xref: /linux/drivers/gpu/drm/amd/amdgpu/sdma_v3_0.c (revision 889d55154516ec8f98ea953e8660963f2e29c75d)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Alex Deucher
23  */
24 
25 #include <linux/delay.h>
26 #include <linux/firmware.h>
27 #include <linux/module.h>
28 
29 #include "amdgpu.h"
30 #include "amdgpu_ucode.h"
31 #include "amdgpu_trace.h"
32 #include "vi.h"
33 #include "vid.h"
34 
35 #include "oss/oss_3_0_d.h"
36 #include "oss/oss_3_0_sh_mask.h"
37 
38 #include "gmc/gmc_8_1_d.h"
39 #include "gmc/gmc_8_1_sh_mask.h"
40 
41 #include "gca/gfx_8_0_d.h"
42 #include "gca/gfx_8_0_enum.h"
43 #include "gca/gfx_8_0_sh_mask.h"
44 
45 #include "bif/bif_5_0_d.h"
46 #include "bif/bif_5_0_sh_mask.h"
47 
48 #include "tonga_sdma_pkt_open.h"
49 
50 #include "ivsrcid/ivsrcid_vislands30.h"
51 
52 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
53 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
54 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
55 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
56 
57 MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
58 MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
59 MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
60 MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
61 MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
62 MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
63 MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
64 MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
65 MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
66 MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
67 MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
68 MODULE_FIRMWARE("amdgpu/polaris12_sdma.bin");
69 MODULE_FIRMWARE("amdgpu/polaris12_sdma1.bin");
70 MODULE_FIRMWARE("amdgpu/vegam_sdma.bin");
71 MODULE_FIRMWARE("amdgpu/vegam_sdma1.bin");
72 
73 
74 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
75 {
76 	SDMA0_REGISTER_OFFSET,
77 	SDMA1_REGISTER_OFFSET
78 };
79 
80 static const u32 golden_settings_tonga_a11[] =
81 {
82 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
83 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
84 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
85 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
86 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
87 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
88 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
89 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
90 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
91 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
92 };
93 
94 static const u32 tonga_mgcg_cgcg_init[] =
95 {
96 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
97 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
98 };
99 
100 static const u32 golden_settings_fiji_a10[] =
101 {
102 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
103 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
104 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
105 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
106 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
107 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
108 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
109 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
110 };
111 
112 static const u32 fiji_mgcg_cgcg_init[] =
113 {
114 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
115 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
116 };
117 
118 static const u32 golden_settings_polaris11_a11[] =
119 {
120 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
121 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
122 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
123 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
124 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
125 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
126 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
127 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
128 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
129 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
130 };
131 
132 static const u32 golden_settings_polaris10_a11[] =
133 {
134 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
135 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
136 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
137 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
138 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
139 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
140 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
141 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
142 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
143 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
144 };
145 
146 static const u32 cz_golden_settings_a11[] =
147 {
148 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
149 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
150 	mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
151 	mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
152 	mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
153 	mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
154 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
155 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
156 	mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
157 	mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
158 	mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
159 	mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
160 };
161 
162 static const u32 cz_mgcg_cgcg_init[] =
163 {
164 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
165 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
166 };
167 
168 static const u32 stoney_golden_settings_a11[] =
169 {
170 	mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
171 	mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
172 	mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
173 	mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
174 };
175 
176 static const u32 stoney_mgcg_cgcg_init[] =
177 {
178 	mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
179 };
180 
181 /*
182  * sDMA - System DMA
183  * Starting with CIK, the GPU has new asynchronous
184  * DMA engines.  These engines are used for compute
185  * and gfx.  There are two DMA engines (SDMA0, SDMA1)
186  * and each one supports 1 ring buffer used for gfx
187  * and 2 queues used for compute.
188  *
189  * The programming model is very similar to the CP
190  * (ring buffer, IBs, etc.), but sDMA has it's own
191  * packet format that is different from the PM4 format
192  * used by the CP. sDMA supports copying data, writing
193  * embedded data, solid fills, and a number of other
194  * things.  It also has support for tiling/detiling of
195  * buffers.
196  */
197 
198 static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
199 {
200 	switch (adev->asic_type) {
201 	case CHIP_FIJI:
202 		amdgpu_device_program_register_sequence(adev,
203 							fiji_mgcg_cgcg_init,
204 							ARRAY_SIZE(fiji_mgcg_cgcg_init));
205 		amdgpu_device_program_register_sequence(adev,
206 							golden_settings_fiji_a10,
207 							ARRAY_SIZE(golden_settings_fiji_a10));
208 		break;
209 	case CHIP_TONGA:
210 		amdgpu_device_program_register_sequence(adev,
211 							tonga_mgcg_cgcg_init,
212 							ARRAY_SIZE(tonga_mgcg_cgcg_init));
213 		amdgpu_device_program_register_sequence(adev,
214 							golden_settings_tonga_a11,
215 							ARRAY_SIZE(golden_settings_tonga_a11));
216 		break;
217 	case CHIP_POLARIS11:
218 	case CHIP_POLARIS12:
219 	case CHIP_VEGAM:
220 		amdgpu_device_program_register_sequence(adev,
221 							golden_settings_polaris11_a11,
222 							ARRAY_SIZE(golden_settings_polaris11_a11));
223 		break;
224 	case CHIP_POLARIS10:
225 		amdgpu_device_program_register_sequence(adev,
226 							golden_settings_polaris10_a11,
227 							ARRAY_SIZE(golden_settings_polaris10_a11));
228 		break;
229 	case CHIP_CARRIZO:
230 		amdgpu_device_program_register_sequence(adev,
231 							cz_mgcg_cgcg_init,
232 							ARRAY_SIZE(cz_mgcg_cgcg_init));
233 		amdgpu_device_program_register_sequence(adev,
234 							cz_golden_settings_a11,
235 							ARRAY_SIZE(cz_golden_settings_a11));
236 		break;
237 	case CHIP_STONEY:
238 		amdgpu_device_program_register_sequence(adev,
239 							stoney_mgcg_cgcg_init,
240 							ARRAY_SIZE(stoney_mgcg_cgcg_init));
241 		amdgpu_device_program_register_sequence(adev,
242 							stoney_golden_settings_a11,
243 							ARRAY_SIZE(stoney_golden_settings_a11));
244 		break;
245 	default:
246 		break;
247 	}
248 }
249 
250 static void sdma_v3_0_free_microcode(struct amdgpu_device *adev)
251 {
252 	int i;
253 
254 	for (i = 0; i < adev->sdma.num_instances; i++)
255 		amdgpu_ucode_release(&adev->sdma.instance[i].fw);
256 }
257 
258 /**
259  * sdma_v3_0_init_microcode - load ucode images from disk
260  *
261  * @adev: amdgpu_device pointer
262  *
263  * Use the firmware interface to load the ucode images into
264  * the driver (not loaded into hw).
