xref: /linux/drivers/gpu/drm/amd/amdgpu/sdma_v3_0.c (revision dc3e0896003ee9b3bcc34c53965dc4bbc8671c44)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Alex Deucher
23  */
24 #include <linux/firmware.h>
25 #include <drm/drmP.h>
26 #include "amdgpu.h"
27 #include "amdgpu_ucode.h"
28 #include "amdgpu_trace.h"
29 #include "vi.h"
30 #include "vid.h"
31 
32 #include "oss/oss_3_0_d.h"
33 #include "oss/oss_3_0_sh_mask.h"
34 
35 #include "gmc/gmc_8_1_d.h"
36 #include "gmc/gmc_8_1_sh_mask.h"
37 
38 #include "gca/gfx_8_0_d.h"
39 #include "gca/gfx_8_0_enum.h"
40 #include "gca/gfx_8_0_sh_mask.h"
41 
42 #include "bif/bif_5_0_d.h"
43 #include "bif/bif_5_0_sh_mask.h"
44 
45 #include "tonga_sdma_pkt_open.h"
46 
47 #include "ivsrcid/ivsrcid_vislands30.h"
48 
49 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
50 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
51 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
52 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
53 
54 MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
55 MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
56 MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
57 MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
58 MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
59 MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
60 MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
61 MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
62 MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
63 MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
64 MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
65 MODULE_FIRMWARE("amdgpu/polaris12_sdma.bin");
66 MODULE_FIRMWARE("amdgpu/polaris12_sdma1.bin");
67 MODULE_FIRMWARE("amdgpu/vegam_sdma.bin");
68 MODULE_FIRMWARE("amdgpu/vegam_sdma1.bin");
69 
70 
71 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
72 {
73 	SDMA0_REGISTER_OFFSET,
74 	SDMA1_REGISTER_OFFSET
75 };
76 
77 static const u32 golden_settings_tonga_a11[] =
78 {
79 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
80 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
81 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
82 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
83 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
84 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
85 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
86 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
87 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
88 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
89 };
90 
91 static const u32 tonga_mgcg_cgcg_init[] =
92 {
93 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
94 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
95 };
96 
97 static const u32 golden_settings_fiji_a10[] =
98 {
99 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
100 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
101 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
102 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
103 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
104 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
105 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
106 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
107 };
108 
109 static const u32 fiji_mgcg_cgcg_init[] =
110 {
111 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
112 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
113 };
114 
115 static const u32 golden_settings_polaris11_a11[] =
116 {
117 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
118 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
119 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
120 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
121 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
122 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
123 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
124 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
125 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
126 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
127 };
128 
129 static const u32 golden_settings_polaris10_a11[] =
130 {
131 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
132 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
133 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
134 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
135 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
136 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
137 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
138 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
139 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
140 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
141 };
142 
143 static const u32 cz_golden_settings_a11[] =
144 {
145 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
146 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
147 	mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
148 	mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
149 	mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
150 	mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
151 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
152 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
153 	mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
154 	mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
155 	mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
156 	mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
157 };
158 
159 static const u32 cz_mgcg_cgcg_init[] =
160 {
161 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
162 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
163 };
164 
165 static const u32 stoney_golden_settings_a11[] =
166 {
167 	mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
168 	mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
169 	mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
170 	mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
171 };
172 
173 static const u32 stoney_mgcg_cgcg_init[] =
174 {
175 	mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
176 };
177 
178 /*
179  * sDMA - System DMA
180  * Starting with CIK, the GPU has new asynchronous
181  * DMA engines.  These engines are used for compute
182  * and gfx.  There are two DMA engines (SDMA0, SDMA1)
183  * and each one supports 1 ring buffer used for gfx
184  * and 2 queues used for compute.
185  *
186  * The programming model is very similar to the CP
187  * (ring buffer, IBs, etc.), but sDMA has it's own
188  * packet format that is different from the PM4 format
189  * used by the CP. sDMA supports copying data, writing
190  * embedded data, solid fills, and a number of other
191  * things.  It also has support for tiling/detiling of
192  * buffers.
193  */
194 
195 static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
196 {
197 	switch (adev->asic_type) {
198 	case CHIP_FIJI:
199 		amdgpu_device_program_register_sequence(adev,
200 							fiji_mgcg_cgcg_init,
201 							ARRAY_SIZE(fiji_mgcg_cgcg_init));
202 		amdgpu_device_program_register_sequence(adev,
203 							golden_settings_fiji_a10,
204 							ARRAY_SIZE(golden_settings_fiji_a10));
205 		break;
206 	case CHIP_TONGA:
207 		amdgpu_device_program_register_sequence(adev,
208 							tonga_mgcg_cgcg_init,
209 							ARRAY_SIZE(tonga_mgcg_cgcg_init));
210 		amdgpu_device_program_register_sequence(adev,
211 							golden_settings_tonga_a11,
212 							ARRAY_SIZE(golden_settings_tonga_a11));
213 		break;
214 	case CHIP_POLARIS11:
215 	case CHIP_POLARIS12:
216 	case CHIP_VEGAM:
217 		amdgpu_device_program_register_sequence(adev,
218 							golden_settings_polaris11_a11,
219 							ARRAY_SIZE(golden_settings_polaris11_a11));
220 		break;
221 	case CHIP_POLARIS10:
222 		amdgpu_device_program_register_sequence(adev,
223 							golden_settings_polaris10_a11,
224 							ARRAY_SIZE(golden_settings_polaris10_a11));
225 		break;
226 	case CHIP_CARRIZO:
227 		amdgpu_device_program_register_sequence(adev,
228 							cz_mgcg_cgcg_init,
229 							ARRAY_SIZE(cz_mgcg_cgcg_init));
230 		amdgpu_device_program_register_sequence(adev,
231 							cz_golden_settings_a11,
232 							ARRAY_SIZE(cz_golden_settings_a11));
233 		break;
234 	case CHIP_STONEY:
235 		amdgpu_device_program_register_sequence(adev,
236 							stoney_mgcg_cgcg_init,
237 							ARRAY_SIZE(stoney_mgcg_cgcg_init));
238 		amdgpu_device_program_register_sequence(adev,
239 							stoney_golden_settings_a11,
240 							ARRAY_SIZE(stoney_golden_settings_a11));
241 		break;
242 	default:
243 		break;
244 	}
245 }
246 
247 static void sdma_v3_0_free_microcode(struct amdgpu_device *adev)
248 {
249 	int i;
250 	for (i = 0; i < adev->sdma.num_instances; i++) {
251 		release_firmware(adev->sdma.instance[i].fw);
252 		adev->sdma.instance[i].fw = NULL;
253 	}
254 }
255 
256 /**
257  * sdma_v3_0_init_microcode - load ucode images from disk
258  *
259  * @adev: amdgpu_device pointer
260  *
261  * Use the firmware interface to load the ucode images into
262  * the driver (not loaded into hw).
