xref: /linux/drivers/gpu/drm/amd/amdgpu/sdma_v3_0.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Alex Deucher
23  */
24 
25 #include <linux/delay.h>
26 #include <linux/firmware.h>
27 #include <linux/module.h>
28 
29 #include "amdgpu.h"
30 #include "amdgpu_ucode.h"
31 #include "amdgpu_trace.h"
32 #include "vi.h"
33 #include "vid.h"
34 
35 #include "oss/oss_3_0_d.h"
36 #include "oss/oss_3_0_sh_mask.h"
37 
38 #include "gmc/gmc_8_1_d.h"
39 #include "gmc/gmc_8_1_sh_mask.h"
40 
41 #include "gca/gfx_8_0_d.h"
42 #include "gca/gfx_8_0_enum.h"
43 #include "gca/gfx_8_0_sh_mask.h"
44 
45 #include "bif/bif_5_0_d.h"
46 #include "bif/bif_5_0_sh_mask.h"
47 
48 #include "tonga_sdma_pkt_open.h"
49 
50 #include "ivsrcid/ivsrcid_vislands30.h"
51 
52 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
53 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
54 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
55 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
56 
57 MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
58 MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
59 MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
60 MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
61 MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
62 MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
63 MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
64 MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
65 MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
66 MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
67 MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
68 MODULE_FIRMWARE("amdgpu/polaris12_sdma.bin");
69 MODULE_FIRMWARE("amdgpu/polaris12_sdma1.bin");
70 MODULE_FIRMWARE("amdgpu/vegam_sdma.bin");
71 MODULE_FIRMWARE("amdgpu/vegam_sdma1.bin");
72 
73 
74 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
75 {
76 	SDMA0_REGISTER_OFFSET,
77 	SDMA1_REGISTER_OFFSET
78 };
79 
80 static const u32 golden_settings_tonga_a11[] =
81 {
82 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
83 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
84 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
85 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
86 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
87 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
88 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
89 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
90 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
91 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
92 };
93 
94 static const u32 tonga_mgcg_cgcg_init[] =
95 {
96 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
97 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
98 };
99 
100 static const u32 golden_settings_fiji_a10[] =
101 {
102 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
103 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
104 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
105 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
106 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
107 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
108 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
109 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
110 };
111 
112 static const u32 fiji_mgcg_cgcg_init[] =
113 {
114 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
115 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
116 };
117 
118 static const u32 golden_settings_polaris11_a11[] =
119 {
120 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
121 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
122 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
123 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
124 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
125 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
126 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
127 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
128 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
129 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
130 };
131 
132 static const u32 golden_settings_polaris10_a11[] =
133 {
134 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
135 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
136 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
137 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
138 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
139 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
140 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
141 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
142 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
143 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
144 };
145 
146 static const u32 cz_golden_settings_a11[] =
147 {
148 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
149 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
150 	mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
151 	mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
152 	mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
153 	mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
154 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
155 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
156 	mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
157 	mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
158 	mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
159 	mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
160 };
161 
162 static const u32 cz_mgcg_cgcg_init[] =
163 {
164 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
165 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
166 };
167 
168 static const u32 stoney_golden_settings_a11[] =
169 {
170 	mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
171 	mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
172 	mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
173 	mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
174 };
175 
176 static const u32 stoney_mgcg_cgcg_init[] =
177 {
178 	mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
179 };
180 
181 /*
182  * sDMA - System DMA
183  * Starting with CIK, the GPU has new asynchronous
184  * DMA engines.  These engines are used for compute
185  * and gfx.  There are two DMA engines (SDMA0, SDMA1)
186  * and each one supports 1 ring buffer used for gfx
187  * and 2 queues used for compute.
188  *
189  * The programming model is very similar to the CP
190  * (ring buffer, IBs, etc.), but sDMA has it's own
191  * packet format that is different from the PM4 format
192  * used by the CP. sDMA supports copying data, writing
193  * embedded data, solid fills, and a number of other
194  * things.  It also has support for tiling/detiling of
195  * buffers.
196  */
197 
198 static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
199 {
200 	switch (adev->asic_type) {
201 	case CHIP_FIJI:
202 		amdgpu_device_program_register_sequence(adev,
203 							fiji_mgcg_cgcg_init,
204 							ARRAY_SIZE(fiji_mgcg_cgcg_init));
205 		amdgpu_device_program_register_sequence(adev,
206 							golden_settings_fiji_a10,
207 							ARRAY_SIZE(golden_settings_fiji_a10));
208 		break;
209 	case CHIP_TONGA:
210 		amdgpu_device_program_register_sequence(adev,
211 							tonga_mgcg_cgcg_init,
212 							ARRAY_SIZE(tonga_mgcg_cgcg_init));
213 		amdgpu_device_program_register_sequence(adev,
214 							golden_settings_tonga_a11,
215 							ARRAY_SIZE(golden_settings_tonga_a11));
216 		break;
217 	case CHIP_POLARIS11:
218 	case CHIP_POLARIS12:
219 	case CHIP_VEGAM:
220 		amdgpu_device_program_register_sequence(adev,
221 							golden_settings_polaris11_a11,
222 							ARRAY_SIZE(golden_settings_polaris11_a11));
223 		break;
224 	case CHIP_POLARIS10:
225 		amdgpu_device_program_register_sequence(adev,
226 							golden_settings_polaris10_a11,
227 							ARRAY_SIZE(golden_settings_polaris10_a11));
228 		break;
229 	case CHIP_CARRIZO:
230 		amdgpu_device_program_register_sequence(adev,
231 							cz_mgcg_cgcg_init,
232 							ARRAY_SIZE(cz_mgcg_cgcg_init));
233 		amdgpu_device_program_register_sequence(adev,
234 							cz_golden_settings_a11,
235 							ARRAY_SIZE(cz_golden_settings_a11));
236 		break;
237 	case CHIP_STONEY:
238 		amdgpu_device_program_register_sequence(adev,
239 							stoney_mgcg_cgcg_init,
240 							ARRAY_SIZE(stoney_mgcg_cgcg_init));
241 		amdgpu_device_program_register_sequence(adev,
242 							stoney_golden_settings_a11,
243 							ARRAY_SIZE(stoney_golden_settings_a11));
244 		break;
245 	default:
246 		break;
247 	}
248 }
249 
250 static void sdma_v3_0_free_microcode(struct amdgpu_device *adev)
251 {
252 	int i;
253 
254 	for (i = 0; i < adev->sdma.num_instances; i++)
255 		amdgpu_ucode_release(&adev->sdma.instance[i].fw);
256 }
257 
258 /**
259  * sdma_v3_0_init_microcode - load ucode images from disk
260  *
261  * @adev: amdgpu_device pointer
262  *
263  * Use the firmware interface to load the ucode images into
264  * the driver (not loaded into hw).
