1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: Alex Deucher 23 */ 24 #include <linux/firmware.h> 25 #include <drm/drmP.h> 26 #include "amdgpu.h" 27 #include "amdgpu_ucode.h" 28 #include "amdgpu_trace.h" 29 #include "vi.h" 30 #include "vid.h" 31 32 #include "oss/oss_3_0_d.h" 33 #include "oss/oss_3_0_sh_mask.h" 34 35 #include "gmc/gmc_8_1_d.h" 36 #include "gmc/gmc_8_1_sh_mask.h" 37 38 #include "gca/gfx_8_0_d.h" 39 #include "gca/gfx_8_0_enum.h" 40 #include "gca/gfx_8_0_sh_mask.h" 41 42 #include "bif/bif_5_0_d.h" 43 #include "bif/bif_5_0_sh_mask.h" 44 45 #include "tonga_sdma_pkt_open.h" 46 47 #include "ivsrcid/ivsrcid_vislands30.h" 48 49 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev); 50 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev); 51 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev); 52 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev); 53 54 MODULE_FIRMWARE("amdgpu/tonga_sdma.bin"); 55 MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin"); 56 MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin"); 57 MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin"); 58 MODULE_FIRMWARE("amdgpu/fiji_sdma.bin"); 59 MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin"); 60 MODULE_FIRMWARE("amdgpu/stoney_sdma.bin"); 61 MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin"); 62 MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin"); 63 MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin"); 64 MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin"); 65 MODULE_FIRMWARE("amdgpu/polaris12_sdma.bin"); 66 MODULE_FIRMWARE("amdgpu/polaris12_sdma1.bin"); 67 MODULE_FIRMWARE("amdgpu/vegam_sdma.bin"); 68 MODULE_FIRMWARE("amdgpu/vegam_sdma1.bin"); 69 70 71 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] = 72 { 73 SDMA0_REGISTER_OFFSET, 74 SDMA1_REGISTER_OFFSET 75 }; 76 77 static const u32 golden_settings_tonga_a11[] = 78 { 79 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007, 80 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000, 81 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100, 82 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100, 83 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100, 84 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007, 85 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000, 86 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100, 87 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100, 88 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100, 89 }; 90 91 static const u32 tonga_mgcg_cgcg_init[] = 92 { 93 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100, 94 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100 95 }; 96 97 static const u32 golden_settings_fiji_a10[] = 98 { 99 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007, 100 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100, 101 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100, 102 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100, 103 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007, 104 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100, 105 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100, 106 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100, 107 }; 108 109 static const u32 fiji_mgcg_cgcg_init[] = 110 { 111 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100, 112 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100 113 }; 114 115 static const u32 golden_settings_polaris11_a11[] = 116 { 117 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007, 118 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000, 119 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100, 120 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100, 121 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100, 122 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007, 123 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000, 124 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100, 125 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100, 126 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100, 127 }; 128 129 static const u32 golden_settings_polaris10_a11[] = 130 { 131 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007, 132 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000, 133 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100, 134 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100, 135 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100, 136 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007, 137 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000, 138 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100, 139 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100, 140 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100, 141 }; 142 143 static const u32 cz_golden_settings_a11[] = 144 { 145 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007, 146 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000, 147 mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100, 148 mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800, 149 mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100, 150 mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100, 151 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007, 152 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000, 153 mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100, 154 mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800, 155 mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100, 156 mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100, 157 }; 158 159 static const u32 cz_mgcg_cgcg_init[] = 160 { 161 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100, 162 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100 163 }; 164 165 static const u32 stoney_golden_settings_a11[] = 166 { 167 mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100, 168 mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800, 169 mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100, 170 mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100, 171 }; 172 173 static const u32 stoney_mgcg_cgcg_init[] = 174 { 175 mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100, 176 }; 177 178 /* 179 * sDMA - System DMA 180 * Starting with CIK, the GPU has new asynchronous 181 * DMA engines. These engines are used for compute 182 * and gfx. There are two DMA engines (SDMA0, SDMA1) 183 * and each one supports 1 ring buffer used for gfx 184 * and 2 queues used for compute. 185 * 186 * The programming model is very similar to the CP 187 * (ring buffer, IBs, etc.), but sDMA has it's own 188 * packet format that is different from the PM4 format 189 * used by the CP. sDMA supports copying data, writing 190 * embedded data, solid fills, and a number of other 191 * things. It also has support for tiling/detiling of 192 * buffers. 