263  * Returns 0 on success, error on failure.
264  */
265 static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
266 {
267 	const char *chip_name;
268 	char fw_name[30];
269 	int err = 0, i;
270 	struct amdgpu_firmware_info *info = NULL;
271 	const struct common_firmware_header *header = NULL;
272 	const struct sdma_firmware_header_v1_0 *hdr;
273 
274 	DRM_DEBUG("\n");
275 
276 	switch (adev->asic_type) {
277 	case CHIP_TONGA:
278 		chip_name = "tonga";
279 		break;
280 	case CHIP_FIJI:
281 		chip_name = "fiji";
282 		break;
283 	case CHIP_POLARIS10:
284 		chip_name = "polaris10";
285 		break;
286 	case CHIP_POLARIS11:
287 		chip_name = "polaris11";
288 		break;
289 	case CHIP_POLARIS12:
290 		chip_name = "polaris12";
291 		break;
292 	case CHIP_VEGAM:
293 		chip_name = "vegam";
294 		break;
295 	case CHIP_CARRIZO:
296 		chip_name = "carrizo";
297 		break;
298 	case CHIP_STONEY:
299 		chip_name = "stoney";
300 		break;
301 	default: BUG();
302 	}
303 
304 	for (i = 0; i < adev->sdma.num_instances; i++) {
305 		if (i == 0)
306 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
307 		else
308 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
309 		err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
310 		if (err)
311 			goto out;
312 		err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
313 		if (err)
314 			goto out;
315 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
316 		adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
317 		adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
318 		if (adev->sdma.instance[i].feature_version >= 20)
319 			adev->sdma.instance[i].burst_nop = true;
320 
321 		info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
322 		info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
323 		info->fw = adev->sdma.instance[i].fw;
324 		header = (const struct common_firmware_header *)info->fw->data;
325 		adev->firmware.fw_size +=
326 			ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
327 
328 	}
329 out:
330 	if (err) {
331 		pr_err("sdma_v3_0: Failed to load firmware \"%s\"\n", fw_name);
332 		for (i = 0; i < adev->sdma.num_instances; i++) {
333 			release_firmware(adev->sdma.instance[i].fw);
334 			adev->sdma.instance[i].fw = NULL;
335 		}
336 	}
337 	return err;
338 }
339 
340 /**
341  * sdma_v3_0_ring_get_rptr - get the current read pointer
342  *
343  * @ring: amdgpu ring pointer
344  *
345  * Get the current rptr from the hardware (VI+).
346  */
347 static uint64_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
348 {
349 	/* XXX check if swapping is necessary on BE */
350 	return ring->adev->wb.wb[ring->rptr_offs] >> 2;
351 }
352 
353 /**
354  * sdma_v3_0_ring_get_wptr - get the current write pointer
355  *
356  * @ring: amdgpu ring pointer
357  *
358  * Get the current wptr from the hardware (VI+).
359  */
360 static uint64_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
361 {
362 	struct amdgpu_device *adev = ring->adev;
363 	u32 wptr;
364 
365 	if (ring->use_doorbell || ring->use_pollmem) {
366 		/* XXX check if swapping is necessary on BE */
367 		wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
368 	} else {
369 		wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me]) >> 2;
370 	}
371 
372 	return wptr;
373 }
374 
375 /**
376  * sdma_v3_0_ring_set_wptr - commit the write pointer
377  *
378  * @ring: amdgpu ring pointer
379  *
380  * Write the wptr back to the hardware (VI+).
381  */
382 static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
383 {
384 	struct amdgpu_device *adev = ring->adev;
385 
386 	if (ring->use_doorbell) {
387 		u32 *wb = (u32 *)&adev->wb.wb[ring->wptr_offs];
388 		/* XXX check if swapping is necessary on BE */
389 		WRITE_ONCE(*wb, (lower_32_bits(ring->wptr) << 2));
390 		WDOORBELL32(ring->doorbell_index, lower_32_bits(ring->wptr) << 2);
391 	} else if (ring->use_pollmem) {
392 		u32 *wb = (u32 *)&adev->wb.wb[ring->wptr_offs];
393 
394 		WRITE_ONCE(*wb, (lower_32_bits(ring->wptr) << 2));
395 	} else {
396 		WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me], lower_32_bits(ring->wptr) << 2);
397 	}
398 }
399 
400 static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
401 {
402 	struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
403 	int i;
404 
405 	for (i = 0; i < count; i++)
406 		if (sdma && sdma->burst_nop && (i == 0))
407 			amdgpu_ring_write(ring, ring->funcs->nop |
408 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
409 		else
410 			amdgpu_ring_write(ring, ring->funcs->nop);
411 }
412 
413 /**
414  * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
415  *
416  * @ring: amdgpu ring pointer
417  * @ib: IB object to schedule
418  *
419  * Schedule an IB in the DMA ring (VI).
420  */
421 static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
422 				   struct amdgpu_ib *ib,
423 				   unsigned vmid, bool ctx_switch)
424 {
425 	/* IB packet must end on a 8 DW boundary */
426 	sdma_v3_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
427 
428 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
429 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
430 	/* base must be 32 byte aligned */
431 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
432 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
433 	amdgpu_ring_write(ring, ib->length_dw);
434 	amdgpu_ring_write(ring, 0);
435 	amdgpu_ring_write(ring, 0);
436 
437 }
438 
439 /**
440  * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
441  *
442  * @ring: amdgpu ring pointer
443  *
444  * Emit an hdp flush packet on the requested DMA ring.
