1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: Alex Deucher 23 */ 24 #include <linux/firmware.h> 25 #include <drm/drmP.h> 26 #include "amdgpu.h" 27 #include "amdgpu_ucode.h" 28 #include "amdgpu_trace.h" 29 #include "vi.h" 30 #include "vid.h" 31 32 #include "oss/oss_2_4_d.h" 33 #include "oss/oss_2_4_sh_mask.h" 34 35 #include "gmc/gmc_8_1_d.h" 36 #include "gmc/gmc_8_1_sh_mask.h" 37 38 #include "gca/gfx_8_0_d.h" 39 #include "gca/gfx_8_0_enum.h" 40 #include "gca/gfx_8_0_sh_mask.h" 41 42 #include "bif/bif_5_0_d.h" 43 #include "bif/bif_5_0_sh_mask.h" 44 45 #include "iceland_sdma_pkt_open.h" 46 47 static void sdma_v2_4_set_ring_funcs(struct amdgpu_device *adev); 48 static void sdma_v2_4_set_buffer_funcs(struct amdgpu_device *adev); 49 static void sdma_v2_4_set_vm_pte_funcs(struct amdgpu_device *adev); 50 static void sdma_v2_4_set_irq_funcs(struct amdgpu_device *adev); 51 52 MODULE_FIRMWARE("amdgpu/topaz_sdma.bin"); 53 MODULE_FIRMWARE("amdgpu/topaz_sdma1.bin"); 54 55 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] = 56 { 57 SDMA0_REGISTER_OFFSET, 58 SDMA1_REGISTER_OFFSET 59 }; 60 61 static const u32 golden_settings_iceland_a11[] = 62 { 63 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007, 64 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000, 65 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007, 66 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000, 67 }; 68 69 static const u32 iceland_mgcg_cgcg_init[] = 70 { 71 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100, 72 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100 73 }; 74 75 /* 76 * sDMA - System DMA 77 * Starting with CIK, the GPU has new asynchronous 78 * DMA engines. These engines are used for compute 79 * and gfx. There are two DMA engines (SDMA0, SDMA1) 80 * and each one supports 1 ring buffer used for gfx 81 * and 2 queues used for compute. 82 * 83 * The programming model is very similar to the CP 84 * (ring buffer, IBs, etc.), but sDMA has it's own 85 * packet format that is different from the PM4 format 86 * used by the CP. sDMA supports copying data, writing 87 * embedded data, solid fills, and a number of other 88 * things. It also has support for tiling/detiling of 89 * buffers. 90 */ 91 92 static void sdma_v2_4_init_golden_registers(struct amdgpu_device *adev) 93 { 94 switch (adev->asic_type) { 95 case CHIP_TOPAZ: 96 amdgpu_program_register_sequence(adev, 97 iceland_mgcg_cgcg_init, 98 (const u32)ARRAY_SIZE(iceland_mgcg_cgcg_init)); 99 amdgpu_program_register_sequence(adev, 100 golden_settings_iceland_a11, 101 (const u32)ARRAY_SIZE(golden_settings_iceland_a11)); 102 break; 103 default: 104 break; 105 } 106 } 107 108 /** 109 * sdma_v2_4_init_microcode - load ucode images from disk 110 * 111 * @adev: amdgpu_device pointer 112 * 113 * Use the firmware interface to load the ucode images into 114 * the driver (not loaded into hw). 115 * Returns 0 on success, error on failure. 116 */ 117 static int sdma_v2_4_init_microcode(struct amdgpu_device *adev) 118 { 119 const char *chip_name; 120 char fw_name[30]; 121 int err = 0, i; 122 struct amdgpu_firmware_info *info = NULL; 123 const struct common_firmware_header *header = NULL; 124 const struct sdma_firmware_header_v1_0 *hdr; 125 126 DRM_DEBUG("\n"); 127 128 switch (adev->asic_type) { 129 case CHIP_TOPAZ: 130 chip_name = "topaz"; 131 break; 132 default: BUG(); 133 } 134 135 for (i = 0; i < adev->sdma.num_instances; i++) { 136 if (i == 0) 137 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name); 138 else 139 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name); 140 err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev); 141 if (err) 142 goto out; 143 err = amdgpu_ucode_validate(adev->sdma.instance[i].fw); 144 if (err) 145 goto out; 146 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data; 147 adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version); 148 adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version); 149 if (adev->sdma.instance[i].feature_version >= 20) 150 adev->sdma.instance[i].burst_nop = true; 151 152 if (adev->firmware.smu_load) { 153 info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i]; 154 info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i; 155 info->fw = adev->sdma.instance[i].fw; 156 header = (const struct common_firmware_header *)info->fw->data; 157 adev->firmware.fw_size += 158 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE); 159 } 160 } 161 162 out: 163 if (err) { 164 printk(KERN_ERR 165 "sdma_v2_4: Failed to load firmware \"%s\"\n", 166 fw_name); 167 for (i = 0; i < adev->sdma.num_instances; i++) { 168 release_firmware(adev->sdma.instance[i].fw); 169 adev->sdma.instance[i].fw = NULL; 170 } 171 } 172 return err; 173 } 174 175 /** 176 * sdma_v2_4_ring_get_rptr - get the current read pointer 177 * 178 * @ring: amdgpu ring pointer 179 * 180 * Get the current rptr from the hardware (VI+). 181 */ 182 static uint32_t sdma_v2_4_ring_get_rptr(struct amdgpu_ring *ring) 183 { 184 u32 rptr; 185 186 /* XXX check if swapping is necessary on BE */ 187 rptr = ring->adev->wb.wb[ring->rptr_offs] >> 2; 188 189 return rptr; 190 } 191 192 /** 193 * sdma_v2_4_ring_get_wptr - get the current write pointer 194 * 195 * @ring: amdgpu ring pointer 196 * 197 * Get the current wptr from the hardware (VI+). 