193 */ 194 195 static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev) 196 { 197 switch (adev->asic_type) { 198 case CHIP_FIJI: 199 amdgpu_device_program_register_sequence(adev, 200 fiji_mgcg_cgcg_init, 201 ARRAY_SIZE(fiji_mgcg_cgcg_init)); 202 amdgpu_device_program_register_sequence(adev, 203 golden_settings_fiji_a10, 204 ARRAY_SIZE(golden_settings_fiji_a10)); 205 break; 206 case CHIP_TONGA: 207 amdgpu_device_program_register_sequence(adev, 208 tonga_mgcg_cgcg_init, 209 ARRAY_SIZE(tonga_mgcg_cgcg_init)); 210 amdgpu_device_program_register_sequence(adev, 211 golden_settings_tonga_a11, 212 ARRAY_SIZE(golden_settings_tonga_a11)); 213 break; 214 case CHIP_POLARIS11: 215 case CHIP_POLARIS12: 216 case CHIP_VEGAM: 217 amdgpu_device_program_register_sequence(adev, 218 golden_settings_polaris11_a11, 219 ARRAY_SIZE(golden_settings_polaris11_a11)); 220 break; 221 case CHIP_POLARIS10: 222 amdgpu_device_program_register_sequence(adev, 223 golden_settings_polaris10_a11, 224 ARRAY_SIZE(golden_settings_polaris10_a11)); 225 break; 226 case CHIP_CARRIZO: 227 amdgpu_device_program_register_sequence(adev, 228 cz_mgcg_cgcg_init, 229 ARRAY_SIZE(cz_mgcg_cgcg_init)); 230 amdgpu_device_program_register_sequence(adev, 231 cz_golden_settings_a11, 232 ARRAY_SIZE(cz_golden_settings_a11)); 233 break; 234 case CHIP_STONEY: 235 amdgpu_device_program_register_sequence(adev, 236 stoney_mgcg_cgcg_init, 237 ARRAY_SIZE(stoney_mgcg_cgcg_init)); 238 amdgpu_device_program_register_sequence(adev, 239 stoney_golden_settings_a11, 240 ARRAY_SIZE(stoney_golden_settings_a11)); 241 break; 242 default: 243 break; 244 } 245 } 246 247 static void sdma_v3_0_free_microcode(struct amdgpu_device *adev) 248 { 249 int i; 250 for (i = 0; i < adev->sdma.num_instances; i++) { 251 release_firmware(adev->sdma.instance[i].fw); 252 adev->sdma.instance[i].fw = NULL; 253 } 254 } 255 256 /** 257 * sdma_v3_0_init_microcode - load ucode images from disk 258 * 259 * @adev: amdgpu_device pointer 260 * 261 * Use the firmware interface to load the ucode images into 262 * the driver (not loaded into hw). 263 * Returns 0 on success, error on failure. 264 */ 265 static int sdma_v3_0_init_microcode(struct amdgpu_device *adev) 266 { 267 const char *chip_name; 268 char fw_name[30]; 269 int err = 0, i; 270 struct amdgpu_firmware_info *info = NULL; 271 const struct common_firmware_header *header = NULL; 272 const struct sdma_firmware_header_v1_0 *hdr; 273 274 DRM_DEBUG("\n"); 275 276 switch (adev->asic_type) { 277 case CHIP_TONGA: 278 chip_name = "tonga"; 279 break; 280 case CHIP_FIJI: 281 chip_name = "fiji"; 282 break; 283 case CHIP_POLARIS10: 284 chip_name = "polaris10"; 285 break; 286 case CHIP_POLARIS11: 287 chip_name = "polaris11"; 288 break; 289 case CHIP_POLARIS12: 290 chip_name = "polaris12"; 291 break; 292 case CHIP_VEGAM: 293 chip_name = "vegam"; 294 break; 295 case CHIP_CARRIZO: 296 chip_name = "carrizo"; 297 break; 298 case CHIP_STONEY: 299 chip_name = "stoney"; 300 break; 301 default: BUG(); 302 } 303 304 for (i = 0; i < adev->sdma.num_instances; i++) { 305 if (i == 0) 306 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name); 307 else 308 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name); 309 err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev); 310 if (err) 311 goto out; 312 err = amdgpu_ucode_validate(adev->sdma.instance[i].fw); 313 if (err) 314 goto out; 315 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data; 316 adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version); 317 adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version); 318 if (adev->sdma.instance[i].feature_version >= 20) 319 adev->sdma.instance[i].burst_nop = true; 320 321 if (adev->firmware.load_type == AMDGPU_FW_LOAD_SMU) { 322 info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i]; 323 info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i; 324 info->fw = adev->sdma.instance[i].fw; 325 header = (const struct common_firmware_header *)info->fw->data; 326 adev->firmware.fw_size += 327 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE); 328 } 329 } 330 out: 331 if (err) { 332 pr_err("sdma_v3_0: Failed to load firmware \"%s\"\n", fw_name); 333 for (i = 0; i < adev->sdma.num_instances; i++) { 334 release_firmware(adev->sdma.instance[i].fw); 335 adev->sdma.instance[i].fw = NULL; 336 } 337 } 338 return err; 339 } 340 341 /** 342 * sdma_v3_0_ring_get_rptr - get the current read pointer 343 * 344 * @ring: amdgpu ring pointer 345 * 346 * Get the current rptr from the hardware (VI+). 347 */ 348 static uint64_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring) 349 { 350 /* XXX check if swapping is necessary on BE */ 351 return ring->adev->wb.wb[ring->rptr_offs] >> 2; 352 } 353 354 /** 355 * sdma_v3_0_ring_get_wptr - get the current write pointer 356 * 357 * @ring: amdgpu ring pointer 358 * 359 * Get the current wptr from the hardware (VI+). 360 */ 361 static uint64_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring) 362 { 363 struct amdgpu_device *adev = ring->adev; 364 u32 wptr; 365 366 if (ring->use_doorbell || ring->use_pollmem) { 367 /* XXX check if swapping is necessary on BE */ 368 wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2; 369 } else { 370 wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me]) >> 2; 371 } 372 373 return wptr; 374 } 375 376 /** 377 * sdma_v3_0_ring_set_wptr - commit the write pointer 378 * 379 * @ring: amdgpu ring pointer 380 * 381 * Write the wptr back to the hardware (VI+). 382 */ 383 static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring) 384 { 385 struct amdgpu_device *adev = ring->adev; 386 387 if (ring->use_doorbell) { 388 u32 *wb = (u32 *)&adev->wb.wb[ring->wptr_offs]; 389 /* XXX check if swapping is necessary on BE */ 390 WRITE_ONCE(*wb, (lower_32_bits(ring->wptr) << 2)); 391 WDOORBELL32(ring->doorbell_index, lower_32_bits(ring->wptr) << 2); 392 } else if (ring->use_pollmem) { 393 u32 *wb = (u32 *)&adev->wb.wb[ring->wptr_offs]; 394 395 WRITE_ONCE(*wb, (lower_32_bits(ring->wptr) << 2)); 396 } else { 397 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me], lower_32_bits(ring->wptr) << 2); 398 } 399 } 400 401 static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count) 402 { 403 struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring); 404 int i; 405 406 for (i = 0; i < count; i++) 407 if (sdma && sdma->burst_nop && (i == 0)) 408 amdgpu_ring_write(ring, ring->funcs->nop | 409 SDMA_PKT_NOP_HEADER_COUNT(count - 1)); 410 else 411 amdgpu_ring_write(ring, ring->funcs->nop); 412 } 413 414 /** 415 * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine 416 * 417 * @ring: amdgpu ring pointer 418 * @ib: IB object to schedule 419 * 420 * Schedule an IB in the DMA ring (VI). 