xref: /linux/drivers/gpu/drm/amd/amdgpu/sdma_v2_4.c (revision e53b20598f394e37951d6355f1c88ae01165b53f)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Alex Deucher
23  */
24 
25 #include <linux/delay.h>
26 #include <linux/firmware.h>
27 #include <linux/module.h>
28 
29 #include "amdgpu.h"
30 #include "amdgpu_ucode.h"
31 #include "amdgpu_trace.h"
32 #include "vi.h"
33 #include "vid.h"
34 
35 #include "oss/oss_2_4_d.h"
36 #include "oss/oss_2_4_sh_mask.h"
37 
38 #include "gmc/gmc_7_1_d.h"
39 #include "gmc/gmc_7_1_sh_mask.h"
40 
41 #include "gca/gfx_8_0_d.h"
42 #include "gca/gfx_8_0_enum.h"
43 #include "gca/gfx_8_0_sh_mask.h"
44 
45 #include "bif/bif_5_0_d.h"
46 #include "bif/bif_5_0_sh_mask.h"
47 
48 #include "iceland_sdma_pkt_open.h"
49 
50 #include "ivsrcid/ivsrcid_vislands30.h"
51 
52 static void sdma_v2_4_set_ring_funcs(struct amdgpu_device *adev);
53 static void sdma_v2_4_set_buffer_funcs(struct amdgpu_device *adev);
54 static void sdma_v2_4_set_vm_pte_funcs(struct amdgpu_device *adev);
55 static void sdma_v2_4_set_irq_funcs(struct amdgpu_device *adev);
56 
57 MODULE_FIRMWARE("amdgpu/topaz_sdma.bin");
58 MODULE_FIRMWARE("amdgpu/topaz_sdma1.bin");
59 
60 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
61 {
62 	SDMA0_REGISTER_OFFSET,
63 	SDMA1_REGISTER_OFFSET
64 };
65 
66 static const u32 golden_settings_iceland_a11[] =
67 {
68 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
69 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
70 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
71 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
72 };
73 
74 static const u32 iceland_mgcg_cgcg_init[] =
75 {
76 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
77 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
78 };
79 
80 /*
81  * sDMA - System DMA
82  * Starting with CIK, the GPU has new asynchronous
83  * DMA engines.  These engines are used for compute
84  * and gfx.  There are two DMA engines (SDMA0, SDMA1)
85  * and each one supports 1 ring buffer used for gfx
86  * and 2 queues used for compute.
87  *
88  * The programming model is very similar to the CP
89  * (ring buffer, IBs, etc.), but sDMA has it's own
90  * packet format that is different from the PM4 format
91  * used by the CP. sDMA supports copying data, writing
92  * embedded data, solid fills, and a number of other
93  * things.  It also has support for tiling/detiling of
94  * buffers.
95  */
96 
97 static void sdma_v2_4_init_golden_registers(struct amdgpu_device *adev)
98 {
99 	switch (adev->asic_type) {
100 	case CHIP_TOPAZ:
101 		amdgpu_device_program_register_sequence(adev,
102 							iceland_mgcg_cgcg_init,
103 							ARRAY_SIZE(iceland_mgcg_cgcg_init));
104 		amdgpu_device_program_register_sequence(adev,
105 							golden_settings_iceland_a11,
106 							ARRAY_SIZE(golden_settings_iceland_a11));
107 		break;
108 	default:
109 		break;
110 	}
111 }
112 
113 static void sdma_v2_4_free_microcode(struct amdgpu_device *adev)
114 {
115 	int i;
116 	for (i = 0; i < adev->sdma.num_instances; i++) {
117 		release_firmware(adev->sdma.instance[i].fw);
118 		adev->sdma.instance[i].fw = NULL;
119 	}
120 }
121 
122 /**
123  * sdma_v2_4_init_microcode - load ucode images from disk
124  *
125  * @adev: amdgpu_device pointer
126  *
127  * Use the firmware interface to load the ucode images into
128  * the driver (not loaded into hw).
129  * Returns 0 on success, error on failure.
130  */
131 static int sdma_v2_4_init_microcode(struct amdgpu_device *adev)
132 {
133 	const char *chip_name;
134 	char fw_name[30];
135 	int err = 0, i;
136 	struct amdgpu_firmware_info *info = NULL;
137 	const struct common_firmware_header *header = NULL;
138 	const struct sdma_firmware_header_v1_0 *hdr;
139 
140 	DRM_DEBUG("\n");
141 
142 	switch (adev->asic_type) {
143 	case CHIP_TOPAZ:
144 		chip_name = "topaz";
145 		break;
146 	default: BUG();
147 	}
148 
149 	for (i = 0; i < adev->sdma.num_instances; i++) {
150 		if (i == 0)
151 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
152 		else
153 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
154 		err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
155 		if (err)
156 			goto out;
157 		err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
158 		if (err)
159 			goto out;
160 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
161 		adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
162 		adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
163 		if (adev->sdma.instance[i].feature_version >= 20)
164 			adev->sdma.instance[i].burst_nop = true;
165 
166 		if (adev->firmware.load_type == AMDGPU_FW_LOAD_SMU) {
167 			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
168 			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
169 			info->fw = adev->sdma.instance[i].fw;
170 			header = (const struct common_firmware_header *)info->fw->data;
171 			adev->firmware.fw_size +=
172 				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
173 		}
174 	}
175 
176 out:
177 	if (err) {
178 		pr_err("sdma_v2_4: Failed to load firmware \"%s\"\n", fw_name);
179 		for (i = 0; i < adev->sdma.num_instances; i++) {
180 			release_firmware(adev->sdma.instance[i].fw);
181 			adev->sdma.instance[i].fw = NULL;
182 		}
183 	}
184 	return err;
185 }
186 
187 /**
188  * sdma_v2_4_ring_get_rptr - get the current read pointer
189  *
190  * @ring: amdgpu ring pointer
191  *
192  * Get the current rptr from the hardware (VI+).
