xref: /linux/drivers/gpu/drm/amd/amdgpu/sdma_v2_4.c (revision 78beef629fd95be4ed853b2d37b832f766bd96ca)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Alex Deucher
23  */
24 
25 #include <linux/delay.h>
26 #include <linux/firmware.h>
27 #include <linux/module.h>
28 
29 #include "amdgpu.h"
30 #include "amdgpu_ucode.h"
31 #include "amdgpu_trace.h"
32 #include "vi.h"
33 #include "vid.h"
34 
35 #include "oss/oss_2_4_d.h"
36 #include "oss/oss_2_4_sh_mask.h"
37 
38 #include "gmc/gmc_7_1_d.h"
39 #include "gmc/gmc_7_1_sh_mask.h"
40 
41 #include "gca/gfx_8_0_d.h"
42 #include "gca/gfx_8_0_enum.h"
43 #include "gca/gfx_8_0_sh_mask.h"
44 
45 #include "bif/bif_5_0_d.h"
46 #include "bif/bif_5_0_sh_mask.h"
47 
48 #include "iceland_sdma_pkt_open.h"
49 
50 #include "ivsrcid/ivsrcid_vislands30.h"
51 
52 static void sdma_v2_4_set_ring_funcs(struct amdgpu_device *adev);
53 static void sdma_v2_4_set_buffer_funcs(struct amdgpu_device *adev);
54 static void sdma_v2_4_set_vm_pte_funcs(struct amdgpu_device *adev);
55 static void sdma_v2_4_set_irq_funcs(struct amdgpu_device *adev);
56 
57 MODULE_FIRMWARE("amdgpu/topaz_sdma.bin");
58 MODULE_FIRMWARE("amdgpu/topaz_sdma1.bin");
59 
60 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
61 {
62 	SDMA0_REGISTER_OFFSET,
63 	SDMA1_REGISTER_OFFSET
64 };
65 
66 static const u32 golden_settings_iceland_a11[] =
67 {
68 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
69 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
70 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
71 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
72 };
73 
74 static const u32 iceland_mgcg_cgcg_init[] =
75 {
76 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
77 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
78 };
79 
80 /*
81  * sDMA - System DMA
82  * Starting with CIK, the GPU has new asynchronous
83  * DMA engines.  These engines are used for compute
84  * and gfx.  There are two DMA engines (SDMA0, SDMA1)
85  * and each one supports 1 ring buffer used for gfx
86  * and 2 queues used for compute.
87  *
88  * The programming model is very similar to the CP
89  * (ring buffer, IBs, etc.), but sDMA has it's own
90  * packet format that is different from the PM4 format
91  * used by the CP. sDMA supports copying data, writing
92  * embedded data, solid fills, and a number of other
93  * things.  It also has support for tiling/detiling of
94  * buffers.
95  */
96 
97 static void sdma_v2_4_init_golden_registers(struct amdgpu_device *adev)
98 {
99 	switch (adev->asic_type) {
100 	case CHIP_TOPAZ:
101 		amdgpu_device_program_register_sequence(adev,
102 							iceland_mgcg_cgcg_init,
103 							ARRAY_SIZE(iceland_mgcg_cgcg_init));
104 		amdgpu_device_program_register_sequence(adev,
105 							golden_settings_iceland_a11,
106 							ARRAY_SIZE(golden_settings_iceland_a11));
107 		break;
108 	default:
109 		break;
110 	}
111 }
112 
113 static void sdma_v2_4_free_microcode(struct amdgpu_device *adev)
114 {
115 	int i;
116 	for (i = 0; i < adev->sdma.num_instances; i++) {
117 		release_firmware(adev->sdma.instance[i].fw);
118 		adev->sdma.instance[i].fw = NULL;
119 	}
120 }
121 
122 /**
123  * sdma_v2_4_init_microcode - load ucode images from disk
124  *
125  * @adev: amdgpu_device pointer
126  *
127  * Use the firmware interface to load the ucode images into
128  * the driver (not loaded into hw).
129  * Returns 0 on success, error on failure.