445  */
446 static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
447 {
448 	u32 ref_and_mask = 0;
449 
450 	if (ring->me == 0)
451 		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
452 	else
453 		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
454 
455 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
456 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
457 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
458 	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
459 	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
460 	amdgpu_ring_write(ring, ref_and_mask); /* reference */
461 	amdgpu_ring_write(ring, ref_and_mask); /* mask */
462 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
463 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
464 }
465 
466 /**
467  * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
468  *
469  * @ring: amdgpu ring pointer
470  * @fence: amdgpu fence object
471  *
472  * Add a DMA fence packet to the ring to write
473  * the fence seq number and DMA trap packet to generate
474  * an interrupt if needed (VI).
475  */
476 static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
477 				      unsigned flags)
478 {
479 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
480 	/* write the fence */
481 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
482 	amdgpu_ring_write(ring, lower_32_bits(addr));
483 	amdgpu_ring_write(ring, upper_32_bits(addr));
484 	amdgpu_ring_write(ring, lower_32_bits(seq));
485 
486 	/* optionally write high bits as well */
487 	if (write64bit) {
488 		addr += 4;
489 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
490 		amdgpu_ring_write(ring, lower_32_bits(addr));
491 		amdgpu_ring_write(ring, upper_32_bits(addr));
492 		amdgpu_ring_write(ring, upper_32_bits(seq));
493 	}
494 
495 	/* generate an interrupt */
496 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
497 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
498 }
499 
500 /**
501  * sdma_v3_0_gfx_stop - stop the gfx async dma engines
502  *
503  * @adev: amdgpu_device pointer
504  *
505  * Stop the gfx async dma ring buffers (VI).
506  */
507 static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
508 {
509 	struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
510 	struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
511 	u32 rb_cntl, ib_cntl;
512 	int i;
513 
514 	if ((adev->mman.buffer_funcs_ring == sdma0) ||
515 	    (adev->mman.buffer_funcs_ring == sdma1))
516 		amdgpu_ttm_set_buffer_funcs_status(adev, false);
517 
518 	for (i = 0; i < adev->sdma.num_instances; i++) {
519 		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
520 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
521 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
522 		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
523 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
524 		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
525 	}
526 	sdma0->ready = false;
527 	sdma1->ready = false;
528 }
529 
530 /**
531  * sdma_v3_0_rlc_stop - stop the compute async dma engines
532  *
533  * @adev: amdgpu_device pointer
534  *
535  * Stop the compute async dma queues (VI).
536  */
537 static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
538 {
539 	/* XXX todo */
540 }
541 
542 /**
543  * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
544  *
545  * @adev: amdgpu_device pointer
546  * @enable: enable/disable the DMA MEs context switch.
547  *
548  * Halt or unhalt the async dma engines context switch (VI).
549  */
550 static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
551 {
552 	u32 f32_cntl, phase_quantum = 0;
553 	int i;
554 
555 	if (amdgpu_sdma_phase_quantum) {
556 		unsigned value = amdgpu_sdma_phase_quantum;
557 		unsigned unit = 0;
558 
559 		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
560 				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
561 			value = (value + 1) >> 1;
562 			unit++;
563 		}
564 		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
565 			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
566 			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
567 				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
568 			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
569 				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
570 			WARN_ONCE(1,
571 			"clamping sdma_phase_quantum to %uK clock cycles\n",
572 				  value << unit);
573 		}
574 		phase_quantum =
575 			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
576 			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
577 	}
578 
579 	for (i = 0; i < adev->sdma.num_instances; i++) {
580 		f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
581 		if (enable) {
582 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
583 					AUTO_CTXSW_ENABLE, 1);
584 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
585 					ATC_L1_ENABLE, 1);
586 			if (amdgpu_sdma_phase_quantum) {
587 				WREG32(mmSDMA0_PHASE0_QUANTUM + sdma_offsets[i],
588 				       phase_quantum);
589 				WREG32(mmSDMA0_PHASE1_QUANTUM + sdma_offsets[i],
590 				       phase_quantum);
591 			}
592 		} else {
593 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
594 					AUTO_CTXSW_ENABLE, 0);
595 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
596 					ATC_L1_ENABLE, 1);
597 		}
598 
599 		WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
600 	}
601 }
602 
603 /**
604  * sdma_v3_0_enable - stop the async dma engines
605  *
606  * @adev: amdgpu_device pointer
607  * @enable: enable/disable the DMA MEs.
608  *
609  * Halt or unhalt the async dma engines (VI).
610  */
611 static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
612 {
613 	u32 f32_cntl;
614 	int i;
615 
616 	if (!enable) {
617 		sdma_v3_0_gfx_stop(adev);
618 		sdma_v3_0_rlc_stop(adev);
619 	}
620 
621 	for (i = 0; i < adev->sdma.num_instances; i++) {
622 		f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
623 		if (enable)
624 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
625 		else
626 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
627 		WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
628 	}
629 }
630 
631 /**
632  * sdma_v3_0_gfx_resume - setup and start the async dma engines
633  *
634  * @adev: amdgpu_device pointer
635  *
636  * Set up the gfx DMA ring buffers and enable them (VI).
637  * Returns 0 for success, error for failure.