265  * Returns 0 on success, error on failure.
266  */
267 static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
268 {
269 	const char *chip_name;
270 	char fw_name[30];
271 	int err = 0, i;
272 	struct amdgpu_firmware_info *info = NULL;
273 	const struct common_firmware_header *header = NULL;
274 	const struct sdma_firmware_header_v1_0 *hdr;
275 
276 	DRM_DEBUG("\n");
277 
278 	switch (adev->asic_type) {
279 	case CHIP_TONGA:
280 		chip_name = "tonga";
281 		break;
282 	case CHIP_FIJI:
283 		chip_name = "fiji";
284 		break;
285 	case CHIP_POLARIS10:
286 		chip_name = "polaris10";
287 		break;
288 	case CHIP_POLARIS11:
289 		chip_name = "polaris11";
290 		break;
291 	case CHIP_POLARIS12:
292 		chip_name = "polaris12";
293 		break;
294 	case CHIP_VEGAM:
295 		chip_name = "vegam";
296 		break;
297 	case CHIP_CARRIZO:
298 		chip_name = "carrizo";
299 		break;
300 	case CHIP_STONEY:
301 		chip_name = "stoney";
302 		break;
303 	default: BUG();
304 	}
305 
306 	for (i = 0; i < adev->sdma.num_instances; i++) {
307 		if (i == 0)
308 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
309 		else
310 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
311 		err = amdgpu_ucode_request(adev, &adev->sdma.instance[i].fw, fw_name);
312 		if (err)
313 			goto out;
314 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
315 		adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
316 		adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
317 		if (adev->sdma.instance[i].feature_version >= 20)
318 			adev->sdma.instance[i].burst_nop = true;
319 
320 		info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
321 		info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
322 		info->fw = adev->sdma.instance[i].fw;
323 		header = (const struct common_firmware_header *)info->fw->data;
324 		adev->firmware.fw_size +=
325 			ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
326 
327 	}
328 out:
329 	if (err) {
330 		pr_err("sdma_v3_0: Failed to load firmware \"%s\"\n", fw_name);
331 		for (i = 0; i < adev->sdma.num_instances; i++)
332 			amdgpu_ucode_release(&adev->sdma.instance[i].fw);
333 	}
334 	return err;
335 }
336 
337 /**
338  * sdma_v3_0_ring_get_rptr - get the current read pointer
339  *
340  * @ring: amdgpu ring pointer
341  *
342  * Get the current rptr from the hardware (VI+).
343  */
344 static uint64_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
345 {
346 	/* XXX check if swapping is necessary on BE */
347 	return *ring->rptr_cpu_addr >> 2;
348 }
349 
350 /**
351  * sdma_v3_0_ring_get_wptr - get the current write pointer
352  *
353  * @ring: amdgpu ring pointer
354  *
355  * Get the current wptr from the hardware (VI+).
356  */
357 static uint64_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
358 {
359 	struct amdgpu_device *adev = ring->adev;
360 	u32 wptr;
361 
362 	if (ring->use_doorbell || ring->use_pollmem) {
363 		/* XXX check if swapping is necessary on BE */
364 		wptr = *ring->wptr_cpu_addr >> 2;
365 	} else {
366 		wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me]) >> 2;
367 	}
368 
369 	return wptr;
370 }
371 
372 /**
373  * sdma_v3_0_ring_set_wptr - commit the write pointer
374  *
375  * @ring: amdgpu ring pointer
376  *
377  * Write the wptr back to the hardware (VI+).
378  */
379 static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
380 {
381 	struct amdgpu_device *adev = ring->adev;
382 
383 	if (ring->use_doorbell) {
384 		u32 *wb = (u32 *)ring->wptr_cpu_addr;
385 		/* XXX check if swapping is necessary on BE */
386 		WRITE_ONCE(*wb, ring->wptr << 2);
387 		WDOORBELL32(ring->doorbell_index, ring->wptr << 2);
388 	} else if (ring->use_pollmem) {
389 		u32 *wb = (u32 *)ring->wptr_cpu_addr;
390 
391 		WRITE_ONCE(*wb, ring->wptr << 2);
392 	} else {
393 		WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me], ring->wptr << 2);
394 	}
395 }
396 
397 static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
398 {
399 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
400 	int i;
401 
402 	for (i = 0; i < count; i++)
403 		if (sdma && sdma->burst_nop && (i == 0))
404 			amdgpu_ring_write(ring, ring->funcs->nop |
405 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
406 		else
407 			amdgpu_ring_write(ring, ring->funcs->nop);
408 }
409 
410 /**
411  * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
412  *
413  * @ring: amdgpu ring pointer
414  * @job: job to retrieve vmid from
415  * @ib: IB object to schedule
416  * @flags: unused
417  *
418  * Schedule an IB in the DMA ring (VI).
419  */
420 static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
421 				   struct amdgpu_job *job,
422 				   struct amdgpu_ib *ib,
423 				   uint32_t flags)
424 {
425 	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
426 
427 	/* IB packet must end on a 8 DW boundary */
428 	sdma_v3_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
429 
430 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
431 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
432 	/* base must be 32 byte aligned */
433 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
434 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
435 	amdgpu_ring_write(ring, ib->length_dw);
436 	amdgpu_ring_write(ring, 0);
437 	amdgpu_ring_write(ring, 0);
438 
439 }
440 
441 /**
442  * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
443  *
444  * @ring: amdgpu ring pointer
445  *
446  * Emit an hdp flush packet on the requested DMA ring.