265  * Returns 0 on success, error on failure.
266  */
267 static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
268 {
269 	const char *chip_name;
270 	char fw_name[30];
271 	int err = 0, i;
272 	struct amdgpu_firmware_info *info = NULL;
273 	const struct common_firmware_header *header = NULL;
274 	const struct sdma_firmware_header_v1_0 *hdr;
275 
276 	DRM_DEBUG("\n");
277 
278 	switch (adev->asic_type) {
279 	case CHIP_TONGA:
280 		chip_name = "tonga";
281 		break;
282 	case CHIP_FIJI:
283 		chip_name = "fiji";
284 		break;
285 	case CHIP_POLARIS10:
286 		chip_name = "polaris10";
287 		break;
288 	case CHIP_POLARIS11:
289 		chip_name = "polaris11";
290 		break;
291 	case CHIP_POLARIS12:
292 		chip_name = "polaris12";
293 		break;
294 	case CHIP_VEGAM:
295 		chip_name = "vegam";
296 		break;
297 	case CHIP_CARRIZO:
298 		chip_name = "carrizo";
299 		break;
300 	case CHIP_STONEY:
301 		chip_name = "stoney";
302 		break;
303 	default: BUG();
304 	}
305 
306 	for (i = 0; i < adev->sdma.num_instances; i++) {
307 		if (i == 0)
308 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
309 		else
310 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
311 		err = amdgpu_ucode_request(adev, &adev->sdma.instance[i].fw, fw_name);
312 		if (err)
313 			goto out;
314 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
315 		adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
316 		adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
317 		if (adev->sdma.instance[i].feature_version >= 20)
318 			adev->sdma.instance[i].burst_nop = true;
319 
320 		info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
321 		info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
322 		info->fw = adev->sdma.instance[i].fw;
323 		header = (const struct common_firmware_header *)info->fw->data;
324 		adev->firmware.fw_size +=
325 			ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
326 
327 	}
328 out:
329 	if (err) {
330 		pr_err("sdma_v3_0: Failed to load firmware \"%s\"\n", fw_name);
331 		for (i = 0; i < adev->sdma.num_instances; i++)
332 			amdgpu_ucode_release(&adev->sdma.instance[i].fw);
333 	}
334 	return err;
335 }
336 
337 /**
338  * sdma_v3_0_ring_get_rptr - get the current read pointer
339  *
340  * @ring: amdgpu ring pointer
341  *
342  * Get the current rptr from the hardware (VI+).
343  */
344 static uint64_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
345 {
346 	/* XXX check if swapping is necessary on BE */
347 	return *ring->rptr_cpu_addr >> 2;
348 }
349 
350 /**
351  * sdma_v3_0_ring_get_wptr - get the current write pointer
352  *
353  * @ring: amdgpu ring pointer
354  *
355  * Get the current wptr from the hardware (VI+).
356  */
357 static uint64_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
358 {
359 	struct amdgpu_device *adev = ring->adev;
360 	u32 wptr;
361 
362 	if (ring->use_doorbell || ring->use_pollmem) {
363 		/* XXX check if swapping is necessary on BE */
364 		wptr = *ring->wptr_cpu_addr >> 2;
365 	} else {
366 		wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me]) >> 2;
367 	}
368 
369 	return wptr;
370 }
371 
372 /**
373  * sdma_v3_0_ring_set_wptr - commit the write pointer
374  *
375  * @ring: amdgpu ring pointer
376  *
377  * Write the wptr back to the hardware (VI+).
378  */
379 static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
380 {
381 	struct amdgpu_device *adev = ring->adev;
382 
383 	if (ring->use_doorbell) {
384 		u32 *wb = (u32 *)ring->wptr_cpu_addr;
385 		/* XXX check if swapping is necessary on BE */
386 		WRITE_ONCE(*wb, ring->wptr << 2);
387 		WDOORBELL32(ring->doorbell_index, ring->wptr << 2);
388 	} else if (ring->use_pollmem) {
389 		u32 *wb = (u32 *)ring->wptr_cpu_addr;
390 
391 		WRITE_ONCE(*wb, ring->wptr << 2);
392 	} else {
393 		WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me], ring->wptr << 2);
394 	}
395 }
396 
397 static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
398 {
399 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
400 	int i;
401 
402 	for (i = 0; i < count; i++)
403 		if (sdma && sdma->burst_nop && (i == 0))
404 			amdgpu_ring_write(ring, ring->funcs->nop |
405 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
406 		else
407 			amdgpu_ring_write(ring, ring->funcs->nop);
408 }
409 
410 /**
411  * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
412  *
413  * @ring: amdgpu ring pointer
414  * @job: job to retrieve vmid from
415  * @ib: IB object to schedule
416  * @flags: unused
417  *
418  * Schedule an IB in the DMA ring (VI).
419  */
420 static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
421 				   struct amdgpu_job *job,
422 				   struct amdgpu_ib *ib,
423 				   uint32_t flags)
424 {
425 	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
426 
427 	/* IB packet must end on a 8 DW boundary */
428 	sdma_v3_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
429 
430 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
431 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
432 	/* base must be 32 byte aligned */
433 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
434 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
435 	amdgpu_ring_write(ring, ib->length_dw);
436 	amdgpu_ring_write(ring, 0);
437 	amdgpu_ring_write(ring, 0);
438 
439 }
440 
441 /**
442  * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
443  *
444  * @ring: amdgpu ring pointer
445  *
446  * Emit an hdp flush packet on the requested DMA ring.