638  */
639 static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
640 {
641 	struct amdgpu_ring *ring;
642 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
643 	u32 rb_bufsz;
644 	u32 wb_offset;
645 	u32 doorbell;
646 	u64 wptr_gpu_addr;
647 	int i, j, r;
648 
649 	for (i = 0; i < adev->sdma.num_instances; i++) {
650 		ring = &adev->sdma.instance[i].ring;
651 		amdgpu_ring_clear_ring(ring);
652 		wb_offset = (ring->rptr_offs * 4);
653 
654 		mutex_lock(&adev->srbm_mutex);
655 		for (j = 0; j < 16; j++) {
656 			vi_srbm_select(adev, 0, 0, 0, j);
657 			/* SDMA GFX */
658 			WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
659 			WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
660 		}
661 		vi_srbm_select(adev, 0, 0, 0, 0);
662 		mutex_unlock(&adev->srbm_mutex);
663 
664 		WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
665 		       adev->gfx.config.gb_addr_config & 0x70);
666 
667 		WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
668 
669 		/* Set ring buffer size in dwords */
670 		rb_bufsz = order_base_2(ring->ring_size / 4);
671 		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
672 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
673 #ifdef __BIG_ENDIAN
674 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
675 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
676 					RPTR_WRITEBACK_SWAP_ENABLE, 1);
677 #endif
678 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
679 
680 		/* Initialize the ring buffer's read and write pointers */
681 		ring->wptr = 0;
682 		WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
683 		sdma_v3_0_ring_set_wptr(ring);
684 		WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
685 		WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
686 
687 		/* set the wb address whether it's enabled or not */
688 		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
689 		       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
690 		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
691 		       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
692 
693 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
694 
695 		WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
696 		WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
697 
698 		doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
699 
700 		if (ring->use_doorbell) {
701 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
702 						 OFFSET, ring->doorbell_index);
703 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
704 		} else {
705 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
706 		}
707 		WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
708 
709 		/* setup the wptr shadow polling */
710 		wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
711 
712 		WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO + sdma_offsets[i],
713 		       lower_32_bits(wptr_gpu_addr));
714 		WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI + sdma_offsets[i],
715 		       upper_32_bits(wptr_gpu_addr));
716 		wptr_poll_cntl = RREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i]);
717 		if (ring->use_pollmem) {
718 			/*wptr polling is not enogh fast, directly clean the wptr register */
719 			WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
720 			wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
721 						       SDMA0_GFX_RB_WPTR_POLL_CNTL,
722 						       ENABLE, 1);
723 		} else {
724 			wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
725 						       SDMA0_GFX_RB_WPTR_POLL_CNTL,
726 						       ENABLE, 0);
727 		}
728 		WREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i], wptr_poll_cntl);
729 
730 		/* enable DMA RB */
731 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
732 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
733 
734 		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
735 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
736 #ifdef __BIG_ENDIAN
737 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
738 #endif
739 		/* enable DMA IBs */
740 		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
741 
742 		ring->ready = true;
743 	}
744 
745 	/* unhalt the MEs */
746 	sdma_v3_0_enable(adev, true);
747 	/* enable sdma ring preemption */
748 	sdma_v3_0_ctx_switch_enable(adev, true);
749 
750 	for (i = 0; i < adev->sdma.num_instances; i++) {
751 		ring = &adev->sdma.instance[i].ring;
752 		r = amdgpu_ring_test_ring(ring);
753 		if (r) {
754 			ring->ready = false;
755 			return r;
756 		}
757 
758 		if (adev->mman.buffer_funcs_ring == ring)
759 			amdgpu_ttm_set_buffer_funcs_status(adev, true);
760 	}
761 
762 	return 0;
763 }
764 
765 /**
766  * sdma_v3_0_rlc_resume - setup and start the async dma engines
767  *
768  * @adev: amdgpu_device pointer
769  *
770  * Set up the compute DMA queues and enable them (VI).
771  * Returns 0 for success, error for failure.
772  */
773 static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
774 {
775 	/* XXX todo */
776 	return 0;
777 }
778 
779 /**
780  * sdma_v3_0_start - setup and start the async dma engines
781  *
782  * @adev: amdgpu_device pointer
783  *
784  * Set up the DMA engines and enable them (VI).
785  * Returns 0 for success, error for failure.
786  */
787 static int sdma_v3_0_start(struct amdgpu_device *adev)
788 {
789 	int r;
790 
791 	/* disable sdma engine before programing it */
792 	sdma_v3_0_ctx_switch_enable(adev, false);
793 	sdma_v3_0_enable(adev, false);
794 
795 	/* start the gfx rings and rlc compute queues */
796 	r = sdma_v3_0_gfx_resume(adev);
797 	if (r)
798 		return r;
799 	r = sdma_v3_0_rlc_resume(adev);
800 	if (r)
801 		return r;
802 
803 	return 0;
804 }
805 
806 /**
807  * sdma_v3_0_ring_test_ring - simple async dma engine test
808  *
809  * @ring: amdgpu_ring structure holding ring information
810  *
811  * Test the DMA engine by writing using it to write an
812  * value to memory. (VI).
813  * Returns 0 for success, error for failure.
814  */
815 static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
816 {
817 	struct amdgpu_device *adev = ring->adev;
818 	unsigned i;
819 	unsigned index;
820 	int r;
821 	u32 tmp;
822 	u64 gpu_addr;
823 
824 	r = amdgpu_device_wb_get(adev, &index);
825 	if (r) {
826 		dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
827 		return r;
828 	}
829 
830 	gpu_addr = adev->wb.gpu_addr + (index * 4);
831 	tmp = 0xCAFEDEAD;
832 	adev->wb.wb[index] = cpu_to_le32(tmp);
833 
834 	r = amdgpu_ring_alloc(ring, 5);
835 	if (r) {
836 		DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
837 		amdgpu_device_wb_free(adev, index);
838 		return r;
839 	}
840 
841 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
842 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
843 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
844 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
845 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
846 	amdgpu_ring_write(ring, 0xDEADBEEF);
847 	amdgpu_ring_commit(ring);
848 
849 	for (i = 0; i < adev->usec_timeout; i++) {
850 		tmp = le32_to_cpu(adev->wb.wb[index]);
851 		if (tmp == 0xDEADBEEF)
852 			break;
853 		DRM_UDELAY(1);
854 	}
855 
856 	if (i < adev->usec_timeout) {
857 		DRM_DEBUG("ring test on %d succeeded in %d usecs\n", ring->idx, i);
858 	} else {
859 		DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
860 			  ring->idx, tmp);
861 		r = -EINVAL;
862 	}
863 	amdgpu_device_wb_free(adev, index);
864 
865 	return r;
866 }
867 
868 /**
869  * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
870  *
871  * @ring: amdgpu_ring structure holding ring information
872  *
873  * Test a simple IB in the DMA ring (VI).
874  * Returns 0 on success, error on failure.