447  */
448 static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
449 {
450 	u32 ref_and_mask = 0;
451 
452 	if (ring->me == 0)
453 		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
454 	else
455 		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
456 
457 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
458 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
459 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
460 	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
461 	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
462 	amdgpu_ring_write(ring, ref_and_mask); /* reference */
463 	amdgpu_ring_write(ring, ref_and_mask); /* mask */
464 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
465 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
466 }
467 
468 /**
469  * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
470  *
471  * @ring: amdgpu ring pointer
472  * @addr: address
473  * @seq: sequence number
474  * @flags: fence related flags
475  *
476  * Add a DMA fence packet to the ring to write
477  * the fence seq number and DMA trap packet to generate
478  * an interrupt if needed (VI).
479  */
480 static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
481 				      unsigned flags)
482 {
483 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
484 	/* write the fence */
485 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
486 	amdgpu_ring_write(ring, lower_32_bits(addr));
487 	amdgpu_ring_write(ring, upper_32_bits(addr));
488 	amdgpu_ring_write(ring, lower_32_bits(seq));
489 
490 	/* optionally write high bits as well */
491 	if (write64bit) {
492 		addr += 4;
493 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
494 		amdgpu_ring_write(ring, lower_32_bits(addr));
495 		amdgpu_ring_write(ring, upper_32_bits(addr));
496 		amdgpu_ring_write(ring, upper_32_bits(seq));
497 	}
498 
499 	/* generate an interrupt */
500 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
501 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
502 }
503 
504 /**
505  * sdma_v3_0_gfx_stop - stop the gfx async dma engines
506  *
507  * @adev: amdgpu_device pointer
508  *
509  * Stop the gfx async dma ring buffers (VI).
510  */
511 static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
512 {
513 	u32 rb_cntl, ib_cntl;
514 	int i;
515 
516 	for (i = 0; i < adev->sdma.num_instances; i++) {
517 		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
518 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
519 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
520 		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
521 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
522 		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
523 	}
524 }
525 
526 /**
527  * sdma_v3_0_rlc_stop - stop the compute async dma engines
528  *
529  * @adev: amdgpu_device pointer
530  *
531  * Stop the compute async dma queues (VI).
532  */
533 static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
534 {
535 	/* XXX todo */
536 }
537 
538 /**
539  * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
540  *
541  * @adev: amdgpu_device pointer
542  * @enable: enable/disable the DMA MEs context switch.
543  *
544  * Halt or unhalt the async dma engines context switch (VI).
545  */
546 static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
547 {
548 	u32 f32_cntl, phase_quantum = 0;
549 	int i;
550 
551 	if (amdgpu_sdma_phase_quantum) {
552 		unsigned value = amdgpu_sdma_phase_quantum;
553 		unsigned unit = 0;
554 
555 		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
556 				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
557 			value = (value + 1) >> 1;
558 			unit++;
559 		}
560 		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
561 			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
562 			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
563 				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
564 			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
565 				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
566 			WARN_ONCE(1,
567 			"clamping sdma_phase_quantum to %uK clock cycles\n",
568 				  value << unit);
569 		}
570 		phase_quantum =
571 			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
572 			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
573 	}
574 
575 	for (i = 0; i < adev->sdma.num_instances; i++) {
576 		f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
577 		if (enable) {
578 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
579 					AUTO_CTXSW_ENABLE, 1);
580 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
581 					ATC_L1_ENABLE, 1);
582 			if (amdgpu_sdma_phase_quantum) {
583 				WREG32(mmSDMA0_PHASE0_QUANTUM + sdma_offsets[i],
584 				       phase_quantum);
585 				WREG32(mmSDMA0_PHASE1_QUANTUM + sdma_offsets[i],
586 				       phase_quantum);
587 			}
588 		} else {
589 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
590 					AUTO_CTXSW_ENABLE, 0);
591 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
592 					ATC_L1_ENABLE, 1);
593 		}
594 
595 		WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
596 	}
597 }
598 
599 /**
600  * sdma_v3_0_enable - stop the async dma engines
601  *
602  * @adev: amdgpu_device pointer
603  * @enable: enable/disable the DMA MEs.
604  *
605  * Halt or unhalt the async dma engines (VI).
606  */
607 static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
608 {
609 	u32 f32_cntl;
610 	int i;
611 
612 	if (!enable) {
613 		sdma_v3_0_gfx_stop(adev);
614 		sdma_v3_0_rlc_stop(adev);
615 	}
616 
617 	for (i = 0; i < adev->sdma.num_instances; i++) {
618 		f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
619 		if (enable)
620 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
621 		else
622 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
623 		WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
624 	}
625 }
626 
627 /**
628  * sdma_v3_0_gfx_resume - setup and start the async dma engines
629  *
630  * @adev: amdgpu_device pointer
631  *
632  * Set up the gfx DMA ring buffers and enable them (VI).
633  * Returns 0 for success, error for failure.
