xref: /linux/drivers/gpu/drm/amd/amdgpu/sdma_v3_0.c (revision 32786fdc9506aeba98278c1844d4bfb766863832)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Alex Deucher
23  */
24 #include <linux/firmware.h>
25 #include <drm/drmP.h>
26 #include "amdgpu.h"
27 #include "amdgpu_ucode.h"
28 #include "amdgpu_trace.h"
29 #include "vi.h"
30 #include "vid.h"
31 
32 #include "oss/oss_3_0_d.h"
33 #include "oss/oss_3_0_sh_mask.h"
34 
35 #include "gmc/gmc_8_1_d.h"
36 #include "gmc/gmc_8_1_sh_mask.h"
37 
38 #include "gca/gfx_8_0_d.h"
39 #include "gca/gfx_8_0_enum.h"
40 #include "gca/gfx_8_0_sh_mask.h"
41 
42 #include "bif/bif_5_0_d.h"
43 #include "bif/bif_5_0_sh_mask.h"
44 
45 #include "tonga_sdma_pkt_open.h"
46 
47 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
48 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
49 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
50 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
51 
52 MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
53 MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
54 MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
55 MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
56 MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
57 MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
58 MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
59 MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
60 MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
61 MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
62 MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
63 
64 
65 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
66 {
67 	SDMA0_REGISTER_OFFSET,
68 	SDMA1_REGISTER_OFFSET
69 };
70 
71 static const u32 golden_settings_tonga_a11[] =
72 {
73 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
74 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
75 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
76 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
77 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
78 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
79 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
80 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
81 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
82 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
83 };
84 
85 static const u32 tonga_mgcg_cgcg_init[] =
86 {
87 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
88 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
89 };
90 
91 static const u32 golden_settings_fiji_a10[] =
92 {
93 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
94 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
95 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
96 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
97 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
98 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
99 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
100 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
101 };
102 
103 static const u32 fiji_mgcg_cgcg_init[] =
104 {
105 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
106 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
107 };
108 
109 static const u32 golden_settings_polaris11_a11[] =
110 {
111 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
112 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
113 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
114 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
115 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
116 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
117 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
118 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
119 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
120 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
121 };
122 
123 static const u32 golden_settings_polaris10_a11[] =
124 {
125 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
126 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
127 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
128 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
129 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
130 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
131 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
132 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
133 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
134 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
135 };
136 
137 static const u32 cz_golden_settings_a11[] =
138 {
139 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
140 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
141 	mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
142 	mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
143 	mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
144 	mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
145 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
146 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
147 	mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
148 	mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
149 	mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
150 	mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
151 };
152 
153 static const u32 cz_mgcg_cgcg_init[] =
154 {
155 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
156 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
157 };
158 
159 static const u32 stoney_golden_settings_a11[] =
160 {
161 	mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
162 	mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
163 	mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
164 	mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
165 };
166 
167 static const u32 stoney_mgcg_cgcg_init[] =
168 {
169 	mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
170 };
171 
172 /*
173  * sDMA - System DMA
174  * Starting with CIK, the GPU has new asynchronous
175  * DMA engines.  These engines are used for compute
176  * and gfx.  There are two DMA engines (SDMA0, SDMA1)
177  * and each one supports 1 ring buffer used for gfx
178  * and 2 queues used for compute.
179  *
180  * The programming model is very similar to the CP
181  * (ring buffer, IBs, etc.), but sDMA has it's own
182  * packet format that is different from the PM4 format
183  * used by the CP. sDMA supports copying data, writing
184  * embedded data, solid fills, and a number of other
185  * things.  It also has support for tiling/detiling of
186  * buffers.
187  */
188 
189 static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
190 {
191 	switch (adev->asic_type) {
192 	case CHIP_FIJI:
193 		amdgpu_program_register_sequence(adev,
194 						 fiji_mgcg_cgcg_init,
195 						 (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
196 		amdgpu_program_register_sequence(adev,
197 						 golden_settings_fiji_a10,
198 						 (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
199 		break;
200 	case CHIP_TONGA:
201 		amdgpu_program_register_sequence(adev,
202 						 tonga_mgcg_cgcg_init,
203 						 (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
204 		amdgpu_program_register_sequence(adev,
205 						 golden_settings_tonga_a11,
206 						 (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
207 		break;
208 	case CHIP_POLARIS11:
209 		amdgpu_program_register_sequence(adev,
210 						 golden_settings_polaris11_a11,
211 						 (const u32)ARRAY_SIZE(golden_settings_polaris11_a11));
212 		break;
213 	case CHIP_POLARIS10:
214 		amdgpu_program_register_sequence(adev,
215 						 golden_settings_polaris10_a11,
216 						 (const u32)ARRAY_SIZE(golden_settings_polaris10_a11));
217 		break;
218 	case CHIP_CARRIZO:
219 		amdgpu_program_register_sequence(adev,
220 						 cz_mgcg_cgcg_init,
221 						 (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
222 		amdgpu_program_register_sequence(adev,
223 						 cz_golden_settings_a11,
224 						 (const u32)ARRAY_SIZE(cz_golden_settings_a11));
225 		break;
226 	case CHIP_STONEY:
227 		amdgpu_program_register_sequence(adev,
228 						 stoney_mgcg_cgcg_init,
229 						 (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
230 		amdgpu_program_register_sequence(adev,
231 						 stoney_golden_settings_a11,
232 						 (const u32)ARRAY_SIZE(stoney_golden_settings_a11));
233 		break;
234 	default:
235 		break;
236 	}
237 }
238 
239 static void sdma_v3_0_free_microcode(struct amdgpu_device *adev)
240 {
241 	int i;
242 	for (i = 0; i < adev->sdma.num_instances; i++) {
243 		release_firmware(adev->sdma.instance[i].fw);
244 		adev->sdma.instance[i].fw = NULL;
245 	}
246 }
247 
248 /**
249  * sdma_v3_0_init_microcode - load ucode images from disk
250  *
251  * @adev: amdgpu_device pointer
252  *
253  * Use the firmware interface to load the ucode images into
254  * the driver (not loaded into hw).