875  */
876 static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
877 {
878 	struct amdgpu_device *adev = ring->adev;
879 	struct amdgpu_ib ib;
880 	struct dma_fence *f = NULL;
881 	unsigned index;
882 	u32 tmp = 0;
883 	u64 gpu_addr;
884 	long r;
885 
886 	r = amdgpu_device_wb_get(adev, &index);
887 	if (r) {
888 		dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
889 		return r;
890 	}
891 
892 	gpu_addr = adev->wb.gpu_addr + (index * 4);
893 	tmp = 0xCAFEDEAD;
894 	adev->wb.wb[index] = cpu_to_le32(tmp);
895 	memset(&ib, 0, sizeof(ib));
896 	r = amdgpu_ib_get(adev, NULL, 256, &ib);
897 	if (r) {
898 		DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
899 		goto err0;
900 	}
901 
902 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
903 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
904 	ib.ptr[1] = lower_32_bits(gpu_addr);
905 	ib.ptr[2] = upper_32_bits(gpu_addr);
906 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
907 	ib.ptr[4] = 0xDEADBEEF;
908 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
909 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
910 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
911 	ib.length_dw = 8;
912 
913 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
914 	if (r)
915 		goto err1;
916 
917 	r = dma_fence_wait_timeout(f, false, timeout);
918 	if (r == 0) {
919 		DRM_ERROR("amdgpu: IB test timed out\n");
920 		r = -ETIMEDOUT;
921 		goto err1;
922 	} else if (r < 0) {
923 		DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
924 		goto err1;
925 	}
926 	tmp = le32_to_cpu(adev->wb.wb[index]);
927 	if (tmp == 0xDEADBEEF) {
928 		DRM_DEBUG("ib test on ring %d succeeded\n", ring->idx);
929 		r = 0;
930 	} else {
931 		DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
932 		r = -EINVAL;
933 	}
934 err1:
935 	amdgpu_ib_free(adev, &ib, NULL);
936 	dma_fence_put(f);
937 err0:
938 	amdgpu_device_wb_free(adev, index);
939 	return r;
940 }
941 
942 /**
943  * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
944  *
945  * @ib: indirect buffer to fill with commands
946  * @pe: addr of the page entry
947  * @src: src addr to copy from
948  * @count: number of page entries to update
949  *
950  * Update PTEs by copying them from the GART using sDMA (CIK).
951  */
952 static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
953 				  uint64_t pe, uint64_t src,
954 				  unsigned count)
955 {
956 	unsigned bytes = count * 8;
957 
958 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
959 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
960 	ib->ptr[ib->length_dw++] = bytes;
961 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
962 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
963 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
964 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
965 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
966 }
967 
968 /**
969  * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
970  *
971  * @ib: indirect buffer to fill with commands
972  * @pe: addr of the page entry
973  * @value: dst addr to write into pe
974  * @count: number of page entries to update
975  * @incr: increase next addr by incr bytes
976  *
977  * Update PTEs by writing them manually using sDMA (CIK).
978  */
979 static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
980 				   uint64_t value, unsigned count,
981 				   uint32_t incr)
982 {
983 	unsigned ndw = count * 2;
984 
985 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
986 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
987 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
988 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
989 	ib->ptr[ib->length_dw++] = ndw;
990 	for (; ndw > 0; ndw -= 2) {
991 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
992 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
993 		value += incr;
994 	}
995 }
996 
997 /**
998  * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
999  *
1000  * @ib: indirect buffer to fill with commands
1001  * @pe: addr of the page entry
1002  * @addr: dst addr to write into pe
1003  * @count: number of page entries to update
1004  * @incr: increase next addr by incr bytes
1005  * @flags: access flags
1006  *
1007  * Update the page tables using sDMA (CIK).
1008  */
1009 static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe,
1010 				     uint64_t addr, unsigned count,
1011 				     uint32_t incr, uint64_t flags)
1012 {
1013 	/* for physically contiguous pages (vram) */
1014 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
1015 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1016 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1017 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1018 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1019 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1020 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1021 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1022 	ib->ptr[ib->length_dw++] = 0;
1023 	ib->ptr[ib->length_dw++] = count; /* number of entries */
1024 }
1025 
1026 /**
1027  * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
1028  *
1029  * @ib: indirect buffer to fill with padding
1030  *
1031  */
1032 static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1033 {
1034 	struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
1035 	u32 pad_count;
1036 	int i;
1037 
1038 	pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1039 	for (i = 0; i < pad_count; i++)
1040 		if (sdma && sdma->burst_nop && (i == 0))
1041 			ib->ptr[ib->length_dw++] =
1042 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1043 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1044 		else
1045 			ib->ptr[ib->length_dw++] =
1046 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1047 }
1048 
1049 /**
1050  * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
1051  *
1052  * @ring: amdgpu_ring pointer
1053  *
1054  * Make sure all previous operations are completed (CIK).
1055  */
1056 static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1057 {
1058 	uint32_t seq = ring->fence_drv.sync_seq;
1059 	uint64_t addr = ring->fence_drv.gpu_addr;
1060 
1061 	/* wait for idle */
1062 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1063 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1064 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1065 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1066 	amdgpu_ring_write(ring, addr & 0xfffffffc);
1067 	amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1068 	amdgpu_ring_write(ring, seq); /* reference */
1069 	amdgpu_ring_write(ring, 0xffffffff); /* mask */
1070 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1071 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1072 }
1073 
1074 /**
1075  * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
1076  *
1077  * @ring: amdgpu_ring pointer
1078  * @vm: amdgpu_vm pointer
1079  *
1080  * Update the page table base and flush the VM TLB
1081  * using sDMA (VI).