634  */
635 static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
636 {
637 	struct amdgpu_ring *ring;
638 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
639 	u32 rb_bufsz;
640 	u32 doorbell;
641 	u64 wptr_gpu_addr;
642 	int i, j, r;
643 
644 	for (i = 0; i < adev->sdma.num_instances; i++) {
645 		ring = &adev->sdma.instance[i].ring;
646 		amdgpu_ring_clear_ring(ring);
647 
648 		mutex_lock(&adev->srbm_mutex);
649 		for (j = 0; j < 16; j++) {
650 			vi_srbm_select(adev, 0, 0, 0, j);
651 			/* SDMA GFX */
652 			WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
653 			WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
654 		}
655 		vi_srbm_select(adev, 0, 0, 0, 0);
656 		mutex_unlock(&adev->srbm_mutex);
657 
658 		WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
659 		       adev->gfx.config.gb_addr_config & 0x70);
660 
661 		WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
662 
663 		/* Set ring buffer size in dwords */
664 		rb_bufsz = order_base_2(ring->ring_size / 4);
665 		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
666 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
667 #ifdef __BIG_ENDIAN
668 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
669 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
670 					RPTR_WRITEBACK_SWAP_ENABLE, 1);
671 #endif
672 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
673 
674 		/* Initialize the ring buffer's read and write pointers */
675 		ring->wptr = 0;
676 		WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
677 		sdma_v3_0_ring_set_wptr(ring);
678 		WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
679 		WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
680 
681 		/* set the wb address whether it's enabled or not */
682 		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
683 		       upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF);
684 		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
685 		       lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC);
686 
687 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
688 
689 		WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
690 		WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
691 
692 		doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
693 
694 		if (ring->use_doorbell) {
695 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
696 						 OFFSET, ring->doorbell_index);
697 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
698 		} else {
699 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
700 		}
701 		WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
702 
703 		/* setup the wptr shadow polling */
704 		wptr_gpu_addr = ring->wptr_gpu_addr;
705 
706 		WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO + sdma_offsets[i],
707 		       lower_32_bits(wptr_gpu_addr));
708 		WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI + sdma_offsets[i],
709 		       upper_32_bits(wptr_gpu_addr));
710 		wptr_poll_cntl = RREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i]);
711 		if (ring->use_pollmem) {
712 			/*wptr polling is not enogh fast, directly clean the wptr register */
713 			WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
714 			wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
715 						       SDMA0_GFX_RB_WPTR_POLL_CNTL,
716 						       ENABLE, 1);
717 		} else {
718 			wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
719 						       SDMA0_GFX_RB_WPTR_POLL_CNTL,
720 						       ENABLE, 0);
721 		}
722 		WREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i], wptr_poll_cntl);
723 
724 		/* enable DMA RB */
725 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
726 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
727 
728 		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
729 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
730 #ifdef __BIG_ENDIAN
731 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
732 #endif
733 		/* enable DMA IBs */
734 		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
735 	}
736 
737 	/* unhalt the MEs */
738 	sdma_v3_0_enable(adev, true);
739 	/* enable sdma ring preemption */
740 	sdma_v3_0_ctx_switch_enable(adev, true);
741 
742 	for (i = 0; i < adev->sdma.num_instances; i++) {
743 		ring = &adev->sdma.instance[i].ring;
744 		r = amdgpu_ring_test_helper(ring);
745 		if (r)
746 			return r;
747 	}
748 
749 	return 0;
750 }
751 
752 /**
753  * sdma_v3_0_rlc_resume - setup and start the async dma engines
754  *
755  * @adev: amdgpu_device pointer
756  *
757  * Set up the compute DMA queues and enable them (VI).
758  * Returns 0 for success, error for failure.
759  */
760 static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
761 {
762 	/* XXX todo */
763 	return 0;
764 }
765 
766 /**
767  * sdma_v3_0_start - setup and start the async dma engines
768  *
769  * @adev: amdgpu_device pointer
770  *
771  * Set up the DMA engines and enable them (VI).
772  * Returns 0 for success, error for failure.
773  */
774 static int sdma_v3_0_start(struct amdgpu_device *adev)
775 {
776 	int r;
777 
778 	/* disable sdma engine before programing it */
779 	sdma_v3_0_ctx_switch_enable(adev, false);
780 	sdma_v3_0_enable(adev, false);
781 
782 	/* start the gfx rings and rlc compute queues */
783 	r = sdma_v3_0_gfx_resume(adev);
784 	if (r)
785 		return r;
786 	r = sdma_v3_0_rlc_resume(adev);
787 	if (r)
788 		return r;
789 
790 	return 0;
791 }
792 
793 /**
794  * sdma_v3_0_ring_test_ring - simple async dma engine test
795  *
796  * @ring: amdgpu_ring structure holding ring information
797  *
798  * Test the DMA engine by writing using it to write an
799  * value to memory. (VI).
800  * Returns 0 for success, error for failure.
801  */
802 static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
803 {
804 	struct amdgpu_device *adev = ring->adev;
805 	unsigned i;
806 	unsigned index;
807 	int r;
808 	u32 tmp;
809 	u64 gpu_addr;
810 
811 	r = amdgpu_device_wb_get(adev, &index);
812 	if (r)
813 		return r;
814 
815 	gpu_addr = adev->wb.gpu_addr + (index * 4);
816 	tmp = 0xCAFEDEAD;
817 	adev->wb.wb[index] = cpu_to_le32(tmp);
818 
819 	r = amdgpu_ring_alloc(ring, 5);
820 	if (r)
821 		goto error_free_wb;
822 
823 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
824 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
825 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
826 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
827 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
828 	amdgpu_ring_write(ring, 0xDEADBEEF);
829 	amdgpu_ring_commit(ring);
830 
831 	for (i = 0; i < adev->usec_timeout; i++) {
832 		tmp = le32_to_cpu(adev->wb.wb[index]);
833 		if (tmp == 0xDEADBEEF)
834 			break;
835 		udelay(1);
836 	}
837 
838 	if (i >= adev->usec_timeout)
839 		r = -ETIMEDOUT;
840 
841 error_free_wb:
842 	amdgpu_device_wb_free(adev, index);
843 	return r;
844 }
845 
846 /**
847  * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
848  *
849  * @ring: amdgpu_ring structure holding ring information
850  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
851  *
852  * Test a simple IB in the DMA ring (VI).
853  * Returns 0 on success, error on failure.
854  */
855 static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
856 {
857 	struct amdgpu_device *adev = ring->adev;
858 	struct amdgpu_ib ib;
859 	struct dma_fence *f = NULL;
860 	unsigned index;
861 	u32 tmp = 0;
862 	u64 gpu_addr;
863 	long r;
864 
865 	r = amdgpu_device_wb_get(adev, &index);
866 	if (r)
867 		return r;
868 
869 	gpu_addr = adev->wb.gpu_addr + (index * 4);
870 	tmp = 0xCAFEDEAD;
871 	adev->wb.wb[index] = cpu_to_le32(tmp);
872 	memset(&ib, 0, sizeof(ib));
873 	r = amdgpu_ib_get(adev, NULL, 256,
874 					AMDGPU_IB_POOL_DIRECT, &ib);
875 	if (r)
876 		goto err0;
877 
878 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
879 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
880 	ib.ptr[1] = lower_32_bits(gpu_addr);
881 	ib.ptr[2] = upper_32_bits(gpu_addr);
882 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
883 	ib.ptr[4] = 0xDEADBEEF;
884 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
885 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
886 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
887 	ib.length_dw = 8;
888 
889 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
890 	if (r)
891 		goto err1;
892 
893 	r = dma_fence_wait_timeout(f, false, timeout);
894 	if (r == 0) {
895 		r = -ETIMEDOUT;
896 		goto err1;
897 	} else if (r < 0) {
898 		goto err1;
899 	}
900 	tmp = le32_to_cpu(adev->wb.wb[index]);
901 	if (tmp == 0xDEADBEEF)
902 		r = 0;
903 	else
904 		r = -EINVAL;
905 err1:
906 	amdgpu_ib_free(adev, &ib, NULL);
907 	dma_fence_put(f);
908 err0:
909 	amdgpu_device_wb_free(adev, index);
910 	return r;
911 }
912 
913 /**
914  * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
915  *
916  * @ib: indirect buffer to fill with commands
917  * @pe: addr of the page entry
918  * @src: src addr to copy from
919  * @count: number of page entries to update
920  *
921  * Update PTEs by copying them from the GART using sDMA (CIK).
