK_TYPE_SDMA, 1708 .major = 3, 1709 .minor = 0, 1710 .rev = 0, 1711 .funcs = &sdma_v3_0_ip_funcs, 1712 }; 1713 1714 const struct amdgpu_ip_block_version sdma_v3_1_ip_block = 1715 { 1716 .type = AMD_IP_BLOCK_TYPE_SDMA, 1717 .major = 3, 1718 .minor = 1, 1719 .rev = 0, 1720 .funcs = &sdma_v3_0_ip_funcs, 1721 }; 1722