421 */ 422 static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring, 423 struct amdgpu_ib *ib, 424 unsigned vmid, bool ctx_switch) 425 { 426 /* IB packet must end on a 8 DW boundary */ 427 sdma_v3_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8); 428 429 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) | 430 SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf)); 431 /* base must be 32 byte aligned */ 432 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0); 433 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr)); 434 amdgpu_ring_write(ring, ib->length_dw); 435 amdgpu_ring_write(ring, 0); 436 amdgpu_ring_write(ring, 0); 437 438 } 439 440 /** 441 * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring 442 * 443 * @ring: amdgpu ring pointer 444 * 445 * Emit an hdp flush packet on the requested DMA ring. 446 */ 447 static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring) 448 { 449 u32 ref_and_mask = 0; 450 451 if (ring->me == 0) 452 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1); 453 else 454 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1); 455 456 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | 457 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) | 458 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */ 459 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2); 460 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2); 461 amdgpu_ring_write(ring, ref_and_mask); /* reference */ 462 amdgpu_ring_write(ring, ref_and_mask); /* mask */ 463 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 464 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */ 465 } 466 467 /** 468 * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring 469 * 470 * @ring: amdgpu ring pointer 471 * @fence: amdgpu fence object 472 * 473 * Add a DMA fence packet to the ring to write 474 * the fence seq number and DMA trap packet to generate 475 * an interrupt if needed (VI). 476 */ 477 static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq, 478 unsigned flags) 479 { 480 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT; 481 /* write the fence */ 482 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); 483 amdgpu_ring_write(ring, lower_32_bits(addr)); 484 amdgpu_ring_write(ring, upper_32_bits(addr)); 485 amdgpu_ring_write(ring, lower_32_bits(seq)); 486 487 /* optionally write high bits as well */ 488 if (write64bit) { 489 addr += 4; 490 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); 491 amdgpu_ring_write(ring, lower_32_bits(addr)); 492 amdgpu_ring_write(ring, upper_32_bits(addr)); 493 amdgpu_ring_write(ring, upper_32_bits(seq)); 494 } 495 496 /* generate an interrupt */ 497 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP)); 498 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0)); 499 } 500 501 /** 502 * sdma_v3_0_gfx_stop - stop the gfx async dma engines 503 * 504 * @adev: amdgpu_device pointer 505 * 506 * Stop the gfx async dma ring buffers (VI). 507 */ 508 static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev) 509 { 510 struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring; 511 struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring; 512 u32 rb_cntl, ib_cntl; 513 int i; 514 515 if ((adev->mman.buffer_funcs_ring == sdma0) || 516 (adev->mman.buffer_funcs_ring == sdma1)) 517 amdgpu_ttm_set_buffer_funcs_status(adev, false); 518 519 for (i = 0; i < adev->sdma.num_instances; i++) { 520 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]); 521 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0); 522 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl); 523 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]); 524 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0); 525 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl); 526 } 527 sdma0->ready = false; 528 sdma1->ready = false; 529 } 530 531 /** 532 * sdma_v3_0_rlc_stop - stop the compute async dma engines 533 * 534 * @adev: amdgpu_device pointer 535 * 536 * Stop the compute async dma queues (VI). 537 */ 538 static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev) 539 { 540 /* XXX todo */ 541 } 542 543 /** 544 * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch 545 * 546 * @adev: amdgpu_device pointer 547 * @enable: enable/disable the DMA MEs context switch. 548 * 549 * Halt or unhalt the async dma engines context switch (VI). 550 */ 551 static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable) 552 { 553 u32 f32_cntl, phase_quantum = 0; 554 int i; 555 556 if (amdgpu_sdma_phase_quantum) { 557 unsigned value = amdgpu_sdma_phase_quantum; 558 unsigned unit = 0; 559 560 while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >> 561 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) { 562 value = (value + 1) >> 1; 563 unit++; 564 } 565 if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >> 566 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) { 567 value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >> 568 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT); 569 unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >> 570 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT); 571 WARN_ONCE(1, 572 "clamping sdma_phase_quantum to %uK clock cycles\n", 573 value << unit); 574 } 575 phase_quantum = 576 value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT | 577 unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT; 578 } 579 580 for (i = 0; i < adev->sdma.num_instances; i++) { 581 f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]); 582 if (enable) { 583 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL, 584 AUTO_CTXSW_ENABLE, 1); 585 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL, 586 ATC_L1_ENABLE, 1); 587 if (amdgpu_sdma_phase_quantum) { 588 WREG32(mmSDMA0_PHASE0_QUANTUM + sdma_offsets[i], 589 phase_quantum); 590 WREG32(mmSDMA0_PHASE1_QUANTUM + sdma_offsets[i], 591 phase_quantum); 592 } 593 } else { 594 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL, 595 AUTO_CTXSW_ENABLE, 0); 596 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL, 597 ATC_L1_ENABLE, 1); 598 } 599 600 WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl); 601 } 602 } 603 604 /** 605 * sdma_v3_0_enable - stop the async dma engines 606 * 607 * @adev: amdgpu_device pointer 608 * @enable: enable/disable the DMA MEs. 609 * 610 * Halt or unhalt the async dma engines (VI). 611 */ 612 static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable) 613 { 614 u32 f32_cntl; 615 int i; 616 617 if (!enable) { 618 sdma_v3_0_gfx_stop(adev); 619 sdma_v3_0_rlc_stop(adev); 620 } 621 622 for (i = 0; i < adev->sdma.num_instances; i++) { 623 f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]); 624 if (enable) 625 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0); 626 else 627 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1); 628 WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl); 629 } 630 } 631 632 /** 633 * sdma_v3_0_gfx_resume - setup and start the async dma engines 634 * 635 * @adev: amdgpu_device pointer 636 * 637 * Set up the gfx DMA ring buffers and enable them (VI). 638 * Returns 0 for success, error for failure. 