193  */
194 static uint64_t sdma_v2_4_ring_get_rptr(struct amdgpu_ring *ring)
195 {
196 	/* XXX check if swapping is necessary on BE */
197 	return *ring->rptr_cpu_addr >> 2;
198 }
199 
200 /**
201  * sdma_v2_4_ring_get_wptr - get the current write pointer
202  *
203  * @ring: amdgpu ring pointer
204  *
205  * Get the current wptr from the hardware (VI+).
206  */
207 static uint64_t sdma_v2_4_ring_get_wptr(struct amdgpu_ring *ring)
208 {
209 	struct amdgpu_device *adev = ring->adev;
210 	u32 wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me]) >> 2;
211 
212 	return wptr;
213 }
214 
215 /**
216  * sdma_v2_4_ring_set_wptr - commit the write pointer
217  *
218  * @ring: amdgpu ring pointer
219  *
220  * Write the wptr back to the hardware (VI+).
221  */
222 static void sdma_v2_4_ring_set_wptr(struct amdgpu_ring *ring)
223 {
224 	struct amdgpu_device *adev = ring->adev;
225 
226 	WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me], ring->wptr << 2);
227 }
228 
229 static void sdma_v2_4_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
230 {
231 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
232 	int i;
233 
234 	for (i = 0; i < count; i++)
235 		if (sdma && sdma->burst_nop && (i == 0))
236 			amdgpu_ring_write(ring, ring->funcs->nop |
237 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
238 		else
239 			amdgpu_ring_write(ring, ring->funcs->nop);
240 }
241 
242 /**
243  * sdma_v2_4_ring_emit_ib - Schedule an IB on the DMA engine
244  *
245  * @ring: amdgpu ring pointer
246  * @job: job to retrieve vmid from
247  * @ib: IB object to schedule
248  * @flags: unused
249  *
250  * Schedule an IB in the DMA ring (VI).
251  */
252 static void sdma_v2_4_ring_emit_ib(struct amdgpu_ring *ring,
253 				   struct amdgpu_job *job,
254 				   struct amdgpu_ib *ib,
255 				   uint32_t flags)
256 {
257 	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
258 
259 	/* IB packet must end on a 8 DW boundary */
260 	sdma_v2_4_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
261 
262 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
263 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
264 	/* base must be 32 byte aligned */
265 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
266 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
267 	amdgpu_ring_write(ring, ib->length_dw);
268 	amdgpu_ring_write(ring, 0);
269 	amdgpu_ring_write(ring, 0);
270 
271 }
272 
273 /**
274  * sdma_v2_4_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
275  *
276  * @ring: amdgpu ring pointer
277  *
278  * Emit an hdp flush packet on the requested DMA ring.
279  */
280 static void sdma_v2_4_ring_emit_hdp_flush(struct amdgpu_ring *ring)
281 {
282 	u32 ref_and_mask = 0;
283 
284 	if (ring->me == 0)
285 		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
286 	else
287 		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
288 
289 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
290 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
291 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
292 	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
293 	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
294 	amdgpu_ring_write(ring, ref_and_mask); /* reference */
295 	amdgpu_ring_write(ring, ref_and_mask); /* mask */
296 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
297 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
298 }
299 
300 /**
301  * sdma_v2_4_ring_emit_fence - emit a fence on the DMA ring
302  *
303  * @ring: amdgpu ring pointer
304  * @addr: address
305  * @seq: sequence number
306  * @flags: fence related flags
307  *
308  * Add a DMA fence packet to the ring to write
309  * the fence seq number and DMA trap packet to generate
310  * an interrupt if needed (VI).
311  */
312 static void sdma_v2_4_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
313 				      unsigned flags)
314 {
315 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
316 	/* write the fence */
317 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
318 	amdgpu_ring_write(ring, lower_32_bits(addr));
319 	amdgpu_ring_write(ring, upper_32_bits(addr));
320 	amdgpu_ring_write(ring, lower_32_bits(seq));
321 
322 	/* optionally write high bits as well */
323 	if (write64bit) {
324 		addr += 4;
325 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
326 		amdgpu_ring_write(ring, lower_32_bits(addr));
327 		amdgpu_ring_write(ring, upper_32_bits(addr));
328 		amdgpu_ring_write(ring, upper_32_bits(seq));
329 	}
330 
331 	/* generate an interrupt */
332 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
333 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
334 }
335 
336 /**
337  * sdma_v2_4_gfx_stop - stop the gfx async dma engines
338  *
339  * @adev: amdgpu_device pointer
340  *
341  * Stop the gfx async dma ring buffers (VI).