255  * Returns 0 on success, error on failure.
256  */
257 static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
258 {
259 	const char *chip_name;
260 	char fw_name[30];
261 	int err = 0, i;
262 	struct amdgpu_firmware_info *info = NULL;
263 	const struct common_firmware_header *header = NULL;
264 	const struct sdma_firmware_header_v1_0 *hdr;
265 
266 	DRM_DEBUG("\n");
267 
268 	switch (adev->asic_type) {
269 	case CHIP_TONGA:
270 		chip_name = "tonga";
271 		break;
272 	case CHIP_FIJI:
273 		chip_name = "fiji";
274 		break;
275 	case CHIP_POLARIS11:
276 		chip_name = "polaris11";
277 		break;
278 	case CHIP_POLARIS10:
279 		chip_name = "polaris10";
280 		break;
281 	case CHIP_CARRIZO:
282 		chip_name = "carrizo";
283 		break;
284 	case CHIP_STONEY:
285 		chip_name = "stoney";
286 		break;
287 	default: BUG();
288 	}
289 
290 	for (i = 0; i < adev->sdma.num_instances; i++) {
291 		if (i == 0)
292 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
293 		else
294 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
295 		err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
296 		if (err)
297 			goto out;
298 		err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
299 		if (err)
300 			goto out;
301 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
302 		adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
303 		adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
304 		if (adev->sdma.instance[i].feature_version >= 20)
305 			adev->sdma.instance[i].burst_nop = true;
306 
307 		if (adev->firmware.smu_load) {
308 			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
309 			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
310 			info->fw = adev->sdma.instance[i].fw;
311 			header = (const struct common_firmware_header *)info->fw->data;
312 			adev->firmware.fw_size +=
313 				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
314 		}
315 	}
316 out:
317 	if (err) {
318 		printk(KERN_ERR
319 		       "sdma_v3_0: Failed to load firmware \"%s\"\n",
320 		       fw_name);
321 		for (i = 0; i < adev->sdma.num_instances; i++) {
322 			release_firmware(adev->sdma.instance[i].fw);
323 			adev->sdma.instance[i].fw = NULL;
324 		}
325 	}
326 	return err;
327 }
328 
329 /**
330  * sdma_v3_0_ring_get_rptr - get the current read pointer
331  *
332  * @ring: amdgpu ring pointer
333  *
334  * Get the current rptr from the hardware (VI+).
335  */
336 static uint32_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
337 {
338 	/* XXX check if swapping is necessary on BE */
339 	return ring->adev->wb.wb[ring->rptr_offs] >> 2;
340 }
341 
342 /**
343  * sdma_v3_0_ring_get_wptr - get the current write pointer
344  *
345  * @ring: amdgpu ring pointer
346  *
347  * Get the current wptr from the hardware (VI+).
348  */
349 static uint32_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
350 {
351 	struct amdgpu_device *adev = ring->adev;
352 	u32 wptr;
353 
354 	if (ring->use_doorbell) {
355 		/* XXX check if swapping is necessary on BE */
356 		wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
357 	} else {
358 		int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
359 
360 		wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
361 	}
362 
363 	return wptr;
364 }
365 
366 /**
367  * sdma_v3_0_ring_set_wptr - commit the write pointer
368  *
369  * @ring: amdgpu ring pointer
370  *
371  * Write the wptr back to the hardware (VI+).
372  */
373 static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
374 {
375 	struct amdgpu_device *adev = ring->adev;
376 
377 	if (ring->use_doorbell) {
378 		/* XXX check if swapping is necessary on BE */
379 		adev->wb.wb[ring->wptr_offs] = ring->wptr << 2;
380 		WDOORBELL32(ring->doorbell_index, ring->wptr << 2);
381 	} else {
382 		int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
383 
384 		WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
385 	}
386 }
387 
388 static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
389 {
390 	struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
391 	int i;
392 
393 	for (i = 0; i < count; i++)
394 		if (sdma && sdma->burst_nop && (i == 0))
395 			amdgpu_ring_write(ring, ring->funcs->nop |
396 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
397 		else
398 			amdgpu_ring_write(ring, ring->funcs->nop);
399 }
400 
401 /**
402  * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
403  *
404  * @ring: amdgpu ring pointer
405  * @ib: IB object to schedule
406  *
407  * Schedule an IB in the DMA ring (VI).
408  */
409 static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
410 				   struct amdgpu_ib *ib,
411 				   unsigned vm_id, bool ctx_switch)
412 {
413 	u32 vmid = vm_id & 0xf;
414 
415 	/* IB packet must end on a 8 DW boundary */
416 	sdma_v3_0_ring_insert_nop(ring, (10 - (ring->wptr & 7)) % 8);
417 
418 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
419 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
420 	/* base must be 32 byte aligned */
421 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
422 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
423 	amdgpu_ring_write(ring, ib->length_dw);
424 	amdgpu_ring_write(ring, 0);
425 	amdgpu_ring_write(ring, 0);
426 
427 }
428 
429 /**
430  * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
431  *
432  * @ring: amdgpu ring pointer
433  *
434  * Emit an hdp flush packet on the requested DMA ring.
435  */
436 static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
437 {
438 	u32 ref_and_mask = 0;
439 
440 	if (ring == &ring->adev->sdma.instance[0].ring)
441 		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
442 	else
443 		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
444 
445 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
446 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
447 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
448 	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
449 	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
450 	amdgpu_ring_write(ring, ref_and_mask); /* reference */
451 	amdgpu_ring_write(ring, ref_and_mask); /* mask */
452 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
453 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
454 }
455 
456 static void sdma_v3_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
457 {
458 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
459 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
460 	amdgpu_ring_write(ring, mmHDP_DEBUG0);
461 	amdgpu_ring_write(ring, 1);
462 }
463 
464 /**
465  * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
466  *
467  * @ring: amdgpu ring pointer
468  * @fence: amdgpu fence object
469  *
470  * Add a DMA fence packet to the ring to write
471  * the fence seq number and DMA trap packet to generate
472  * an interrupt if needed (VI).