922  */
923 static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
924 				  uint64_t pe, uint64_t src,
925 				  unsigned count)
926 {
927 	unsigned bytes = count * 8;
928 
929 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
930 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
931 	ib->ptr[ib->length_dw++] = bytes;
932 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
933 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
934 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
935 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
936 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
937 }
938 
939 /**
940  * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
941  *
942  * @ib: indirect buffer to fill with commands
943  * @pe: addr of the page entry
944  * @value: dst addr to write into pe
945  * @count: number of page entries to update
946  * @incr: increase next addr by incr bytes
947  *
948  * Update PTEs by writing them manually using sDMA (CIK).
949  */
950 static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
951 				   uint64_t value, unsigned count,
952 				   uint32_t incr)
953 {
954 	unsigned ndw = count * 2;
955 
956 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
957 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
958 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
959 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
960 	ib->ptr[ib->length_dw++] = ndw;
961 	for (; ndw > 0; ndw -= 2) {
962 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
963 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
964 		value += incr;
965 	}
966 }
967 
968 /**
969  * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
970  *
971  * @ib: indirect buffer to fill with commands
972  * @pe: addr of the page entry
973  * @addr: dst addr to write into pe
974  * @count: number of page entries to update
975  * @incr: increase next addr by incr bytes
976  * @flags: access flags
977  *
978  * Update the page tables using sDMA (CIK).
979  */
980 static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe,
981 				     uint64_t addr, unsigned count,
982 				     uint32_t incr, uint64_t flags)
983 {
984 	/* for physically contiguous pages (vram) */
985 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
986 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
987 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
988 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
989 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
990 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
991 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
992 	ib->ptr[ib->length_dw++] = incr; /* increment size */
993 	ib->ptr[ib->length_dw++] = 0;
994 	ib->ptr[ib->length_dw++] = count; /* number of entries */
995 }
996 
997 /**
998  * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
999  *
1000  * @ring: amdgpu_ring structure holding ring information
1001  * @ib: indirect buffer to fill with padding
1002  *
1003  */
1004 static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1005 {
1006 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1007 	u32 pad_count;
1008 	int i;
1009 
1010 	pad_count = (-ib->length_dw) & 7;
1011 	for (i = 0; i < pad_count; i++)
1012 		if (sdma && sdma->burst_nop && (i == 0))
1013 			ib->ptr[ib->length_dw++] =
1014 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1015 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1016 		else
1017 			ib->ptr[ib->length_dw++] =
1018 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1019 }
1020 
1021 /**
1022  * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
1023  *
1024  * @ring: amdgpu_ring pointer
1025  *
1026  * Make sure all previous operations are completed (CIK).
1027  */
1028 static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1029 {
1030 	uint32_t seq = ring->fence_drv.sync_seq;
1031 	uint64_t addr = ring->fence_drv.gpu_addr;
1032 
1033 	/* wait for idle */
1034 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1035 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1036 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1037 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1038 	amdgpu_ring_write(ring, addr & 0xfffffffc);
1039 	amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1040 	amdgpu_ring_write(ring, seq); /* reference */
1041 	amdgpu_ring_write(ring, 0xffffffff); /* mask */
1042 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1043 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1044 }
1045 
1046 /**
1047  * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
1048  *
1049  * @ring: amdgpu_ring pointer
1050  * @vmid: vmid number to use
1051  * @pd_addr: address
1052  *
1053  * Update the page table base and flush the VM TLB
1054  * using sDMA (VI).