342  */
343 static void sdma_v2_4_gfx_stop(struct amdgpu_device *adev)
344 {
345 	struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
346 	struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
347 	u32 rb_cntl, ib_cntl;
348 	int i;
349 
350 	if ((adev->mman.buffer_funcs_ring == sdma0) ||
351 	    (adev->mman.buffer_funcs_ring == sdma1))
352 		amdgpu_ttm_set_buffer_funcs_status(adev, false);
353 
354 	for (i = 0; i < adev->sdma.num_instances; i++) {
355 		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
356 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
357 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
358 		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
359 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
360 		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
361 	}
362 }
363 
364 /**
365  * sdma_v2_4_rlc_stop - stop the compute async dma engines
366  *
367  * @adev: amdgpu_device pointer
368  *
369  * Stop the compute async dma queues (VI).
370  */
371 static void sdma_v2_4_rlc_stop(struct amdgpu_device *adev)
372 {
373 	/* XXX todo */
374 }
375 
376 /**
377  * sdma_v2_4_enable - stop the async dma engines
378  *
379  * @adev: amdgpu_device pointer
380  * @enable: enable/disable the DMA MEs.
381  *
382  * Halt or unhalt the async dma engines (VI).
383  */
384 static void sdma_v2_4_enable(struct amdgpu_device *adev, bool enable)
385 {
386 	u32 f32_cntl;
387 	int i;
388 
389 	if (!enable) {
390 		sdma_v2_4_gfx_stop(adev);
391 		sdma_v2_4_rlc_stop(adev);
392 	}
393 
394 	for (i = 0; i < adev->sdma.num_instances; i++) {
395 		f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
396 		if (enable)
397 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
398 		else
399 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
400 		WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
401 	}
402 }
403 
404 /**
405  * sdma_v2_4_gfx_resume - setup and start the async dma engines
406  *
407  * @adev: amdgpu_device pointer
408  *
409  * Set up the gfx DMA ring buffers and enable them (VI).
410  * Returns 0 for success, error for failure.
411  */
412 static int sdma_v2_4_gfx_resume(struct amdgpu_device *adev)
413 {
414 	struct amdgpu_ring *ring;
415 	u32 rb_cntl, ib_cntl;
416 	u32 rb_bufsz;
417 	int i, j, r;
418 
419 	for (i = 0; i < adev->sdma.num_instances; i++) {
420 		ring = &adev->sdma.instance[i].ring;
421 
422 		mutex_lock(&adev->srbm_mutex);
423 		for (j = 0; j < 16; j++) {
424 			vi_srbm_select(adev, 0, 0, 0, j);
425 			/* SDMA GFX */
426 			WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
427 			WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
428 		}
429 		vi_srbm_select(adev, 0, 0, 0, 0);
430 		mutex_unlock(&adev->srbm_mutex);
431 
432 		WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
433 		       adev->gfx.config.gb_addr_config & 0x70);
434 
435 		WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
436 
437 		/* Set ring buffer size in dwords */
438 		rb_bufsz = order_base_2(ring->ring_size / 4);
439 		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
440 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
441 #ifdef __BIG_ENDIAN
442 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
443 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
444 					RPTR_WRITEBACK_SWAP_ENABLE, 1);
445 #endif
446 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
447 
448 		/* Initialize the ring buffer's read and write pointers */
449 		WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
450 		WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
451 		WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
452 		WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
453 
454 		/* set the wb address whether it's enabled or not */
455 		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
456 		       upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF);
457 		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
458 		       lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC);
459 
460 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
461 
462 		WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
463 		WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
464 
465 		ring->wptr = 0;
466 		WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
467 
468 		/* enable DMA RB */
469 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
470 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
471 
472 		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
473 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
474 #ifdef __BIG_ENDIAN
475 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
476 #endif
477 		/* enable DMA IBs */
478 		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
479 
480 		ring->sched.ready = true;
481 	}
482 
483 	sdma_v2_4_enable(adev, true);
484 	for (i = 0; i < adev->sdma.num_instances; i++) {
485 		ring = &adev->sdma.instance[i].ring;
486 		r = amdgpu_ring_test_helper(ring);
487 		if (r)
488 			return r;
489 
490 		if (adev->mman.buffer_funcs_ring == ring)
491 			amdgpu_ttm_set_buffer_funcs_status(adev, true);
492 	}
493 
494 	return 0;
495 }
496 
497 /**
498  * sdma_v2_4_rlc_resume - setup and start the async dma engines
499  *
500  * @adev: amdgpu_device pointer
501  *
502  * Set up the compute DMA queues and enable them (VI).
503  * Returns 0 for success, error for failure.
504  */
505 static int sdma_v2_4_rlc_resume(struct amdgpu_device *adev)
506 {
507 	/* XXX todo */
508 	return 0;
509 }
510 
511 
512 /**
513  * sdma_v2_4_start - setup and start the async dma engines
514  *
515  * @adev: amdgpu_device pointer
516  *
517  * Set up the DMA engines and enable them (VI).
518  * Returns 0 for success, error for failure.
