xref: /linux/drivers/gpu/drm/amd/amdgpu/sdma_v3_0.c (revision 071bf69a0220253a44acb8b2a27f7a262b9a46bf)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Alex Deucher
23  */
24 #include <linux/firmware.h>
25 #include <drm/drmP.h>
26 #include "amdgpu.h"
27 #include "amdgpu_ucode.h"
28 #include "amdgpu_trace.h"
29 #include "vi.h"
30 #include "vid.h"
31 
32 #include "oss/oss_3_0_d.h"
33 #include "oss/oss_3_0_sh_mask.h"
34 
35 #include "gmc/gmc_8_1_d.h"
36 #include "gmc/gmc_8_1_sh_mask.h"
37 
38 #include "gca/gfx_8_0_d.h"
39 #include "gca/gfx_8_0_enum.h"
40 #include "gca/gfx_8_0_sh_mask.h"
41 
42 #include "bif/bif_5_0_d.h"
43 #include "bif/bif_5_0_sh_mask.h"
44 
45 #include "tonga_sdma_pkt_open.h"
46 
47 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
48 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
49 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
50 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
51 
52 MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
53 MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
54 MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
55 MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
56 MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
57 MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
58 MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
59 MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
60 MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
61 MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
62 MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
63 
64 
65 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
66 {
67 	SDMA0_REGISTER_OFFSET,
68 	SDMA1_REGISTER_OFFSET
69 };
70 
71 static const u32 golden_settings_tonga_a11[] =
72 {
73 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
74 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
75 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
76 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
77 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
78 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
79 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
80 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
81 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
82 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
83 };
84 
85 static const u32 tonga_mgcg_cgcg_init[] =
86 {
87 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
88 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
89 };
90 
91 static const u32 golden_settings_fiji_a10[] =
92 {
93 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
94 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
95 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
96 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
97 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
98 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
99 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
100 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
101 };
102 
103 static const u32 fiji_mgcg_cgcg_init[] =
104 {
105 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
106 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
107 };
108 
109 static const u32 golden_settings_polaris11_a11[] =
110 {
111 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
112 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
113 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
114 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
115 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
116 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
117 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
118 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
119 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
120 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
121 };
122 
123 static const u32 golden_settings_polaris10_a11[] =
124 {
125 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
126 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
127 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
128 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
129 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
130 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
131 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
132 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
133 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
134 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
135 };
136 
137 static const u32 cz_golden_settings_a11[] =
138 {
139 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
140 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
141 	mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
142 	mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
143 	mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
144 	mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
145 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
146 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
147 	mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
148 	mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
149 	mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
150 	mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
151 };
152 
153 static const u32 cz_mgcg_cgcg_init[] =
154 {
155 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
156 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
157 };
158 
159 static const u32 stoney_golden_settings_a11[] =
160 {
161 	mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
162 	mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
163 	mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
164 	mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
165 };
166 
167 static const u32 stoney_mgcg_cgcg_init[] =
168 {
169 	mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
170 };
171 
172 /*
173  * sDMA - System DMA
174  * Starting with CIK, the GPU has new asynchronous
175  * DMA engines.  These engines are used for compute
176  * and gfx.  There are two DMA engines (SDMA0, SDMA1)
177  * and each one supports 1 ring buffer used for gfx
178  * and 2 queues used for compute.
179  *
180  * The programming model is very similar to the CP
181  * (ring buffer, IBs, etc.), but sDMA has it's own
182  * packet format that is different from the PM4 format
183  * used by the CP. sDMA supports copying data, writing
184  * embedded data, solid fills, and a number of other
185  * things.  It also has support for tiling/detiling of
186  * buffers.
187  */
188 
189 static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
190 {
191 	switch (adev->asic_type) {
192 	case CHIP_FIJI:
193 		amdgpu_program_register_sequence(adev,
194 						 fiji_mgcg_cgcg_init,
195 						 (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
196 		amdgpu_program_register_sequence(adev,
197 						 golden_settings_fiji_a10,
198 						 (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
199 		break;
200 	case CHIP_TONGA:
201 		amdgpu_program_register_sequence(adev,
202 						 tonga_mgcg_cgcg_init,
203 						 (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
204 		amdgpu_program_register_sequence(adev,
205 						 golden_settings_tonga_a11,
206 						 (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
207 		break;
208 	case CHIP_POLARIS11:
209 		amdgpu_program_register_sequence(adev,
210 						 golden_settings_polaris11_a11,
211 						 (const u32)ARRAY_SIZE(golden_settings_polaris11_a11));
212 		break;
213 	case CHIP_POLARIS10:
214 		amdgpu_program_register_sequence(adev,
215 						 golden_settings_polaris10_a11,
216 						 (const u32)ARRAY_SIZE(golden_settings_polaris10_a11));
217 		break;
218 	case CHIP_CARRIZO:
219 		amdgpu_program_register_sequence(adev,
220 						 cz_mgcg_cgcg_init,
221 						 (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
222 		amdgpu_program_register_sequence(adev,
223 						 cz_golden_settings_a11,
224 						 (const u32)ARRAY_SIZE(cz_golden_settings_a11));
225 		break;
226 	case CHIP_STONEY:
227 		amdgpu_program_register_sequence(adev,
228 						 stoney_mgcg_cgcg_init,
229 						 (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
230 		amdgpu_program_register_sequence(adev,
231 						 stoney_golden_settings_a11,
232 						 (const u32)ARRAY_SIZE(stoney_golden_settings_a11));
233 		break;
234 	default:
235 		break;
236 	}
237 }
238 
239 static void sdma_v3_0_free_microcode(struct amdgpu_device *adev)
240 {
241 	int i;
242 	for (i = 0; i < adev->sdma.num_instances; i++) {
243 		release_firmware(adev->sdma.instance[i].fw);
244 		adev->sdma.instance[i].fw = NULL;
245 	}
246 }
247 
248 /**
249  * sdma_v3_0_init_microcode - load ucode images from disk
250  *
251  * @adev: amdgpu_device pointer
252  *
253  * Use the firmware interface to load the ucode images into
254  * the driver (not loaded into hw).