639 */ 640 static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev) 641 { 642 struct amdgpu_ring *ring; 643 u32 rb_cntl, ib_cntl, wptr_poll_cntl; 644 u32 rb_bufsz; 645 u32 wb_offset; 646 u32 doorbell; 647 u64 wptr_gpu_addr; 648 int i, j, r; 649 650 for (i = 0; i < adev->sdma.num_instances; i++) { 651 ring = &adev->sdma.instance[i].ring; 652 amdgpu_ring_clear_ring(ring); 653 wb_offset = (ring->rptr_offs * 4); 654 655 mutex_lock(&adev->srbm_mutex); 656 for (j = 0; j < 16; j++) { 657 vi_srbm_select(adev, 0, 0, 0, j); 658 /* SDMA GFX */ 659 WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0); 660 WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0); 661 } 662 vi_srbm_select(adev, 0, 0, 0, 0); 663 mutex_unlock(&adev->srbm_mutex); 664 665 WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i], 666 adev->gfx.config.gb_addr_config & 0x70); 667 668 WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0); 669 670 /* Set ring buffer size in dwords */ 671 rb_bufsz = order_base_2(ring->ring_size / 4); 672 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]); 673 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz); 674 #ifdef __BIG_ENDIAN 675 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1); 676 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, 677 RPTR_WRITEBACK_SWAP_ENABLE, 1); 678 #endif 679 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl); 680 681 /* Initialize the ring buffer's read and write pointers */ 682 ring->wptr = 0; 683 WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0); 684 sdma_v3_0_ring_set_wptr(ring); 685 WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0); 686 WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0); 687 688 /* set the wb address whether it's enabled or not */ 689 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i], 690 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF); 691 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i], 692 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC); 693 694 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1); 695 696 WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8); 697 WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40); 698 699 doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]); 700 701 if (ring->use_doorbell) { 702 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, 703 OFFSET, ring->doorbell_index); 704 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1); 705 } else { 706 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0); 707 } 708 WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell); 709 710 /* setup the wptr shadow polling */ 711 wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4); 712 713 WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO + sdma_offsets[i], 714 lower_32_bits(wptr_gpu_addr)); 715 WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI + sdma_offsets[i], 716 upper_32_bits(wptr_gpu_addr)); 717 wptr_poll_cntl = RREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i]); 718 if (ring->use_pollmem) { 719 /*wptr polling is not enogh fast, directly clean the wptr register */ 720 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0); 721 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, 722 SDMA0_GFX_RB_WPTR_POLL_CNTL, 723 ENABLE, 1); 724 } else { 725 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, 726 SDMA0_GFX_RB_WPTR_POLL_CNTL, 727 ENABLE, 0); 728 } 729 WREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i], wptr_poll_cntl); 730 731 /* enable DMA RB */ 732 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1); 733 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl); 734 735 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]); 736 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1); 737 #ifdef __BIG_ENDIAN 738 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1); 739 #endif 740 /* enable DMA IBs */ 741 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl); 742 743 ring->ready = true; 744 } 745 746 /* unhalt the MEs */ 747 sdma_v3_0_enable(adev, true); 748 /* enable sdma ring preemption */ 749 sdma_v3_0_ctx_switch_enable(adev, true); 750 751 for (i = 0; i < adev->sdma.num_instances; i++) { 752 ring = &adev->sdma.instance[i].ring; 753 r = amdgpu_ring_test_ring(ring); 754 if (r) { 755 ring->ready = false; 756 return r; 757 } 758 759 if (adev->mman.buffer_funcs_ring == ring) 760 amdgpu_ttm_set_buffer_funcs_status(adev, true); 761 } 762 763 return 0; 764 } 765 766 /** 767 * sdma_v3_0_rlc_resume - setup and start the async dma engines 768 * 769 * @adev: amdgpu_device pointer 770 * 771 * Set up the compute DMA queues and enable them (VI). 772 * Returns 0 for success, error for failure. 773 */ 774 static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev) 775 { 776 /* XXX todo */ 777 return 0; 778 } 779 780 /** 781 * sdma_v3_0_load_microcode - load the sDMA ME ucode 782 * 783 * @adev: amdgpu_device pointer 784 * 785 * Loads the sDMA0/1 ucode. 786 * Returns 0 for success, -EINVAL if the ucode is not available. 787 */ 788 static int sdma_v3_0_load_microcode(struct amdgpu_device *adev) 789 { 790 const struct sdma_firmware_header_v1_0 *hdr; 791 const __le32 *fw_data; 792 u32 fw_size; 793 int i, j; 794 795 /* halt the MEs */ 796 sdma_v3_0_enable(adev, false); 797 798 for (i = 0; i < adev->sdma.num_instances; i++) { 799 if (!adev->sdma.instance[i].fw) 800 return -EINVAL; 801 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data; 802 amdgpu_ucode_print_sdma_hdr(&hdr->header); 803 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4; 804 fw_data = (const __le32 *) 805 (adev->sdma.instance[i].fw->data + 806 le32_to_cpu(hdr->header.ucode_array_offset_bytes)); 807 WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0); 808 for (j = 0; j < fw_size; j++) 809 WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++)); 810 WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version); 811 } 812 813 return 0; 814 } 815 816 /** 817 * sdma_v3_0_start - setup and start the async dma engines 818 * 819 * @adev: amdgpu_device pointer 820 * 821 * Set up the DMA engines and enable them (VI). 822 * Returns 0 for success, error for failure. 823 */ 824 static int sdma_v3_0_start(struct amdgpu_device *adev) 825 { 826 int r; 827 828 if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) { 829 r = sdma_v3_0_load_microcode(adev); 830 if (r) 831 return r; 832 } 833 834 /* disable sdma engine before programing it */ 835 sdma_v3_0_ctx_switch_enable(adev, false); 836 sdma_v3_0_enable(adev, false); 837 838 /* start the gfx rings and rlc compute queues */ 839 r = sdma_v3_0_gfx_resume(adev); 840 if (r) 841 return r; 842 r = sdma_v3_0_rlc_resume(adev); 843 if (r) 844 return r; 845 846 return 0; 847 } 848 849 /** 850 * sdma_v3_0_ring_test_ring - simple async dma engine test 851 * 852 * @ring: amdgpu_ring structure holding ring information 853 * 854 * Test the DMA engine by writing using it to write an 855 * value to memory. (VI). 856 * Returns 0 for success, error for failure. 