519  */
520 static int sdma_v2_4_start(struct amdgpu_device *adev)
521 {
522 	int r;
523 
524 	/* halt the engine before programing */
525 	sdma_v2_4_enable(adev, false);
526 
527 	/* start the gfx rings and rlc compute queues */
528 	r = sdma_v2_4_gfx_resume(adev);
529 	if (r)
530 		return r;
531 	r = sdma_v2_4_rlc_resume(adev);
532 	if (r)
533 		return r;
534 
535 	return 0;
536 }
537 
538 /**
539  * sdma_v2_4_ring_test_ring - simple async dma engine test
540  *
541  * @ring: amdgpu_ring structure holding ring information
542  *
543  * Test the DMA engine by writing using it to write an
544  * value to memory. (VI).
545  * Returns 0 for success, error for failure.
546  */
547 static int sdma_v2_4_ring_test_ring(struct amdgpu_ring *ring)
548 {
549 	struct amdgpu_device *adev = ring->adev;
550 	unsigned i;
551 	unsigned index;
552 	int r;
553 	u32 tmp;
554 	u64 gpu_addr;
555 
556 	r = amdgpu_device_wb_get(adev, &index);
557 	if (r)
558 		return r;
559 
560 	gpu_addr = adev->wb.gpu_addr + (index * 4);
561 	tmp = 0xCAFEDEAD;
562 	adev->wb.wb[index] = cpu_to_le32(tmp);
563 
564 	r = amdgpu_ring_alloc(ring, 5);
565 	if (r)
566 		goto error_free_wb;
567 
568 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
569 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
570 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
571 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
572 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
573 	amdgpu_ring_write(ring, 0xDEADBEEF);
574 	amdgpu_ring_commit(ring);
575 
576 	for (i = 0; i < adev->usec_timeout; i++) {
577 		tmp = le32_to_cpu(adev->wb.wb[index]);
578 		if (tmp == 0xDEADBEEF)
579 			break;
580 		udelay(1);
581 	}
582 
583 	if (i >= adev->usec_timeout)
584 		r = -ETIMEDOUT;
585 
586 error_free_wb:
587 	amdgpu_device_wb_free(adev, index);
588 	return r;
589 }
590 
591 /**
592  * sdma_v2_4_ring_test_ib - test an IB on the DMA engine
593  *
594  * @ring: amdgpu_ring structure holding ring information
595  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
596  *
597  * Test a simple IB in the DMA ring (VI).
598  * Returns 0 on success, error on failure.
599  */
600 static int sdma_v2_4_ring_test_ib(struct amdgpu_ring *ring, long timeout)
601 {
602 	struct amdgpu_device *adev = ring->adev;
603 	struct amdgpu_ib ib;
604 	struct dma_fence *f = NULL;
605 	unsigned index;
606 	u32 tmp = 0;
607 	u64 gpu_addr;
608 	long r;
609 
610 	r = amdgpu_device_wb_get(adev, &index);
611 	if (r)
612 		return r;
613 
614 	gpu_addr = adev->wb.gpu_addr + (index * 4);
615 	tmp = 0xCAFEDEAD;
616 	adev->wb.wb[index] = cpu_to_le32(tmp);
617 	memset(&ib, 0, sizeof(ib));
618 	r = amdgpu_ib_get(adev, NULL, 256,
619 					AMDGPU_IB_POOL_DIRECT, &ib);
620 	if (r)
621 		goto err0;
622 
623 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
624 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
625 	ib.ptr[1] = lower_32_bits(gpu_addr);
626 	ib.ptr[2] = upper_32_bits(gpu_addr);
627 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
628 	ib.ptr[4] = 0xDEADBEEF;
629 	ib.ptr[5] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
630 	ib.ptr[6] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
631 	ib.ptr[7] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
632 	ib.length_dw = 8;
633 
634 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
635 	if (r)
636 		goto err1;
637 
638 	r = dma_fence_wait_timeout(f, false, timeout);
639 	if (r == 0) {
640 		r = -ETIMEDOUT;
641 		goto err1;
642 	} else if (r < 0) {
643 		goto err1;
644 	}
645 	tmp = le32_to_cpu(adev->wb.wb[index]);
646 	if (tmp == 0xDEADBEEF)
647 		r = 0;
648 	else
649 		r = -EINVAL;
650 
651 err1:
652 	amdgpu_ib_free(adev, &ib, NULL);
653 	dma_fence_put(f);
654 err0:
655 	amdgpu_device_wb_free(adev, index);
656 	return r;
657 }
658 
659 /**
660  * sdma_v2_4_vm_copy_pte - update PTEs by copying them from the GART
661  *
662  * @ib: indirect buffer to fill with commands
663  * @pe: addr of the page entry
664  * @src: src addr to copy from
665  * @count: number of page entries to update
666  *
667  * Update PTEs by copying them from the GART using sDMA (CIK).
668  */
669 static void sdma_v2_4_vm_copy_pte(struct amdgpu_ib *ib,
670 				  uint64_t pe, uint64_t src,
671 				  unsigned count)
672 {
673 	unsigned bytes = count * 8;
674 
675 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
676 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
677 	ib->ptr[ib->length_dw++] = bytes;
678 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
679 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
680 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
681 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
682 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
683 }
684 
685 /**
686  * sdma_v2_4_vm_write_pte - update PTEs by writing them manually
687  *
688  * @ib: indirect buffer to fill with commands
689  * @pe: addr of the page entry
690  * @value: dst addr to write into pe
691  * @count: number of page entries to update
692  * @incr: increase next addr by incr bytes
693  *
694  * Update PTEs by writing them manually using sDMA (CIK).