447  */
448 static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
449 {
450 	u32 ref_and_mask = 0;
451 
452 	if (ring->me == 0)
453 		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
454 	else
455 		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
456 
457 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
458 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
459 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
460 	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
461 	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
462 	amdgpu_ring_write(ring, ref_and_mask); /* reference */
463 	amdgpu_ring_write(ring, ref_and_mask); /* mask */
464 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
465 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
466 }
467 
468 /**
469  * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
470  *
471  * @ring: amdgpu ring pointer
472  * @addr: address
473  * @seq: sequence number
474  * @flags: fence related flags
475  *
476  * Add a DMA fence packet to the ring to write
477  * the fence seq number and DMA trap packet to generate
478  * an interrupt if needed (VI).
479  */
480 static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
481 				      unsigned flags)
482 {
483 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
484 	/* write the fence */
485 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
486 	amdgpu_ring_write(ring, lower_32_bits(addr));
487 	amdgpu_ring_write(ring, upper_32_bits(addr));
488 	amdgpu_ring_write(ring, lower_32_bits(seq));
489 
490 	/* optionally write high bits as well */
491 	if (write64bit) {
492 		addr += 4;
493 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
494 		amdgpu_ring_write(ring, lower_32_bits(addr));
495 		amdgpu_ring_write(ring, upper_32_bits(addr));
496 		amdgpu_ring_write(ring, upper_32_bits(seq));
497 	}
498 
499 	/* generate an interrupt */
500 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
501 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
502 }
503 
504 /**
505  * sdma_v3_0_gfx_stop - stop the gfx async dma engines
506  *
507  * @adev: amdgpu_device pointer
508  *
509  * Stop the gfx async dma ring buffers (VI).
510  */
511 static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
512 {
513 	u32 rb_cntl, ib_cntl;
514 	int i;
515 
516 	amdgpu_sdma_unset_buffer_funcs_helper(adev);
517 
518 	for (i = 0; i < adev->sdma.num_instances; i++) {
519 		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
520 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
521 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
522 		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
523 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
524 		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
525 	}
526 }
527 
528 /**
529  * sdma_v3_0_rlc_stop - stop the compute async dma engines
530  *
531  * @adev: amdgpu_device pointer
532  *
533  * Stop the compute async dma queues (VI).
534  */
535 static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
536 {
537 	/* XXX todo */
538 }
539 
540 /**
541  * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
542  *
543  * @adev: amdgpu_device pointer
544  * @enable: enable/disable the DMA MEs context switch.
545  *
546  * Halt or unhalt the async dma engines context switch (VI).
547  */
548 static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
549 {
550 	u32 f32_cntl, phase_quantum = 0;
551 	int i;
552 
553 	if (amdgpu_sdma_phase_quantum) {
554 		unsigned value = amdgpu_sdma_phase_quantum;
555 		unsigned unit = 0;
556 
557 		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
558 				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
559 			value = (value + 1) >> 1;
560 			unit++;
561 		}
562 		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
563 			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
564 			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
565 				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
566 			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
567 				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
568 			WARN_ONCE(1,
569 			"clamping sdma_phase_quantum to %uK clock cycles\n",
570 				  value << unit);
571 		}
572 		phase_quantum =
573 			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
574 			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
575 	}
576 
577 	for (i = 0; i < adev->sdma.num_instances; i++) {
578 		f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
579 		if (enable) {
580 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
581 					AUTO_CTXSW_ENABLE, 1);
582 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
583 					ATC_L1_ENABLE, 1);
584 			if (amdgpu_sdma_phase_quantum) {
585 				WREG32(mmSDMA0_PHASE0_QUANTUM + sdma_offsets[i],
586 				       phase_quantum);
587 				WREG32(mmSDMA0_PHASE1_QUANTUM + sdma_offsets[i],
588 				       phase_quantum);
589 			}
590 		} else {
591 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
592 					AUTO_CTXSW_ENABLE, 0);
593 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
594 					ATC_L1_ENABLE, 1);
595 		}
596 
597 		WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
598 	}
599 }
600 
601 /**
602  * sdma_v3_0_enable - stop the async dma engines
603  *
604  * @adev: amdgpu_device pointer
605  * @enable: enable/disable the DMA MEs.
606  *
607  * Halt or unhalt the async dma engines (VI).
608  */
609 static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
610 {
611 	u32 f32_cntl;
612 	int i;
613 
614 	if (!enable) {
615 		sdma_v3_0_gfx_stop(adev);
616 		sdma_v3_0_rlc_stop(adev);
617 	}
618 
619 	for (i = 0; i < adev->sdma.num_instances; i++) {
620 		f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
621 		if (enable)
622 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
623 		else
624 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
625 		WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
626 	}
627 }
628 
629 /**
630  * sdma_v3_0_gfx_resume - setup and start the async dma engines
631  *
632  * @adev: amdgpu_device pointer
633  *
634  * Set up the gfx DMA ring buffers and enable them (VI).
635  * Returns 0 for success, error for failure.