198 */ 199 static uint32_t sdma_v2_4_ring_get_wptr(struct amdgpu_ring *ring) 200 { 201 struct amdgpu_device *adev = ring->adev; 202 int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1; 203 u32 wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2; 204 205 return wptr; 206 } 207 208 /** 209 * sdma_v2_4_ring_set_wptr - commit the write pointer 210 * 211 * @ring: amdgpu ring pointer 212 * 213 * Write the wptr back to the hardware (VI+). 214 */ 215 static void sdma_v2_4_ring_set_wptr(struct amdgpu_ring *ring) 216 { 217 struct amdgpu_device *adev = ring->adev; 218 int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1; 219 220 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2); 221 } 222 223 static void sdma_v2_4_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count) 224 { 225 struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring); 226 int i; 227 228 for (i = 0; i < count; i++) 229 if (sdma && sdma->burst_nop && (i == 0)) 230 amdgpu_ring_write(ring, ring->nop | 231 SDMA_PKT_NOP_HEADER_COUNT(count - 1)); 232 else 233 amdgpu_ring_write(ring, ring->nop); 234 } 235 236 /** 237 * sdma_v2_4_ring_emit_ib - Schedule an IB on the DMA engine 238 * 239 * @ring: amdgpu ring pointer 240 * @ib: IB object to schedule 241 * 242 * Schedule an IB in the DMA ring (VI). 243 */ 244 static void sdma_v2_4_ring_emit_ib(struct amdgpu_ring *ring, 245 struct amdgpu_ib *ib) 246 { 247 u32 vmid = (ib->vm ? ib->vm->ids[ring->idx].id : 0) & 0xf; 248 u32 next_rptr = ring->wptr + 5; 249 250 while ((next_rptr & 7) != 2) 251 next_rptr++; 252 253 next_rptr += 6; 254 255 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 256 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR)); 257 amdgpu_ring_write(ring, lower_32_bits(ring->next_rptr_gpu_addr) & 0xfffffffc); 258 amdgpu_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr)); 259 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1)); 260 amdgpu_ring_write(ring, next_rptr); 261 262 /* IB packet must end on a 8 DW boundary */ 263 sdma_v2_4_ring_insert_nop(ring, (10 - (ring->wptr & 7)) % 8); 264 265 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) | 266 SDMA_PKT_INDIRECT_HEADER_VMID(vmid)); 267 /* base must be 32 byte aligned */ 268 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0); 269 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr)); 270 amdgpu_ring_write(ring, ib->length_dw); 271 amdgpu_ring_write(ring, 0); 272 amdgpu_ring_write(ring, 0); 273 274 } 275 276 /** 277 * sdma_v2_4_hdp_flush_ring_emit - emit an hdp flush on the DMA ring 278 * 279 * @ring: amdgpu ring pointer 280 * 281 * Emit an hdp flush packet on the requested DMA ring. 282 */ 283 static void sdma_v2_4_ring_emit_hdp_flush(struct amdgpu_ring *ring) 284 { 285 u32 ref_and_mask = 0; 286 287 if (ring == &ring->adev->sdma.instance[0].ring) 288 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1); 289 else 290 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1); 291 292 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | 293 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) | 294 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */ 295 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2); 296 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2); 297 amdgpu_ring_write(ring, ref_and_mask); /* reference */ 298 amdgpu_ring_write(ring, ref_and_mask); /* mask */ 299 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 300 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */ 301 } 302 303 /** 304 * sdma_v2_4_ring_emit_fence - emit a fence on the DMA ring 305 * 306 * @ring: amdgpu ring pointer 307 * @fence: amdgpu fence object 308 * 309 * Add a DMA fence packet to the ring to write 310 * the fence seq number and DMA trap packet to generate 311 * an interrupt if needed (VI). 312 */ 313 static void sdma_v2_4_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq, 314 unsigned flags) 315 { 316 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT; 317 /* write the fence */ 318 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); 319 amdgpu_ring_write(ring, lower_32_bits(addr)); 320 amdgpu_ring_write(ring, upper_32_bits(addr)); 321 amdgpu_ring_write(ring, lower_32_bits(seq)); 322 323 /* optionally write high bits as well */ 324 if (write64bit) { 325 addr += 4; 326 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); 327 amdgpu_ring_write(ring, lower_32_bits(addr)); 328 amdgpu_ring_write(ring, upper_32_bits(addr)); 329 amdgpu_ring_write(ring, upper_32_bits(seq)); 330 } 331 332 /* generate an interrupt */ 333 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP)); 334 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0)); 335 } 336 337 /** 338 * sdma_v2_4_ring_emit_semaphore - emit a semaphore on the dma ring 339 * 340 * @ring: amdgpu_ring structure holding ring information 341 * @semaphore: amdgpu semaphore object 342 * @emit_wait: wait or signal semaphore 343 * 344 * Add a DMA semaphore packet to the ring wait on or signal 345 * other rings (VI). 346 */ 347 static bool sdma_v2_4_ring_emit_semaphore(struct amdgpu_ring *ring, 348 struct amdgpu_semaphore *semaphore, 349 bool emit_wait) 350 { 351 u64 addr = semaphore->gpu_addr; 352 u32 sig = emit_wait ? 0 : 1; 353 354 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SEM) | 355 SDMA_PKT_SEMAPHORE_HEADER_SIGNAL(sig)); 356 amdgpu_ring_write(ring, lower_32_bits(addr) & 0xfffffff8); 357 amdgpu_ring_write(ring, upper_32_bits(addr)); 358 359 return true; 360 } 361 362 /** 363 * sdma_v2_4_gfx_stop - stop the gfx async dma engines 364 * 365 * @adev: amdgpu_device pointer 366 * 367 * Stop the gfx async dma ring buffers (VI). 