1055  */
1056 static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1057 					 unsigned vmid, uint64_t pd_addr)
1058 {
1059 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1060 
1061 	/* wait for flush */
1062 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1063 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1064 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
1065 	amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
1066 	amdgpu_ring_write(ring, 0);
1067 	amdgpu_ring_write(ring, 0); /* reference */
1068 	amdgpu_ring_write(ring, 0); /* mask */
1069 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1070 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
1071 }
1072 
1073 static void sdma_v3_0_ring_emit_wreg(struct amdgpu_ring *ring,
1074 				     uint32_t reg, uint32_t val)
1075 {
1076 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1077 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1078 	amdgpu_ring_write(ring, reg);
1079 	amdgpu_ring_write(ring, val);
1080 }
1081 
1082 static int sdma_v3_0_early_init(void *handle)
1083 {
1084 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1085 	int r;
1086 
1087 	switch (adev->asic_type) {
1088 	case CHIP_STONEY:
1089 		adev->sdma.num_instances = 1;
1090 		break;
1091 	default:
1092 		adev->sdma.num_instances = SDMA_MAX_INSTANCE;
1093 		break;
1094 	}
1095 
1096 	r = sdma_v3_0_init_microcode(adev);
1097 	if (r)
1098 		return r;
1099 
1100 	sdma_v3_0_set_ring_funcs(adev);
1101 	sdma_v3_0_set_buffer_funcs(adev);
1102 	sdma_v3_0_set_vm_pte_funcs(adev);
1103 	sdma_v3_0_set_irq_funcs(adev);
1104 
1105 	return 0;
1106 }
1107 
1108 static int sdma_v3_0_sw_init(void *handle)
1109 {
1110 	struct amdgpu_ring *ring;
1111 	int r, i;
1112 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1113 
1114 	/* SDMA trap event */
1115 	r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_SDMA_TRAP,
1116 			      &adev->sdma.trap_irq);
1117 	if (r)
1118 		return r;
1119 
1120 	/* SDMA Privileged inst */
1121 	r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, 241,
1122 			      &adev->sdma.illegal_inst_irq);
1123 	if (r)
1124 		return r;
1125 
1126 	/* SDMA Privileged inst */
1127 	r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_SDMA_SRBM_WRITE,
1128 			      &adev->sdma.illegal_inst_irq);
1129 	if (r)
1130 		return r;
1131 
1132 	for (i = 0; i < adev->sdma.num_instances; i++) {
1133 		ring = &adev->sdma.instance[i].ring;
1134 		ring->ring_obj = NULL;
1135 		if (!amdgpu_sriov_vf(adev)) {
1136 			ring->use_doorbell = true;
1137 			ring->doorbell_index = adev->doorbell_index.sdma_engine[i];
1138 		} else {
1139 			ring->use_pollmem = true;
1140 		}
1141 
1142 		sprintf(ring->name, "sdma%d", i);
1143 		r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1144 				     (i == 0) ? AMDGPU_SDMA_IRQ_INSTANCE0 :
1145 				     AMDGPU_SDMA_IRQ_INSTANCE1,
1146 				     AMDGPU_RING_PRIO_DEFAULT, NULL);
1147 		if (r)
1148 			return r;
1149 	}
1150 
1151 	return r;
1152 }
1153 
1154 static int sdma_v3_0_sw_fini(void *handle)
1155 {
1156 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1157 	int i;
1158 
1159 	for (i = 0; i < adev->sdma.num_instances; i++)
1160 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1161 
1162 	sdma_v3_0_free_microcode(adev);
1163 	return 0;
1164 }
1165 
1166 static int sdma_v3_0_hw_init(void *handle)
1167 {
1168 	int r;
1169 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1170 
1171 	sdma_v3_0_init_golden_registers(adev);
1172 
1173 	r = sdma_v3_0_start(adev);
1174 	if (r)
1175 		return r;
1176 
1177 	return r;
1178 }
1179 
1180 static int sdma_v3_0_hw_fini(void *handle)
1181 {
1182 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1183 
1184 	sdma_v3_0_ctx_switch_enable(adev, false);
1185 	sdma_v3_0_enable(adev, false);
1186 
1187 	return 0;
1188 }
1189 
1190 static int sdma_v3_0_suspend(void *handle)
1191 {
1192 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1193 
1194 	return sdma_v3_0_hw_fini(adev);
1195 }
1196 
1197 static int sdma_v3_0_resume(void *handle)
1198 {
1199 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1200 
1201 	return sdma_v3_0_hw_init(adev);
1202 }
1203 
1204 static bool sdma_v3_0_is_idle(void *handle)
1205 {
1206 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1207 	u32 tmp = RREG32(mmSRBM_STATUS2);
1208 
1209 	if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
1210 		   SRBM_STATUS2__SDMA1_BUSY_MASK))
1211 	    return false;
1212 
1213 	return true;
1214 }
1215 
1216 static int sdma_v3_0_wait_for_idle(void *handle)
1217 {
1218 	unsigned i;
1219 	u32 tmp;
1220 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1221 
1222 	for (i = 0; i < adev->usec_timeout; i++) {
1223 		tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
1224 				SRBM_STATUS2__SDMA1_BUSY_MASK);
1225 
1226 		if (!tmp)
1227 			return 0;
1228 		udelay(1);
1229 	}
1230 	return -ETIMEDOUT;
1231 }
1232 
1233 static bool sdma_v3_0_check_soft_reset(void *handle)
1234 {
1235 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1236 	u32 srbm_soft_reset = 0;
1237 	u32 tmp = RREG32(mmSRBM_STATUS2);
1238 
1239 	if ((tmp & SRBM_STATUS2__SDMA_BUSY_MASK) ||
1240 	    (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK)) {
1241 		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
1242 		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
1243 	}
1244 
1245 	if (srbm_soft_reset) {
1246 		adev->sdma.srbm_soft_reset = srbm_soft_reset;
1247 		return true;
1248 	} else {
1249 		adev->sdma.srbm_soft_reset = 0;
1250 		return false;
1251 	}
1252 }
1253 
1254 static int sdma_v3_0_pre_soft_reset(void *handle)
1255 {
1256 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1257 	u32 srbm_soft_reset = 0;
1258 
1259 	if (!adev->sdma.srbm_soft_reset)
1260 		return 0;
1261 
1262 	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1263 
1264 	if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1265 	    REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1266 		sdma_v3_0_ctx_switch_enable(adev, false);
1267 		sdma_v3_0_enable(adev, false);
1268 	}
1269 
1270 	return 0;
1271 }
1272 
1273 static int sdma_v3_0_post_soft_reset(void *handle)
1274 {
1275 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1276 	u32 srbm_soft_reset = 0;
1277 
1278 	if (!adev->sdma.srbm_soft_reset)
1279 		return 0;
1280 
1281 	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1282 
1283 	if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1284 	    REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1285 		sdma_v3_0_gfx_resume(adev);
1286 		sdma_v3_0_rlc_resume(adev);
1287 	}
1288 
1289 	return 0;
1290 }
1291 
1292 static int sdma_v3_0_soft_reset(void *handle)
1293 {
1294 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1295 	u32 srbm_soft_reset = 0;
1296 	u32 tmp;
1297 
1298 	if (!adev->sdma.srbm_soft_reset)
1299 		return 0;
1300 
1301 	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1302 