636  */
637 static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
638 {
639 	struct amdgpu_ring *ring;
640 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
641 	u32 rb_bufsz;
642 	u32 doorbell;
643 	u64 wptr_gpu_addr;
644 	int i, j, r;
645 
646 	for (i = 0; i < adev->sdma.num_instances; i++) {
647 		ring = &adev->sdma.instance[i].ring;
648 		amdgpu_ring_clear_ring(ring);
649 
650 		mutex_lock(&adev->srbm_mutex);
651 		for (j = 0; j < 16; j++) {
652 			vi_srbm_select(adev, 0, 0, 0, j);
653 			/* SDMA GFX */
654 			WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
655 			WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
656 		}
657 		vi_srbm_select(adev, 0, 0, 0, 0);
658 		mutex_unlock(&adev->srbm_mutex);
659 
660 		WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
661 		       adev->gfx.config.gb_addr_config & 0x70);
662 
663 		WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
664 
665 		/* Set ring buffer size in dwords */
666 		rb_bufsz = order_base_2(ring->ring_size / 4);
667 		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
668 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
669 #ifdef __BIG_ENDIAN
670 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
671 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
672 					RPTR_WRITEBACK_SWAP_ENABLE, 1);
673 #endif
674 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
675 
676 		/* Initialize the ring buffer's read and write pointers */
677 		ring->wptr = 0;
678 		WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
679 		sdma_v3_0_ring_set_wptr(ring);
680 		WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
681 		WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
682 
683 		/* set the wb address whether it's enabled or not */
684 		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
685 		       upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF);
686 		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
687 		       lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC);
688 
689 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
690 
691 		WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
692 		WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
693 
694 		doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
695 
696 		if (ring->use_doorbell) {
697 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
698 						 OFFSET, ring->doorbell_index);
699 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
700 		} else {
701 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
702 		}
703 		WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
704 
705 		/* setup the wptr shadow polling */
706 		wptr_gpu_addr = ring->wptr_gpu_addr;
707 
708 		WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO + sdma_offsets[i],
709 		       lower_32_bits(wptr_gpu_addr));
710 		WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI + sdma_offsets[i],
711 		       upper_32_bits(wptr_gpu_addr));
712 		wptr_poll_cntl = RREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i]);
713 		if (ring->use_pollmem) {
714 			/*wptr polling is not enogh fast, directly clean the wptr register */
715 			WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
716 			wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
717 						       SDMA0_GFX_RB_WPTR_POLL_CNTL,
718 						       ENABLE, 1);
719 		} else {
720 			wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
721 						       SDMA0_GFX_RB_WPTR_POLL_CNTL,
722 						       ENABLE, 0);
723 		}
724 		WREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i], wptr_poll_cntl);
725 
726 		/* enable DMA RB */
727 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
728 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
729 
730 		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
731 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
732 #ifdef __BIG_ENDIAN
733 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
734 #endif
735 		/* enable DMA IBs */
736 		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
737 	}
738 
739 	/* unhalt the MEs */
740 	sdma_v3_0_enable(adev, true);
741 	/* enable sdma ring preemption */
742 	sdma_v3_0_ctx_switch_enable(adev, true);
743 
744 	for (i = 0; i < adev->sdma.num_instances; i++) {
745 		ring = &adev->sdma.instance[i].ring;
746 		r = amdgpu_ring_test_helper(ring);
747 		if (r)
748 			return r;
749 
750 		if (adev->mman.buffer_funcs_ring == ring)
751 			amdgpu_ttm_set_buffer_funcs_status(adev, true);
752 	}
753 
754 	return 0;
755 }
756 
757 /**
758  * sdma_v3_0_rlc_resume - setup and start the async dma engines
759  *
760  * @adev: amdgpu_device pointer
761  *
762  * Set up the compute DMA queues and enable them (VI).
763  * Returns 0 for success, error for failure.
764  */
765 static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
766 {
767 	/* XXX todo */
768 	return 0;
769 }
770 
771 /**
772  * sdma_v3_0_start - setup and start the async dma engines
773  *
774  * @adev: amdgpu_device pointer
775  *
776  * Set up the DMA engines and enable them (VI).
777  * Returns 0 for success, error for failure.
778  */
779 static int sdma_v3_0_start(struct amdgpu_device *adev)
780 {
781 	int r;
782 
783 	/* disable sdma engine before programing it */
784 	sdma_v3_0_ctx_switch_enable(adev, false);
785 	sdma_v3_0_enable(adev, false);
786 
787 	/* start the gfx rings and rlc compute queues */
788 	r = sdma_v3_0_gfx_resume(adev);
789 	if (r)
790 		return r;
791 	r = sdma_v3_0_rlc_resume(adev);
792 	if (r)
793 		return r;
794 
795 	return 0;
796 }
797 
798 /**
799  * sdma_v3_0_ring_test_ring - simple async dma engine test
800  *
801  * @ring: amdgpu_ring structure holding ring information
802  *
803  * Test the DMA engine by writing using it to write an
804  * value to memory. (VI).
805  * Returns 0 for success, error for failure.
806  */
807 static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
808 {
809 	struct amdgpu_device *adev = ring->adev;
810 	unsigned i;
811 	unsigned index;
812 	int r;
813 	u32 tmp;
814 	u64 gpu_addr;
815 
816 	r = amdgpu_device_wb_get(adev, &index);
817 	if (r)
818 		return r;
819 
820 	gpu_addr = adev->wb.gpu_addr + (index * 4);
821 	tmp = 0xCAFEDEAD;
822 	adev->wb.wb[index] = cpu_to_le32(tmp);
823 
824 	r = amdgpu_ring_alloc(ring, 5);
825 	if (r)
826 		goto error_free_wb;
827 
828 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
829 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
830 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
831 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
832 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
833 	amdgpu_ring_write(ring, 0xDEADBEEF);
834 	amdgpu_ring_commit(ring);
835 
836 	for (i = 0; i < adev->usec_timeout; i++) {
837 		tmp = le32_to_cpu(adev->wb.wb[index]);
838 		if (tmp == 0xDEADBEEF)
839 			break;
840 		udelay(1);
841 	}
842 
843 	if (i >= adev->usec_timeout)
844 		r = -ETIMEDOUT;
845 
846 error_free_wb:
847 	amdgpu_device_wb_free(adev, index);
848 	return r;
849 }
850 
851 /**
852  * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
853  *
854  * @ring: amdgpu_ring structure holding ring information
855  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
856  *
857  * Test a simple IB in the DMA ring (VI).
858  * Returns 0 on success, error on failure.