255  * Returns 0 on success, error on failure.
256  */
257 static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
258 {
259 	const char *chip_name;
260 	char fw_name[30];
261 	int err = 0, i;
262 	struct amdgpu_firmware_info *info = NULL;
263 	const struct common_firmware_header *header = NULL;
264 	const struct sdma_firmware_header_v1_0 *hdr;
265 
266 	DRM_DEBUG("\n");
267 
268 	switch (adev->asic_type) {
269 	case CHIP_TONGA:
270 		chip_name = "tonga";
271 		break;
272 	case CHIP_FIJI:
273 		chip_name = "fiji";
274 		break;
275 	case CHIP_POLARIS11:
276 		chip_name = "polaris11";
277 		break;
278 	case CHIP_POLARIS10:
279 		chip_name = "polaris10";
280 		break;
281 	case CHIP_CARRIZO:
282 		chip_name = "carrizo";
283 		break;
284 	case CHIP_STONEY:
285 		chip_name = "stoney";
286 		break;
287 	default: BUG();
288 	}
289 
290 	for (i = 0; i < adev->sdma.num_instances; i++) {
291 		if (i == 0)
292 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
293 		else
294 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
295 		err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
296 		if (err)
297 			goto out;
298 		err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
299 		if (err)
300 			goto out;
301 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
302 		adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
303 		adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
304 		if (adev->sdma.instance[i].feature_version >= 20)
305 			adev->sdma.instance[i].burst_nop = true;
306 
307 		if (adev->firmware.smu_load) {
308 			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
309 			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
310 			info->fw = adev->sdma.instance[i].fw;
311 			header = (const struct common_firmware_header *)info->fw->data;
312 			adev->firmware.fw_size +=
313 				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
314 		}
315 	}
316 out:
317 	if (err) {
318 		printk(KERN_ERR
319 		       "sdma_v3_0: Failed to load firmware \"%s\"\n",
320 		       fw_name);
321 		for (i = 0; i < adev->sdma.num_instances; i++) {
322 			release_firmware(adev->sdma.instance[i].fw);
323 			adev->sdma.instance[i].fw = NULL;
324 		}
325 	}
326 	return err;
327 }
328 
329 /**
330  * sdma_v3_0_ring_get_rptr - get the current read pointer
331  *
332  * @ring: amdgpu ring pointer
333  *
334  * Get the current rptr from the hardware (VI+).
335  */
336 static uint32_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
337 {
338 	u32 rptr;
339 
340 	/* XXX check if swapping is necessary on BE */
341 	rptr = ring->adev->wb.wb[ring->rptr_offs] >> 2;
342 
343 	return rptr;
344 }
345 
346 /**
347  * sdma_v3_0_ring_get_wptr - get the current write pointer
348  *
349  * @ring: amdgpu ring pointer
350  *
351  * Get the current wptr from the hardware (VI+).
352  */
353 static uint32_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
354 {
355 	struct amdgpu_device *adev = ring->adev;
356 	u32 wptr;
357 
358 	if (ring->use_doorbell) {
359 		/* XXX check if swapping is necessary on BE */
360 		wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
361 	} else {
362 		int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
363 
364 		wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
365 	}
366 
367 	return wptr;
368 }
369 
370 /**
371  * sdma_v3_0_ring_set_wptr - commit the write pointer
372  *
373  * @ring: amdgpu ring pointer
374  *
375  * Write the wptr back to the hardware (VI+).
376  */
377 static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
378 {
379 	struct amdgpu_device *adev = ring->adev;
380 
381 	if (ring->use_doorbell) {
382 		/* XXX check if swapping is necessary on BE */
383 		adev->wb.wb[ring->wptr_offs] = ring->wptr << 2;
384 		WDOORBELL32(ring->doorbell_index, ring->wptr << 2);
385 	} else {
386 		int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
387 
388 		WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
389 	}
390 }
391 
392 static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
393 {
394 	struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
395 	int i;
396 
397 	for (i = 0; i < count; i++)
398 		if (sdma && sdma->burst_nop && (i == 0))
399 			amdgpu_ring_write(ring, ring->nop |
400 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
401 		else
402 			amdgpu_ring_write(ring, ring->nop);
403 }
404 
405 /**
406  * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
407  *
408  * @ring: amdgpu ring pointer
409  * @ib: IB object to schedule
410  *
411  * Schedule an IB in the DMA ring (VI).
412  */
413 static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
414 				   struct amdgpu_ib *ib,
415 				   unsigned vm_id, bool ctx_switch)
416 {
417 	u32 vmid = vm_id & 0xf;
418 
419 	/* IB packet must end on a 8 DW boundary */
420 	sdma_v3_0_ring_insert_nop(ring, (10 - (ring->wptr & 7)) % 8);
421 
422 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
423 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
424 	/* base must be 32 byte aligned */
425 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
426 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
427 	amdgpu_ring_write(ring, ib->length_dw);
428 	amdgpu_ring_write(ring, 0);
429 	amdgpu_ring_write(ring, 0);
430 
431 }
432 
433 /**
434  * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
435  *
436  * @ring: amdgpu ring pointer
437  *
438  * Emit an hdp flush packet on the requested DMA ring.
439  */
440 static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
441 {
442 	u32 ref_and_mask = 0;
443 
444 	if (ring == &ring->adev->sdma.instance[0].ring)
445 		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
446 	else
447 		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
448 
449 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
450 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
451 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
452 	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
453 	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
454 	amdgpu_ring_write(ring, ref_and_mask); /* reference */
455 	amdgpu_ring_write(ring, ref_and_mask); /* mask */
456 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
457 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
458 }
459 
460 static void sdma_v3_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
461 {
462 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
463 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
464 	amdgpu_ring_write(ring, mmHDP_DEBUG0);
465 	amdgpu_ring_write(ring, 1);
466 }
467 
468 /**
469  * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
470  *
471  * @ring: amdgpu ring pointer
472  * @fence: amdgpu fence object
473  *
474  * Add a DMA fence packet to the ring to write
475  * the fence seq number and DMA trap packet to generate
476  * an interrupt if needed (VI).