857 */ 858 static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring) 859 { 860 struct amdgpu_device *adev = ring->adev; 861 unsigned i; 862 unsigned index; 863 int r; 864 u32 tmp; 865 u64 gpu_addr; 866 867 r = amdgpu_device_wb_get(adev, &index); 868 if (r) { 869 dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r); 870 return r; 871 } 872 873 gpu_addr = adev->wb.gpu_addr + (index * 4); 874 tmp = 0xCAFEDEAD; 875 adev->wb.wb[index] = cpu_to_le32(tmp); 876 877 r = amdgpu_ring_alloc(ring, 5); 878 if (r) { 879 DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r); 880 amdgpu_device_wb_free(adev, index); 881 return r; 882 } 883 884 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 885 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR)); 886 amdgpu_ring_write(ring, lower_32_bits(gpu_addr)); 887 amdgpu_ring_write(ring, upper_32_bits(gpu_addr)); 888 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1)); 889 amdgpu_ring_write(ring, 0xDEADBEEF); 890 amdgpu_ring_commit(ring); 891 892 for (i = 0; i < adev->usec_timeout; i++) { 893 tmp = le32_to_cpu(adev->wb.wb[index]); 894 if (tmp == 0xDEADBEEF) 895 break; 896 DRM_UDELAY(1); 897 } 898 899 if (i < adev->usec_timeout) { 900 DRM_DEBUG("ring test on %d succeeded in %d usecs\n", ring->idx, i); 901 } else { 902 DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n", 903 ring->idx, tmp); 904 r = -EINVAL; 905 } 906 amdgpu_device_wb_free(adev, index); 907 908 return r; 909 } 910 911 /** 912 * sdma_v3_0_ring_test_ib - test an IB on the DMA engine 913 * 914 * @ring: amdgpu_ring structure holding ring information 915 * 916 * Test a simple IB in the DMA ring (VI). 917 * Returns 0 on success, error on failure. 918 */ 919 static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout) 920 { 921 struct amdgpu_device *adev = ring->adev; 922 struct amdgpu_ib ib; 923 struct dma_fence *f = NULL; 924 unsigned index; 925 u32 tmp = 0; 926 u64 gpu_addr; 927 long r; 928 929 r = amdgpu_device_wb_get(adev, &index); 930 if (r) { 931 dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r); 932 return r; 933 } 934 935 gpu_addr = adev->wb.gpu_addr + (index * 4); 936 tmp = 0xCAFEDEAD; 937 adev->wb.wb[index] = cpu_to_le32(tmp); 938 memset(&ib, 0, sizeof(ib)); 939 r = amdgpu_ib_get(adev, NULL, 256, &ib); 940 if (r) { 941 DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r); 942 goto err0; 943 } 944 945 ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 946 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); 947 ib.ptr[1] = lower_32_bits(gpu_addr); 948 ib.ptr[2] = upper_32_bits(gpu_addr); 949 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1); 950 ib.ptr[4] = 0xDEADBEEF; 951 ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 952 ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 953 ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 954 ib.length_dw = 8; 955 956 r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f); 957 if (r) 958 goto err1; 959 960 r = dma_fence_wait_timeout(f, false, timeout); 961 if (r == 0) { 962 DRM_ERROR("amdgpu: IB test timed out\n"); 963 r = -ETIMEDOUT; 964 goto err1; 965 } else if (r < 0) { 966 DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r); 967 goto err1; 968 } 969 tmp = le32_to_cpu(adev->wb.wb[index]); 970 if (tmp == 0xDEADBEEF) { 971 DRM_DEBUG("ib test on ring %d succeeded\n", ring->idx); 972 r = 0; 973 } else { 974 DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp); 975 r = -EINVAL; 976 } 977 err1: 978 amdgpu_ib_free(adev, &ib, NULL); 979 dma_fence_put(f); 980 err0: 981 amdgpu_device_wb_free(adev, index); 982 return r; 983 } 984 985 /** 986 * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART 987 * 988 * @ib: indirect buffer to fill with commands 989 * @pe: addr of the page entry 990 * @src: src addr to copy from 991 * @count: number of page entries to update 992 * 993 * Update PTEs by copying them from the GART using sDMA (CIK). 994 */ 995 static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib, 996 uint64_t pe, uint64_t src, 997 unsigned count) 998 { 999 unsigned bytes = count * 8; 1000 1001 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | 1002 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); 1003 ib->ptr[ib->length_dw++] = bytes; 1004 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 1005 ib->ptr[ib->length_dw++] = lower_32_bits(src); 1006 ib->ptr[ib->length_dw++] = upper_32_bits(src); 1007 ib->ptr[ib->length_dw++] = lower_32_bits(pe); 1008 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1009 } 1010 1011 /** 1012 * sdma_v3_0_vm_write_pte - update PTEs by writing them manually 1013 * 1014 * @ib: indirect buffer to fill with commands 1015 * @pe: addr of the page entry 1016 * @value: dst addr to write into pe 1017 * @count: number of page entries to update 1018 * @incr: increase next addr by incr bytes 1019 * 1020 * Update PTEs by writing them manually using sDMA (CIK). 1021 */ 1022 static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe, 1023 uint64_t value, unsigned count, 1024 uint32_t incr) 1025 { 1026 unsigned ndw = count * 2; 1027 1028 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 1029 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); 1030 ib->ptr[ib->length_dw++] = lower_32_bits(pe); 1031 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1032 ib->ptr[ib->length_dw++] = ndw; 1033 for (; ndw > 0; ndw -= 2) { 1034 ib->ptr[ib->length_dw++] = lower_32_bits(value); 1035 ib->ptr[ib->length_dw++] = upper_32_bits(value); 1036 value += incr; 1037 } 1038 } 1039 1040 /** 1041 * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA 1042 * 1043 * @ib: indirect buffer to fill with commands 1044 * @pe: addr of the page entry 1045 * @addr: dst addr to write into pe 1046 * @count: number of page entries to update 1047 * @incr: increase next addr by incr bytes 1048 * @flags: access flags 1049 * 1050 * Update the page tables using sDMA (CIK). 1051 */ 1052 static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe, 1053 uint64_t addr, unsigned count, 1054 uint32_t incr, uint64_t flags) 1055 { 1056 /* for physically contiguous pages (vram) */ 1057 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE); 1058 ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */ 1059 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1060 ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */ 1061 ib->ptr[ib->length_dw++] = upper_32_bits(flags); 1062 ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */ 1063 ib->ptr[ib->length_dw++] = upper_32_bits(addr); 1064 ib->ptr[ib->length_dw++] = incr; /* increment size */ 1065 ib->ptr[ib->length_dw++] = 0; 1066 ib->ptr[ib->length_dw++] = count; /* number of entries */ 1067 } 1068 1069 /** 1070 * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw 1071 * 1072 * @ib: indirect buffer to fill with padding 1073 * 1074 */ 1075 static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib) 1076 { 1077 struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring); 1078 u32 pad_count; 1079 int i; 1080 1081 pad_count = (8 - (ib->length_dw & 0x7)) % 8; 1082 for (i = 0; i < pad_count; i++) 1083 if (sdma && sdma->burst_nop && (i == 0)) 1084 ib->ptr[ib->length_dw++] = 1085 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) | 1086 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1); 1087 else 1088 ib->ptr[ib->length_dw++] = 1089 SDMA_PKT_HEADER_OP(SDMA_OP_NOP); 1090 } 1091 1092 /** 1093 * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline 1094 * 1095 * @ring: amdgpu_ring pointer 1096 * 1097 * Make sure all previous operations are completed (CIK). 