473  */
474 static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
475 				      unsigned flags)
476 {
477 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
478 	/* write the fence */
479 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
480 	amdgpu_ring_write(ring, lower_32_bits(addr));
481 	amdgpu_ring_write(ring, upper_32_bits(addr));
482 	amdgpu_ring_write(ring, lower_32_bits(seq));
483 
484 	/* optionally write high bits as well */
485 	if (write64bit) {
486 		addr += 4;
487 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
488 		amdgpu_ring_write(ring, lower_32_bits(addr));
489 		amdgpu_ring_write(ring, upper_32_bits(addr));
490 		amdgpu_ring_write(ring, upper_32_bits(seq));
491 	}
492 
493 	/* generate an interrupt */
494 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
495 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
496 }
497 
498 /**
499  * sdma_v3_0_gfx_stop - stop the gfx async dma engines
500  *
501  * @adev: amdgpu_device pointer
502  *
503  * Stop the gfx async dma ring buffers (VI).
504  */
505 static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
506 {
507 	struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
508 	struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
509 	u32 rb_cntl, ib_cntl;
510 	int i;
511 
512 	if ((adev->mman.buffer_funcs_ring == sdma0) ||
513 	    (adev->mman.buffer_funcs_ring == sdma1))
514 		amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
515 
516 	for (i = 0; i < adev->sdma.num_instances; i++) {
517 		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
518 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
519 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
520 		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
521 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
522 		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
523 	}
524 	sdma0->ready = false;
525 	sdma1->ready = false;
526 }
527 
528 /**
529  * sdma_v3_0_rlc_stop - stop the compute async dma engines
530  *
531  * @adev: amdgpu_device pointer
532  *
533  * Stop the compute async dma queues (VI).
534  */
535 static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
536 {
537 	/* XXX todo */
538 }
539 
540 /**
541  * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
542  *
543  * @adev: amdgpu_device pointer
544  * @enable: enable/disable the DMA MEs context switch.
545  *
546  * Halt or unhalt the async dma engines context switch (VI).
547  */
548 static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
549 {
550 	u32 f32_cntl;
551 	int i;
552 
553 	for (i = 0; i < adev->sdma.num_instances; i++) {
554 		f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
555 		if (enable)
556 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
557 					AUTO_CTXSW_ENABLE, 1);
558 		else
559 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
560 					AUTO_CTXSW_ENABLE, 0);
561 		WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
562 	}
563 }
564 
565 /**
566  * sdma_v3_0_enable - stop the async dma engines
567  *
568  * @adev: amdgpu_device pointer
569  * @enable: enable/disable the DMA MEs.
570  *
571  * Halt or unhalt the async dma engines (VI).
572  */
573 static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
574 {
575 	u32 f32_cntl;
576 	int i;
577 
578 	if (!enable) {
579 		sdma_v3_0_gfx_stop(adev);
580 		sdma_v3_0_rlc_stop(adev);
581 	}
582 
583 	for (i = 0; i < adev->sdma.num_instances; i++) {
584 		f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
585 		if (enable)
586 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
587 		else
588 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
589 		WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
590 	}
591 }
592 
593 /**
594  * sdma_v3_0_gfx_resume - setup and start the async dma engines
595  *
596  * @adev: amdgpu_device pointer
597  *
598  * Set up the gfx DMA ring buffers and enable them (VI).
599  * Returns 0 for success, error for failure.
600  */
601 static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
602 {
603 	struct amdgpu_ring *ring;
604 	u32 rb_cntl, ib_cntl;
605 	u32 rb_bufsz;
606 	u32 wb_offset;
607 	u32 doorbell;
608 	int i, j, r;
609 
610 	for (i = 0; i < adev->sdma.num_instances; i++) {
611 		ring = &adev->sdma.instance[i].ring;
612 		wb_offset = (ring->rptr_offs * 4);
613 
614 		mutex_lock(&adev->srbm_mutex);
615 		for (j = 0; j < 16; j++) {
616 			vi_srbm_select(adev, 0, 0, 0, j);
617 			/* SDMA GFX */
618 			WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
619 			WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
620 		}
621 		vi_srbm_select(adev, 0, 0, 0, 0);
622 		mutex_unlock(&adev->srbm_mutex);
623 
624 		WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
625 		       adev->gfx.config.gb_addr_config & 0x70);
626 
627 		WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
628 
629 		/* Set ring buffer size in dwords */
630 		rb_bufsz = order_base_2(ring->ring_size / 4);
631 		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
632 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
633 #ifdef __BIG_ENDIAN
634 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
635 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
636 					RPTR_WRITEBACK_SWAP_ENABLE, 1);
637 #endif
638 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
639 
640 		/* Initialize the ring buffer's read and write pointers */
641 		WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
642 		WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
643 		WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
644 		WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
645 
646 		/* set the wb address whether it's enabled or not */
647 		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
648 		       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
649 		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
650 		       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
651 
652 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
653 
654 		WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
655 		WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
656 
657 		ring->wptr = 0;
658 		WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
659 
660 		doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
661 
662 		if (ring->use_doorbell) {
663 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
664 						 OFFSET, ring->doorbell_index);
665 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
666 		} else {
667 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
668 		}
669 		WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
670 
671 		/* enable DMA RB */
672 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
673 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
674 
675 		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
676 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
677 #ifdef __BIG_ENDIAN
678 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
679 #endif
680 		/* enable DMA IBs */
681 		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
682 
683 		ring->ready = true;
684 	}
685 
686 	/* unhalt the MEs */
687 	sdma_v3_0_enable(adev, true);
688 	/* enable sdma ring preemption */
689 	sdma_v3_0_ctx_switch_enable(adev, true);
690 
691 	for (i = 0; i < adev->sdma.num_instances; i++) {
692 		ring = &adev->sdma.instance[i].ring;
693 		r = amdgpu_ring_test_ring(ring);
694 		if (r) {
695 			ring->ready = false;
696 			return r;
697 		}
698 
699 		if (adev->mman.buffer_funcs_ring == ring)
700 			amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
701 	}
702 
703 	return 0;
704 }
705 
706 /**
707  * sdma_v3_0_rlc_resume - setup and start the async dma engines
708  *
709  * @adev: amdgpu_device pointer
710  *
711  * Set up the compute DMA queues and enable them (VI).