477  */
478 static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
479 				      unsigned flags)
480 {
481 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
482 	/* write the fence */
483 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
484 	amdgpu_ring_write(ring, lower_32_bits(addr));
485 	amdgpu_ring_write(ring, upper_32_bits(addr));
486 	amdgpu_ring_write(ring, lower_32_bits(seq));
487 
488 	/* optionally write high bits as well */
489 	if (write64bit) {
490 		addr += 4;
491 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
492 		amdgpu_ring_write(ring, lower_32_bits(addr));
493 		amdgpu_ring_write(ring, upper_32_bits(addr));
494 		amdgpu_ring_write(ring, upper_32_bits(seq));
495 	}
496 
497 	/* generate an interrupt */
498 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
499 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
500 }
501 
502 unsigned init_cond_exec(struct amdgpu_ring *ring)
503 {
504 	unsigned ret;
505 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_COND_EXE));
506 	amdgpu_ring_write(ring, lower_32_bits(ring->cond_exe_gpu_addr));
507 	amdgpu_ring_write(ring, upper_32_bits(ring->cond_exe_gpu_addr));
508 	amdgpu_ring_write(ring, 1);
509 	ret = ring->wptr;/* this is the offset we need patch later */
510 	amdgpu_ring_write(ring, 0x55aa55aa);/* insert dummy here and patch it later */
511 	return ret;
512 }
513 
514 void patch_cond_exec(struct amdgpu_ring *ring, unsigned offset)
515 {
516 	unsigned cur;
517 	BUG_ON(ring->ring[offset] != 0x55aa55aa);
518 
519 	cur = ring->wptr - 1;
520 	if (likely(cur > offset))
521 		ring->ring[offset] = cur - offset;
522 	else
523 		ring->ring[offset] = (ring->ring_size>>2) - offset + cur;
524 }
525 
526 
527 /**
528  * sdma_v3_0_gfx_stop - stop the gfx async dma engines
529  *
530  * @adev: amdgpu_device pointer
531  *
532  * Stop the gfx async dma ring buffers (VI).
533  */
534 static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
535 {
536 	struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
537 	struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
538 	u32 rb_cntl, ib_cntl;
539 	int i;
540 
541 	if ((adev->mman.buffer_funcs_ring == sdma0) ||
542 	    (adev->mman.buffer_funcs_ring == sdma1))
543 		amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
544 
545 	for (i = 0; i < adev->sdma.num_instances; i++) {
546 		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
547 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
548 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
549 		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
550 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
551 		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
552 	}
553 	sdma0->ready = false;
554 	sdma1->ready = false;
555 }
556 
557 /**
558  * sdma_v3_0_rlc_stop - stop the compute async dma engines
559  *
560  * @adev: amdgpu_device pointer
561  *
562  * Stop the compute async dma queues (VI).
563  */
564 static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
565 {
566 	/* XXX todo */
567 }
568 
569 /**
570  * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
571  *
572  * @adev: amdgpu_device pointer
573  * @enable: enable/disable the DMA MEs context switch.
574  *
575  * Halt or unhalt the async dma engines context switch (VI).
576  */
577 static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
578 {
579 	u32 f32_cntl;
580 	int i;
581 
582 	for (i = 0; i < adev->sdma.num_instances; i++) {
583 		f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
584 		if (enable)
585 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
586 					AUTO_CTXSW_ENABLE, 1);
587 		else
588 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
589 					AUTO_CTXSW_ENABLE, 0);
590 		WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
591 	}
592 }
593 
594 /**
595  * sdma_v3_0_enable - stop the async dma engines
596  *
597  * @adev: amdgpu_device pointer
598  * @enable: enable/disable the DMA MEs.
599  *
600  * Halt or unhalt the async dma engines (VI).
601  */
602 static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
603 {
604 	u32 f32_cntl;
605 	int i;
606 
607 	if (!enable) {
608 		sdma_v3_0_gfx_stop(adev);
609 		sdma_v3_0_rlc_stop(adev);
610 	}
611 
612 	for (i = 0; i < adev->sdma.num_instances; i++) {
613 		f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
614 		if (enable)
615 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
616 		else
617 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
618 		WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
619 	}
620 }
621 
622 /**
623  * sdma_v3_0_gfx_resume - setup and start the async dma engines
624  *
625  * @adev: amdgpu_device pointer
626  *
627  * Set up the gfx DMA ring buffers and enable them (VI).
628  * Returns 0 for success, error for failure.