368 */ 369 static void sdma_v2_4_gfx_stop(struct amdgpu_device *adev) 370 { 371 struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring; 372 struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring; 373 u32 rb_cntl, ib_cntl; 374 int i; 375 376 if ((adev->mman.buffer_funcs_ring == sdma0) || 377 (adev->mman.buffer_funcs_ring == sdma1)) 378 amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size); 379 380 for (i = 0; i < adev->sdma.num_instances; i++) { 381 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]); 382 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0); 383 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl); 384 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]); 385 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0); 386 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl); 387 } 388 sdma0->ready = false; 389 sdma1->ready = false; 390 } 391 392 /** 393 * sdma_v2_4_rlc_stop - stop the compute async dma engines 394 * 395 * @adev: amdgpu_device pointer 396 * 397 * Stop the compute async dma queues (VI). 398 */ 399 static void sdma_v2_4_rlc_stop(struct amdgpu_device *adev) 400 { 401 /* XXX todo */ 402 } 403 404 /** 405 * sdma_v2_4_enable - stop the async dma engines 406 * 407 * @adev: amdgpu_device pointer 408 * @enable: enable/disable the DMA MEs. 409 * 410 * Halt or unhalt the async dma engines (VI). 411 */ 412 static void sdma_v2_4_enable(struct amdgpu_device *adev, bool enable) 413 { 414 u32 f32_cntl; 415 int i; 416 417 if (enable == false) { 418 sdma_v2_4_gfx_stop(adev); 419 sdma_v2_4_rlc_stop(adev); 420 } 421 422 for (i = 0; i < adev->sdma.num_instances; i++) { 423 f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]); 424 if (enable) 425 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0); 426 else 427 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1); 428 WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl); 429 } 430 } 431 432 /** 433 * sdma_v2_4_gfx_resume - setup and start the async dma engines 434 * 435 * @adev: amdgpu_device pointer 436 * 437 * Set up the gfx DMA ring buffers and enable them (VI). 438 * Returns 0 for success, error for failure. 439 */ 440 static int sdma_v2_4_gfx_resume(struct amdgpu_device *adev) 441 { 442 struct amdgpu_ring *ring; 443 u32 rb_cntl, ib_cntl; 444 u32 rb_bufsz; 445 u32 wb_offset; 446 int i, j, r; 447 448 for (i = 0; i < adev->sdma.num_instances; i++) { 449 ring = &adev->sdma.instance[i].ring; 450 wb_offset = (ring->rptr_offs * 4); 451 452 mutex_lock(&adev->srbm_mutex); 453 for (j = 0; j < 16; j++) { 454 vi_srbm_select(adev, 0, 0, 0, j); 455 /* SDMA GFX */ 456 WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0); 457 WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0); 458 } 459 vi_srbm_select(adev, 0, 0, 0, 0); 460 mutex_unlock(&adev->srbm_mutex); 461 462 WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0); 463 464 /* Set ring buffer size in dwords */ 465 rb_bufsz = order_base_2(ring->ring_size / 4); 466 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]); 467 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz); 468 #ifdef __BIG_ENDIAN 469 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1); 470 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, 471 RPTR_WRITEBACK_SWAP_ENABLE, 1); 472 #endif 473 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl); 474 475 /* Initialize the ring buffer's read and write pointers */ 476 WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0); 477 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0); 478 479 /* set the wb address whether it's enabled or not */ 480 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i], 481 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF); 482 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i], 483 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC); 484 485 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1); 486 487 WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8); 488 WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40); 489 490 ring->wptr = 0; 491 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2); 492 493 /* enable DMA RB */ 494 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1); 495 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl); 496 497 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]); 498 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1); 499 #ifdef __BIG_ENDIAN 500 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1); 501 #endif 502 /* enable DMA IBs */ 503 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl); 504 505 ring->ready = true; 506 507 r = amdgpu_ring_test_ring(ring); 508 if (r) { 509 ring->ready = false; 510 return r; 511 } 512 513 if (adev->mman.buffer_funcs_ring == ring) 514 amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size); 515 } 516 517 return 0; 518 } 519 520 /** 521 * sdma_v2_4_rlc_resume - setup and start the async dma engines 522 * 523 * @adev: amdgpu_device pointer 524 * 525 * Set up the compute DMA queues and enable them (VI). 526 * Returns 0 for success, error for failure. 527 */ 528 static int sdma_v2_4_rlc_resume(struct amdgpu_device *adev) 529 { 530 /* XXX todo */ 531 return 0; 532 } 533 534 /** 535 * sdma_v2_4_load_microcode - load the sDMA ME ucode 536 * 537 * @adev: amdgpu_device pointer 538 * 539 * Loads the sDMA0/1 ucode. 