712  * Returns 0 for success, error for failure.
713  */
714 static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
715 {
716 	/* XXX todo */
717 	return 0;
718 }
719 
720 /**
721  * sdma_v3_0_load_microcode - load the sDMA ME ucode
722  *
723  * @adev: amdgpu_device pointer
724  *
725  * Loads the sDMA0/1 ucode.
726  * Returns 0 for success, -EINVAL if the ucode is not available.
727  */
728 static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
729 {
730 	const struct sdma_firmware_header_v1_0 *hdr;
731 	const __le32 *fw_data;
732 	u32 fw_size;
733 	int i, j;
734 
735 	/* halt the MEs */
736 	sdma_v3_0_enable(adev, false);
737 
738 	for (i = 0; i < adev->sdma.num_instances; i++) {
739 		if (!adev->sdma.instance[i].fw)
740 			return -EINVAL;
741 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
742 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
743 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
744 		fw_data = (const __le32 *)
745 			(adev->sdma.instance[i].fw->data +
746 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
747 		WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
748 		for (j = 0; j < fw_size; j++)
749 			WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
750 		WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
751 	}
752 
753 	return 0;
754 }
755 
756 /**
757  * sdma_v3_0_start - setup and start the async dma engines
758  *
759  * @adev: amdgpu_device pointer
760  *
761  * Set up the DMA engines and enable them (VI).
762  * Returns 0 for success, error for failure.
763  */
764 static int sdma_v3_0_start(struct amdgpu_device *adev)
765 {
766 	int r, i;
767 
768 	if (!adev->pp_enabled) {
769 		if (!adev->firmware.smu_load) {
770 			r = sdma_v3_0_load_microcode(adev);
771 			if (r)
772 				return r;
773 		} else {
774 			for (i = 0; i < adev->sdma.num_instances; i++) {
775 				r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
776 										 (i == 0) ?
777 										 AMDGPU_UCODE_ID_SDMA0 :
778 										 AMDGPU_UCODE_ID_SDMA1);
779 				if (r)
780 					return -EINVAL;
781 			}
782 		}
783 	}
784 
785 	/* disble sdma engine before programing it */
786 	sdma_v3_0_ctx_switch_enable(adev, false);
787 	sdma_v3_0_enable(adev, false);
788 
789 	/* start the gfx rings and rlc compute queues */
790 	r = sdma_v3_0_gfx_resume(adev);
791 	if (r)
792 		return r;
793 	r = sdma_v3_0_rlc_resume(adev);
794 	if (r)
795 		return r;
796 
797 	return 0;
798 }
799 
800 /**
801  * sdma_v3_0_ring_test_ring - simple async dma engine test
802  *
803  * @ring: amdgpu_ring structure holding ring information
804  *
805  * Test the DMA engine by writing using it to write an
806  * value to memory. (VI).
807  * Returns 0 for success, error for failure.
808  */
809 static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
810 {
811 	struct amdgpu_device *adev = ring->adev;
812 	unsigned i;
813 	unsigned index;
814 	int r;
815 	u32 tmp;
816 	u64 gpu_addr;
817 
818 	r = amdgpu_wb_get(adev, &index);
819 	if (r) {
820 		dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
821 		return r;
822 	}
823 
824 	gpu_addr = adev->wb.gpu_addr + (index * 4);
825 	tmp = 0xCAFEDEAD;
826 	adev->wb.wb[index] = cpu_to_le32(tmp);
827 
828 	r = amdgpu_ring_alloc(ring, 5);
829 	if (r) {
830 		DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
831 		amdgpu_wb_free(adev, index);
832 		return r;
833 	}
834 
835 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
836 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
837 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
838 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
839 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
840 	amdgpu_ring_write(ring, 0xDEADBEEF);
841 	amdgpu_ring_commit(ring);
842 
843 	for (i = 0; i < adev->usec_timeout; i++) {
844 		tmp = le32_to_cpu(adev->wb.wb[index]);
845 		if (tmp == 0xDEADBEEF)
846 			break;
847 		DRM_UDELAY(1);
848 	}
849 
850 	if (i < adev->usec_timeout) {
851 		DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
852 	} else {
853 		DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
854 			  ring->idx, tmp);
855 		r = -EINVAL;
856 	}
857 	amdgpu_wb_free(adev, index);
858 
859 	return r;
860 }
861 
862 /**
863  * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
864  *
865  * @ring: amdgpu_ring structure holding ring information
866  *
867  * Test a simple IB in the DMA ring (VI).
868  * Returns 0 on success, error on failure.