629  */
630 static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
631 {
632 	struct amdgpu_ring *ring;
633 	u32 rb_cntl, ib_cntl;
634 	u32 rb_bufsz;
635 	u32 wb_offset;
636 	u32 doorbell;
637 	int i, j, r;
638 
639 	for (i = 0; i < adev->sdma.num_instances; i++) {
640 		ring = &adev->sdma.instance[i].ring;
641 		wb_offset = (ring->rptr_offs * 4);
642 
643 		mutex_lock(&adev->srbm_mutex);
644 		for (j = 0; j < 16; j++) {
645 			vi_srbm_select(adev, 0, 0, 0, j);
646 			/* SDMA GFX */
647 			WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
648 			WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
649 		}
650 		vi_srbm_select(adev, 0, 0, 0, 0);
651 		mutex_unlock(&adev->srbm_mutex);
652 
653 		WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
654 		       adev->gfx.config.gb_addr_config & 0x70);
655 
656 		WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
657 
658 		/* Set ring buffer size in dwords */
659 		rb_bufsz = order_base_2(ring->ring_size / 4);
660 		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
661 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
662 #ifdef __BIG_ENDIAN
663 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
664 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
665 					RPTR_WRITEBACK_SWAP_ENABLE, 1);
666 #endif
667 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
668 
669 		/* Initialize the ring buffer's read and write pointers */
670 		WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
671 		WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
672 		WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
673 		WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
674 
675 		/* set the wb address whether it's enabled or not */
676 		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
677 		       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
678 		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
679 		       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
680 
681 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
682 
683 		WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
684 		WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
685 
686 		ring->wptr = 0;
687 		WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
688 
689 		doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
690 
691 		if (ring->use_doorbell) {
692 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
693 						 OFFSET, ring->doorbell_index);
694 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
695 		} else {
696 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
697 		}
698 		WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
699 
700 		/* enable DMA RB */
701 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
702 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
703 
704 		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
705 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
706 #ifdef __BIG_ENDIAN
707 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
708 #endif
709 		/* enable DMA IBs */
710 		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
711 
712 		ring->ready = true;
713 	}
714 
715 	/* unhalt the MEs */
716 	sdma_v3_0_enable(adev, true);
717 	/* enable sdma ring preemption */
718 	sdma_v3_0_ctx_switch_enable(adev, true);
719 
720 	for (i = 0; i < adev->sdma.num_instances; i++) {
721 		ring = &adev->sdma.instance[i].ring;
722 		r = amdgpu_ring_test_ring(ring);
723 		if (r) {
724 			ring->ready = false;
725 			return r;
726 		}
727 
728 		if (adev->mman.buffer_funcs_ring == ring)
729 			amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
730 	}
731 
732 	return 0;
733 }
734 
735 /**
736  * sdma_v3_0_rlc_resume - setup and start the async dma engines
737  *
738  * @adev: amdgpu_device pointer
739  *
740  * Set up the compute DMA queues and enable them (VI).
741  * Returns 0 for success, error for failure.
742  */
743 static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
744 {
745 	/* XXX todo */
746 	return 0;
747 }
748 
749 /**
750  * sdma_v3_0_load_microcode - load the sDMA ME ucode
751  *
752  * @adev: amdgpu_device pointer
753  *
754  * Loads the sDMA0/1 ucode.
755  * Returns 0 for success, -EINVAL if the ucode is not available.
756  */
757 static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
758 {
759 	const struct sdma_firmware_header_v1_0 *hdr;
760 	const __le32 *fw_data;
761 	u32 fw_size;
762 	int i, j;
763 
764 	/* halt the MEs */
765 	sdma_v3_0_enable(adev, false);
766 
767 	for (i = 0; i < adev->sdma.num_instances; i++) {
768 		if (!adev->sdma.instance[i].fw)
769 			return -EINVAL;
770 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
771 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
772 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
773 		fw_data = (const __le32 *)
774 			(adev->sdma.instance[i].fw->data +
775 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
776 		WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
777 		for (j = 0; j < fw_size; j++)
778 			WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
779 		WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
780 	}
781 
782 	return 0;
783 }
784 
785 /**
786  * sdma_v3_0_start - setup and start the async dma engines
787  *
788  * @adev: amdgpu_device pointer
789  *
790  * Set up the DMA engines and enable them (VI).
791  * Returns 0 for success, error for failure.
792  */
793 static int sdma_v3_0_start(struct amdgpu_device *adev)
794 {
795 	int r, i;
796 
797 	if (!adev->pp_enabled) {
798 		if (!adev->firmware.smu_load) {
799 			r = sdma_v3_0_load_microcode(adev);
800 			if (r)
801 				return r;
802 		} else {
803 			for (i = 0; i < adev->sdma.num_instances; i++) {
804 				r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
805 										 (i == 0) ?
806 										 AMDGPU_UCODE_ID_SDMA0 :
807 										 AMDGPU_UCODE_ID_SDMA1);
808 				if (r)
809 					return -EINVAL;
810 			}
811 		}
812 	}
813 
814 	/* disble sdma engine before programing it */
815 	sdma_v3_0_ctx_switch_enable(adev, false);
816 	sdma_v3_0_enable(adev, false);
817 
818 	/* start the gfx rings and rlc compute queues */
819 	r = sdma_v3_0_gfx_resume(adev);
820 	if (r)
821 		return r;
822 	r = sdma_v3_0_rlc_resume(adev);
823 	if (r)
824 		return r;
825 
826 	return 0;
827 }
828 
829 /**
830  * sdma_v3_0_ring_test_ring - simple async dma engine test
831  *
832  * @ring: amdgpu_ring structure holding ring information
833  *
834  * Test the DMA engine by writing using it to write an
835  * value to memory. (VI).
836  * Returns 0 for success, error for failure.
837  */
838 static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
839 {
840 	struct amdgpu_device *adev = ring->adev;
841 	unsigned i;
842 	unsigned index;
843 	int r;
844 	u32 tmp;
845 	u64 gpu_addr;
846 
847 	r = amdgpu_wb_get(adev, &index);
848 	if (r) {
849 		dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
850 		return r;
851 	}
852 
853 	gpu_addr = adev->wb.gpu_addr + (index * 4);
854 	tmp = 0xCAFEDEAD;
855 	adev->wb.wb[index] = cpu_to_le32(tmp);
856 
857 	r = amdgpu_ring_alloc(ring, 5);
858 	if (r) {
859 		DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
860 		amdgpu_wb_free(adev, index);
861 		return r;
862 	}
863 
864 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
865 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
866 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
867 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
868 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
869 	amdgpu_ring_write(ring, 0xDEADBEEF);
870 	amdgpu_ring_commit(ring);
871 
872 	for (i = 0; i < adev->usec_timeout; i++) {
873 		tmp = le32_to_cpu(adev->wb.wb[index]);
874 		if (tmp == 0xDEADBEEF)
875 			break;
876 		DRM_UDELAY(1);
877 	}
878 
879 	if (i < adev->usec_timeout) {
880 		DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
881 	} else {
882 		DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
883 			  ring->idx, tmp);
884 		r = -EINVAL;
885 	}
886 	amdgpu_wb_free(adev, index);
887 
888 	return r;
889 }
890 
891 /**
892  * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
893  *
894  * @ring: amdgpu_ring structure holding ring information
895  *
896  * Test a simple IB in the DMA ring (VI).
897  * Returns 0 on success, error on failure.