1098 */ 1099 static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring) 1100 { 1101 uint32_t seq = ring->fence_drv.sync_seq; 1102 uint64_t addr = ring->fence_drv.gpu_addr; 1103 1104 /* wait for idle */ 1105 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | 1106 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) | 1107 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */ 1108 SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1)); 1109 amdgpu_ring_write(ring, addr & 0xfffffffc); 1110 amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff); 1111 amdgpu_ring_write(ring, seq); /* reference */ 1112 amdgpu_ring_write(ring, 0xffffffff); /* mask */ 1113 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 1114 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */ 1115 } 1116 1117 /** 1118 * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA 1119 * 1120 * @ring: amdgpu_ring pointer 1121 * @vm: amdgpu_vm pointer 1122 * 1123 * Update the page table base and flush the VM TLB 1124 * using sDMA (VI). 1125 */ 1126 static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring, 1127 unsigned vmid, uint64_t pd_addr) 1128 { 1129 amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr); 1130 1131 /* wait for flush */ 1132 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | 1133 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) | 1134 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */ 1135 amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2); 1136 amdgpu_ring_write(ring, 0); 1137 amdgpu_ring_write(ring, 0); /* reference */ 1138 amdgpu_ring_write(ring, 0); /* mask */ 1139 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 1140 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */ 1141 } 1142 1143 static void sdma_v3_0_ring_emit_wreg(struct amdgpu_ring *ring, 1144 uint32_t reg, uint32_t val) 1145 { 1146 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) | 1147 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf)); 1148 amdgpu_ring_write(ring, reg); 1149 amdgpu_ring_write(ring, val); 1150 } 1151 1152 static int sdma_v3_0_early_init(void *handle) 1153 { 1154 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1155 1156 switch (adev->asic_type) { 1157 case CHIP_STONEY: 1158 adev->sdma.num_instances = 1; 1159 break; 1160 default: 1161 adev->sdma.num_instances = SDMA_MAX_INSTANCE; 1162 break; 1163 } 1164 1165 sdma_v3_0_set_ring_funcs(adev); 1166 sdma_v3_0_set_buffer_funcs(adev); 1167 sdma_v3_0_set_vm_pte_funcs(adev); 1168 sdma_v3_0_set_irq_funcs(adev); 1169 1170 return 0; 1171 } 1172 1173 static int sdma_v3_0_sw_init(void *handle) 1174 { 1175 struct amdgpu_ring *ring; 1176 int r, i; 1177 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1178 1179 /* SDMA trap event */ 1180 r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_SDMA_TRAP, 1181 &adev->sdma.trap_irq); 1182 if (r) 1183 return r; 1184 1185 /* SDMA Privileged inst */ 1186 r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 241, 1187 &adev->sdma.illegal_inst_irq); 1188 if (r) 1189 return r; 1190 1191 /* SDMA Privileged inst */ 1192 r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_SDMA_SRBM_WRITE, 1193 &adev->sdma.illegal_inst_irq); 1194 if (r) 1195 return r; 1196 1197 r = sdma_v3_0_init_microcode(adev); 1198 if (r) { 1199 DRM_ERROR("Failed to load sdma firmware!\n"); 1200 return r; 1201 } 1202 1203 for (i = 0; i < adev->sdma.num_instances; i++) { 1204 ring = &adev->sdma.instance[i].ring; 1205 ring->ring_obj = NULL; 1206 if (!amdgpu_sriov_vf(adev)) { 1207 ring->use_doorbell = true; 1208 ring->doorbell_index = (i == 0) ? 1209 AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1; 1210 } else { 1211 ring->use_pollmem = true; 1212 } 1213 1214 sprintf(ring->name, "sdma%d", i); 1215 r = amdgpu_ring_init(adev, ring, 1024, 1216 &adev->sdma.trap_irq, 1217 (i == 0) ? 1218 AMDGPU_SDMA_IRQ_TRAP0 : 1219 AMDGPU_SDMA_IRQ_TRAP1); 1220 if (r) 1221 return r; 1222 } 1223 1224 return r; 1225 } 1226 1227 static int sdma_v3_0_sw_fini(void *handle) 1228 { 1229 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1230 int i; 1231 1232 for (i = 0; i < adev->sdma.num_instances; i++) 1233 amdgpu_ring_fini(&adev->sdma.instance[i].ring); 1234 1235 sdma_v3_0_free_microcode(adev); 1236 return 0; 1237 } 1238 1239 static int sdma_v3_0_hw_init(void *handle) 1240 { 1241 int r; 1242 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1243 1244 sdma_v3_0_init_golden_registers(adev); 1245 1246 r = sdma_v3_0_start(adev); 1247 if (r) 1248 return r; 1249 1250 return r; 1251 } 1252 1253 static int sdma_v3_0_hw_fini(void *handle) 1254 { 1255 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1256 1257 sdma_v3_0_ctx_switch_enable(adev, false); 1258 sdma_v3_0_enable(adev, false); 1259 1260 return 0; 1261 } 1262 1263 static int sdma_v3_0_suspend(void *handle) 1264 { 1265 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1266 1267 return sdma_v3_0_hw_fini(adev); 1268 } 1269 1270 static int sdma_v3_0_resume(void *handle) 1271 { 1272 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1273 1274 return sdma_v3_0_hw_init(adev); 1275 } 1276 1277 static bool sdma_v3_0_is_idle(void *handle) 1278 { 1279 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1280 u32 tmp = RREG32(mmSRBM_STATUS2); 1281 1282 if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK | 1283 SRBM_STATUS2__SDMA1_BUSY_MASK)) 1284 return false; 1285 1286 return true; 1287 } 1288 1289 static int sdma_v3_0_wait_for_idle(void *handle) 1290 { 1291 unsigned i; 1292 u32 tmp; 1293 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1294 1295 for (i = 0; i < adev->usec_timeout; i++) { 1296 tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK | 1297 SRBM_STATUS2__SDMA1_BUSY_MASK); 1298 1299 if (!tmp) 1300 return 0; 1301 udelay(1); 1302 } 1303 return -ETIMEDOUT; 1304 } 1305 1306 static bool sdma_v3_0_check_soft_reset(void *handle) 1307 { 1308 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1309 u32 srbm_soft_reset = 0; 1310 u32 tmp = RREG32(mmSRBM_STATUS2); 1311 1312 if ((tmp & SRBM_STATUS2__SDMA_BUSY_MASK) || 1313 (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK)) { 1314 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK; 1315 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK; 1316 } 1317 1318 if (srbm_soft_reset) { 1319 adev->sdma.srbm_soft_reset = srbm_soft_reset; 1320 return true; 1321 } else { 1322 adev->sdma.srbm_soft_reset = 0; 1323 return false; 1324 } 1325 } 1326 1327 static int sdma_v3_0_pre_soft_reset(void *handle) 1328 { 1329 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1330 u32 srbm_soft_reset = 0; 1331 1332 if (!adev->sdma.srbm_soft_reset) 1333 return 0; 1334 1335 srbm_soft_reset = adev->sdma.srbm_soft_reset; 1336 1337 if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) || 1338 REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) { 1339 sdma_v3_0_ctx_switch_enable(adev, false); 1340 sdma_v3_0_enable(adev, false); 1341 } 