869  */
870 static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
871 {
872 	struct amdgpu_device *adev = ring->adev;
873 	struct amdgpu_ib ib;
874 	struct dma_fence *f = NULL;
875 	unsigned index;
876 	u32 tmp = 0;
877 	u64 gpu_addr;
878 	long r;
879 
880 	r = amdgpu_wb_get(adev, &index);
881 	if (r) {
882 		dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
883 		return r;
884 	}
885 
886 	gpu_addr = adev->wb.gpu_addr + (index * 4);
887 	tmp = 0xCAFEDEAD;
888 	adev->wb.wb[index] = cpu_to_le32(tmp);
889 	memset(&ib, 0, sizeof(ib));
890 	r = amdgpu_ib_get(adev, NULL, 256, &ib);
891 	if (r) {
892 		DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
893 		goto err0;
894 	}
895 
896 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
897 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
898 	ib.ptr[1] = lower_32_bits(gpu_addr);
899 	ib.ptr[2] = upper_32_bits(gpu_addr);
900 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
901 	ib.ptr[4] = 0xDEADBEEF;
902 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
903 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
904 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
905 	ib.length_dw = 8;
906 
907 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, NULL, &f);
908 	if (r)
909 		goto err1;
910 
911 	r = dma_fence_wait_timeout(f, false, timeout);
912 	if (r == 0) {
913 		DRM_ERROR("amdgpu: IB test timed out\n");
914 		r = -ETIMEDOUT;
915 		goto err1;
916 	} else if (r < 0) {
917 		DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
918 		goto err1;
919 	}
920 	tmp = le32_to_cpu(adev->wb.wb[index]);
921 	if (tmp == 0xDEADBEEF) {
922 		DRM_INFO("ib test on ring %d succeeded\n", ring->idx);
923 		r = 0;
924 	} else {
925 		DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
926 		r = -EINVAL;
927 	}
928 err1:
929 	amdgpu_ib_free(adev, &ib, NULL);
930 	dma_fence_put(f);
931 err0:
932 	amdgpu_wb_free(adev, index);
933 	return r;
934 }
935 
936 /**
937  * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
938  *
939  * @ib: indirect buffer to fill with commands
940  * @pe: addr of the page entry
941  * @src: src addr to copy from
942  * @count: number of page entries to update
943  *
944  * Update PTEs by copying them from the GART using sDMA (CIK).
945  */
946 static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
947 				  uint64_t pe, uint64_t src,
948 				  unsigned count)
949 {
950 	unsigned bytes = count * 8;
951 
952 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
953 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
954 	ib->ptr[ib->length_dw++] = bytes;
955 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
956 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
957 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
958 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
959 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
960 }
961 
962 /**
963  * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
964  *
965  * @ib: indirect buffer to fill with commands
966  * @pe: addr of the page entry
967  * @value: dst addr to write into pe
968  * @count: number of page entries to update
969  * @incr: increase next addr by incr bytes
970  *
971  * Update PTEs by writing them manually using sDMA (CIK).
972  */
973 static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
974 				   uint64_t value, unsigned count,
975 				   uint32_t incr)
976 {
977 	unsigned ndw = count * 2;
978 
979 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
980 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
981 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
982 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
983 	ib->ptr[ib->length_dw++] = ndw;
984 	for (; ndw > 0; ndw -= 2) {
985 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
986 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
987 		value += incr;
988 	}
989 }
990 
991 /**
992  * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
993  *
994  * @ib: indirect buffer to fill with commands
995  * @pe: addr of the page entry
996  * @addr: dst addr to write into pe
997  * @count: number of page entries to update
998  * @incr: increase next addr by incr bytes
999  * @flags: access flags
1000  *
1001  * Update the page tables using sDMA (CIK).
1002  */
1003 static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe,
1004 				     uint64_t addr, unsigned count,
1005 				     uint32_t incr, uint32_t flags)
1006 {
1007 	/* for physically contiguous pages (vram) */
1008 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
1009 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1010 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1011 	ib->ptr[ib->length_dw++] = flags; /* mask */
1012 	ib->ptr[ib->length_dw++] = 0;
1013 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1014 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1015 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1016 	ib->ptr[ib->length_dw++] = 0;
1017 	ib->ptr[ib->length_dw++] = count; /* number of entries */
1018 }
1019 
1020 /**
1021  * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
1022  *
1023  * @ib: indirect buffer to fill with padding
1024  *
1025  */
1026 static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1027 {
1028 	struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
1029 	u32 pad_count;
1030 	int i;
1031 
1032 	pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1033 	for (i = 0; i < pad_count; i++)
1034 		if (sdma && sdma->burst_nop && (i == 0))
1035 			ib->ptr[ib->length_dw++] =
1036 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1037 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1038 		else
1039 			ib->ptr[ib->length_dw++] =
1040 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1041 }
1042 
1043 /**
1044  * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
1045  *
1046  * @ring: amdgpu_ring pointer
1047  *
1048  * Make sure all previous operations are completed (CIK).
1049  */
1050 static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1051 {
1052 	uint32_t seq = ring->fence_drv.sync_seq;
1053 	uint64_t addr = ring->fence_drv.gpu_addr;
1054 
1055 	/* wait for idle */
1056 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1057 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1058 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1059 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1060 	amdgpu_ring_write(ring, addr & 0xfffffffc);
1061 	amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1062 	amdgpu_ring_write(ring, seq); /* reference */
1063 	amdgpu_ring_write(ring, 0xfffffff); /* mask */
1064 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1065 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1066 }
1067 
1068 /**
1069  * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
1070  *
1071  * @ring: amdgpu_ring pointer
1072  * @vm: amdgpu_vm pointer
1073  *
1074  * Update the page table base and flush the VM TLB
1075  * using sDMA (VI).