898  */
899 static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
900 {
901 	struct amdgpu_device *adev = ring->adev;
902 	struct amdgpu_ib ib;
903 	struct fence *f = NULL;
904 	unsigned index;
905 	u32 tmp = 0;
906 	u64 gpu_addr;
907 	long r;
908 
909 	r = amdgpu_wb_get(adev, &index);
910 	if (r) {
911 		dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
912 		return r;
913 	}
914 
915 	gpu_addr = adev->wb.gpu_addr + (index * 4);
916 	tmp = 0xCAFEDEAD;
917 	adev->wb.wb[index] = cpu_to_le32(tmp);
918 	memset(&ib, 0, sizeof(ib));
919 	r = amdgpu_ib_get(adev, NULL, 256, &ib);
920 	if (r) {
921 		DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
922 		goto err0;
923 	}
924 
925 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
926 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
927 	ib.ptr[1] = lower_32_bits(gpu_addr);
928 	ib.ptr[2] = upper_32_bits(gpu_addr);
929 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
930 	ib.ptr[4] = 0xDEADBEEF;
931 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
932 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
933 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
934 	ib.length_dw = 8;
935 
936 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, NULL, &f);
937 	if (r)
938 		goto err1;
939 
940 	r = fence_wait_timeout(f, false, timeout);
941 	if (r == 0) {
942 		DRM_ERROR("amdgpu: IB test timed out\n");
943 		r = -ETIMEDOUT;
944 		goto err1;
945 	} else if (r < 0) {
946 		DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
947 		goto err1;
948 	}
949 	tmp = le32_to_cpu(adev->wb.wb[index]);
950 	if (tmp == 0xDEADBEEF) {
951 		DRM_INFO("ib test on ring %d succeeded\n", ring->idx);
952 		r = 0;
953 	} else {
954 		DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
955 		r = -EINVAL;
956 	}
957 err1:
958 	amdgpu_ib_free(adev, &ib, NULL);
959 	fence_put(f);
960 err0:
961 	amdgpu_wb_free(adev, index);
962 	return r;
963 }
964 
965 /**
966  * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
967  *
968  * @ib: indirect buffer to fill with commands
969  * @pe: addr of the page entry
970  * @src: src addr to copy from
971  * @count: number of page entries to update
972  *
973  * Update PTEs by copying them from the GART using sDMA (CIK).
974  */
975 static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
976 				  uint64_t pe, uint64_t src,
977 				  unsigned count)
978 {
979 	while (count) {
980 		unsigned bytes = count * 8;
981 		if (bytes > 0x1FFFF8)
982 			bytes = 0x1FFFF8;
983 
984 		ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
985 			SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
986 		ib->ptr[ib->length_dw++] = bytes;
987 		ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
988 		ib->ptr[ib->length_dw++] = lower_32_bits(src);
989 		ib->ptr[ib->length_dw++] = upper_32_bits(src);
990 		ib->ptr[ib->length_dw++] = lower_32_bits(pe);
991 		ib->ptr[ib->length_dw++] = upper_32_bits(pe);
992 
993 		pe += bytes;
994 		src += bytes;
995 		count -= bytes / 8;
996 	}
997 }
998 
999 /**
1000  * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
1001  *
1002  * @ib: indirect buffer to fill with commands
1003  * @pe: addr of the page entry
1004  * @addr: dst addr to write into pe
1005  * @count: number of page entries to update
1006  * @incr: increase next addr by incr bytes
1007  * @flags: access flags
1008  *
1009  * Update PTEs by writing them manually using sDMA (CIK).
1010  */
1011 static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib,
1012 				   const dma_addr_t *pages_addr, uint64_t pe,
1013 				   uint64_t addr, unsigned count,
1014 				   uint32_t incr, uint32_t flags)
1015 {
1016 	uint64_t value;
1017 	unsigned ndw;
1018 
1019 	while (count) {
1020 		ndw = count * 2;
1021 		if (ndw > 0xFFFFE)
1022 			ndw = 0xFFFFE;
1023 
1024 		/* for non-physically contiguous pages (system) */
1025 		ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1026 			SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1027 		ib->ptr[ib->length_dw++] = pe;
1028 		ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1029 		ib->ptr[ib->length_dw++] = ndw;
1030 		for (; ndw > 0; ndw -= 2, --count, pe += 8) {
1031 			value = amdgpu_vm_map_gart(pages_addr, addr);
1032 			addr += incr;
1033 			value |= flags;
1034 			ib->ptr[ib->length_dw++] = value;
1035 			ib->ptr[ib->length_dw++] = upper_32_bits(value);
1036 		}
1037 	}
1038 }
1039 
1040 /**
1041  * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
1042  *
1043  * @ib: indirect buffer to fill with commands
1044  * @pe: addr of the page entry
1045  * @addr: dst addr to write into pe
1046  * @count: number of page entries to update
1047  * @incr: increase next addr by incr bytes
1048  * @flags: access flags
1049  *
1050  * Update the page tables using sDMA (CIK).
1051  */
1052 static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1053 				     uint64_t pe,
1054 				     uint64_t addr, unsigned count,
1055 				     uint32_t incr, uint32_t flags)
1056 {
1057 	uint64_t value;
1058 	unsigned ndw;
1059 
1060 	while (count) {
1061 		ndw = count;
1062 		if (ndw > 0x7FFFF)
1063 			ndw = 0x7FFFF;
1064 
1065 		if (flags & AMDGPU_PTE_VALID)
1066 			value = addr;
1067 		else
1068 			value = 0;
1069 
1070 		/* for physically contiguous pages (vram) */
1071 		ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
1072 		ib->ptr[ib->length_dw++] = pe; /* dst addr */
1073 		ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1074 		ib->ptr[ib->length_dw++] = flags; /* mask */
1075 		ib->ptr[ib->length_dw++] = 0;
1076 		ib->ptr[ib->length_dw++] = value; /* value */
1077 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1078 		ib->ptr[ib->length_dw++] = incr; /* increment size */
1079 		ib->ptr[ib->length_dw++] = 0;
1080 		ib->ptr[ib->length_dw++] = ndw; /* number of entries */
1081 
1082 		pe += ndw * 8;
1083 		addr += ndw * incr;
1084 		count -= ndw;
1085 	}
1086 }
1087 
1088 /**
1089  * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
1090  *
1091  * @ib: indirect buffer to fill with padding
1092  *
1093  */
1094 static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1095 {
1096 	struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
1097 	u32 pad_count;
1098 	int i;
1099 
1100 	pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1101 	for (i = 0; i < pad_count; i++)
1102 		if (sdma && sdma->burst_nop && (i == 0))
1103 			ib->ptr[ib->length_dw++] =
1104 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1105 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1106 		else
1107 			ib->ptr[ib->length_dw++] =
1108 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1109 }
1110 
1111 /**
1112  * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
1113  *
1114  * @ring: amdgpu_ring pointer
1115  *
1116  * Make sure all previous operations are completed (CIK).