1342 1343 return 0; 1344 } 1345 1346 static int sdma_v3_0_post_soft_reset(void *handle) 1347 { 1348 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1349 u32 srbm_soft_reset = 0; 1350 1351 if (!adev->sdma.srbm_soft_reset) 1352 return 0; 1353 1354 srbm_soft_reset = adev->sdma.srbm_soft_reset; 1355 1356 if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) || 1357 REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) { 1358 sdma_v3_0_gfx_resume(adev); 1359 sdma_v3_0_rlc_resume(adev); 1360 } 1361 1362 return 0; 1363 } 1364 1365 static int sdma_v3_0_soft_reset(void *handle) 1366 { 1367 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1368 u32 srbm_soft_reset = 0; 1369 u32 tmp; 1370 1371 if (!adev->sdma.srbm_soft_reset) 1372 return 0; 1373 1374 srbm_soft_reset = adev->sdma.srbm_soft_reset; 1375 1376 if (srbm_soft_reset) { 1377 tmp = RREG32(mmSRBM_SOFT_RESET); 1378 tmp |= srbm_soft_reset; 1379 dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp); 1380 WREG32(mmSRBM_SOFT_RESET, tmp); 1381 tmp = RREG32(mmSRBM_SOFT_RESET); 1382 1383 udelay(50); 1384 1385 tmp &= ~srbm_soft_reset; 1386 WREG32(mmSRBM_SOFT_RESET, tmp); 1387 tmp = RREG32(mmSRBM_SOFT_RESET); 1388 1389 /* Wait a little for things to settle down */ 1390 udelay(50); 1391 } 1392 1393 return 0; 1394 } 1395 1396 static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev, 1397 struct amdgpu_irq_src *source, 1398 unsigned type, 1399 enum amdgpu_interrupt_state state) 1400 { 1401 u32 sdma_cntl; 1402 1403 switch (type) { 1404 case AMDGPU_SDMA_IRQ_TRAP0: 1405 switch (state) { 1406 case AMDGPU_IRQ_STATE_DISABLE: 1407 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET); 1408 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0); 1409 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl); 1410 break; 1411 case AMDGPU_IRQ_STATE_ENABLE: 1412 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET); 1413 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1); 1414 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl); 1415 break; 1416 default: 1417 break; 1418 } 1419 break; 1420 case AMDGPU_SDMA_IRQ_TRAP1: 1421 switch (state) { 1422 case AMDGPU_IRQ_STATE_DISABLE: 1423 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET); 1424 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0); 1425 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl); 1426 break; 1427 case AMDGPU_IRQ_STATE_ENABLE: 1428 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET); 1429 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1); 1430 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl); 1431 break; 1432 default: 1433 break; 1434 } 1435 break; 1436 default: 1437 break; 1438 } 1439 return 0; 1440 } 1441 1442 static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev, 1443 struct amdgpu_irq_src *source, 1444 struct amdgpu_iv_entry *entry) 1445 { 1446 u8 instance_id, queue_id; 1447 1448 instance_id = (entry->ring_id & 0x3) >> 0; 1449 queue_id = (entry->ring_id & 0xc) >> 2; 1450 DRM_DEBUG("IH: SDMA trap\n"); 1451 switch (instance_id) { 1452 case 0: 1453 switch (queue_id) { 1454 case 0: 1455 amdgpu_fence_process(&adev->sdma.instance[0].ring); 1456 break; 1457 case 1: 1458 /* XXX compute */ 1459 break; 1460 case 2: 1461 /* XXX compute */ 1462 break; 1463 } 1464 break; 1465 case 1: 1466 switch (queue_id) { 1467 case 0: 1468 amdgpu_fence_process(&adev->sdma.instance[1].ring); 1469 break; 1470 case 1: 1471 /* XXX compute */ 1472 break; 1473 case 2: 1474 /* XXX compute */ 1475 break; 1476 } 1477 break; 1478 } 1479 return 0; 1480 } 1481 1482 static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev, 1483 struct amdgpu_irq_src *source, 1484 struct amdgpu_iv_entry *entry) 1485 { 1486 DRM_ERROR("Illegal instruction in SDMA command stream\n"); 1487 schedule_work(&adev->reset_work); 1488 return 0; 1489 } 1490 1491 static void sdma_v3_0_update_sdma_medium_grain_clock_gating( 1492 struct amdgpu_device *adev, 1493 bool enable) 1494 { 1495 uint32_t temp, data; 1496 int i; 1497 1498 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) { 1499 for (i = 0; i < adev->sdma.num_instances; i++) { 1500 temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]); 1501 data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK | 1502 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK | 1503 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK | 1504 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK | 1505 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK | 1506 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK | 1507 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK | 1508 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK); 1509 if (data != temp) 1510 WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data); 1511 } 1512 } else { 1513 for (i = 0; i < adev->sdma.num_instances; i++) { 1514 temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]); 1515 data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK | 1516 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK | 1517 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK | 1518 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK | 1519 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK | 1520 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK | 1521 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK | 1522 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK; 1523 1524 if (data != temp) 1525 WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data); 1526 } 1527 } 1528 } 1529 1530 static void sdma_v3_0_update_sdma_medium_grain_light_sleep( 1531 struct amdgpu_device *adev, 1532 bool enable) 1533 { 1534 uint32_t temp, data; 1535 int i; 1536 1537 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) { 1538 for (i = 0; i < adev->sdma.num_instances; i++) { 1539 temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]); 1540 data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; 1541 1542 if (temp != data) 1543 WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data); 1544 } 1545 } else { 1546 for (i = 0; i < adev->sdma.num_instances; i++) { 1547 temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]); 1548 data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; 1549 1550 if (temp != data) 1551 WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data); 1552 } 1553 } 1554 } 1555 1556 static int sdma_v3_0_set_clockgating_state(void *handle, 1557 enum amd_clockgating_state state) 1558 { 1559 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1560 1561 if (amdgpu_sriov_vf(adev)) 1562 return 0; 1563 1564 switch (adev->asic_type) { 1565 case CHIP_FIJI: 1566 case CHIP_CARRIZO: 1567 case CHIP_STONEY: 1568 sdma_v3_0_update_sdma_medium_grain_clock_gating(adev, 1569 state == AMD_CG_STATE_GATE); 1570 sdma_v3_0_update_sdma_medium_grain_light_sleep(adev, 1571 state == AMD_CG_STATE_GATE); 1572 break; 1573 default: 1574 break; 1575 } 1576 return 0; 1577 } 1578 1579 static int sdma_v3_0_set_powergating_state(void *handle, 1580 enum amd_powergating_state state) 1581 { 1582 return 0; 1583 } 1584 1585 static void sdma_v3_0_get_clockgating_state(void *handle, u32 *flags) 1586 { 1587 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1588 int data; 1589 1590 if (amdgpu_sriov_vf(adev)) 1591 *flags = 0; 1592 1593 /* AMD_CG_SUPPORT_SDMA_MGCG */ 1594 data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[0]); 1595 if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK)) 1596 *flags |= AMD_CG_SUPPORT_SDMA_MGCG; 1597 1598 /* AMD_CG_SUPPORT_SDMA_LS */ 1599 data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[0]); 1600 if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK) 1601 *flags |= AMD_CG_SUPPORT_SDMA_LS; 1602 } 1603 1604 static const struct amd_ip_funcs sdma_v3_0_ip_funcs = { 1605 .name = "sdma_v3_0", 1606 .early_init = sdma_v3_0_early_init, 1607 .late_init = NULL, 1608 .sw_init = sdma_v3_0_sw_init, 1609 .sw_fini = sdma_v3_0_sw_fini, 1610 .hw_init = sdma_v3_0_hw_init, 1611 .hw_fini = sdma_v3_0_hw_fini, 1612 .suspend = sdma_v3_0_suspend, 1613 .resume = sdma_v3_0_resume, 1614 .is_idle = sdma_v3_0_is_idle, 1615 .wait_for_idle = sdma_v3_0_wait_for_idle, 1616 .check_soft_reset = sdma_v3_0_check_soft_reset, 1617 .pre_soft_reset = sdma_v3_0_pre_soft_reset, 1618 .post_soft_reset = sdma_v3_0_post_soft_reset, 1619 .soft_reset = sdma_v3_0_soft_reset, 1620 .set_clockgating_state = sdma_v3_0_set_clockgating_state, 1621 .set_powergating_state = sdma_v3_0_set_powergating_state, 1622 .get_clockgating_state = sdma_v3_0_get_clockgating_state, 1623 }; 1624 1625 static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = { 1626 .type = AMDGPU_RING_TYPE_SDMA, 1627 .align_mask = 0xf, 1628 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 1629 .support_64bit_ptrs = false, 1630 .get_rptr = sdma_v3_0_ring_get_rptr, 1631 .get_wptr = sdma_v3_0_ring_get_wptr, 1632 .set_wptr = sdma_v3_0_ring_set_wptr, 1633 .emit_frame_size = 1634 6 + /* sdma_v3_0_ring_emit_hdp_flush */ 1635 3 + /* hdp invalidate */ 1636 6 + /* sdma_v3_0_ring_emit_pipeline_sync */ 1637 VI_FLUSH_GPU_TLB_NUM_WREG * 3 + 6 + /* sdma_v3_0_ring_emit_vm_flush */ 1638 10 + 10 + 10, /* sdma_v3_0_ring_emit_fence x3 for user fence, vm fence */ 1639 .emit_ib_size = 7 + 6, /* sdma_v3_0_ring_emit_ib */ 1640 .emit_ib = sdma_v3_0_ring_emit_ib, 1641 .emit_fence = sdma_v3_0_ring_emit_fence, 1642 .emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync, 1643 .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush, 1644 .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush, 1645 .test_ring = sdma_v3_0_ring_test_ring, 1646 .test_ib = sdma_v3_0_ring_test_ib, 1647 .insert_nop = sdma_v3_0_ring_insert_nop, 1648 .pad_ib = sdma_v3_0_ring_pad_ib, 1649 .emit_wreg = sdma_v3_0_ring_emit_wreg, 1650 }; 1651 1652 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev) 1653 { 1654 int i; 1655 1656 for (i = 0; i < adev->sdma.num_instances; i++) { 1657 adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs; 1658 adev->sdma.instance[i].ring.me = i; 1659 } 1660 } 1661 1662 static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = { 1663 .set = sdma_v3_0_set_trap_irq_state, 1664 .process = sdma_v3_0_process_trap_irq, 1665 }; 1666 1667 static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = { 1668 .process = sdma_v3_0_process_illegal_inst_irq, 1669 }; 1670 1671 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev) 1672 { 1673 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST; 1674 adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs; 1675 adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs; 1676 } 1677 1678 /** 1679 * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine 1680 * 1681 * @ring: amdgpu_ring structure holding ring information 1682 * @src_offset: src GPU address 1683 * @dst_offset: dst GPU address 1684 * @byte_count: number of bytes to xfer 1685 * 1686 * Copy GPU buffers using the DMA engine (VI). 1687 * Used by the amdgpu ttm implementation to move pages if 1688 * registered as the asic copy callback. 1689 */ 1690 static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib, 1691 uint64_t src_offset, 1692 uint64_t dst_offset, 1693 uint32_t byte_count) 1694 { 1695 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | 1696 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); 1697 ib->ptr[ib->length_dw++] = byte_count; 1698 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 1699 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset); 1700 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset); 1701 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 1702 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 1703 } 1704 1705 /** 1706 * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine 1707 * 1708 * @ring: amdgpu_ring structure holding ring information 1709 * @src_data: value to write to buffer 1710 * @dst_offset: dst GPU address 1711 * @byte_count: number of bytes to xfer 1712 * 1713 * Fill GPU buffers using the DMA engine (VI). 1714 */ 1715 static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib, 1716 uint32_t src_data, 1717 uint64_t dst_offset, 1718 uint32_t byte_count) 1719 { 1720 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL); 1721 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 1722 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 1723 ib->ptr[ib->length_dw++] = src_data; 1724 ib->ptr[ib->length_dw++] = byte_count; 1725 } 1726 1727 static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = { 1728 .copy_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */ 1729 .copy_num_dw = 7, 1730 .emit_copy_buffer = sdma_v3_0_emit_copy_buffer, 1731 1732 .fill_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */ 1733 .fill_num_dw = 5, 1734 .emit_fill_buffer = sdma_v3_0_emit_fill_buffer, 1735 }; 1736 1737 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev) 1738 { 1739 if (adev->mman.buffer_funcs == NULL) { 1740 adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs; 1741 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring; 1742 } 1743 } 1744 1745 static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = { 1746 .copy_pte_num_dw = 7, 1747 .copy_pte = sdma_v3_0_vm_copy_pte, 1748 1749 .write_pte = sdma_v3_0_vm_write_pte, 1750 .set_pte_pde = sdma_v3_0_vm_set_pte_pde, 1751 }; 1752 1753 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev) 1754 { 1755 unsigned i; 1756 1757 if (adev->vm_manager.vm_pte_funcs == NULL) { 1758 adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs; 1759 for (i = 0; i < adev->sdma.num_instances; i++) 1760 adev->vm_manager.vm_pte_rings[i] = 1761 &adev->sdma.instance[i].ring; 1762 1763 adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances; 1764 } 1765 } 1766 1767 const struct amdgpu_ip_block_version sdma_v3_0_ip_block = 1768 { 1769 .type = AMD_IP_BLOCK_TYPE_SDMA, 1770 .major = 3, 1771 .minor = 0, 1772 .rev = 0, 1773 .funcs = &sdma_v3_0_ip_funcs, 1774 }; 1775 1776 const struct amdgpu_ip_block_version sdma_v3_1_ip_block = 1777 { 1778 .type = AMD_IP_BLOCK_TYPE_SDMA, 1779 .major = 3, 1780 .minor = 1, 1781 .rev = 0, 1782 .funcs = &sdma_v3_0_ip_funcs, 1783 }; 1784