1076  */
1077 static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1078 					 unsigned vm_id, uint64_t pd_addr)
1079 {
1080 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1081 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1082 	if (vm_id < 8) {
1083 		amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
1084 	} else {
1085 		amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
1086 	}
1087 	amdgpu_ring_write(ring, pd_addr >> 12);
1088 
1089 	/* flush TLB */
1090 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1091 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1092 	amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
1093 	amdgpu_ring_write(ring, 1 << vm_id);
1094 
1095 	/* wait for flush */
1096 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1097 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1098 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
1099 	amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
1100 	amdgpu_ring_write(ring, 0);
1101 	amdgpu_ring_write(ring, 0); /* reference */
1102 	amdgpu_ring_write(ring, 0); /* mask */
1103 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1104 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
1105 }
1106 
1107 static int sdma_v3_0_early_init(void *handle)
1108 {
1109 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1110 
1111 	switch (adev->asic_type) {
1112 	case CHIP_STONEY:
1113 		adev->sdma.num_instances = 1;
1114 		break;
1115 	default:
1116 		adev->sdma.num_instances = SDMA_MAX_INSTANCE;
1117 		break;
1118 	}
1119 
1120 	sdma_v3_0_set_ring_funcs(adev);
1121 	sdma_v3_0_set_buffer_funcs(adev);
1122 	sdma_v3_0_set_vm_pte_funcs(adev);
1123 	sdma_v3_0_set_irq_funcs(adev);
1124 
1125 	return 0;
1126 }
1127 
1128 static int sdma_v3_0_sw_init(void *handle)
1129 {
1130 	struct amdgpu_ring *ring;
1131 	int r, i;
1132 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1133 
1134 	/* SDMA trap event */
1135 	r = amdgpu_irq_add_id(adev, 224, &adev->sdma.trap_irq);
1136 	if (r)
1137 		return r;
1138 
1139 	/* SDMA Privileged inst */
1140 	r = amdgpu_irq_add_id(adev, 241, &adev->sdma.illegal_inst_irq);
1141 	if (r)
1142 		return r;
1143 
1144 	/* SDMA Privileged inst */
1145 	r = amdgpu_irq_add_id(adev, 247, &adev->sdma.illegal_inst_irq);
1146 	if (r)
1147 		return r;
1148 
1149 	r = sdma_v3_0_init_microcode(adev);
1150 	if (r) {
1151 		DRM_ERROR("Failed to load sdma firmware!\n");
1152 		return r;
1153 	}
1154 
1155 	for (i = 0; i < adev->sdma.num_instances; i++) {
1156 		ring = &adev->sdma.instance[i].ring;
1157 		ring->ring_obj = NULL;
1158 		ring->use_doorbell = true;
1159 		ring->doorbell_index = (i == 0) ?
1160 			AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
1161 
1162 		sprintf(ring->name, "sdma%d", i);
1163 		r = amdgpu_ring_init(adev, ring, 1024,
1164 				     &adev->sdma.trap_irq,
1165 				     (i == 0) ?
1166 				     AMDGPU_SDMA_IRQ_TRAP0 :
1167 				     AMDGPU_SDMA_IRQ_TRAP1);
1168 		if (r)
1169 			return r;
1170 	}
1171 
1172 	return r;
1173 }
1174 
1175 static int sdma_v3_0_sw_fini(void *handle)
1176 {
1177 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1178 	int i;
1179 
1180 	for (i = 0; i < adev->sdma.num_instances; i++)
1181 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1182 
1183 	sdma_v3_0_free_microcode(adev);
1184 	return 0;
1185 }
1186 
1187 static int sdma_v3_0_hw_init(void *handle)
1188 {
1189 	int r;
1190 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1191 
1192 	sdma_v3_0_init_golden_registers(adev);
1193 
1194 	r = sdma_v3_0_start(adev);
1195 	if (r)
1196 		return r;
1197 
1198 	return r;
1199 }
1200 
1201 static int sdma_v3_0_hw_fini(void *handle)
1202 {
1203 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1204 
1205 	sdma_v3_0_ctx_switch_enable(adev, false);
1206 	sdma_v3_0_enable(adev, false);
1207 
1208 	return 0;
1209 }
1210 
1211 static int sdma_v3_0_suspend(void *handle)
1212 {
1213 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1214 
1215 	return sdma_v3_0_hw_fini(adev);
1216 }
1217 
1218 static int sdma_v3_0_resume(void *handle)
1219 {
1220 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1221 
1222 	return sdma_v3_0_hw_init(adev);
1223 }
1224 
1225 static bool sdma_v3_0_is_idle(void *handle)
1226 {
1227 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1228 	u32 tmp = RREG32(mmSRBM_STATUS2);
1229 
1230 	if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
1231 		   SRBM_STATUS2__SDMA1_BUSY_MASK))
1232 	    return false;
1233 
1234 	return true;
1235 }
1236 
1237 static int sdma_v3_0_wait_for_idle(void *handle)
1238 {
1239 	unsigned i;
1240 	u32 tmp;
1241 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1242 
1243 	for (i = 0; i < adev->usec_timeout; i++) {
1244 		tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
1245 				SRBM_STATUS2__SDMA1_BUSY_MASK);
1246 
1247 		if (!tmp)
1248 			return 0;
1249 		udelay(1);
1250 	}
1251 	return -ETIMEDOUT;
1252 }
1253 
1254 static bool sdma_v3_0_check_soft_reset(void *handle)
1255 {
1256 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1257 	u32 srbm_soft_reset = 0;
1258 	u32 tmp = RREG32(mmSRBM_STATUS2);
1259 
1260 	if ((tmp & SRBM_STATUS2__SDMA_BUSY_MASK) ||
1261 	    (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK)) {
1262 		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
1263 		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
1264 	}
1265 
1266 	if (srbm_soft_reset) {
1267 		adev->sdma.srbm_soft_reset = srbm_soft_reset;
1268 		return true;
1269 	} else {
1270 		adev->sdma.srbm_soft_reset = 0;
1271 		return false;
1272 	}
1273 }
1274 
1275 static int sdma_v3_0_pre_soft_reset(void *handle)
1276 {
1277 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1278 	u32 srbm_soft_reset = 0;
1279 
1280 	if (!adev->sdma.srbm_soft_reset)
1281 		return 0;
1282 
1283 	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1284 
1285 	if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1286 	    REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1287 		sdma_v3_0_ctx_switch_enable(adev, false);
1288 		sdma_v3_0_enable(adev, false);
1289 	}
1290 
1291 	return 0;
1292 }
1293 
1294 static int sdma_v3_0_post_soft_reset(void *handle)
1295 {
1296 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1297 	u32 srbm_soft_reset = 0;
1298 
1299 	if (!adev->sdma.srbm_soft_reset)
1300 		return 0;
1301 
1302 	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1303 
1304 	if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1305 	    REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1306 		sdma_v3_0_gfx_resume(adev);