1117  */
1118 static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1119 {
1120 	uint32_t seq = ring->fence_drv.sync_seq;
1121 	uint64_t addr = ring->fence_drv.gpu_addr;
1122 
1123 	/* wait for idle */
1124 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1125 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1126 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1127 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1128 	amdgpu_ring_write(ring, addr & 0xfffffffc);
1129 	amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1130 	amdgpu_ring_write(ring, seq); /* reference */
1131 	amdgpu_ring_write(ring, 0xfffffff); /* mask */
1132 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1133 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1134 }
1135 
1136 /**
1137  * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
1138  *
1139  * @ring: amdgpu_ring pointer
1140  * @vm: amdgpu_vm pointer
1141  *
1142  * Update the page table base and flush the VM TLB
1143  * using sDMA (VI).
1144  */
1145 static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1146 					 unsigned vm_id, uint64_t pd_addr)
1147 {
1148 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1149 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1150 	if (vm_id < 8) {
1151 		amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
1152 	} else {
1153 		amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
1154 	}
1155 	amdgpu_ring_write(ring, pd_addr >> 12);
1156 
1157 	/* flush TLB */
1158 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1159 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1160 	amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
1161 	amdgpu_ring_write(ring, 1 << vm_id);
1162 
1163 	/* wait for flush */
1164 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1165 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1166 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
1167 	amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
1168 	amdgpu_ring_write(ring, 0);
1169 	amdgpu_ring_write(ring, 0); /* reference */
1170 	amdgpu_ring_write(ring, 0); /* mask */
1171 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1172 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
1173 }
1174 
1175 static int sdma_v3_0_early_init(void *handle)
1176 {
1177 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1178 
1179 	switch (adev->asic_type) {
1180 	case CHIP_STONEY:
1181 		adev->sdma.num_instances = 1;
1182 		break;
1183 	default:
1184 		adev->sdma.num_instances = SDMA_MAX_INSTANCE;
1185 		break;
1186 	}
1187 
1188 	sdma_v3_0_set_ring_funcs(adev);
1189 	sdma_v3_0_set_buffer_funcs(adev);
1190 	sdma_v3_0_set_vm_pte_funcs(adev);
1191 	sdma_v3_0_set_irq_funcs(adev);
1192 
1193 	return 0;
1194 }
1195 
1196 static int sdma_v3_0_sw_init(void *handle)
1197 {
1198 	struct amdgpu_ring *ring;
1199 	int r, i;
1200 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1201 
1202 	/* SDMA trap event */
1203 	r = amdgpu_irq_add_id(adev, 224, &adev->sdma.trap_irq);
1204 	if (r)
1205 		return r;
1206 
1207 	/* SDMA Privileged inst */
1208 	r = amdgpu_irq_add_id(adev, 241, &adev->sdma.illegal_inst_irq);
1209 	if (r)
1210 		return r;
1211 
1212 	/* SDMA Privileged inst */
1213 	r = amdgpu_irq_add_id(adev, 247, &adev->sdma.illegal_inst_irq);
1214 	if (r)
1215 		return r;
1216 
1217 	r = sdma_v3_0_init_microcode(adev);
1218 	if (r) {
1219 		DRM_ERROR("Failed to load sdma firmware!\n");
1220 		return r;
1221 	}
1222 
1223 	for (i = 0; i < adev->sdma.num_instances; i++) {
1224 		ring = &adev->sdma.instance[i].ring;
1225 		ring->ring_obj = NULL;
1226 		ring->use_doorbell = true;
1227 		ring->doorbell_index = (i == 0) ?
1228 			AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
1229 
1230 		sprintf(ring->name, "sdma%d", i);
1231 		r = amdgpu_ring_init(adev, ring, 1024,
1232 				     SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
1233 				     &adev->sdma.trap_irq,
1234 				     (i == 0) ?