130  */
131 static int sdma_v2_4_init_microcode(struct amdgpu_device *adev)
132 {
133 	const char *chip_name;
134 	char fw_name[30];
135 	int err = 0, i;
136 	struct amdgpu_firmware_info *info = NULL;
137 	const struct common_firmware_header *header = NULL;
138 	const struct sdma_firmware_header_v1_0 *hdr;
139 
140 	DRM_DEBUG("\n");
141 
142 	switch (adev->asic_type) {
143 	case CHIP_TOPAZ:
144 		chip_name = "topaz";
145 		break;
146 	default: BUG();
147 	}
148 
149 	for (i = 0; i < adev->sdma.num_instances; i++) {
150 		if (i == 0)
151 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
152 		else
153 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
154 		err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
155 		if (err)
156 			goto out;
157 		err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
158 		if (err)
159 			goto out;
160 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
161 		adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
162 		adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
163 		if (adev->sdma.instance[i].feature_version >= 20)
164 			adev->sdma.instance[i].burst_nop = true;
165 
166 		if (adev->firmware.load_type == AMDGPU_FW_LOAD_SMU) {
167 			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
168 			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
169 			info->fw = adev->sdma.instance[i].fw;
170 			header = (const struct common_firmware_header *)info->fw->data;
171 			adev->firmware.fw_size +=
172 				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
173 		}
174 	}
175 
176 out:
177 	if (err) {
178 		pr_err("sdma_v2_4: Failed to load firmware \"%s\"\n", fw_name);
179 		for (i = 0; i < adev->sdma.num_instances; i++) {
180 			release_firmware(adev->sdma.instance[i].fw);
181 			adev->sdma.instance[i].fw = NULL;
182 		}
183 	}
184 	return err;
185 }
186 
187 /**
188  * sdma_v2_4_ring_get_rptr - get the current read pointer
189  *
190  * @ring: amdgpu ring pointer
191  *
192  * Get the current rptr from the hardware (VI+).
193  */
194 static uint64_t sdma_v2_4_ring_get_rptr(struct amdgpu_ring *ring)
195 {
196 	/* XXX check if swapping is necessary on BE */
197 	return ring->adev->wb.wb[ring->rptr_offs] >> 2;
198 }
199 
200 /**
201  * sdma_v2_4_ring_get_wptr - get the current write pointer
202  *
203  * @ring: amdgpu ring pointer
204  *
205  * Get the current wptr from the hardware (VI+).
206  */
207 static uint64_t sdma_v2_4_ring_get_wptr(struct amdgpu_ring *ring)
208 {
209 	struct amdgpu_device *adev = ring->adev;
210 	u32 wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me]) >> 2;
211 
212 	return wptr;
213 }
214 
215 /**
216  * sdma_v2_4_ring_set_wptr - commit the write pointer
217  *
218  * @ring: amdgpu ring pointer
219  *
220  * Write the wptr back to the hardware (VI+).
221  */
222 static void sdma_v2_4_ring_set_wptr(struct amdgpu_ring *ring)
223 {
224 	struct amdgpu_device *adev = ring->adev;
225 
226 	WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me], lower_32_bits(ring->wptr) << 2);
227 }
228 
229 static void sdma_v2_4_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
230 {
231 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
232 	int i;
233 
234 	for (i = 0; i < count; i++)
235 		if (sdma && sdma->burst_nop && (i == 0))
236 			amdgpu_ring_write(ring, ring->funcs->nop |
237 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
238 		else
239 			amdgpu_ring_write(ring, ring->funcs->nop);
240 }
241 
242 /**
243  * sdma_v2_4_ring_emit_ib - Schedule an IB on the DMA engine
244  *
245  * @ring: amdgpu ring pointer
246  * @ib: IB object to schedule
247  *
248  * Schedule an IB in the DMA ring (VI).
249  */
250 static void sdma_v2_4_ring_emit_ib(struct amdgpu_ring *ring,
251 				   struct amdgpu_job *job,
252 				   struct amdgpu_ib *ib,
253 				   uint32_t flags)
254 {
255 	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
256 
257 	/* IB packet must end on a 8 DW boundary */
258 	sdma_v2_4_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
259 
260 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
261 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
262 	/* base must be 32 byte aligned */
263 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
264 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
265 	amdgpu_ring_write(ring, ib->length_dw);
266 	amdgpu_ring_write(ring, 0);
267 	amdgpu_ring_write(ring, 0);
268 
269 }
270 
271 /**
272  * sdma_v2_4_hdp_flush_ring_emit - emit an hdp flush on the DMA ring
273  *
274  * @ring: amdgpu ring pointer
275  *
276  * Emit an hdp flush packet on the requested DMA ring.
277  */
278 static void sdma_v2_4_ring_emit_hdp_flush(struct amdgpu_ring *ring)
279 {
280 	u32 ref_and_mask = 0;
281 
282 	if (ring->me == 0)
283 		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
284 	else
285 		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
286 
287 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
288 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
289 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
290 	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
291 	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
292 	amdgpu_ring_write(ring, ref_and_mask); /* reference */
293 	amdgpu_ring_write(ring, ref_and_mask); /* mask */
294 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
295 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
296 }
297 
298 /**
299  * sdma_v2_4_ring_emit_fence - emit a fence on the DMA ring
300  *
301  * @ring: amdgpu ring pointer
302  * @fence: amdgpu fence object
303  *
304  * Add a DMA fence packet to the ring to write
305  * the fence seq number and DMA trap packet to generate
306  * an interrupt if needed (VI).