859  */
860 static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
861 {
862 	struct amdgpu_device *adev = ring->adev;
863 	struct amdgpu_ib ib;
864 	struct dma_fence *f = NULL;
865 	unsigned index;
866 	u32 tmp = 0;
867 	u64 gpu_addr;
868 	long r;
869 
870 	r = amdgpu_device_wb_get(adev, &index);
871 	if (r)
872 		return r;
873 
874 	gpu_addr = adev->wb.gpu_addr + (index * 4);
875 	tmp = 0xCAFEDEAD;
876 	adev->wb.wb[index] = cpu_to_le32(tmp);
877 	memset(&ib, 0, sizeof(ib));
878 	r = amdgpu_ib_get(adev, NULL, 256,
879 					AMDGPU_IB_POOL_DIRECT, &ib);
880 	if (r)
881 		goto err0;
882 
883 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
884 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
885 	ib.ptr[1] = lower_32_bits(gpu_addr);
886 	ib.ptr[2] = upper_32_bits(gpu_addr);
887 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
888 	ib.ptr[4] = 0xDEADBEEF;
889 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
890 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
891 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
892 	ib.length_dw = 8;
893 
894 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
895 	if (r)
896 		goto err1;
897 
898 	r = dma_fence_wait_timeout(f, false, timeout);
899 	if (r == 0) {
900 		r = -ETIMEDOUT;
901 		goto err1;
902 	} else if (r < 0) {
903 		goto err1;
904 	}
905 	tmp = le32_to_cpu(adev->wb.wb[index]);
906 	if (tmp == 0xDEADBEEF)
907 		r = 0;
908 	else
909 		r = -EINVAL;
910 err1:
911 	amdgpu_ib_free(adev, &ib, NULL);
912 	dma_fence_put(f);
913 err0:
914 	amdgpu_device_wb_free(adev, index);
915 	return r;
916 }
917 
918 /**
919  * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
920  *
921  * @ib: indirect buffer to fill with commands
922  * @pe: addr of the page entry
923  * @src: src addr to copy from
924  * @count: number of page entries to update
925  *
926  * Update PTEs by copying them from the GART using sDMA (CIK).
927  */
928 static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
929 				  uint64_t pe, uint64_t src,
930 				  unsigned count)
931 {
932 	unsigned bytes = count * 8;
933 
934 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
935 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
936 	ib->ptr[ib->length_dw++] = bytes;
937 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
938 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
939 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
940 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
941 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
942 }
943 
944 /**
945  * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
946  *
947  * @ib: indirect buffer to fill with commands
948  * @pe: addr of the page entry
949  * @value: dst addr to write into pe
950  * @count: number of page entries to update
951  * @incr: increase next addr by incr bytes
952  *
953  * Update PTEs by writing them manually using sDMA (CIK).
954  */
955 static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
956 				   uint64_t value, unsigned count,
957 				   uint32_t incr)
958 {
959 	unsigned ndw = count * 2;
960 
961 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
962 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
963 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
964 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
965 	ib->ptr[ib->length_dw++] = ndw;
966 	for (; ndw > 0; ndw -= 2) {
967 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
968 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
969 		value += incr;
970 	}
971 }
972 
973 /**
974  * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
975  *
976  * @ib: indirect buffer to fill with commands
977  * @pe: addr of the page entry
978  * @addr: dst addr to write into pe
979  * @count: number of page entries to update
980  * @incr: increase next addr by incr bytes
981  * @flags: access flags
982  *
983  * Update the page tables using sDMA (CIK).
984  */
985 static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe,
986 				     uint64_t addr, unsigned count,
987 				     uint32_t incr, uint64_t flags)
988 {
989 	/* for physically contiguous pages (vram) */
990 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
991 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
992 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
993 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
994 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
995 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
996 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
997 	ib->ptr[ib->length_dw++] = incr; /* increment size */
998 	ib->ptr[ib->length_dw++] = 0;
999 	ib->ptr[ib->length_dw++] = count; /* number of entries */
1000 }
1001 
1002 /**
1003  * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
1004  *
1005  * @ring: amdgpu_ring structure holding ring information
1006  * @ib: indirect buffer to fill with padding
1007  *
1008  */
1009 static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1010 {
1011 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1012 	u32 pad_count;
1013 	int i;
1014 
1015 	pad_count = (-ib->length_dw) & 7;
1016 	for (i = 0; i < pad_count; i++)
1017 		if (sdma && sdma->burst_nop && (i == 0))
1018 			ib->ptr[ib->length_dw++] =
1019 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1020 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1021 		else
1022 			ib->ptr[ib->length_dw++] =
1023 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1024 }
1025 
1026 /**
1027  * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
1028  *
1029  * @ring: amdgpu_ring pointer
1030  *
1031  * Make sure all previous operations are completed (CIK).
1032  */
1033 static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1034 {
1035 	uint32_t seq = ring->fence_drv.sync_seq;
1036 	uint64_t addr = ring->fence_drv.gpu_addr;
1037 
1038 	/* wait for idle */
1039 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1040 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1041 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1042 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1043 	amdgpu_ring_write(ring, addr & 0xfffffffc);
1044 	amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1045 	amdgpu_ring_write(ring, seq); /* reference */
1046 	amdgpu_ring_write(ring, 0xffffffff); /* mask */
1047 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1048 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1049 }
1050 
1051 /**
1052  * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
1053  *
1054  * @ring: amdgpu_ring pointer
1055  * @vmid: vmid number to use
1056  * @pd_addr: address
1057  *
1058  * Update the page table base and flush the VM TLB
1059  * using sDMA (VI).