695  */
696 static void sdma_v2_4_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
697 				   uint64_t value, unsigned count,
698 				   uint32_t incr)
699 {
700 	unsigned ndw = count * 2;
701 
702 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
703 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
704 	ib->ptr[ib->length_dw++] = pe;
705 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
706 	ib->ptr[ib->length_dw++] = ndw;
707 	for (; ndw > 0; ndw -= 2) {
708 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
709 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
710 		value += incr;
711 	}
712 }
713 
714 /**
715  * sdma_v2_4_vm_set_pte_pde - update the page tables using sDMA
716  *
717  * @ib: indirect buffer to fill with commands
718  * @pe: addr of the page entry
719  * @addr: dst addr to write into pe
720  * @count: number of page entries to update
721  * @incr: increase next addr by incr bytes
722  * @flags: access flags
723  *
724  * Update the page tables using sDMA (CIK).
725  */
726 static void sdma_v2_4_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe,
727 				     uint64_t addr, unsigned count,
728 				     uint32_t incr, uint64_t flags)
729 {
730 	/* for physically contiguous pages (vram) */
731 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
732 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
733 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
734 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
735 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
736 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
737 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
738 	ib->ptr[ib->length_dw++] = incr; /* increment size */
739 	ib->ptr[ib->length_dw++] = 0;
740 	ib->ptr[ib->length_dw++] = count; /* number of entries */
741 }
742 
743 /**
744  * sdma_v2_4_ring_pad_ib - pad the IB to the required number of dw
745  *
746  * @ring: amdgpu_ring structure holding ring information
747  * @ib: indirect buffer to fill with padding
748  *
749  */
750 static void sdma_v2_4_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
751 {
752 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
753 	u32 pad_count;
754 	int i;
755 
756 	pad_count = (-ib->length_dw) & 7;
757 	for (i = 0; i < pad_count; i++)
758 		if (sdma && sdma->burst_nop && (i == 0))
759 			ib->ptr[ib->length_dw++] =
760 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
761 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
762 		else
763 			ib->ptr[ib->length_dw++] =
764 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
765 }
766 
767 /**
768  * sdma_v2_4_ring_emit_pipeline_sync - sync the pipeline
769  *
770  * @ring: amdgpu_ring pointer
771  *
772  * Make sure all previous operations are completed (CIK).
773  */
774 static void sdma_v2_4_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
775 {
776 	uint32_t seq = ring->fence_drv.sync_seq;
777 	uint64_t addr = ring->fence_drv.gpu_addr;
778 
779 	/* wait for idle */
780 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
781 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
782 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
783 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
784 	amdgpu_ring_write(ring, addr & 0xfffffffc);
785 	amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
786 	amdgpu_ring_write(ring, seq); /* reference */
787 	amdgpu_ring_write(ring, 0xffffffff); /* mask */
788 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
789 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
790 }
791 
792 /**
793  * sdma_v2_4_ring_emit_vm_flush - cik vm flush using sDMA
794  *
795  * @ring: amdgpu_ring pointer
796  * @vmid: vmid number to use
797  * @pd_addr: address
798  *
799  * Update the page table base and flush the VM TLB
800  * using sDMA (VI).
801  */
802 static void sdma_v2_4_ring_emit_vm_flush(struct amdgpu_ring *ring,
803 					 unsigned vmid, uint64_t pd_addr)
804 {
805 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
806 
807 	/* wait for flush */
808 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
809 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
810 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
811 	amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
812 	amdgpu_ring_write(ring, 0);
813 	amdgpu_ring_write(ring, 0); /* reference */
814 	amdgpu_ring_write(ring, 0); /* mask */
815 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
816 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
817 }
818 
819 static void sdma_v2_4_ring_emit_wreg(struct amdgpu_ring *ring,
820 				     uint32_t reg, uint32_t val)
821 {
822 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
823 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