540 * Returns 0 for success, -EINVAL if the ucode is not available. 541 */ 542 static int sdma_v2_4_load_microcode(struct amdgpu_device *adev) 543 { 544 const struct sdma_firmware_header_v1_0 *hdr; 545 const __le32 *fw_data; 546 u32 fw_size; 547 int i, j; 548 549 /* halt the MEs */ 550 sdma_v2_4_enable(adev, false); 551 552 for (i = 0; i < adev->sdma.num_instances; i++) { 553 if (!adev->sdma.instance[i].fw) 554 return -EINVAL; 555 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data; 556 amdgpu_ucode_print_sdma_hdr(&hdr->header); 557 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4; 558 fw_data = (const __le32 *) 559 (adev->sdma.instance[i].fw->data + 560 le32_to_cpu(hdr->header.ucode_array_offset_bytes)); 561 WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0); 562 for (j = 0; j < fw_size; j++) 563 WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++)); 564 WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version); 565 } 566 567 return 0; 568 } 569 570 /** 571 * sdma_v2_4_start - setup and start the async dma engines 572 * 573 * @adev: amdgpu_device pointer 574 * 575 * Set up the DMA engines and enable them (VI). 576 * Returns 0 for success, error for failure. 577 */ 578 static int sdma_v2_4_start(struct amdgpu_device *adev) 579 { 580 int r; 581 582 if (!adev->firmware.smu_load) { 583 r = sdma_v2_4_load_microcode(adev); 584 if (r) 585 return r; 586 } else { 587 r = adev->smu.smumgr_funcs->check_fw_load_finish(adev, 588 AMDGPU_UCODE_ID_SDMA0); 589 if (r) 590 return -EINVAL; 591 r = adev->smu.smumgr_funcs->check_fw_load_finish(adev, 592 AMDGPU_UCODE_ID_SDMA1); 593 if (r) 594 return -EINVAL; 595 } 596 597 /* unhalt the MEs */ 598 sdma_v2_4_enable(adev, true); 599 600 /* start the gfx rings and rlc compute queues */ 601 r = sdma_v2_4_gfx_resume(adev); 602 if (r) 603 return r; 604 r = sdma_v2_4_rlc_resume(adev); 605 if (r) 606 return r; 607 608 return 0; 609 } 610 611 /** 612 * sdma_v2_4_ring_test_ring - simple async dma engine test 613 * 614 * @ring: amdgpu_ring structure holding ring information 615 * 616 * Test the DMA engine by writing using it to write an 617 * value to memory. (VI). 618 * Returns 0 for success, error for failure. 619 */ 620 static int sdma_v2_4_ring_test_ring(struct amdgpu_ring *ring) 621 { 622 struct amdgpu_device *adev = ring->adev; 623 unsigned i; 624 unsigned index; 625 int r; 626 u32 tmp; 627 u64 gpu_addr; 628 629 r = amdgpu_wb_get(adev, &index); 630 if (r) { 631 dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r); 632 return r; 633 } 634 635 gpu_addr = adev->wb.gpu_addr + (index * 4); 636 tmp = 0xCAFEDEAD; 637 adev->wb.wb[index] = cpu_to_le32(tmp); 638 639 r = amdgpu_ring_lock(ring, 5); 640 if (r) { 641 DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r); 642 amdgpu_wb_free(adev, index); 643 return r; 644 } 645 646 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 647 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR)); 648 amdgpu_ring_write(ring, lower_32_bits(gpu_addr)); 649 amdgpu_ring_write(ring, upper_32_bits(gpu_addr)); 650 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1)); 651 amdgpu_ring_write(ring, 0xDEADBEEF); 652 amdgpu_ring_unlock_commit(ring); 653 654 for (i = 0; i < adev->usec_timeout; i++) { 655 tmp = le32_to_cpu(adev->wb.wb[index]); 656 if (tmp == 0xDEADBEEF) 657 break; 658 DRM_UDELAY(1); 659 } 660 661 if (i < adev->usec_timeout) { 662 DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i); 663 } else { 664 DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n", 665 ring->idx, tmp); 666 r = -EINVAL; 667 } 668 amdgpu_wb_free(adev, index); 669 670 return r; 671 } 672 673 /** 674 * sdma_v2_4_ring_test_ib - test an IB on the DMA engine 675 * 676 * @ring: amdgpu_ring structure holding ring information 677 * 678 * Test a simple IB in the DMA ring (VI). 679 * Returns 0 on success, error on failure. 680 */ 681 static int sdma_v2_4_ring_test_ib(struct amdgpu_ring *ring) 682 { 683 struct amdgpu_device *adev = ring->adev; 684 struct amdgpu_ib ib; 685 struct fence *f = NULL; 686 unsigned i; 687 unsigned index; 688 int r; 689 u32 tmp = 0; 690 u64 gpu_addr; 691 692 r = amdgpu_wb_get(adev, &index); 693 if (r) { 694 dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r); 695 return r; 696 } 697 698 gpu_addr = adev->wb.gpu_addr + (index * 4); 699 tmp = 0xCAFEDEAD; 700 adev->wb.wb[index] = cpu_to_le32(tmp); 701 memset(&ib, 0, sizeof(ib)); 702 r = amdgpu_ib_get(ring, NULL, 256, &ib); 703 if (r) { 704 DRM_ERROR("amdgpu: failed to get ib (%d).\n", r); 705 goto err0; 706 } 707 708 ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 709 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); 710 ib.ptr[1] = lower_32_bits(gpu_addr); 711 ib.ptr[2] = upper_32_bits(gpu_addr); 712 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1); 713 ib.ptr[4] = 0xDEADBEEF; 714 ib.ptr[5] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP); 715 ib.ptr[6] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP); 716 ib.ptr[7] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP); 717 ib.length_dw = 8; 718 719 r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, &ib, 1, NULL, 720 AMDGPU_FENCE_OWNER_UNDEFINED, 721 &f); 722 if (r) 723 goto err1; 724 725 r = fence_wait(f, false); 726 if (r) { 727 DRM_ERROR("amdgpu: fence wait failed (%d).