1060  */
1061 static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1062 					 unsigned vmid, uint64_t pd_addr)
1063 {
1064 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1065 
1066 	/* wait for flush */
1067 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1068 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1069 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
1070 	amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
1071 	amdgpu_ring_write(ring, 0);
1072 	amdgpu_ring_write(ring, 0); /* reference */
1073 	amdgpu_ring_write(ring, 0); /* mask */
1074 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1075 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
1076 }
1077 
1078 static void sdma_v3_0_ring_emit_wreg(struct amdgpu_ring *ring,
1079 				     uint32_t reg, uint32_t val)
1080 {
1081 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1082 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1083 	amdgpu_ring_write(ring, reg);
1084 	amdgpu_ring_write(ring, val);
1085 }
1086 
1087 static int sdma_v3_0_early_init(void *handle)
1088 {
1089 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1090 	int r;
1091 
1092 	switch (adev->asic_type) {
1093 	case CHIP_STONEY:
1094 		adev->sdma.num_instances = 1;
1095 		break;
1096 	default:
1097 		adev->sdma.num_instances = SDMA_MAX_INSTANCE;
1098 		break;
1099 	}
1100 
1101 	r = sdma_v3_0_init_microcode(adev);
1102 	if (r)
1103 		return r;
1104 
1105 	sdma_v3_0_set_ring_funcs(adev);
1106 	sdma_v3_0_set_buffer_funcs(adev);
1107 	sdma_v3_0_set_vm_pte_funcs(adev);
1108 	sdma_v3_0_set_irq_funcs(adev);
1109 
1110 	return 0;
1111 }
1112 
1113 static int sdma_v3_0_sw_init(void *handle)
1114 {
1115 	struct amdgpu_ring *ring;
1116 	int r, i;
1117 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1118 
1119 	/* SDMA trap event */
1120 	r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_SDMA_TRAP,
1121 			      &adev->sdma.trap_irq);
1122 	if (r)
1123 		return r;
1124 
1125 	/* SDMA Privileged inst */
1126 	r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, 241,
1127 			      &adev->sdma.illegal_inst_irq);
1128 	if (r)
1129 		return r;
1130 
1131 	/* SDMA Privileged inst */
1132 	r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_SDMA_SRBM_WRITE,
1133 			      &adev->sdma.illegal_inst_irq);
1134 	if (r)
1135 		return r;
1136 
1137 	for (i = 0; i < adev->sdma.num_instances; i++) {
1138 		ring = &adev->sdma.instance[i].ring;
1139 		ring->ring_obj = NULL;
1140 		if (!amdgpu_sriov_vf(adev)) {
1141 			ring->use_doorbell = true;
1142 			ring->doorbell_index = adev->doorbell_index.sdma_engine[i];
1143 		} else {
1144 			ring->use_pollmem = true;
1145 		}
1146 
1147 		sprintf(ring->name, "sdma%d", i);
1148 		r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1149 				     (i == 0) ? AMDGPU_SDMA_IRQ_INSTANCE0 :
1150 				     AMDGPU_SDMA_IRQ_INSTANCE1,
1151 				     AMDGPU_RING_PRIO_DEFAULT, NULL);
1152 		if (r)
1153 			return r;
1154 	}
1155 
1156 	return r;
1157 }
1158 
1159 static int sdma_v3_0_sw_fini(void *handle)
1160 {
1161 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1162 	int i;
1163 
1164 	for (i = 0; i < adev->sdma.num_instances; i++)
1165 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1166 
1167 	sdma_v3_0_free_microcode(adev);
1168 	return 0;
1169 }
1170 
1171 static int sdma_v3_0_hw_init(void *handle)
1172 {
1173 	int r;
1174 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1175 
1176 	sdma_v3_0_init_golden_registers(adev);
1177 
1178 	r = sdma_v3_0_start(adev);
1179 	if (r)
1180 		return r;
1181 
1182 	return r;
1183 }
1184 
1185 static int sdma_v3_0_hw_fini(void *handle)
1186 {
1187 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1188 
1189 	sdma_v3_0_ctx_switch_enable(adev, false);
1190 	sdma_v3_0_enable(adev, false);
1191 
1192 	return 0;
1193 }
1194 
1195 static int sdma_v3_0_suspend(void *handle)
1196 {
1197 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1198 
1199 	return sdma_v3_0_hw_fini(adev);
1200 }
1201 
1202 static int sdma_v3_0_resume(void *handle)
1203 {
1204 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1205 
1206 	return sdma_v3_0_hw_init(adev);
1207 }
1208 
1209 static bool sdma_v3_0_is_idle(void *handle)
1210 {
1211 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1212 	u32 tmp = RREG32(mmSRBM_STATUS2);
1213 
1214 	if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
1215 		   SRBM_STATUS2__SDMA1_BUSY_MASK))
1216 	    return false;
1217 
1218 	return true;
1219 }
1220 
1221 static int sdma_v3_0_wait_for_idle(void *handle)
1222 {
1223 	unsigned i;
1224 	u32 tmp;
1225 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1226 
1227 	for (i = 0; i < adev->usec_timeout; i++) {
1228 		tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
1229 				SRBM_STATUS2__SDMA1_BUSY_MASK);
1230 
1231 		if (!tmp)
1232 			return 0;
1233 		udelay(1);
1234 	}
1235 	return -ETIMEDOUT;
1236 }
1237 
1238 static bool sdma_v3_0_check_soft_reset(void *handle)
1239 {
1240 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1241 	u32 srbm_soft_reset = 0;
1242 	u32 tmp = RREG32(mmSRBM_STATUS2);
1243 
1244 	if ((tmp & SRBM_STATUS2__SDMA_BUSY_MASK) ||
1245 	    (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK)) {
1246 		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
1247 		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
1248 	}
1249 
1250 	if (srbm_soft_reset) {
1251 		adev->sdma.srbm_soft_reset = srbm_soft_reset;
1252 		return true;
1253 	} else {
1254 		adev->sdma.srbm_soft_reset = 0;
1255 		return false;
1256 	}
1257 }
1258 
1259 static int sdma_v3_0_pre_soft_reset(void *handle)
1260 {
1261 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1262 	u32 srbm_soft_reset = 0;
1263 
1264 	if (!adev->sdma.srbm_soft_reset)
1265 		return 0;
1266 
1267 	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1268 
1269 	if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1270 	    REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1271 		sdma_v3_0_ctx_switch_enable(adev, false);
1272 		sdma_v3_0_enable(adev, false);
1273 	}
1274 
1275 	return 0;
1276 }
1277 
1278 static int sdma_v3_0_post_soft_reset(void *handle)
1279 {
1280 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1281 	u32 srbm_soft_reset = 0;
1282 
1283 	if (!adev->sdma.srbm_soft_reset)
1284 		return 0;
1285 
1286 	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1287 
1288 	if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1289 	    REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1290 		sdma_v3_0_gfx_resume(adev);
1291 		sdma_v3_0_rlc_resume(adev);
1292 	}
1293 
1294 	return 0;
1295 }
1296 
1297 static int sdma_v3_0_soft_reset(void *handle)
1298 {
1299 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1300 	u32 srbm_soft_reset = 0;
1301 	u32 tmp;
1302 
1303 	if (!adev->sdma.srbm_soft_reset)
1304 		return 0;
1305 
1306 	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1307 