1303 	if (srbm_soft_reset) {
1304 		tmp = RREG32(mmSRBM_SOFT_RESET);
1305 		tmp |= srbm_soft_reset;
1306 		dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1307 		WREG32(mmSRBM_SOFT_RESET, tmp);
1308 		tmp = RREG32(mmSRBM_SOFT_RESET);
1309 
1310 		udelay(50);
1311 
1312 		tmp &= ~srbm_soft_reset;
1313 		WREG32(mmSRBM_SOFT_RESET, tmp);
1314 		tmp = RREG32(mmSRBM_SOFT_RESET);
1315 
1316 		/* Wait a little for things to settle down */
1317 		udelay(50);
1318 	}
1319 
1320 	return 0;
1321 }
1322 
1323 static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
1324 					struct amdgpu_irq_src *source,
1325 					unsigned type,
1326 					enum amdgpu_interrupt_state state)
1327 {
1328 	u32 sdma_cntl;
1329 
1330 	switch (type) {
1331 	case AMDGPU_SDMA_IRQ_INSTANCE0:
1332 		switch (state) {
1333 		case AMDGPU_IRQ_STATE_DISABLE:
1334 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1335 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1336 			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1337 			break;
1338 		case AMDGPU_IRQ_STATE_ENABLE:
1339 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1340 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1341 			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1342 			break;
1343 		default:
1344 			break;
1345 		}
1346 		break;
1347 	case AMDGPU_SDMA_IRQ_INSTANCE1:
1348 		switch (state) {
1349 		case AMDGPU_IRQ_STATE_DISABLE:
1350 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1351 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1352 			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1353 			break;
1354 		case AMDGPU_IRQ_STATE_ENABLE:
1355 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1356 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1357 			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1358 			break;
1359 		default:
1360 			break;
1361 		}
1362 		break;
1363 	default:
1364 		break;
1365 	}
1366 	return 0;
1367 }
1368 
1369 static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
1370 				      struct amdgpu_irq_src *source,
1371 				      struct amdgpu_iv_entry *entry)
1372 {
1373 	u8 instance_id, queue_id;
1374 
1375 	instance_id = (entry->ring_id & 0x3) >> 0;
1376 	queue_id = (entry->ring_id & 0xc) >> 2;
1377 	DRM_DEBUG("IH: SDMA trap\n");
1378 	switch (instance_id) {
1379 	case 0:
1380 		switch (queue_id) {
1381 		case 0:
1382 			amdgpu_fence_process(&adev->sdma.instance[0].ring);
1383 			break;
1384 		case 1:
1385 			/* XXX compute */
1386 			break;
1387 		case 2:
1388 			/* XXX compute */
1389 			break;
1390 		}
1391 		break;
1392 	case 1:
1393 		switch (queue_id) {
1394 		case 0:
1395 			amdgpu_fence_process(&adev->sdma.instance[1].ring);
1396 			break;
1397 		case 1:
1398 			/* XXX compute */
1399 			break;
1400 		case 2:
1401 			/* XXX compute */
1402 			break;
1403 		}
1404 		break;
1405 	}
1406 	return 0;
1407 }
1408 
1409 static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1410 					      struct amdgpu_irq_src *source,
1411 					      struct amdgpu_iv_entry *entry)
1412 {
1413 	u8 instance_id, queue_id;
1414 
1415 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
1416 	instance_id = (entry->ring_id & 0x3) >> 0;
1417 	queue_id = (entry->ring_id & 0xc) >> 2;
1418 
1419 	if (instance_id <= 1 && queue_id == 0)
1420 		drm_sched_fault(&adev->sdma.instance[instance_id].ring.sched);
1421 	return 0;
1422 }
1423 
1424 static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
1425 		struct amdgpu_device *adev,
1426 		bool enable)
1427 {
1428 	uint32_t temp, data;
1429 	int i;
1430 
1431 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1432 		for (i = 0; i < adev->sdma.num_instances; i++) {
1433 			temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1434 			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1435 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1436 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1437 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1438 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1439 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1440 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1441 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1442 			if (data != temp)
1443 				WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1444 		}
1445 	} else {
1446 		for (i = 0; i < adev->sdma.num_instances; i++) {
1447 			temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1448 			data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1449 				SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1450 				SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1451 				SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1452 				SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1453 				SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1454 				SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1455 				SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
1456 
1457 			if (data != temp)
1458 				WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1459 		}
1460 	}
1461 }
1462 
1463 static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
1464 		struct amdgpu_device *adev,
1465 		bool enable)
1466 {
1467 	uint32_t temp, data;
1468 	int i;
1469 
1470 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1471 		for (i = 0; i < adev->sdma.num_instances; i++) {
1472 			temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1473 			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1474 
1475 			if (temp != data)
1476 				WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1477 		}
1478 	} else {
1479 		for (i = 0; i < adev->sdma.num_instances; i++) {
1480 			temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1481 			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1482 
1483 			if (temp != data)
1484 				WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1485 		}
1486 	}
1487 }
1488 
1489 static int sdma_v3_0_set_clockgating_state(void *handle,
1490 					  enum amd_clockgating_state state)
1491 {
1492 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1493 
1494 	if (amdgpu_sriov_vf(adev))
1495 		return 0;
1496 
1497 	switch (adev->asic_type) {
1498 	case CHIP_FIJI:
1499 	case CHIP_CARRIZO:
1500 	case CHIP_STONEY:
1501 		sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
1502 				state == AMD_CG_STATE_GATE);
1503 		sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
1504 				state == AMD_CG_STATE_GATE);
1505 		break;
1506 	default:
1507 		break;
1508 	}
1509 	return 0;
1510 }
1511 
1512 static int sdma_v3_0_set_powergating_state(void *handle,
1513 					  enum amd_powergating_state state)
1514 {
1515 	return 0;
1516 }
1517 
1518 static void sdma_v3_0_get_clockgating_state(void *handle, u64 *flags)
1519 {
1520 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1521 	int data;
1522 
1523 	if (amdgpu_sriov_vf(adev))
1524 		*flags = 0;
1525 
1526 	/* AMD_CG_SUPPORT_SDMA_MGCG */