307  */
308 static void sdma_v2_4_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
309 				      unsigned flags)
310 {
311 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
312 	/* write the fence */
313 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
314 	amdgpu_ring_write(ring, lower_32_bits(addr));
315 	amdgpu_ring_write(ring, upper_32_bits(addr));
316 	amdgpu_ring_write(ring, lower_32_bits(seq));
317 
318 	/* optionally write high bits as well */
319 	if (write64bit) {
320 		addr += 4;
321 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
322 		amdgpu_ring_write(ring, lower_32_bits(addr));
323 		amdgpu_ring_write(ring, upper_32_bits(addr));
324 		amdgpu_ring_write(ring, upper_32_bits(seq));
325 	}
326 
327 	/* generate an interrupt */
328 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
329 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
330 }
331 
332 /**
333  * sdma_v2_4_gfx_stop - stop the gfx async dma engines
334  *
335  * @adev: amdgpu_device pointer
336  *
337  * Stop the gfx async dma ring buffers (VI).
338  */
339 static void sdma_v2_4_gfx_stop(struct amdgpu_device *adev)
340 {
341 	struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
342 	struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
343 	u32 rb_cntl, ib_cntl;
344 	int i;
345 
346 	if ((adev->mman.buffer_funcs_ring == sdma0) ||
347 	    (adev->mman.buffer_funcs_ring == sdma1))
348 		amdgpu_ttm_set_buffer_funcs_status(adev, false);
349 
350 	for (i = 0; i < adev->sdma.num_instances; i++) {
351 		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
352 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
353 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
354 		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
355 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
356 		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
357 	}
358 	sdma0->sched.ready = false;
359 	sdma1->sched.ready = false;
360 }
361 
362 /**
363  * sdma_v2_4_rlc_stop - stop the compute async dma engines
364  *
365  * @adev: amdgpu_device pointer
366  *
367  * Stop the compute async dma queues (VI).
368  */
369 static void sdma_v2_4_rlc_stop(struct amdgpu_device *adev)
370 {
371 	/* XXX todo */
372 }
373 
374 /**
375  * sdma_v2_4_enable - stop the async dma engines
376  *
377  * @adev: amdgpu_device pointer
378  * @enable: enable/disable the DMA MEs.
379  *
380  * Halt or unhalt the async dma engines (VI).
381  */
382 static void sdma_v2_4_enable(struct amdgpu_device *adev, bool enable)
383 {
384 	u32 f32_cntl;
385 	int i;
386 
387 	if (!enable) {
388 		sdma_v2_4_gfx_stop(adev);
389 		sdma_v2_4_rlc_stop(adev);
390 	}
391 
392 	for (i = 0; i < adev->sdma.num_instances; i++) {
393 		f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
394 		if (enable)
395 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
396 		else
397 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
398 		WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
399 	}
400 }
401 
402 /**
403  * sdma_v2_4_gfx_resume - setup and start the async dma engines
404  *
405  * @adev: amdgpu_device pointer
406  *
407  * Set up the gfx DMA ring buffers and enable them (VI).
408  * Returns 0 for success, error for failure.