1235 				     AMDGPU_SDMA_IRQ_TRAP0 : AMDGPU_SDMA_IRQ_TRAP1,
1236 				     AMDGPU_RING_TYPE_SDMA);
1237 		if (r)
1238 			return r;
1239 	}
1240 
1241 	return r;
1242 }
1243 
1244 static int sdma_v3_0_sw_fini(void *handle)
1245 {
1246 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1247 	int i;
1248 
1249 	for (i = 0; i < adev->sdma.num_instances; i++)
1250 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1251 
1252 	sdma_v3_0_free_microcode(adev);
1253 	return 0;
1254 }
1255 
1256 static int sdma_v3_0_hw_init(void *handle)
1257 {
1258 	int r;
1259 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1260 
1261 	sdma_v3_0_init_golden_registers(adev);
1262 
1263 	r = sdma_v3_0_start(adev);
1264 	if (r)
1265 		return r;
1266 
1267 	return r;
1268 }
1269 
1270 static int sdma_v3_0_hw_fini(void *handle)
1271 {
1272 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1273 
1274 	sdma_v3_0_ctx_switch_enable(adev, false);
1275 	sdma_v3_0_enable(adev, false);
1276 
1277 	return 0;
1278 }
1279 
1280 static int sdma_v3_0_suspend(void *handle)
1281 {
1282 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1283 
1284 	return sdma_v3_0_hw_fini(adev);
1285 }
1286 
1287 static int sdma_v3_0_resume(void *handle)
1288 {
1289 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1290 
1291 	return sdma_v3_0_hw_init(adev);
1292 }
1293 
1294 static bool sdma_v3_0_is_idle(void *handle)
1295 {
1296 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1297 	u32 tmp = RREG32(mmSRBM_STATUS2);
1298 
1299 	if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
1300 		   SRBM_STATUS2__SDMA1_BUSY_MASK))
1301 	    return false;
1302 
1303 	return true;
1304 }
1305 
1306 static int sdma_v3_0_wait_for_idle(void *handle)
1307 {
1308 	unsigned i;
1309 	u32 tmp;
1310 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1311 
1312 	for (i = 0; i < adev->usec_timeout; i++) {
1313 		tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
1314 				SRBM_STATUS2__SDMA1_BUSY_MASK);
1315 
1316 		if (!tmp)
1317 			return 0;
1318 		udelay(1);
1319 	}
1320 	return -ETIMEDOUT;
1321 }
1322 
1323 static int sdma_v3_0_soft_reset(void *handle)
1324 {
1325 	u32 srbm_soft_reset = 0;
1326 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1327 	u32 tmp = RREG32(mmSRBM_STATUS2);
1328 
1329 	if (tmp & SRBM_STATUS2__SDMA_BUSY_MASK) {
1330 		/* sdma0 */
1331 		tmp = RREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET);
1332 		tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
1333 		WREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET, tmp);
1334 		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
1335 	}
1336 	if (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK) {
1337 		/* sdma1 */
1338 		tmp = RREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET);
1339 		tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
1340 		WREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET, tmp);
1341 		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
1342 	}
1343 
1344 	if (srbm_soft_reset) {
1345 		tmp = RREG32(mmSRBM_SOFT_RESET);
1346 		tmp |= srbm_soft_reset;
1347 		dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1348 		WREG32(mmSRBM_SOFT_RESET, tmp);
1349 		tmp = RREG32(mmSRBM_SOFT_RESET);
1350 
1351 		udelay(50);
1352 
1353 		tmp &= ~srbm_soft_reset;
1354 		WREG32(mmSRBM_SOFT_RESET, tmp);
1355 		tmp = RREG32(mmSRBM_SOFT_RESET);
1356 
1357 		/* Wait a little for things to settle down */
1358 		udelay(50);
1359 	}
1360 
1361 	return 0;
1362 }
1363 
1364 static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
1365 					struct amdgpu_irq_src *source,
1366 					unsigned type,
1367 					enum amdgpu_interrupt_state state)
1368 {
1369 	u32 sdma_cntl;
1370 
1371 	switch (type) {
1372 	case AMDGPU_SDMA_IRQ_TRAP0:
1373 		switch (state) {
1374 		case AMDGPU_IRQ_STATE_DISABLE:
1375 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1376 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1377 			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1378 			break;
1379 		case AMDGPU_IRQ_STATE_ENABLE:
1380 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1381 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1382 			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1383 			break;
1384 		default:
1385 			break;
1386 		}
1387 		break;
1388 	case AMDGPU_SDMA_IRQ_TRAP1:
1389 		switch (state) {
1390 		case AMDGPU_IRQ_STATE_DISABLE:
1391 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1392 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1393 			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1394 			break;
1395 		case AMDGPU_IRQ_STATE_ENABLE:
1396 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1397 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1398 			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1399 			break;
1400 		default:
1401 			break;
1402 		}
1403 		break;
1404 	default:
1405 		break;
1406 	}
1407 	return 0;
1408 }
1409 
1410 static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
1411 				      struct amdgpu_irq_src *source,
1412 				      struct amdgpu_iv_entry *entry)
1413 {
1414 	u8 instance_id, queue_id;
1415 
1416 	instance_id = (entry->ring_id & 0x3) >> 0;
1417 	queue_id = (entry->ring_id & 0xc) >> 2;
1418 	DRM_DEBUG("IH: SDMA trap\n");
1419 	switch (instance_id) {
1420 	case 0:
1421 		switch (queue_id) {
1422 		case 0:
1423 			amdgpu_fence_process(&adev->sdma.instance[0].ring);
1424 			break;
1425 		case 1:
1426 			/* XXX compute */
1427 			break;
1428 		case 2:
1429 			/* XXX compute */
1430 			break;
1431 		}
1432 		break;
1433 	case 1:
1434 		switch (queue_id) {
1435 		case 0:
1436 			amdgpu_fence_process(&adev->sdma.instance[1].ring);
1437 			break;
1438 		case 1:
1439 			/* XXX compute */
1440 			break;
1441 		case 2:
1442 			/* XXX compute */
1443 			break;
1444 		}
1445 		break;
1446 	}
1447 	return 0;
1448 }
1449 
1450 static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1451 					      struct amdgpu_irq_src *source,
1452 					      struct amdgpu_iv_entry *entry)
1453 {
1454 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
1455 	schedule_work(&adev->reset_work);
1456 	return 0;
1457 }
1458 
1459 static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
1460 		struct amdgpu_device *adev,
1461 		bool enable)
1462 {
1463 	uint32_t temp, data;
1464 	int i;
1465 
1466 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1467 		for (i = 0; i < adev->sdma.num_instances; i++) {
1468 			temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1469 			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1470 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1471 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1472 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1473 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1474 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1475 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1476 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1477 			if (data != temp)
1478 				WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1479 		}
1480 	} else {
1481 		for (i = 0; i < adev->sdma.num_instances; i++) {