\n", r); 728 goto err1; 729 } 730 for (i = 0; i < adev->usec_timeout; i++) { 731 tmp = le32_to_cpu(adev->wb.wb[index]); 732 if (tmp == 0xDEADBEEF) 733 break; 734 DRM_UDELAY(1); 735 } 736 if (i < adev->usec_timeout) { 737 DRM_INFO("ib test on ring %d succeeded in %u usecs\n", 738 ring->idx, i); 739 goto err1; 740 } else { 741 DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp); 742 r = -EINVAL; 743 } 744 745 err1: 746 fence_put(f); 747 amdgpu_ib_free(adev, &ib); 748 err0: 749 amdgpu_wb_free(adev, index); 750 return r; 751 } 752 753 /** 754 * sdma_v2_4_vm_copy_pte - update PTEs by copying them from the GART 755 * 756 * @ib: indirect buffer to fill with commands 757 * @pe: addr of the page entry 758 * @src: src addr to copy from 759 * @count: number of page entries to update 760 * 761 * Update PTEs by copying them from the GART using sDMA (CIK). 762 */ 763 static void sdma_v2_4_vm_copy_pte(struct amdgpu_ib *ib, 764 uint64_t pe, uint64_t src, 765 unsigned count) 766 { 767 while (count) { 768 unsigned bytes = count * 8; 769 if (bytes > 0x1FFFF8) 770 bytes = 0x1FFFF8; 771 772 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | 773 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); 774 ib->ptr[ib->length_dw++] = bytes; 775 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 776 ib->ptr[ib->length_dw++] = lower_32_bits(src); 777 ib->ptr[ib->length_dw++] = upper_32_bits(src); 778 ib->ptr[ib->length_dw++] = lower_32_bits(pe); 779 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 780 781 pe += bytes; 782 src += bytes; 783 count -= bytes / 8; 784 } 785 } 786 787 /** 788 * sdma_v2_4_vm_write_pte - update PTEs by writing them manually 789 * 790 * @ib: indirect buffer to fill with commands 791 * @pe: addr of the page entry 792 * @addr: dst addr to write into pe 793 * @count: number of page entries to update 794 * @incr: increase next addr by incr bytes 795 * @flags: access flags 796 * 797 * Update PTEs by writing them manually using sDMA (CIK). 798 */ 799 static void sdma_v2_4_vm_write_pte(struct amdgpu_ib *ib, 800 uint64_t pe, 801 uint64_t addr, unsigned count, 802 uint32_t incr, uint32_t flags) 803 { 804 uint64_t value; 805 unsigned ndw; 806 807 while (count) { 808 ndw = count * 2; 809 if (ndw > 0xFFFFE) 810 ndw = 0xFFFFE; 811 812 /* for non-physically contiguous pages (system) */ 813 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 814 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); 815 ib->ptr[ib->length_dw++] = pe; 816 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 817 ib->ptr[ib->length_dw++] = ndw; 818 for (; ndw > 0; ndw -= 2, --count, pe += 8) { 819 if (flags & AMDGPU_PTE_SYSTEM) { 820 value = amdgpu_vm_map_gart(ib->ring->adev, addr); 821 value &= 0xFFFFFFFFFFFFF000ULL; 822 } else if (flags & AMDGPU_PTE_VALID) { 823 value = addr; 824 } else { 825 value = 0; 826 } 827 addr += incr; 828 value |= flags; 829 ib->ptr[ib->length_dw++] = value; 830 ib->ptr[ib->length_dw++] = upper_32_bits(value); 831 } 832 } 833 } 834 835 /** 836 * sdma_v2_4_vm_set_pte_pde - update the page tables using sDMA 837 * 838 * @ib: indirect buffer to fill with commands 839 * @pe: addr of the page entry 840 * @addr: dst addr to write into pe 841 * @count: number of page entries to update 842 * @incr: increase next addr by incr bytes 843 * @flags: access flags 844 * 845 * Update the page tables using sDMA (CIK). 846 */ 847 static void sdma_v2_4_vm_set_pte_pde(struct amdgpu_ib *ib, 848 uint64_t pe, 849 uint64_t addr, unsigned count, 850 uint32_t incr, uint32_t flags) 851 { 852 uint64_t value; 853 unsigned ndw; 854 855 while (count) { 856 ndw = count; 857 if (ndw > 0x7FFFF) 858 ndw = 0x7FFFF; 859 860 if (flags & AMDGPU_PTE_VALID) 861 value = addr; 862 else 863 value = 0; 864 865 /* for physically contiguous pages (vram) */ 866 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE); 867 ib->ptr[ib->length_dw++] = pe; /* dst addr */ 868 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 869 ib->ptr[ib->length_dw++] = flags; /* mask */ 870 ib->ptr[ib->length_dw++] = 0; 871 ib->ptr[ib->length_dw++] = value; /* value */ 872 ib->ptr[ib->length_dw++] = upper_32_bits(value); 873 ib->ptr[ib->length_dw++] = incr; /* increment size */ 874 ib->ptr[ib->length_dw++] = 0; 875 ib->ptr[ib->length_dw++] = ndw; /* number of entries */ 876 877 pe += ndw * 8; 878 addr += ndw * incr; 879 count -= ndw; 880 } 881 } 882 883 /** 884 * sdma_v2_4_vm_pad_ib - pad the IB to the required number of dw 885 * 886 * @ib: indirect buffer to fill with padding 887 * 888 */ 889 static void sdma_v2_4_vm_pad_ib(struct amdgpu_ib *ib) 890 { 891 struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ib->ring); 892 u32 pad_count; 893 int i; 894 895 pad_count = (8 - (ib->length_dw & 0x7)) % 8; 896 for (i = 0; i < pad_count; i++) 897 if (sdma && sdma->burst_nop && (i == 0)) 898 ib->ptr[ib->length_dw++] = 899 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) | 900 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1); 901 else 902 ib->ptr[ib->length_dw++] = 903 SDMA_PKT_HEADER_OP(SDMA_OP_NOP); 904 } 905 906 /** 907 * sdma_v2_4_ring_emit_vm_flush - cik vm flush using sDMA 908 * 909 * @ring: amdgpu_ring pointer 910 * @vm: amdgpu_vm pointer 911 * 912 * Update the page table base and flush the VM TLB 913 * using sDMA (VI). 