1307 		sdma_v3_0_rlc_resume(adev);
1308 	}
1309 
1310 	return 0;
1311 }
1312 
1313 static int sdma_v3_0_soft_reset(void *handle)
1314 {
1315 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1316 	u32 srbm_soft_reset = 0;
1317 	u32 tmp;
1318 
1319 	if (!adev->sdma.srbm_soft_reset)
1320 		return 0;
1321 
1322 	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1323 
1324 	if (srbm_soft_reset) {
1325 		tmp = RREG32(mmSRBM_SOFT_RESET);
1326 		tmp |= srbm_soft_reset;
1327 		dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1328 		WREG32(mmSRBM_SOFT_RESET, tmp);
1329 		tmp = RREG32(mmSRBM_SOFT_RESET);
1330 
1331 		udelay(50);
1332 
1333 		tmp &= ~srbm_soft_reset;
1334 		WREG32(mmSRBM_SOFT_RESET, tmp);
1335 		tmp = RREG32(mmSRBM_SOFT_RESET);
1336 
1337 		/* Wait a little for things to settle down */
1338 		udelay(50);
1339 	}
1340 
1341 	return 0;
1342 }
1343 
1344 static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
1345 					struct amdgpu_irq_src *source,
1346 					unsigned type,
1347 					enum amdgpu_interrupt_state state)
1348 {
1349 	u32 sdma_cntl;
1350 
1351 	switch (type) {
1352 	case AMDGPU_SDMA_IRQ_TRAP0:
1353 		switch (state) {
1354 		case AMDGPU_IRQ_STATE_DISABLE:
1355 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1356 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1357 			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1358 			break;
1359 		case AMDGPU_IRQ_STATE_ENABLE:
1360 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1361 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1362 			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1363 			break;
1364 		default:
1365 			break;
1366 		}
1367 		break;
1368 	case AMDGPU_SDMA_IRQ_TRAP1:
1369 		switch (state) {
1370 		case AMDGPU_IRQ_STATE_DISABLE:
1371 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1372 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1373 			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1374 			break;
1375 		case AMDGPU_IRQ_STATE_ENABLE:
1376 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1377 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1378 			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1379 			break;
1380 		default:
1381 			break;
1382 		}
1383 		break;
1384 	default:
1385 		break;
1386 	}
1387 	return 0;
1388 }
1389 
1390 static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
1391 				      struct amdgpu_irq_src *source,
1392 				      struct amdgpu_iv_entry *entry)
1393 {
1394 	u8 instance_id, queue_id;
1395 
1396 	instance_id = (entry->ring_id & 0x3) >> 0;
1397 	queue_id = (entry->ring_id & 0xc) >> 2;
1398 	DRM_DEBUG("IH: SDMA trap\n");
1399 	switch (instance_id) {
1400 	case 0:
1401 		switch (queue_id) {
1402 		case 0:
1403 			amdgpu_fence_process(&adev->sdma.instance[0].ring);
1404 			break;
1405 		case 1:
1406 			/* XXX compute */
1407 			break;
1408 		case 2:
1409 			/* XXX compute */
1410 			break;
1411 		}
1412 		break;
1413 	case 1:
1414 		switch (queue_id) {
1415 		case 0:
1416 			amdgpu_fence_process(&adev->sdma.instance[1].ring);
1417 			break;
1418 		case 1:
1419 			/* XXX compute */
1420 			break;
1421 		case 2:
1422 			/* XXX compute */
1423 			break;
1424 		}
1425 		break;
1426 	}
1427 	return 0;
1428 }
1429 
1430 static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1431 					      struct amdgpu_irq_src *source,
1432 					      struct amdgpu_iv_entry *entry)
1433 {
1434 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
1435 	schedule_work(&adev->reset_work);
1436 	return 0;
1437 }
1438 
1439 static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
1440 		struct amdgpu_device *adev,
1441 		bool enable)
1442 {
1443 	uint32_t temp, data;
1444 	int i;
1445 
1446 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1447 		for (i = 0; i < adev->sdma.num_instances; i++) {
1448 			temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1449 			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1450 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1451 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1452 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1453 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1454 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1455 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1456 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1457 			if (data != temp)
1458 				WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1459 		}
1460 	} else {
1461 		for (i = 0; i < adev->sdma.num_instances; i++) {
1462 			temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1463 			data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1464 				SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1465 				SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1466 				SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1467 				SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1468 				SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1469 				SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1470 				SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
1471 
1472 			if (data != temp)
1473 				WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1474 		}
1475 	}
1476 }
1477 
1478 static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
1479 		struct amdgpu_device *adev,
1480 		bool enable)
1481 {
1482 	uint32_t temp, data;
1483 	int i;
1484 
1485 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1486 		for (i = 0; i < adev->sdma.num_instances; i++) {
1487 			temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1488 			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1489 
1490 			if (temp != data)
1491 				WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1492 		}
1493 	} else {
1494 		for (i = 0; i < adev->sdma.num_instances; i++) {
1495 			temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1496 			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1497 
1498 			if (temp != data)
1499 				WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1500 		}
1501 	}
1502 }
1503 
1504 static int sdma_v3_0_set_clockgating_state(void *handle,
1505 					  enum amd_clockgating_state state)
1506 {
1507 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1508 
1509 	switch (adev->asic_type) {
1510 	case CHIP_FIJI:
1511 	case CHIP_CARRIZO:
1512 	case CHIP_STONEY:
1513 		sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
1514 				state == AMD_CG_STATE_GATE ? true : false);
1515 		sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
1516 				state == AMD_CG_STATE_GATE ? true : false);