824 	amdgpu_ring_write(ring, reg);
825 	amdgpu_ring_write(ring, val);
826 }
827 
828 static int sdma_v2_4_early_init(void *handle)
829 {
830 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
831 
832 	adev->sdma.num_instances = SDMA_MAX_INSTANCE;
833 
834 	sdma_v2_4_set_ring_funcs(adev);
835 	sdma_v2_4_set_buffer_funcs(adev);
836 	sdma_v2_4_set_vm_pte_funcs(adev);
837 	sdma_v2_4_set_irq_funcs(adev);
838 
839 	return 0;
840 }
841 
842 static int sdma_v2_4_sw_init(void *handle)
843 {
844 	struct amdgpu_ring *ring;
845 	int r, i;
846 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
847 
848 	/* SDMA trap event */
849 	r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_SDMA_TRAP,
850 			      &adev->sdma.trap_irq);
851 	if (r)
852 		return r;
853 
854 	/* SDMA Privileged inst */
855 	r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, 241,
856 			      &adev->sdma.illegal_inst_irq);
857 	if (r)
858 		return r;
859 
860 	/* SDMA Privileged inst */
861 	r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_SDMA_SRBM_WRITE,
862 			      &adev->sdma.illegal_inst_irq);
863 	if (r)
864 		return r;
865 
866 	r = sdma_v2_4_init_microcode(adev);
867 	if (r) {
868 		DRM_ERROR("Failed to load sdma firmware!\n");
869 		return r;
870 	}
871 
872 	for (i = 0; i < adev->sdma.num_instances; i++) {
873 		ring = &adev->sdma.instance[i].ring;
874 		ring->ring_obj = NULL;
875 		ring->use_doorbell = false;
876 		sprintf(ring->name, "sdma%d", i);
877 		r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
878 				     (i == 0) ? AMDGPU_SDMA_IRQ_INSTANCE0 :
879 				     AMDGPU_SDMA_IRQ_INSTANCE1,
880 				     AMDGPU_RING_PRIO_DEFAULT, NULL);
881 		if (r)
882 			return r;
883 	}
884 
885 	return r;
886 }
887 
888 static int sdma_v2_4_sw_fini(void *handle)
889 {
890 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
891 	int i;
892 
893 	for (i = 0; i < adev->sdma.num_instances; i++)
894 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
895 
896 	sdma_v2_4_free_microcode(adev);
897 	return 0;
898 }
899 
900 static int sdma_v2_4_hw_init(void *handle)
901 {
902 	int r;
903 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
904 
905 	sdma_v2_4_init_golden_registers(adev);
906 
907 	r = sdma_v2_4_start(adev);
908 	if (r)
909 		return r;
910 
911 	return r;
912 }
913 
914 static int sdma_v2_4_hw_fini(void *handle)
915 {
916 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
917 
918 	sdma_v2_4_enable(adev, false);
919 
920 	return 0;
921 }
922 
923 static int sdma_v2_4_suspend(void *handle)
924 {
925 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
926 
927 	return sdma_v2_4_hw_fini(adev);
928 }
929 
930 static int sdma_v2_4_resume(void *handle)
931 {
932 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
933 
934 	return sdma_v2_4_hw_init(adev);
935 }
936 
937 static bool sdma_v2_4_is_idle(void *handle)
938 {
939 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
940 	u32 tmp = RREG32(mmSRBM_STATUS2);
941 
942 	if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
943 		   SRBM_STATUS2__SDMA1_BUSY_MASK))
944 	    return false;
945 
946 	return true;
947 }
948 
949 static int sdma_v2_4_wait_for_idle(void *handle)
950 {
951 	unsigned i;
952 	u32 tmp;
953 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
954 
955 	for (i = 0; i < adev->usec_timeout; i++) {
956 		tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
957 				SRBM_STATUS2__SDMA1_BUSY_MASK);
958 
959 		if (!tmp)
960 			return 0;
961 		udelay(1);
962 	}
963 	return -ETIMEDOUT;
964 }
965 
966 static int sdma_v2_4_soft_reset(void *handle)
967 {
968 	u32 srbm_soft_reset = 0;
969 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
970 	u32 tmp = RREG32(mmSRBM_STATUS2);
971 
972 	if (tmp & SRBM_STATUS2__SDMA_BUSY_MASK) {
973 		/* sdma0 */
974 		tmp = RREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET);
975 		tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
976 		WREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET, tmp);
977 		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
978 	}
979 	if (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK) {
980 		/* sdma1 */
981 		tmp = RREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET);
982 		tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
983 		WREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET, tmp);
984 		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
985 	}
986 
987 	if (srbm_soft_reset) {
988 		tmp = RREG32(mmSRBM_SOFT_RESET);
989 		tmp |= srbm_soft_reset;
990 		dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
991 		WREG32(mmSRBM_SOFT_RESET, tmp);
992 		tmp = RREG32(mmSRBM_SOFT_RESET);
993 
994 		udelay(50);
995 
996 		tmp &= ~srbm_soft_reset;
997 		WREG32(mmSRBM_SOFT_RESET, tmp);