914 */ 915 static void sdma_v2_4_ring_emit_vm_flush(struct amdgpu_ring *ring, 916 unsigned vm_id, uint64_t pd_addr) 917 { 918 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) | 919 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf)); 920 if (vm_id < 8) { 921 amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id)); 922 } else { 923 amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8)); 924 } 925 amdgpu_ring_write(ring, pd_addr >> 12); 926 927 /* flush TLB */ 928 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) | 929 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf)); 930 amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST); 931 amdgpu_ring_write(ring, 1 << vm_id); 932 933 /* wait for flush */ 934 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | 935 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) | 936 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */ 937 amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2); 938 amdgpu_ring_write(ring, 0); 939 amdgpu_ring_write(ring, 0); /* reference */ 940 amdgpu_ring_write(ring, 0); /* mask */ 941 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 942 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */ 943 } 944 945 static int sdma_v2_4_early_init(void *handle) 946 { 947 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 948 949 adev->sdma.num_instances = SDMA_MAX_INSTANCE; 950 951 sdma_v2_4_set_ring_funcs(adev); 952 sdma_v2_4_set_buffer_funcs(adev); 953 sdma_v2_4_set_vm_pte_funcs(adev); 954 sdma_v2_4_set_irq_funcs(adev); 955 956 return 0; 957 } 958 959 static int sdma_v2_4_sw_init(void *handle) 960 { 961 struct amdgpu_ring *ring; 962 int r, i; 963 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 964 965 /* SDMA trap event */ 966 r = amdgpu_irq_add_id(adev, 224, &adev->sdma.trap_irq); 967 if (r) 968 return r; 969 970 /* SDMA Privileged inst */ 971 r = amdgpu_irq_add_id(adev, 241, &adev->sdma.illegal_inst_irq); 972 if (r) 973 return r; 974 975 /* SDMA Privileged inst */ 976 r = amdgpu_irq_add_id(adev, 247, &adev->sdma.illegal_inst_irq); 977 if (r) 978 return r; 979 980 r = sdma_v2_4_init_microcode(adev); 981 if (r) { 982 DRM_ERROR("Failed to load sdma firmware!\n"); 983 return r; 984 } 985 986 for (i = 0; i < adev->sdma.num_instances; i++) { 987 ring = &adev->sdma.instance[i].ring; 988 ring->ring_obj = NULL; 989 ring->use_doorbell = false; 990 sprintf(ring->name, "sdma%d", i); 991 r = amdgpu_ring_init(adev, ring, 256 * 1024, 992 SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf, 993 &adev->sdma.trap_irq, 994 (i == 0) ? 995 AMDGPU_SDMA_IRQ_TRAP0 : AMDGPU_SDMA_IRQ_TRAP1, 996 AMDGPU_RING_TYPE_SDMA); 997 if (r) 998 return r; 999 } 1000 1001 return r; 1002 } 1003 1004 static int sdma_v2_4_sw_fini(void *handle) 1005 { 1006 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1007 int i; 1008 1009 for (i = 0; i < adev->sdma.num_instances; i++) 1010 amdgpu_ring_fini(&adev->sdma.instance[i].ring); 1011 1012 return 0; 1013 } 1014 1015 static int sdma_v2_4_hw_init(void *handle) 1016 { 1017 int r; 1018 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1019 1020 sdma_v2_4_init_golden_registers(adev); 1021 1022 r = sdma_v2_4_start(adev); 1023 if (r) 1024 return r; 1025 1026 return r; 1027 } 1028 1029 static int sdma_v2_4_hw_fini(void *handle) 1030 { 1031 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1032 1033 sdma_v2_4_enable(adev, false); 1034 1035 return 0; 1036 } 1037 1038 static int sdma_v2_4_suspend(void *handle) 1039 { 1040 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1041 1042 return sdma_v2_4_hw_fini(adev); 1043 } 1044 1045 static int sdma_v2_4_resume(void *handle) 1046 { 1047 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1048 1049 return sdma_v2_4_hw_init(adev); 1050 } 1051 1052 static bool sdma_v2_4_is_idle(void *handle) 1053 { 1054 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1055 u32 tmp = RREG32(mmSRBM_STATUS2); 1056 1057 if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK | 1058 SRBM_STATUS2__SDMA1_BUSY_MASK)) 1059 return false; 1060 1061 return true; 1062 } 1063 1064 static int sdma_v2_4_wait_for_idle(void *handle) 1065 { 1066 unsigned i; 1067 u32 tmp; 1068 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1069 1070 for (i = 0; i < adev->usec_timeout; i++) { 1071 tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK | 1072 SRBM_STATUS2__SDMA1_BUSY_MASK); 1073 1074 if (!tmp) 1075 return 0; 1076 udelay(1); 1077 } 1078 return -ETIMEDOUT; 1079 } 1080 1081 static void sdma_v2_4_print_status(void *handle) 1082 { 1083 int i, j; 1084 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1085 1086 dev_info(adev->dev, "VI SDMA registers\n"); 1087 dev_info(adev->dev, " SRBM_STATUS2=0x%08X\n", 1088 RREG32(mmSRBM_STATUS2)); 1089 for (i = 0; i < adev->sdma.num_instances; i++) { 1090 dev_info(adev->dev, " SDMA%d_STATUS_REG=0x%08X\n", 1091 i, RREG32(mmSDMA0_STATUS_REG + sdma_offsets[i])); 1092 dev_info(adev->dev, " SDMA%d_F32_CNTL=0x%08X\n", 1093 i, RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i])); 1094 dev_info(adev->dev, " SDMA%d_CNTL=0x%08X\n", 1095 i, RREG32(mmSDMA0_CNTL + sdma_offsets[i])); 1096 dev_info(adev->dev, " SDMA%d_SEM_WAIT_FAIL_TIMER_CNTL=0x%08X\n", 1097 i, RREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i])); 1098 dev_info(adev->dev, " SDMA%d_GFX_IB_CNTL=0x%08X\n", 1099 i, RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i])); 1100 dev_info(adev->dev, " SDMA%d_GFX_RB_CNTL=0x%08X\n", 1101 i, RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i])); 1102 dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR=0x%08X\n", 1103 i, RREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i])); 1104 dev_info(adev->dev, " SDMA%d_GFX_RB_WPTR=0x%08X\n", 1105 i, RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i])); 1106 dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR_ADDR_HI=0x%08X\n", 1107 i, RREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i])); 1108 dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR_ADDR_LO=0x%08X\n", 1109 i, RREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i])); 1110 dev_info(adev->dev, " SDMA%d_GFX_RB_BASE=0x%08X\n", 1111 i, RREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i])); 1112 dev_info(adev->dev, " SDMA%d_GFX_RB_BASE_HI=0x%08X\n", 1113 i, RREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i])); 1114 mutex_lock(&adev->srbm_mutex); 1115 for (j = 0; j < 16; j++) { 1116 vi_srbm_select(adev, 0, 0, 0, j); 1117 dev_info(adev->dev, " VM %d:\n", j); 1118 dev_info(adev->dev, " SDMA%d_GFX_VIRTUAL_ADDR=0x%08X\n", 1119 i, RREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i])); 1120 dev_info(adev->dev, " SDMA%d_GFX_APE1_CNTL=0x%08X\n", 1121 i, RREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i])); 1122 } 1123 vi_srbm_select(adev, 0, 0, 0, 0); 1124 mutex_unlock(&adev->srbm_mutex); 1125 } 1126 } 1127 1128 static int sdma_v2_4_soft_reset(void *handle) 1129 { 1130 u32 srbm_soft_reset = 0; 1131 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1132 u32 tmp = RREG32(mmSRBM_STATUS2); 1133 1134 if (tmp & SRBM_STATUS2__SDMA_BUSY_MASK) { 1135 /* sdma0 */ 1136 tmp = RREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET); 1137 tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0); 1138 WREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET, tmp); 1139 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK; 1140 } 1141 if (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK) { 1142 /* sdma1 */ 1143 tmp = RREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET); 1144 tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0); 1145 WREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET, tmp); 1146 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK; 1147 } 1148 1149 if (srbm_soft_reset) { 1150 sdma_v2_4_print_status((void *)adev); 1151 1152 tmp = RREG32(mmSRBM_SOFT_RESET); 1153 tmp |= srbm_soft_reset; 1154 dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp); 1155 WREG32(mmSRBM_SOFT_RESET, tmp); 1156 tmp = RREG32(mmSRBM_SOFT_RESET); 1157 1158 udelay(50); 1159 1160 tmp &= ~srbm_soft_reset; 1161 WREG32(mmSRBM_SOFT_RESET, tmp); 1162 tmp = RREG32(mmSRBM_SOFT_RESET); 1163 1164 /* Wait a little for things to settle down */ 1165 udelay(50); 1166 1167 sdma_v2_4_print_status((void *)adev); 1168 } 1169 1170 return 0; 1171 } 1172 1173 static int sdma_v2_4_set_trap_irq_state(struct amdgpu_device *adev, 1174 struct amdgpu_irq_src *src, 1175 unsigned type, 1176 enum amdgpu_interrupt_state state) 1177 { 1178 u32 sdma_cntl; 1179 1180 switch (type) { 1181 case AMDGPU_SDMA_IRQ_TRAP0: 1182 switch (state) { 1183 case AMDGPU_IRQ_STATE_DISABLE: 1184 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET); 1185 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0); 1186 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl); 1187 break; 1188 case AMDGPU_IRQ_STATE_ENABLE: 1189 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET); 1190 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1); 1191 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl); 1192 break; 1193 default: 1194 break; 1195 } 1196 break; 1197 case AMDGPU_SDMA_IRQ_TRAP1: 1198 switch (state) { 1199 case AMDGPU_IRQ_STATE_DISABLE: 1200 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET); 1201 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0); 1202 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl); 1203 break; 1204 case AMDGPU_IRQ_STATE_ENABLE: 1205 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET); 1206 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1); 1207 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl); 1208 break; 1209 default: 1210 break; 1211 } 1212 break; 1213 default: 1214 break; 1215 } 1216 return 0; 1217 } 1218 1219 static int sdma_v2_4_process_trap_irq(struct amdgpu_device *adev, 1220 struct amdgpu_irq_src *source, 1221 struct amdgpu_iv_entry *entry) 1222 { 1223 u8 instance_id, queue_id; 1224 1225 instance_id = (entry->ring_id & 0x3) >> 0; 1226 queue_id = (entry->ring_id & 0xc) >> 2; 1227 DRM_DEBUG("IH: SDMA trap\n"); 1228 switch (instance_id) { 1229 case 0: 1230 switch (queue_id) { 1231 case 0: 1232 amdgpu_fence_process(&adev->sdma.instance[0].ring); 1233 break; 1234 case 1: 1235 /* XXX compute */ 1236 break; 1237 case 2: 1238 /* XXX compute */ 1239 break; 1240 } 1241 break; 1242 case 1: 1243 switch (queue_id) { 1244 case 0: 1245 amdgpu_fence_process(&adev->sdma.instance[1].ring); 1246 break; 1247 case 1: 1248 /* XXX compute */ 1249 break; 1250 case 2: 1251 /* XXX compute */ 1252 break; 1253 } 1254 break; 1255 } 1256 return 0; 1257 } 1258 1259 static int sdma_v2_4_process_illegal_inst_irq(struct amdgpu_device *adev, 1260 struct amdgpu_irq_src *source, 1261 struct amdgpu_iv_entry *entry) 1262 { 1263 DRM_ERROR("Illegal instruction in SDMA command stream\n"); 1264 schedule_work(&adev->reset_work); 1265 return 