1517 		break;
1518 	default:
1519 		break;
1520 	}
1521 	return 0;
1522 }
1523 
1524 static int sdma_v3_0_set_powergating_state(void *handle,
1525 					  enum amd_powergating_state state)
1526 {
1527 	return 0;
1528 }
1529 
1530 static const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
1531 	.name = "sdma_v3_0",
1532 	.early_init = sdma_v3_0_early_init,
1533 	.late_init = NULL,
1534 	.sw_init = sdma_v3_0_sw_init,
1535 	.sw_fini = sdma_v3_0_sw_fini,
1536 	.hw_init = sdma_v3_0_hw_init,
1537 	.hw_fini = sdma_v3_0_hw_fini,
1538 	.suspend = sdma_v3_0_suspend,
1539 	.resume = sdma_v3_0_resume,
1540 	.is_idle = sdma_v3_0_is_idle,
1541 	.wait_for_idle = sdma_v3_0_wait_for_idle,
1542 	.check_soft_reset = sdma_v3_0_check_soft_reset,
1543 	.pre_soft_reset = sdma_v3_0_pre_soft_reset,
1544 	.post_soft_reset = sdma_v3_0_post_soft_reset,
1545 	.soft_reset = sdma_v3_0_soft_reset,
1546 	.set_clockgating_state = sdma_v3_0_set_clockgating_state,
1547 	.set_powergating_state = sdma_v3_0_set_powergating_state,
1548 };
1549 
1550 static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
1551 	.type = AMDGPU_RING_TYPE_SDMA,
1552 	.align_mask = 0xf,
1553 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1554 	.get_rptr = sdma_v3_0_ring_get_rptr,
1555 	.get_wptr = sdma_v3_0_ring_get_wptr,
1556 	.set_wptr = sdma_v3_0_ring_set_wptr,
1557 	.emit_frame_size =
1558 		6 + /* sdma_v3_0_ring_emit_hdp_flush */
1559 		3 + /* sdma_v3_0_ring_emit_hdp_invalidate */
1560 		6 + /* sdma_v3_0_ring_emit_pipeline_sync */
1561 		12 + /* sdma_v3_0_ring_emit_vm_flush */
1562 		10 + 10 + 10, /* sdma_v3_0_ring_emit_fence x3 for user fence, vm fence */
1563 	.emit_ib_size = 7 + 6, /* sdma_v3_0_ring_emit_ib */
1564 	.emit_ib = sdma_v3_0_ring_emit_ib,
1565 	.emit_fence = sdma_v3_0_ring_emit_fence,
1566 	.emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
1567 	.emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
1568 	.emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
1569 	.emit_hdp_invalidate = sdma_v3_0_ring_emit_hdp_invalidate,
1570 	.test_ring = sdma_v3_0_ring_test_ring,
1571 	.test_ib = sdma_v3_0_ring_test_ib,
1572 	.insert_nop = sdma_v3_0_ring_insert_nop,
1573 	.pad_ib = sdma_v3_0_ring_pad_ib,
1574 };
1575 
1576 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
1577 {
1578 	int i;
1579 
1580 	for (i = 0; i < adev->sdma.num_instances; i++)
1581 		adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
1582 }
1583 
1584 static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
1585 	.set = sdma_v3_0_set_trap_irq_state,
1586 	.process = sdma_v3_0_process_trap_irq,
1587 };
1588 
1589 static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
1590 	.process = sdma_v3_0_process_illegal_inst_irq,
1591 };
1592 
1593 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
1594 {
1595 	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1596 	adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
1597 	adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
1598 }
1599 
1600 /**
1601  * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
1602  *
1603  * @ring: amdgpu_ring structure holding ring information
1604  * @src_offset: src GPU address
1605  * @dst_offset: dst GPU address
1606  * @byte_count: number of bytes to xfer
1607  *
1608  * Copy GPU buffers using the DMA engine (VI).
1609  * Used by the amdgpu ttm implementation to move pages if
1610  * registered as the asic copy callback.
1611  */
1612 static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
1613 				       uint64_t src_offset,
1614 				       uint64_t dst_offset,
1615 				       uint32_t byte_count)
1616 {
1617 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1618 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1619 	ib->ptr[ib->length_dw++] = byte_count;
1620 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1621 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1622 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1623 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1624 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1625 }
1626 
1627 /**
1628  * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
1629  *
1630  * @ring: amdgpu_ring structure holding ring information
1631  * @src_data: value to write to buffer
1632  * @dst_offset: dst GPU address
1633  * @byte_count: number of bytes to xfer
1634  *
1635  * Fill GPU buffers using the DMA engine (VI).
1636  */
1637 static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
1638 				       uint32_t src_data,
1639 				       uint64_t dst_offset,
1640 				       uint32_t byte_count)
1641 {
1642 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1643 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1644 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1645 	ib->ptr[ib->length_dw++] = src_data;
1646 	ib->ptr[ib->length_dw++] = byte_count;
1647 }
1648 
1649 static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
1650 	.copy_max_bytes = 0x1fffff,
1651 	.copy_num_dw = 7,
1652 	.emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
1653 
1654 	.fill_max_bytes = 0x1fffff,
1655 	.fill_num_dw = 5,
1656 	.emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
1657 };
1658 
1659 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
1660 {
1661 	if (adev->mman.buffer_funcs == NULL) {
1662 		adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
1663 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1664 	}
1665 }
1666 
1667 static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
1668 	.copy_pte = sdma_v3_0_vm_copy_pte,
1669 	.write_pte = sdma_v3_0_vm_write_pte,
1670 	.set_pte_pde = sdma_v3_0_vm_set_pte_pde,
1671 };
1672 
1673 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1674 {
1675 	unsigned i;
1676 
1677 	if (adev->vm_manager.vm_pte_funcs == NULL) {
1678 		adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
1679 		for (i = 0; i < adev->sdma.num_instances; i++)
1680 			adev->vm_manager.vm_pte_rings[i] =
1681 				&adev->sdma.instance[i].ring;
1682 
1683 		adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
1684 	}
1685 }
1686 
1687 const struct amdgpu_ip_block_version sdma_v3_0_ip_block =
1688 {
1689 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1690 	.major = 3,
1691 	.minor = 0,
1692 	.rev = 0,
1693 	.funcs = &sdma_v3_0_ip_funcs,
1694 };
1695 
1696 const struct amdgpu_ip_block_version sdma_v3_1_ip_block =
1697 {
1698 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1699 	.major = 3,
1700 	.minor = 1,
1701 	.rev = 0,
1702 	.funcs = &sdma_v3_0_ip_funcs,
1703 };
1704