998 		tmp = RREG32(mmSRBM_SOFT_RESET);
999 
1000 		/* Wait a little for things to settle down */
1001 		udelay(50);
1002 	}
1003 
1004 	return 0;
1005 }
1006 
1007 static int sdma_v2_4_set_trap_irq_state(struct amdgpu_device *adev,
1008 					struct amdgpu_irq_src *src,
1009 					unsigned type,
1010 					enum amdgpu_interrupt_state state)
1011 {
1012 	u32 sdma_cntl;
1013 
1014 	switch (type) {
1015 	case AMDGPU_SDMA_IRQ_INSTANCE0:
1016 		switch (state) {
1017 		case AMDGPU_IRQ_STATE_DISABLE:
1018 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1019 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1020 			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1021 			break;
1022 		case AMDGPU_IRQ_STATE_ENABLE:
1023 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1024 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1025 			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1026 			break;
1027 		default:
1028 			break;
1029 		}
1030 		break;
1031 	case AMDGPU_SDMA_IRQ_INSTANCE1:
1032 		switch (state) {
1033 		case AMDGPU_IRQ_STATE_DISABLE:
1034 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1035 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1036 			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1037 			break;
1038 		case AMDGPU_IRQ_STATE_ENABLE:
1039 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1040 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1041 			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1042 			break;
1043 		default:
1044 			break;
1045 		}
1046 		break;
1047 	default:
1048 		break;
1049 	}
1050 	return 0;
1051 }
1052 
1053 static int sdma_v2_4_process_trap_irq(struct amdgpu_device *adev,
1054 				      struct amdgpu_irq_src *source,
1055 				      struct amdgpu_iv_entry *entry)
1056 {
1057 	u8 instance_id, queue_id;
1058 
1059 	instance_id = (entry->ring_id & 0x3) >> 0;
1060 	queue_id = (entry->ring_id & 0xc) >> 2;
1061 	DRM_DEBUG("IH: SDMA trap\n");
1062 	switch (instance_id) {
1063 	case 0:
1064 		switch (queue_id) {
1065 		case 0:
1066 			amdgpu_fence_process(&adev->sdma.instance[0].ring);
1067 			break;
1068 		case 1:
1069 			/* XXX compute */
1070 			break;
1071 		case 2:
1072 			/* XXX compute */
1073 			break;
1074 		}
1075 		break;
1076 	case 1:
1077 		switch (queue_id) {
1078 		case 0:
1079 			amdgpu_fence_process(&adev->sdma.instance[1].ring);
1080 			break;
1081 		case 1:
1082 			/* XXX compute */
1083 			break;
1084 		case 2:
1085 			/* XXX compute */
1086 			break;
1087 		}
1088 		break;
1089 	}
1090 	return 0;
1091 }
1092 
1093 static int sdma_v2_4_process_illegal_inst_irq(struct amdgpu_device *adev,
1094 					      struct amdgpu_irq_src *source,
1095 					      struct amdgpu_iv_entry *entry)
1096 {
1097 	u8 instance_id, queue_id;
1098 
1099 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
1100 	instance_id = (entry->ring_id & 0x3) >> 0;
1101 	queue_id = (entry->ring_id & 0xc) >> 2;
1102 
1103 	if (instance_id <= 1 && queue_id == 0)
1104 		drm_sched_fault(&adev->sdma.instance[instance_id].ring.sched);
1105 	return 0;
1106 }
1107 
1108 static int sdma_v2_4_set_clockgating_state(void *handle,
1109 					  enum amd_clockgating_state state)
1110 {
1111 	/* XXX handled via the smc on VI */
1112 	return 0;
1113 }
1114 
1115 static int sdma_v2_4_set_powergating_state(void *handle,
1116 					  enum amd_powergating_state state)
1117 {
1118 	return 0;
1119 }
1120 
1121 static const struct amd_ip_funcs sdma_v2_4_ip_funcs = {
1122 	.name = "sdma_v2_4",
1123 	.early_init = sdma_v2_4_early_init,
1124 	.late_init = NULL,
1125 	.sw_init = sdma_v2_4_sw_init,
1126 	.sw_fini = sdma_v2_4_sw_fini,
1127 	.hw_init = sdma_v2_4_hw_init,
1128 	.hw_fini = sdma_v2_4_hw_fini,
1129 	.suspend = sdma_v2_4_suspend,
1130 	.resume = sdma_v2_4_resume,
1131 	.is_idle = sdma_v2_4_is_idle,
1132 	.wait_for_idle = sdma_v2_4_wait_for_idle,
1133 	.soft_reset = sdma_v2_4_soft_reset,
1134 	.set_clockgating_state = sdma_v2_4_set_clockgating_state,
1135 	.set_powergating_state = sdma_v2_4_set_powergating_state,
1136 };
1137 
1138 static const struct amdgpu_ring_funcs sdma_v2_4_ring_funcs = {
1139 	.type = AMDGPU_RING_TYPE_SDMA,
1140 	.align_mask = 0xf,
1141 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1142 	.support_64bit_ptrs = false,
1143 	.secure_submission_supported = true,
1144 	.get_rptr = sdma_v2_4_ring_get_rptr,
1145 	.get_wptr = sdma_v2_4_ring_get_wptr,
1146 	.set_wptr = sdma_v2_4_ring_set_wptr,
1147 	.emit_frame_size =
1148 		6 + /* sdma_v2_4_ring_emit_hdp_flush */
1149 		3 + /* hdp invalidate */
1150 		6 + /* sdma_v2_4_ring_emit_pipeline_sync */
1151 		VI_FLUSH_GPU_TLB_NUM_WREG * 3 + 6 + /* sdma_v2_4_ring_emit_vm_flush */
1152 		10 + 10 + 10, /* sdma_v2_4_ring_emit_fence x3 for user fence, vm fence */