1527 	data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[0]);
1528 	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK))
1529 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1530 
1531 	/* AMD_CG_SUPPORT_SDMA_LS */
1532 	data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[0]);
1533 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1534 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
1535 }
1536 
1537 static const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
1538 	.name = "sdma_v3_0",
1539 	.early_init = sdma_v3_0_early_init,
1540 	.late_init = NULL,
1541 	.sw_init = sdma_v3_0_sw_init,
1542 	.sw_fini = sdma_v3_0_sw_fini,
1543 	.hw_init = sdma_v3_0_hw_init,
1544 	.hw_fini = sdma_v3_0_hw_fini,
1545 	.suspend = sdma_v3_0_suspend,
1546 	.resume = sdma_v3_0_resume,
1547 	.is_idle = sdma_v3_0_is_idle,
1548 	.wait_for_idle = sdma_v3_0_wait_for_idle,
1549 	.check_soft_reset = sdma_v3_0_check_soft_reset,
1550 	.pre_soft_reset = sdma_v3_0_pre_soft_reset,
1551 	.post_soft_reset = sdma_v3_0_post_soft_reset,
1552 	.soft_reset = sdma_v3_0_soft_reset,
1553 	.set_clockgating_state = sdma_v3_0_set_clockgating_state,
1554 	.set_powergating_state = sdma_v3_0_set_powergating_state,
1555 	.get_clockgating_state = sdma_v3_0_get_clockgating_state,
1556 };
1557 
1558 static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
1559 	.type = AMDGPU_RING_TYPE_SDMA,
1560 	.align_mask = 0xf,
1561 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1562 	.support_64bit_ptrs = false,
1563 	.secure_submission_supported = true,
1564 	.get_rptr = sdma_v3_0_ring_get_rptr,
1565 	.get_wptr = sdma_v3_0_ring_get_wptr,
1566 	.set_wptr = sdma_v3_0_ring_set_wptr,
1567 	.emit_frame_size =
1568 		6 + /* sdma_v3_0_ring_emit_hdp_flush */
1569 		3 + /* hdp invalidate */
1570 		6 + /* sdma_v3_0_ring_emit_pipeline_sync */
1571 		VI_FLUSH_GPU_TLB_NUM_WREG * 3 + 6 + /* sdma_v3_0_ring_emit_vm_flush */
1572 		10 + 10 + 10, /* sdma_v3_0_ring_emit_fence x3 for user fence, vm fence */
1573 	.emit_ib_size = 7 + 6, /* sdma_v3_0_ring_emit_ib */
1574 	.emit_ib = sdma_v3_0_ring_emit_ib,
1575 	.emit_fence = sdma_v3_0_ring_emit_fence,
1576 	.emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
1577 	.emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
1578 	.emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
1579 	.test_ring = sdma_v3_0_ring_test_ring,
1580 	.test_ib = sdma_v3_0_ring_test_ib,
1581 	.insert_nop = sdma_v3_0_ring_insert_nop,
1582 	.pad_ib = sdma_v3_0_ring_pad_ib,
1583 	.emit_wreg = sdma_v3_0_ring_emit_wreg,
1584 };
1585 
1586 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
1587 {
1588 	int i;
1589 
1590 	for (i = 0; i < adev->sdma.num_instances; i++) {
1591 		adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
1592 		adev->sdma.instance[i].ring.me = i;
1593 	}
1594 }
1595 
1596 static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
1597 	.set = sdma_v3_0_set_trap_irq_state,
1598 	.process = sdma_v3_0_process_trap_irq,
1599 };
1600 
1601 static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
1602 	.process = sdma_v3_0_process_illegal_inst_irq,
1603 };
1604 
1605 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
1606 {
1607 	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1608 	adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
1609 	adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
1610 }
1611 
1612 /**
1613  * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
1614  *
1615  * @ib: indirect buffer to copy to
1616  * @src_offset: src GPU address
1617  * @dst_offset: dst GPU address
1618  * @byte_count: number of bytes to xfer
1619  * @tmz: unused
1620  *
1621  * Copy GPU buffers using the DMA engine (VI).
1622  * Used by the amdgpu ttm implementation to move pages if
1623  * registered as the asic copy callback.
1624  */
1625 static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
1626 				       uint64_t src_offset,
1627 				       uint64_t dst_offset,
1628 				       uint32_t byte_count,
1629 				       bool tmz)
1630 {
1631 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1632 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1633 	ib->ptr[ib->length_dw++] = byte_count;
1634 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1635 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1636 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1637 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1638 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1639 }
1640 
1641 /**
1642  * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
1643  *
1644  * @ib: indirect buffer to copy to
1645  * @src_data: value to write to buffer
1646  * @dst_offset: dst GPU address
1647  * @byte_count: number of bytes to xfer
1648  *
1649  * Fill GPU buffers using the DMA engine (VI).
1650  */
1651 static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
1652 				       uint32_t src_data,
1653 				       uint64_t dst_offset,
1654 				       uint32_t byte_count)
1655 {
1656 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1657 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1658 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1659 	ib->ptr[ib->length_dw++] = src_data;
1660 	ib->ptr[ib->length_dw++] = byte_count;
1661 }
1662 
1663 static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
1664 	.copy_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
1665 	.copy_num_dw = 7,
1666 	.emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
1667 
1668 	.fill_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
1669 	.fill_num_dw = 5,
1670 	.emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
1671 };
1672 
1673 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
1674 {
1675 	adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
1676 	adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1677 }
1678 
1679 static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
1680 	.copy_pte_num_dw = 7,
1681 	.copy_pte = sdma_v3_0_vm_copy_pte,
1682 
1683 	.write_pte = sdma_v3_0_vm_write_pte,
1684 	.set_pte_pde = sdma_v3_0_vm_set_pte_pde,
1685 };
1686 
1687 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1688 {
1689 	unsigned i;
1690 
1691 	adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
1692 	for (i = 0; i < adev->sdma.num_instances; i++) {
1693 		adev->vm_manager.vm_pte_scheds[i] =
1694 			 &adev->sdma.instance[i].ring.sched;
1695 	}
1696 	adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
1697 }
1698 
1699 const struct amdgpu_ip_block_version sdma_v3_0_ip_block =
1700 {
1701 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1702 	.major = 3,
1703 	.minor = 0,
1704 	.rev = 0,
1705 	.funcs = &sdma_v3_0_ip_funcs,
1706 };
1707 
1708 const struct amdgpu_ip_block_version sdma_v3_1_ip_block =
1709 {
1710 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1711 	.major = 3,
1712 	.minor = 1,
1713 	.rev = 0,
1714 	.funcs = &sdma_v3_0_ip_funcs,
1715 };
1716