1082  */
1083 static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1084 					 unsigned vmid, uint64_t pd_addr)
1085 {
1086 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1087 
1088 	/* wait for flush */
1089 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1090 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1091 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
1092 	amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
1093 	amdgpu_ring_write(ring, 0);
1094 	amdgpu_ring_write(ring, 0); /* reference */
1095 	amdgpu_ring_write(ring, 0); /* mask */
1096 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1097 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
1098 }
1099 
1100 static void sdma_v3_0_ring_emit_wreg(struct amdgpu_ring *ring,
1101 				     uint32_t reg, uint32_t val)
1102 {
1103 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1104 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1105 	amdgpu_ring_write(ring, reg);
1106 	amdgpu_ring_write(ring, val);
1107 }
1108 
1109 static int sdma_v3_0_early_init(void *handle)
1110 {
1111 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1112 
1113 	switch (adev->asic_type) {
1114 	case CHIP_STONEY:
1115 		adev->sdma.num_instances = 1;
1116 		break;
1117 	default:
1118 		adev->sdma.num_instances = SDMA_MAX_INSTANCE;
1119 		break;
1120 	}
1121 
1122 	sdma_v3_0_set_ring_funcs(adev);
1123 	sdma_v3_0_set_buffer_funcs(adev);
1124 	sdma_v3_0_set_vm_pte_funcs(adev);
1125 	sdma_v3_0_set_irq_funcs(adev);
1126 
1127 	return 0;
1128 }
1129 
1130 static int sdma_v3_0_sw_init(void *handle)
1131 {
1132 	struct amdgpu_ring *ring;
1133 	int r, i;
1134 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1135 
1136 	/* SDMA trap event */
1137 	r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_SDMA_TRAP,
1138 			      &adev->sdma.trap_irq);
1139 	if (r)
1140 		return r;
1141 
1142 	/* SDMA Privileged inst */
1143 	r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, 241,
1144 			      &adev->sdma.illegal_inst_irq);
1145 	if (r)
1146 		return r;
1147 
1148 	/* SDMA Privileged inst */
1149 	r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_SDMA_SRBM_WRITE,
1150 			      &adev->sdma.illegal_inst_irq);
1151 	if (r)
1152 		return r;
1153 
1154 	r = sdma_v3_0_init_microcode(adev);
1155 	if (r) {
1156 		DRM_ERROR("Failed to load sdma firmware!\n");
1157 		return r;
1158 	}
1159 
1160 	for (i = 0; i < adev->sdma.num_instances; i++) {
1161 		ring = &adev->sdma.instance[i].ring;
1162 		ring->ring_obj = NULL;
1163 		if (!amdgpu_sriov_vf(adev)) {
1164 			ring->use_doorbell = true;
1165 			ring->doorbell_index = (i == 0) ?
1166 				AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
1167 		} else {
1168 			ring->use_pollmem = true;
1169 		}
1170 
1171 		sprintf(ring->name, "sdma%d", i);
1172 		r = amdgpu_ring_init(adev, ring, 1024,
1173 				     &adev->sdma.trap_irq,
1174 				     (i == 0) ?
1175 				     AMDGPU_SDMA_IRQ_TRAP0 :
1176 				     AMDGPU_SDMA_IRQ_TRAP1);
1177 		if (r)
1178 			return r;
1179 	}
1180 
1181 	return r;
1182 }
1183 
1184 static int sdma_v3_0_sw_fini(void *handle)
1185 {
1186 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1187 	int i;
1188 
1189 	for (i = 0; i < adev->sdma.num_instances; i++)
1190 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1191 
1192 	sdma_v3_0_free_microcode(adev);
1193 	return 0;
1194 }
1195 
1196 static int sdma_v3_0_hw_init(void *handle)
1197 {
1198 	int r;
1199 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1200 
1201 	sdma_v3_0_init_golden_registers(adev);
1202 
1203 	r = sdma_v3_0_start(adev);
1204 	if (r)
1205 		return r;
1206 
1207 	return r;
1208 }
1209 
1210 static int sdma_v3_0_hw_fini(void *handle)
1211 {
1212 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1213 
1214 	sdma_v3_0_ctx_switch_enable(adev, false);
1215 	sdma_v3_0_enable(adev, false);
1216 
1217 	return 0;
1218 }
1219 
1220 static int sdma_v3_0_suspend(void *handle)
1221 {
1222 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1223 
1224 	return sdma_v3_0_hw_fini(adev);
1225 }
1226 
1227 static int sdma_v3_0_resume(void *handle)
1228 {
1229 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1230 
1231 	return sdma_v3_0_hw_init(adev);
1232 }
1233 
1234 static bool sdma_v3_0_is_idle(void *handle)
1235 {
1236 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1237 	u32 tmp = RREG32(mmSRBM_STATUS2);
1238 
1239 	if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
1240 		   SRBM_STATUS2__SDMA1_BUSY_MASK))
1241 	    return false;
1242 
1243 	return true;
1244 }
1245 
1246 static int sdma_v3_0_wait_for_idle(void *handle)
1247 {
1248 	unsigned i;
1249 	u32 tmp;
1250 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1251 
1252 	for (i = 0; i < adev->usec_timeout; i++) {
1253 		tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
1254 				SRBM_STATUS2__SDMA1_BUSY_MASK);
1255 
1256 		if (!tmp)
1257 			return 0;
1258 		udelay(1);
1259 	}
1260 	return -ETIMEDOUT;
1261 }
1262 
1263 static bool sdma_v3_0_check_soft_reset(void *handle)
1264 {
1265 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1266 	u32 srbm_soft_reset = 0;
1267 	u32 tmp = RREG32(mmSRBM_STATUS2);
1268 
1269 	if ((tmp & SRBM_STATUS2__SDMA_BUSY_MASK) ||
1270 	    (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK)) {
1271 		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
1272 		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
1273 	}
1274 
1275 	if (srbm_soft_reset) {
1276 		adev->sdma.srbm_soft_reset = srbm_soft_reset;
1277 		return true;
1278 	} else {
1279 		adev->sdma.srbm_soft_reset = 0;
1280 		return false;
1281 	}
1282 }
1283 
1284 static int sdma_v3_0_pre_soft_reset(void *handle)
1285 {
1286 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1287 	u32 srbm_soft_reset = 0;
1288 
1289 	if (!adev->sdma.srbm_soft_reset)
1290 		return 0;
1291 
1292 	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1293 
1294 	if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1295 	    REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1296 		sdma_v3_0_ctx_switch_enable(adev, false);
1297 		sdma_v3_0_enable(adev, false);
1298 	}
1299 
1300 	return 0;
1301 }
1302 
1303 static int sdma_v3_0_post_soft_reset(void *handle)
1304 {
1305 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1306 	u32 srbm_soft_reset = 0;
1307 
1308 	if (!adev->sdma.srbm_soft_reset)
1309 		return 0;
1310 
1311 	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1312 
1313 	if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1314 	    REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1315 		sdma_v3_0_gfx_resume(adev);
1316 		sdma_v3_0_rlc_resume(adev);
1317 	}
1318 
1319 	return 0;
1320 }
1321 
1322 static int sdma_v3_0_soft_reset(void *handle)
1323 {
1324 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1325 	u32 srbm_soft_reset = 0;
1326 	u32 tmp;
1327 
1328 	if (!adev->sdma.srbm_soft_reset)