1308 	if (srbm_soft_reset) {
1309 		tmp = RREG32(mmSRBM_SOFT_RESET);
1310 		tmp |= srbm_soft_reset;
1311 		dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1312 		WREG32(mmSRBM_SOFT_RESET, tmp);
1313 		tmp = RREG32(mmSRBM_SOFT_RESET);
1314 
1315 		udelay(50);
1316 
1317 		tmp &= ~srbm_soft_reset;
1318 		WREG32(mmSRBM_SOFT_RESET, tmp);
1319 		tmp = RREG32(mmSRBM_SOFT_RESET);
1320 
1321 		/* Wait a little for things to settle down */
1322 		udelay(50);
1323 	}
1324 
1325 	return 0;
1326 }
1327 
1328 static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
1329 					struct amdgpu_irq_src *source,
1330 					unsigned type,
1331 					enum amdgpu_interrupt_state state)
1332 {
1333 	u32 sdma_cntl;
1334 
1335 	switch (type) {
1336 	case AMDGPU_SDMA_IRQ_INSTANCE0:
1337 		switch (state) {
1338 		case AMDGPU_IRQ_STATE_DISABLE:
1339 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1340 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1341 			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1342 			break;
1343 		case AMDGPU_IRQ_STATE_ENABLE:
1344 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1345 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1346 			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1347 			break;
1348 		default:
1349 			break;
1350 		}
1351 		break;
1352 	case AMDGPU_SDMA_IRQ_INSTANCE1:
1353 		switch (state) {
1354 		case AMDGPU_IRQ_STATE_DISABLE:
1355 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1356 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1357 			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1358 			break;
1359 		case AMDGPU_IRQ_STATE_ENABLE:
1360 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1361 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1362 			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1363 			break;
1364 		default:
1365 			break;
1366 		}
1367 		break;
1368 	default:
1369 		break;
1370 	}
1371 	return 0;
1372 }
1373 
1374 static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
1375 				      struct amdgpu_irq_src *source,
1376 				      struct amdgpu_iv_entry *entry)
1377 {
1378 	u8 instance_id, queue_id;
1379 
1380 	instance_id = (entry->ring_id & 0x3) >> 0;
1381 	queue_id = (entry->ring_id & 0xc) >> 2;
1382 	DRM_DEBUG("IH: SDMA trap\n");
1383 	switch (instance_id) {
1384 	case 0:
1385 		switch (queue_id) {
1386 		case 0:
1387 			amdgpu_fence_process(&adev->sdma.instance[0].ring);
1388 			break;
1389 		case 1:
1390 			/* XXX compute */
1391 			break;
1392 		case 2:
1393 			/* XXX compute */
1394 			break;
1395 		}
1396 		break;
1397 	case 1:
1398 		switch (queue_id) {
1399 		case 0:
1400 			amdgpu_fence_process(&adev->sdma.instance[1].ring);
1401 			break;
1402 		case 1:
1403 			/* XXX compute */
1404 			break;
1405 		case 2:
1406 			/* XXX compute */
1407 			break;
1408 		}
1409 		break;
1410 	}
1411 	return 0;
1412 }
1413 
1414 static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1415 					      struct amdgpu_irq_src *source,
1416 					      struct amdgpu_iv_entry *entry)
1417 {
1418 	u8 instance_id, queue_id;
1419 
1420 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
1421 	instance_id = (entry->ring_id & 0x3) >> 0;
1422 	queue_id = (entry->ring_id & 0xc) >> 2;
1423 
1424 	if (instance_id <= 1 && queue_id == 0)
1425 		drm_sched_fault(&adev->sdma.instance[instance_id].ring.sched);
1426 	return 0;
1427 }
1428 
1429 static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
1430 		struct amdgpu_device *adev,
1431 		bool enable)
1432 {
1433 	uint32_t temp, data;
1434 	int i;
1435 
1436 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1437 		for (i = 0; i < adev->sdma.num_instances; i++) {
1438 			temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1439 			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1440 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1441 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1442 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1443 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1444 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1445 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1446 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1447 			if (data != temp)
1448 				WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1449 		}
1450 	} else {
1451 		for (i = 0; i < adev->sdma.num_instances; i++) {
1452 			temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1453 			data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1454 				SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1455 				SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1456 				SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1457 				SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1458 				SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1459 				SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1460 				SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
1461 
1462 			if (data != temp)
1463 				WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1464 		}
1465 	}
1466 }
1467 
1468 static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
1469 		struct amdgpu_device *adev,
1470 		bool enable)
1471 {
1472 	uint32_t temp, data;
1473 	int i;
1474 
1475 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1476 		for (i = 0; i < adev->sdma.num_instances; i++) {
1477 			temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1478 			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1479 
1480 			if (temp != data)
1481 				WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1482 		}
1483 	} else {
1484 		for (i = 0; i < adev->sdma.num_instances; i++) {
1485 			temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1486 			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1487 
1488 			if (temp != data)
1489 				WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1490 		}
1491 	}
1492 }
1493 
1494 static int sdma_v3_0_set_clockgating_state(void *handle,
1495 					  enum amd_clockgating_state state)
1496 {
1497 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1498 
1499 	if (amdgpu_sriov_vf(adev))
1500 		return 0;
1501 
1502 	switch (adev->asic_type) {
1503 	case CHIP_FIJI:
1504 	case CHIP_CARRIZO:
1505 	case CHIP_STONEY:
1506 		sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
1507 				state == AMD_CG_STATE_GATE);
1508 		sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
1509 				state == AMD_CG_STATE_GATE);
1510 		break;
1511 	default:
1512 		break;
1513 	}
1514 	return 0;
1515 }
1516 
1517 static int sdma_v3_0_set_powergating_state(void *handle,
1518 					  enum amd_powergating_state state)
1519 {
1520 	return 0;
1521 }
1522 
1523 static void sdma_v3_0_get_clockgating_state(void *handle, u64 *flags)
1524 {
1525 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1526 	int data;
1527 
1528 	if (amdgpu_sriov_vf(adev))
1529 		*flags = 0;
1530 
1531 	/* AMD_CG_SUPPORT_SDMA_MGCG */