1153 	.emit_ib_size = 7 + 6, /* sdma_v2_4_ring_emit_ib */
1154 	.emit_ib = sdma_v2_4_ring_emit_ib,
1155 	.emit_fence = sdma_v2_4_ring_emit_fence,
1156 	.emit_pipeline_sync = sdma_v2_4_ring_emit_pipeline_sync,
1157 	.emit_vm_flush = sdma_v2_4_ring_emit_vm_flush,
1158 	.emit_hdp_flush = sdma_v2_4_ring_emit_hdp_flush,
1159 	.test_ring = sdma_v2_4_ring_test_ring,
1160 	.test_ib = sdma_v2_4_ring_test_ib,
1161 	.insert_nop = sdma_v2_4_ring_insert_nop,
1162 	.pad_ib = sdma_v2_4_ring_pad_ib,
1163 	.emit_wreg = sdma_v2_4_ring_emit_wreg,
1164 };
1165 
1166 static void sdma_v2_4_set_ring_funcs(struct amdgpu_device *adev)
1167 {
1168 	int i;
1169 
1170 	for (i = 0; i < adev->sdma.num_instances; i++) {
1171 		adev->sdma.instance[i].ring.funcs = &sdma_v2_4_ring_funcs;
1172 		adev->sdma.instance[i].ring.me = i;
1173 	}
1174 }
1175 
1176 static const struct amdgpu_irq_src_funcs sdma_v2_4_trap_irq_funcs = {
1177 	.set = sdma_v2_4_set_trap_irq_state,
1178 	.process = sdma_v2_4_process_trap_irq,
1179 };
1180 
1181 static const struct amdgpu_irq_src_funcs sdma_v2_4_illegal_inst_irq_funcs = {
1182 	.process = sdma_v2_4_process_illegal_inst_irq,
1183 };
1184 
1185 static void sdma_v2_4_set_irq_funcs(struct amdgpu_device *adev)
1186 {
1187 	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1188 	adev->sdma.trap_irq.funcs = &sdma_v2_4_trap_irq_funcs;
1189 	adev->sdma.illegal_inst_irq.funcs = &sdma_v2_4_illegal_inst_irq_funcs;
1190 }
1191 
1192 /**
1193  * sdma_v2_4_emit_copy_buffer - copy buffer using the sDMA engine
1194  *
1195  * @ib: indirect buffer to copy to
1196  * @src_offset: src GPU address
1197  * @dst_offset: dst GPU address
1198  * @byte_count: number of bytes to xfer
1199  * @tmz: unused
1200  *
1201  * Copy GPU buffers using the DMA engine (VI).
1202  * Used by the amdgpu ttm implementation to move pages if
1203  * registered as the asic copy callback.
1204  */
1205 static void sdma_v2_4_emit_copy_buffer(struct amdgpu_ib *ib,
1206 				       uint64_t src_offset,
1207 				       uint64_t dst_offset,
1208 				       uint32_t byte_count,
1209 				       bool tmz)
1210 {
1211 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1212 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1213 	ib->ptr[ib->length_dw++] = byte_count;
1214 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1215 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1216 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1217 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1218 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1219 }
1220 
1221 /**
1222  * sdma_v2_4_emit_fill_buffer - fill buffer using the sDMA engine
1223  *
1224  * @ib: indirect buffer to copy to
1225  * @src_data: value to write to buffer
1226  * @dst_offset: dst GPU address
1227  * @byte_count: number of bytes to xfer
1228  *
1229  * Fill GPU buffers using the DMA engine (VI).
1230  */
1231 static void sdma_v2_4_emit_fill_buffer(struct amdgpu_ib *ib,
1232 				       uint32_t src_data,
1233 				       uint64_t dst_offset,
1234 				       uint32_t byte_count)
1235 {
1236 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1237 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1238 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1239 	ib->ptr[ib->length_dw++] = src_data;
1240 	ib->ptr[ib->length_dw++] = byte_count;
1241 }
1242 
1243 static const struct amdgpu_buffer_funcs sdma_v2_4_buffer_funcs = {
1244 	.copy_max_bytes = 0x1fffff,
1245 	.copy_num_dw = 7,
1246 	.emit_copy_buffer = sdma_v2_4_emit_copy_buffer,
1247 
1248 	.fill_max_bytes = 0x1fffff,
1249 	.fill_num_dw = 7,
1250 	.emit_fill_buffer = sdma_v2_4_emit_fill_buffer,
1251 };
1252 
1253 static void sdma_v2_4_set_buffer_funcs(struct amdgpu_device *adev)
1254 {
1255 	adev->mman.buffer_funcs = &sdma_v2_4_buffer_funcs;
1256 	adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1257 }
1258 
1259 static const struct amdgpu_vm_pte_funcs sdma_v2_4_vm_pte_funcs = {
1260 	.copy_pte_num_dw = 7,
1261 	.copy_pte = sdma_v2_4_vm_copy_pte,
1262 
1263 	.write_pte = sdma_v2_4_vm_write_pte,
1264 	.set_pte_pde = sdma_v2_4_vm_set_pte_pde,
1265 };
1266 
1267 static void sdma_v2_4_set_vm_pte_funcs(struct amdgpu_device *adev)
1268 {
1269 	unsigned i;
1270 
1271 	adev->vm_manager.vm_pte_funcs = &sdma_v2_4_vm_pte_funcs;
1272 	for (i = 0; i < adev->sdma.num_instances; i++) {
1273 		adev->vm_manager.vm_pte_scheds[i] =
1274 			&adev->sdma.instance[i].ring.sched;
1275 	}
1276 	adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
1277 }
1278 
1279 const struct amdgpu_ip_block_version sdma_v2_4_ip_block =
1280 {
1281 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1282 	.major = 2,
1283 	.minor = 4,
1284 	.rev = 0,
1285 	.funcs = &sdma_v2_4_ip_funcs,
1286 };
1287