1329 		return 0;
1330 
1331 	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1332 
1333 	if (srbm_soft_reset) {
1334 		tmp = RREG32(mmSRBM_SOFT_RESET);
1335 		tmp |= srbm_soft_reset;
1336 		dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1337 		WREG32(mmSRBM_SOFT_RESET, tmp);
1338 		tmp = RREG32(mmSRBM_SOFT_RESET);
1339 
1340 		udelay(50);
1341 
1342 		tmp &= ~srbm_soft_reset;
1343 		WREG32(mmSRBM_SOFT_RESET, tmp);
1344 		tmp = RREG32(mmSRBM_SOFT_RESET);
1345 
1346 		/* Wait a little for things to settle down */
1347 		udelay(50);
1348 	}
1349 
1350 	return 0;
1351 }
1352 
1353 static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
1354 					struct amdgpu_irq_src *source,
1355 					unsigned type,
1356 					enum amdgpu_interrupt_state state)
1357 {
1358 	u32 sdma_cntl;
1359 
1360 	switch (type) {
1361 	case AMDGPU_SDMA_IRQ_TRAP0:
1362 		switch (state) {
1363 		case AMDGPU_IRQ_STATE_DISABLE:
1364 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1365 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1366 			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1367 			break;
1368 		case AMDGPU_IRQ_STATE_ENABLE:
1369 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1370 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1371 			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1372 			break;
1373 		default:
1374 			break;
1375 		}
1376 		break;
1377 	case AMDGPU_SDMA_IRQ_TRAP1:
1378 		switch (state) {
1379 		case AMDGPU_IRQ_STATE_DISABLE:
1380 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1381 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1382 			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1383 			break;
1384 		case AMDGPU_IRQ_STATE_ENABLE:
1385 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1386 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1387 			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1388 			break;
1389 		default:
1390 			break;
1391 		}
1392 		break;
1393 	default:
1394 		break;
1395 	}
1396 	return 0;
1397 }
1398 
1399 static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
1400 				      struct amdgpu_irq_src *source,
1401 				      struct amdgpu_iv_entry *entry)
1402 {
1403 	u8 instance_id, queue_id;
1404 
1405 	instance_id = (entry->ring_id & 0x3) >> 0;
1406 	queue_id = (entry->ring_id & 0xc) >> 2;
1407 	DRM_DEBUG("IH: SDMA trap\n");
1408 	switch (instance_id) {
1409 	case 0:
1410 		switch (queue_id) {
1411 		case 0:
1412 			amdgpu_fence_process(&adev->sdma.instance[0].ring);
1413 			break;
1414 		case 1:
1415 			/* XXX compute */
1416 			break;
1417 		case 2:
1418 			/* XXX compute */
1419 			break;
1420 		}
1421 		break;
1422 	case 1:
1423 		switch (queue_id) {
1424 		case 0:
1425 			amdgpu_fence_process(&adev->sdma.instance[1].ring);
1426 			break;
1427 		case 1:
1428 			/* XXX compute */
1429 			break;
1430 		case 2:
1431 			/* XXX compute */
1432 			break;
1433 		}
1434 		break;
1435 	}
1436 	return 0;
1437 }
1438 
1439 static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1440 					      struct amdgpu_irq_src *source,
1441 					      struct amdgpu_iv_entry *entry)
1442 {
1443 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
1444 	schedule_work(&adev->reset_work);
1445 	return 0;
1446 }
1447 
1448 static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
1449 		struct amdgpu_device *adev,
1450 		bool enable)
1451 {
1452 	uint32_t temp, data;
1453 	int i;
1454 
1455 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1456 		for (i = 0; i < adev->sdma.num_instances; i++) {
1457 			temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1458 			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1459 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1460 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1461 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1462 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1463 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1464 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1465 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1466 			if (data != temp)
1467 				WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1468 		}
1469 	} else {
1470 		for (i = 0; i < adev->sdma.num_instances; i++) {
1471 			temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1472 			data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1473 				SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1474 				SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1475 				SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1476 				SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1477 				SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1478 				SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1479 				SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
1480 
1481 			if (data != temp)
1482 				WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1483 		}
1484 	}
1485 }
1486 
1487 static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
1488 		struct amdgpu_device *adev,
1489 		bool enable)
1490 {
1491 	uint32_t temp, data;
1492 	int i;
1493 
1494 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1495 		for (i = 0; i < adev->sdma.num_instances; i++) {
1496 			temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1497 			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1498 
1499 			if (temp != data)
1500 				WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1501 		}
1502 	} else {
1503 		for (i = 0; i < adev->sdma.num_instances; i++) {
1504 			temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1505 			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1506 
1507 			if (temp != data)
1508 				WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1509 		}
1510 	}
1511 }
1512 
1513 static int sdma_v3_0_set_clockgating_state(void *handle,
1514 					  enum amd_clockgating_state state)
1515 {
1516 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1517 
1518 	if (amdgpu_sriov_vf(adev))
1519 		return 0;
1520 
1521 	switch (adev->asic_type) {
1522 	case CHIP_FIJI:
1523 	case CHIP_CARRIZO:
1524 	case CHIP_STONEY:
1525 		sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
1526 				state == AMD_CG_STATE_GATE);
1527 		sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
1528 				state == AMD_CG_STATE_GATE);
1529 		break;
1530 	default:
1531 		break;
1532 	}
1533 	return 0;
1534 }
1535 
1536 static int sdma_v3_0_set_powergating_state(void *handle,
1537 					  enum amd_powergating_state state)
1538 {
1539 	return 0;
1540 }
1541 
1542 static void sdma_v3_0_get_clockgating_state(void *handle, u32 *flags)
1543 {
1544 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1545 	int data;
1546 
1547 	if (amdgpu_sriov_vf(adev))
1548 		*flags = 0;
1549 
1550 	/* AMD_CG_SUPPORT_SDMA_MGCG */
1551 	data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[0]);