1532 	data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[0]);
1533 	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK))
1534 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1535 
1536 	/* AMD_CG_SUPPORT_SDMA_LS */
1537 	data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[0]);
1538 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1539 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
1540 }
1541 
1542 static const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
1543 	.name = "sdma_v3_0",
1544 	.early_init = sdma_v3_0_early_init,
1545 	.late_init = NULL,
1546 	.sw_init = sdma_v3_0_sw_init,
1547 	.sw_fini = sdma_v3_0_sw_fini,
1548 	.hw_init = sdma_v3_0_hw_init,
1549 	.hw_fini = sdma_v3_0_hw_fini,
1550 	.suspend = sdma_v3_0_suspend,
1551 	.resume = sdma_v3_0_resume,
1552 	.is_idle = sdma_v3_0_is_idle,
1553 	.wait_for_idle = sdma_v3_0_wait_for_idle,
1554 	.check_soft_reset = sdma_v3_0_check_soft_reset,
1555 	.pre_soft_reset = sdma_v3_0_pre_soft_reset,
1556 	.post_soft_reset = sdma_v3_0_post_soft_reset,
1557 	.soft_reset = sdma_v3_0_soft_reset,
1558 	.set_clockgating_state = sdma_v3_0_set_clockgating_state,
1559 	.set_powergating_state = sdma_v3_0_set_powergating_state,
1560 	.get_clockgating_state = sdma_v3_0_get_clockgating_state,
1561 };
1562 
1563 static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
1564 	.type = AMDGPU_RING_TYPE_SDMA,
1565 	.align_mask = 0xf,
1566 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1567 	.support_64bit_ptrs = false,
1568 	.secure_submission_supported = true,
1569 	.get_rptr = sdma_v3_0_ring_get_rptr,
1570 	.get_wptr = sdma_v3_0_ring_get_wptr,
1571 	.set_wptr = sdma_v3_0_ring_set_wptr,
1572 	.emit_frame_size =
1573 		6 + /* sdma_v3_0_ring_emit_hdp_flush */
1574 		3 + /* hdp invalidate */
1575 		6 + /* sdma_v3_0_ring_emit_pipeline_sync */
1576 		VI_FLUSH_GPU_TLB_NUM_WREG * 3 + 6 + /* sdma_v3_0_ring_emit_vm_flush */
1577 		10 + 10 + 10, /* sdma_v3_0_ring_emit_fence x3 for user fence, vm fence */
1578 	.emit_ib_size = 7 + 6, /* sdma_v3_0_ring_emit_ib */
1579 	.emit_ib = sdma_v3_0_ring_emit_ib,
1580 	.emit_fence = sdma_v3_0_ring_emit_fence,
1581 	.emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
1582 	.emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
1583 	.emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
1584 	.test_ring = sdma_v3_0_ring_test_ring,
1585 	.test_ib = sdma_v3_0_ring_test_ib,
1586 	.insert_nop = sdma_v3_0_ring_insert_nop,
1587 	.pad_ib = sdma_v3_0_ring_pad_ib,
1588 	.emit_wreg = sdma_v3_0_ring_emit_wreg,
1589 };
1590 
1591 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
1592 {
1593 	int i;
1594 
1595 	for (i = 0; i < adev->sdma.num_instances; i++) {
1596 		adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
1597 		adev->sdma.instance[i].ring.me = i;
1598 	}
1599 }
1600 
1601 static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
1602 	.set = sdma_v3_0_set_trap_irq_state,
1603 	.process = sdma_v3_0_process_trap_irq,
1604 };
1605 
1606 static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
1607 	.process = sdma_v3_0_process_illegal_inst_irq,
1608 };
1609 
1610 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
1611 {
1612 	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1613 	adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
1614 	adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
1615 }
1616 
1617 /**
1618  * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
1619  *
1620  * @ib: indirect buffer to copy to
1621  * @src_offset: src GPU address
1622  * @dst_offset: dst GPU address
1623  * @byte_count: number of bytes to xfer
1624  * @tmz: unused
1625  *
1626  * Copy GPU buffers using the DMA engine (VI).
1627  * Used by the amdgpu ttm implementation to move pages if
1628  * registered as the asic copy callback.
1629  */
1630 static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
1631 				       uint64_t src_offset,
1632 				       uint64_t dst_offset,
1633 				       uint32_t byte_count,
1634 				       bool tmz)
1635 {
1636 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1637 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1638 	ib->ptr[ib->length_dw++] = byte_count;
1639 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1640 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1641 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1642 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1643 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1644 }
1645 
1646 /**
1647  * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
1648  *
1649  * @ib: indirect buffer to copy to
1650  * @src_data: value to write to buffer
1651  * @dst_offset: dst GPU address
1652  * @byte_count: number of bytes to xfer
1653  *
1654  * Fill GPU buffers using the DMA engine (VI).
1655  */
1656 static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
1657 				       uint32_t src_data,
1658 				       uint64_t dst_offset,
1659 				       uint32_t byte_count)
1660 {
1661 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1662 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1663 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1664 	ib->ptr[ib->length_dw++] = src_data;
1665 	ib->ptr[ib->length_dw++] = byte_count;
1666 }
1667 
1668 static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
1669 	.copy_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
1670 	.copy_num_dw = 7,
1671 	.emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
1672 
1673 	.fill_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
1674 	.fill_num_dw = 5,
1675 	.emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
1676 };
1677 
1678 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
1679 {
1680 	adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
1681 	adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1682 }
1683 
1684 static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
1685 	.copy_pte_num_dw = 7,
1686 	.copy_pte = sdma_v3_0_vm_copy_pte,
1687 
1688 	.write_pte = sdma_v3_0_vm_write_pte,
1689 	.set_pte_pde = sdma_v3_0_vm_set_pte_pde,
1690 };
1691 
1692 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1693 {
1694 	unsigned i;
1695 
1696 	adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
1697 	for (i = 0; i < adev->sdma.num_instances; i++) {
1698 		adev->vm_manager.vm_pte_scheds[i] =
1699 			 &adev->sdma.instance[i].ring.sched;
1700 	}
1701 	adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
1702 }
1703 
1704 const struct amdgpu_ip_block_version sdma_v3_0_ip_block =
1705 {
1706 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1707 	.major = 3,
1708 	.minor = 0,
1709 	.rev = 0,
1710 	.funcs = &sdma_v3_0_ip_funcs,
1711 };
1712 
1713 const struct amdgpu_ip_block_version sdma_v3_1_ip_block =
1714 {
1715 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1716 	.major = 3,
1717 	.minor = 1,
1718 	.rev = 0,
1719 	.funcs = &sdma_v3_0_ip_funcs,
1720 };
1721