0; 1266 } 1267 1268 static int sdma_v2_4_set_clockgating_state(void *handle, 1269 enum amd_clockgating_state state) 1270 { 1271 /* XXX handled via the smc on VI */ 1272 return 0; 1273 } 1274 1275 static int sdma_v2_4_set_powergating_state(void *handle, 1276 enum amd_powergating_state state) 1277 { 1278 return 0; 1279 } 1280 1281 const struct amd_ip_funcs sdma_v2_4_ip_funcs = { 1282 .early_init = sdma_v2_4_early_init, 1283 .late_init = NULL, 1284 .sw_init = sdma_v2_4_sw_init, 1285 .sw_fini = sdma_v2_4_sw_fini, 1286 .hw_init = sdma_v2_4_hw_init, 1287 .hw_fini = sdma_v2_4_hw_fini, 1288 .suspend = sdma_v2_4_suspend, 1289 .resume = sdma_v2_4_resume, 1290 .is_idle = sdma_v2_4_is_idle, 1291 .wait_for_idle = sdma_v2_4_wait_for_idle, 1292 .soft_reset = sdma_v2_4_soft_reset, 1293 .print_status = sdma_v2_4_print_status, 1294 .set_clockgating_state = sdma_v2_4_set_clockgating_state, 1295 .set_powergating_state = sdma_v2_4_set_powergating_state, 1296 }; 1297 1298 static const struct amdgpu_ring_funcs sdma_v2_4_ring_funcs = { 1299 .get_rptr = sdma_v2_4_ring_get_rptr, 1300 .get_wptr = sdma_v2_4_ring_get_wptr, 1301 .set_wptr = sdma_v2_4_ring_set_wptr, 1302 .parse_cs = NULL, 1303 .emit_ib = sdma_v2_4_ring_emit_ib, 1304 .emit_fence = sdma_v2_4_ring_emit_fence, 1305 .emit_semaphore = sdma_v2_4_ring_emit_semaphore, 1306 .emit_vm_flush = sdma_v2_4_ring_emit_vm_flush, 1307 .emit_hdp_flush = sdma_v2_4_ring_emit_hdp_flush, 1308 .test_ring = sdma_v2_4_ring_test_ring, 1309 .test_ib = sdma_v2_4_ring_test_ib, 1310 .insert_nop = sdma_v2_4_ring_insert_nop, 1311 }; 1312 1313 static void sdma_v2_4_set_ring_funcs(struct amdgpu_device *adev) 1314 { 1315 int i; 1316 1317 for (i = 0; i < adev->sdma.num_instances; i++) 1318 adev->sdma.instance[i].ring.funcs = &sdma_v2_4_ring_funcs; 1319 } 1320 1321 static const struct amdgpu_irq_src_funcs sdma_v2_4_trap_irq_funcs = { 1322 .set = sdma_v2_4_set_trap_irq_state, 1323 .process = sdma_v2_4_process_trap_irq, 1324 }; 1325 1326 static const struct amdgpu_irq_src_funcs sdma_v2_4_illegal_inst_irq_funcs = { 1327 .process = sdma_v2_4_process_illegal_inst_irq, 1328 }; 1329 1330 static void sdma_v2_4_set_irq_funcs(struct amdgpu_device *adev) 1331 { 1332 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST; 1333 adev->sdma.trap_irq.funcs = &sdma_v2_4_trap_irq_funcs; 1334 adev->sdma.illegal_inst_irq.funcs = &sdma_v2_4_illegal_inst_irq_funcs; 1335 } 1336 1337 /** 1338 * sdma_v2_4_emit_copy_buffer - copy buffer using the sDMA engine 1339 * 1340 * @ring: amdgpu_ring structure holding ring information 1341 * @src_offset: src GPU address 1342 * @dst_offset: dst GPU address 1343 * @byte_count: number of bytes to xfer 1344 * 1345 * Copy GPU buffers using the DMA engine (VI). 1346 * Used by the amdgpu ttm implementation to move pages if 1347 * registered as the asic copy callback. 1348 */ 1349 static void sdma_v2_4_emit_copy_buffer(struct amdgpu_ib *ib, 1350 uint64_t src_offset, 1351 uint64_t dst_offset, 1352 uint32_t byte_count) 1353 { 1354 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | 1355 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); 1356 ib->ptr[ib->length_dw++] = byte_count; 1357 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 1358 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset); 1359 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset); 1360 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 1361 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 1362 } 1363 1364 /** 1365 * sdma_v2_4_emit_fill_buffer - fill buffer using the sDMA engine 1366 * 1367 * @ring: amdgpu_ring structure holding ring information 1368 * @src_data: value to write to buffer 1369 * @dst_offset: dst GPU address 1370 * @byte_count: number of bytes to xfer 1371 * 1372 * Fill GPU buffers using the DMA engine (VI). 1373 */ 1374 static void sdma_v2_4_emit_fill_buffer(struct amdgpu_ib *ib, 1375 uint32_t src_data, 1376 uint64_t dst_offset, 1377 uint32_t byte_count) 1378 { 1379 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL); 1380 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 1381 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 1382 ib->ptr[ib->length_dw++] = src_data; 1383 ib->ptr[ib->length_dw++] = byte_count; 1384 } 1385 1386 static const struct amdgpu_buffer_funcs sdma_v2_4_buffer_funcs = { 1387 .copy_max_bytes = 0x1fffff, 1388 .copy_num_dw = 7, 1389 .emit_copy_buffer = sdma_v2_4_emit_copy_buffer, 1390 1391 .fill_max_bytes = 0x1fffff, 1392 .fill_num_dw = 7, 1393 .emit_fill_buffer = sdma_v2_4_emit_fill_buffer, 1394 }; 1395 1396 static void sdma_v2_4_set_buffer_funcs(struct amdgpu_device *adev) 1397 { 1398 if (adev->mman.buffer_funcs == NULL) { 1399 adev->mman.buffer_funcs = &sdma_v2_4_buffer_funcs; 1400 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring; 1401 } 1402 } 1403 1404 static const struct amdgpu_vm_pte_funcs sdma_v2_4_vm_pte_funcs = { 1405 .copy_pte = sdma_v2_4_vm_copy_pte, 1406 .write_pte = sdma_v2_4_vm_write_pte, 1407 .set_pte_pde = sdma_v2_4_vm_set_pte_pde, 1408 .pad_ib = sdma_v2_4_vm_pad_ib, 1409 }; 1410 1411 static void sdma_v2_4_set_vm_pte_funcs(struct amdgpu_device *adev) 1412 { 1413 if (adev->vm_manager.vm_pte_funcs == NULL) { 1414 adev->vm_manager.vm_pte_funcs = &sdma_v2_4_vm_pte_funcs; 1415 adev->vm_manager.vm_pte_funcs_ring = &adev->sdma.instance[0].ring; 1416 adev->vm_manager.vm_pte_funcs_ring->is_pte_ring = true; 1417 } 1418 } 1419