1552 	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK))
1553 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1554 
1555 	/* AMD_CG_SUPPORT_SDMA_LS */
1556 	data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[0]);
1557 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1558 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
1559 }
1560 
1561 static const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
1562 	.name = "sdma_v3_0",
1563 	.early_init = sdma_v3_0_early_init,
1564 	.late_init = NULL,
1565 	.sw_init = sdma_v3_0_sw_init,
1566 	.sw_fini = sdma_v3_0_sw_fini,
1567 	.hw_init = sdma_v3_0_hw_init,
1568 	.hw_fini = sdma_v3_0_hw_fini,
1569 	.suspend = sdma_v3_0_suspend,
1570 	.resume = sdma_v3_0_resume,
1571 	.is_idle = sdma_v3_0_is_idle,
1572 	.wait_for_idle = sdma_v3_0_wait_for_idle,
1573 	.check_soft_reset = sdma_v3_0_check_soft_reset,
1574 	.pre_soft_reset = sdma_v3_0_pre_soft_reset,
1575 	.post_soft_reset = sdma_v3_0_post_soft_reset,
1576 	.soft_reset = sdma_v3_0_soft_reset,
1577 	.set_clockgating_state = sdma_v3_0_set_clockgating_state,
1578 	.set_powergating_state = sdma_v3_0_set_powergating_state,
1579 	.get_clockgating_state = sdma_v3_0_get_clockgating_state,
1580 };
1581 
1582 static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
1583 	.type = AMDGPU_RING_TYPE_SDMA,
1584 	.align_mask = 0xf,
1585 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1586 	.support_64bit_ptrs = false,
1587 	.get_rptr = sdma_v3_0_ring_get_rptr,
1588 	.get_wptr = sdma_v3_0_ring_get_wptr,
1589 	.set_wptr = sdma_v3_0_ring_set_wptr,
1590 	.emit_frame_size =
1591 		6 + /* sdma_v3_0_ring_emit_hdp_flush */
1592 		3 + /* hdp invalidate */
1593 		6 + /* sdma_v3_0_ring_emit_pipeline_sync */
1594 		VI_FLUSH_GPU_TLB_NUM_WREG * 3 + 6 + /* sdma_v3_0_ring_emit_vm_flush */
1595 		10 + 10 + 10, /* sdma_v3_0_ring_emit_fence x3 for user fence, vm fence */
1596 	.emit_ib_size = 7 + 6, /* sdma_v3_0_ring_emit_ib */
1597 	.emit_ib = sdma_v3_0_ring_emit_ib,
1598 	.emit_fence = sdma_v3_0_ring_emit_fence,
1599 	.emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
1600 	.emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
1601 	.emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
1602 	.test_ring = sdma_v3_0_ring_test_ring,
1603 	.test_ib = sdma_v3_0_ring_test_ib,
1604 	.insert_nop = sdma_v3_0_ring_insert_nop,
1605 	.pad_ib = sdma_v3_0_ring_pad_ib,
1606 	.emit_wreg = sdma_v3_0_ring_emit_wreg,
1607 };
1608 
1609 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
1610 {
1611 	int i;
1612 
1613 	for (i = 0; i < adev->sdma.num_instances; i++) {
1614 		adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
1615 		adev->sdma.instance[i].ring.me = i;
1616 	}
1617 }
1618 
1619 static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
1620 	.set = sdma_v3_0_set_trap_irq_state,
1621 	.process = sdma_v3_0_process_trap_irq,
1622 };
1623 
1624 static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
1625 	.process = sdma_v3_0_process_illegal_inst_irq,
1626 };
1627 
1628 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
1629 {
1630 	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1631 	adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
1632 	adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
1633 }
1634 
1635 /**
1636  * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
1637  *
1638  * @ring: amdgpu_ring structure holding ring information
1639  * @src_offset: src GPU address
1640  * @dst_offset: dst GPU address
1641  * @byte_count: number of bytes to xfer
1642  *
1643  * Copy GPU buffers using the DMA engine (VI).
1644  * Used by the amdgpu ttm implementation to move pages if
1645  * registered as the asic copy callback.
1646  */
1647 static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
1648 				       uint64_t src_offset,
1649 				       uint64_t dst_offset,
1650 				       uint32_t byte_count)
1651 {
1652 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1653 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1654 	ib->ptr[ib->length_dw++] = byte_count;
1655 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1656 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1657 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1658 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1659 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1660 }
1661 
1662 /**
1663  * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
1664  *
1665  * @ring: amdgpu_ring structure holding ring information
1666  * @src_data: value to write to buffer
1667  * @dst_offset: dst GPU address
1668  * @byte_count: number of bytes to xfer
1669  *
1670  * Fill GPU buffers using the DMA engine (VI).
1671  */
1672 static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
1673 				       uint32_t src_data,
1674 				       uint64_t dst_offset,
1675 				       uint32_t byte_count)
1676 {
1677 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1678 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1679 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1680 	ib->ptr[ib->length_dw++] = src_data;
1681 	ib->ptr[ib->length_dw++] = byte_count;
1682 }
1683 
1684 static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
1685 	.copy_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
1686 	.copy_num_dw = 7,
1687 	.emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
1688 
1689 	.fill_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
1690 	.fill_num_dw = 5,
1691 	.emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
1692 };
1693 
1694 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
1695 {
1696 	adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
1697 	adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1698 }
1699 
1700 static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
1701 	.copy_pte_num_dw = 7,
1702 	.copy_pte = sdma_v3_0_vm_copy_pte,
1703 
1704 	.write_pte = sdma_v3_0_vm_write_pte,
1705 	.set_pte_pde = sdma_v3_0_vm_set_pte_pde,
1706 };
1707 
1708 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1709 {
1710 	struct drm_gpu_scheduler *sched;
1711 	unsigned i;
1712 
1713 	adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
1714 	for (i = 0; i < adev->sdma.num_instances; i++) {
1715 		sched = &adev->sdma.instance[i].ring.sched;
1716 		adev->vm_manager.vm_pte_rqs[i] =
1717 			&sched->sched_rq[DRM_SCHED_PRIORITY_KERNEL];
1718 	}
1719 	adev->vm_manager.vm_pte_num_rqs = adev->sdma.num_instances;
1720 }
1721 
1722 const struct amdgpu_ip_block_version sdma_v3_0_ip_block =
1723 {
1724 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1725 	.major = 3,
1726 	.minor = 0,
1727 	.rev = 0,
1728 	.funcs = &sdma_v3_0_ip_funcs,
1729 };
1730 
1731 const struct amdgpu_ip_block_version sdma_v3_1_ip_block =
1732 {
1733 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1734 	.major = 3,
1735 	.minor = 1,
1736 	.rev = 0,
1737 	.funcs = &sdma_v3_0_ip_funcs,
1738 };
1739