1482 			temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1483 			data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1484 				SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1485 				SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1486 				SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1487 				SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1488 				SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1489 				SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1490 				SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
1491 
1492 			if (data != temp)
1493 				WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1494 		}
1495 	}
1496 }
1497 
1498 static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
1499 		struct amdgpu_device *adev,
1500 		bool enable)
1501 {
1502 	uint32_t temp, data;
1503 	int i;
1504 
1505 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1506 		for (i = 0; i < adev->sdma.num_instances; i++) {
1507 			temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1508 			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1509 
1510 			if (temp != data)
1511 				WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1512 		}
1513 	} else {
1514 		for (i = 0; i < adev->sdma.num_instances; i++) {
1515 			temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1516 			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1517 
1518 			if (temp != data)
1519 				WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1520 		}
1521 	}
1522 }
1523 
1524 static int sdma_v3_0_set_clockgating_state(void *handle,
1525 					  enum amd_clockgating_state state)
1526 {
1527 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1528 
1529 	switch (adev->asic_type) {
1530 	case CHIP_FIJI:
1531 	case CHIP_CARRIZO:
1532 	case CHIP_STONEY:
1533 		sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
1534 				state == AMD_CG_STATE_GATE ? true : false);
1535 		sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
1536 				state == AMD_CG_STATE_GATE ? true : false);
1537 		break;
1538 	default:
1539 		break;
1540 	}
1541 	return 0;
1542 }
1543 
1544 static int sdma_v3_0_set_powergating_state(void *handle,
1545 					  enum amd_powergating_state state)
1546 {
1547 	return 0;
1548 }
1549 
1550 const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
1551 	.name = "sdma_v3_0",
1552 	.early_init = sdma_v3_0_early_init,
1553 	.late_init = NULL,
1554 	.sw_init = sdma_v3_0_sw_init,
1555 	.sw_fini = sdma_v3_0_sw_fini,
1556 	.hw_init = sdma_v3_0_hw_init,
1557 	.hw_fini = sdma_v3_0_hw_fini,
1558 	.suspend = sdma_v3_0_suspend,
1559 	.resume = sdma_v3_0_resume,
1560 	.is_idle = sdma_v3_0_is_idle,
1561 	.wait_for_idle = sdma_v3_0_wait_for_idle,
1562 	.soft_reset = sdma_v3_0_soft_reset,
1563 	.set_clockgating_state = sdma_v3_0_set_clockgating_state,
1564 	.set_powergating_state = sdma_v3_0_set_powergating_state,
1565 };
1566 
1567 static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
1568 	.get_rptr = sdma_v3_0_ring_get_rptr,
1569 	.get_wptr = sdma_v3_0_ring_get_wptr,
1570 	.set_wptr = sdma_v3_0_ring_set_wptr,
1571 	.parse_cs = NULL,
1572 	.emit_ib = sdma_v3_0_ring_emit_ib,
1573 	.emit_fence = sdma_v3_0_ring_emit_fence,
1574 	.emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
1575 	.emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
1576 	.emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
1577 	.emit_hdp_invalidate = sdma_v3_0_ring_emit_hdp_invalidate,
1578 	.test_ring = sdma_v3_0_ring_test_ring,
1579 	.test_ib = sdma_v3_0_ring_test_ib,
1580 	.insert_nop = sdma_v3_0_ring_insert_nop,
1581 	.pad_ib = sdma_v3_0_ring_pad_ib,
1582 };
1583 
1584 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
1585 {
1586 	int i;
1587 
1588 	for (i = 0; i < adev->sdma.num_instances; i++)
1589 		adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
1590 }
1591 
1592 static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
1593 	.set = sdma_v3_0_set_trap_irq_state,
1594 	.process = sdma_v3_0_process_trap_irq,
1595 };
1596 
1597 static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
1598 	.process = sdma_v3_0_process_illegal_inst_irq,
1599 };
1600 
1601 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
1602 {
1603 	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1604 	adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
1605 	adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
1606 }
1607 
1608 /**
1609  * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
1610  *
1611  * @ring: amdgpu_ring structure holding ring information
1612  * @src_offset: src GPU address
1613  * @dst_offset: dst GPU address
1614  * @byte_count: number of bytes to xfer
1615  *
1616  * Copy GPU buffers using the DMA engine (VI).
1617  * Used by the amdgpu ttm implementation to move pages if
1618  * registered as the asic copy callback.
1619  */
1620 static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
1621 				       uint64_t src_offset,
1622 				       uint64_t dst_offset,
1623 				       uint32_t byte_count)
1624 {
1625 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1626 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1627 	ib->ptr[ib->length_dw++] = byte_count;
1628 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1629 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1630 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1631 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1632 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1633 }
1634 
1635 /**
1636  * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
1637  *
1638  * @ring: amdgpu_ring structure holding ring information
1639  * @src_data: value to write to buffer
1640  * @dst_offset: dst GPU address
1641  * @byte_count: number of bytes to xfer
1642  *
1643  * Fill GPU buffers using the DMA engine (VI).
1644  */
1645 static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
1646 				       uint32_t src_data,
1647 				       uint64_t dst_offset,
1648 				       uint32_t byte_count)
1649 {
1650 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1651 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1652 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1653 	ib->ptr[ib->length_dw++] = src_data;
1654 	ib->ptr[ib->length_dw++] = byte_count;
1655 }
1656 
1657 static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
1658 	.copy_max_bytes = 0x1fffff,
1659 	.copy_num_dw = 7,
1660 	.emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
1661 
1662 	.fill_max_bytes = 0x1fffff,
1663 	.fill_num_dw = 5,
1664 	.emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
1665 };
1666 
1667 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
1668 {
1669 	if (adev->mman.buffer_funcs == NULL) {
1670 		adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
1671 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1672 	}
1673 }
1674 
1675 static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
1676 	.copy_pte = sdma_v3_0_vm_copy_pte,
1677 	.write_pte = sdma_v3_0_vm_write_pte,
1678 	.set_pte_pde = sdma_v3_0_vm_set_pte_pde,
1679 };
1680 
1681 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1682 {
1683 	unsigned i;
1684 
1685 	if (adev->vm_manager.vm_pte_funcs == NULL) {
1686 		adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
1687 		for (i = 0; i < adev->sdma.num_instances; i++)
1688 			adev->vm_manager.vm_pte_rings[i] =
1689 				&adev->sdma.instance[i].ring;
1690 
1691 		adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
1692 	}
1693 }
1694