409  */
410 static int sdma_v2_4_gfx_resume(struct amdgpu_device *adev)
411 {
412 	struct amdgpu_ring *ring;
413 	u32 rb_cntl, ib_cntl;
414 	u32 rb_bufsz;
415 	u32 wb_offset;
416 	int i, j, r;
417 
418 	for (i = 0; i < adev->sdma.num_instances; i++) {
419 		ring = &adev->sdma.instance[i].ring;
420 		wb_offset = (ring->rptr_offs * 4);
421 
422 		mutex_lock(&adev->srbm_mutex);
423 		for (j = 0; j < 16; j++) {
424 			vi_srbm_select(adev, 0, 0, 0, j);
425 			/* SDMA GFX */
426 			WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
427 			WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
428 		}
429 		vi_srbm_select(adev, 0, 0, 0, 0);
430 		mutex_unlock(&adev->srbm_mutex);
431 
432 		WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
433 		       adev->gfx.config.gb_addr_config & 0x70);
434 
435 		WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
436 
437 		/* Set ring buffer size in dwords */
438 		rb_bufsz = order_base_2(ring->ring_size / 4);
439 		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
440 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
441 #ifdef __BIG_ENDIAN
442 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
443 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
444 					RPTR_WRITEBACK_SWAP_ENABLE, 1);
445 #endif
446 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
447 
448 		/* Initialize the ring buffer's read and write pointers */
449 		WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
450 		WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
451 		WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
452 		WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
453 
454 		/* set the wb address whether it's enabled or not */
455 		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
456 		       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
457 		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
458 		       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
459 
460 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
461 
462 		WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
463 		WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
464 
465 		ring->wptr = 0;
466 		WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], lower_32_bits(ring->wptr) << 2);
467 
468 		/* enable DMA RB */
469 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
470 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
471 
472 		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
473 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
474 #ifdef __BIG_ENDIAN
475 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
476 #endif
477 		/* enable DMA IBs */
478 		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
479 
480 		ring->sched.ready = true;
481 	}
482 
483 	sdma_v2_4_enable(adev, true);
484 	for (i = 0; i < adev->sdma.num_instances; i++) {
485 		ring = &adev->sdma.instance[i].ring;
486 		r = amdgpu_ring_test_helper(ring);
487 		if (r)
488 			return r;
489 
490 		if (adev->mman.buffer_funcs_ring == ring)
491 			amdgpu_ttm_set_buffer_funcs_status(adev, true);
492 	}
493 
494 	return 0;
495 }
496 
497 /**
498  * sdma_v2_4_rlc_resume - setup and start the async dma engines
499  *
500  * @adev: amdgpu_device pointer
501  *
502  * Set up the compute DMA queues and enable them (VI).
503  * Returns 0 for success, error for failure.
504  */
505 static int sdma_v2_4_rlc_resume(struct amdgpu_device *adev)
506 {
507 	/* XXX todo */
508 	return 0;
509 }
510 
511 
512 /**
513  * sdma_v2_4_start - setup and start the async dma engines
514  *
515  * @adev: amdgpu_device pointer
516  *
517  * Set up the DMA engines and enable them (VI).
518  * Returns 0 for success, error for failure.
519  */
520 static int sdma_v2_4_start(struct amdgpu_device *adev)
521 {
522 	int r;
523 
524 	/* halt the engine before programing */
525 	sdma_v2_4_enable(adev, false);
526 
527 	/* start the gfx rings and rlc compute queues */
528 	r = sdma_v2_4_gfx_resume(adev);
529 	if (r)
530 		return r;
531 	r = sdma_v2_4_rlc_resume(adev);
532 	if (r)
533 		return r;
534 
535 	return 0;
536 }
537 
538 /**
539  * sdma_v2_4_ring_test_ring - simple async dma engine test
540  *
541  * @ring: amdgpu_ring structure holding ring information
542  *
543  * Test the DMA engine by writing using it to write an
544  * value to memory. (VI).
545  * Returns 0 for success, error for failure.
546  */
547 static int sdma_v2_4_ring_test_ring(struct amdgpu_ring *ring)
548 {
549 	struct amdgpu_device *adev = ring->adev;
550 	unsigned i;
551 	unsigned index;
552 	int r;
553 	u32 tmp;
554 	u64 gpu_addr;
555 
556 	r = amdgpu_device_wb_get(adev, &index);
557 	if (r)
558 		return r;
559 
560 	gpu_addr = adev->wb.gpu_addr + (index * 4);
561 	tmp = 0xCAFEDEAD;
562 	adev->wb.wb[index] = cpu_to_le32(tmp);
563 
564 	r = amdgpu_ring_alloc(ring, 5);
565 	if (r)
566 		goto error_free_wb;
567 
568 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
569 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
570 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
571 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
572 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
573 	amdgpu_ring_write(ring, 0xDEADBEEF);
574 	amdgpu_ring_commit(ring);
575 
576 	for (i = 0; i < adev->usec_timeout; i++) {
577 		tmp = le32_to_cpu(adev->wb.wb[index]);
578 		if (tmp == 0xDEADBEEF)
579 			break;
580 		udelay(1);
581 	}
582 
583 	if (i >= adev->usec_timeout)
584 		r = -ETIMEDOUT;
585 
586 error_free_wb:
587 	amdgpu_device_wb_free(adev, index);
588 	return r;
589 }
590 
591 /**
592  * sdma_v2_4_ring_test_ib - test an IB on the DMA engine
593  *
594  * @ring: amdgpu_ring structure holding ring information
595  *
596  * Test a simple IB in the DMA ring (VI).
597  * Returns 0 on success, error on failure.
598  */
599 static int sdma_v2_4_ring_test_ib(struct amdgpu_ring *ring, long timeout)
600 {
601 	struct amdgpu_device *adev = ring->adev;
602 	struct amdgpu_ib ib;
603 	struct dma_fence *f = NULL;
604 	unsigned index;
605 	u32 tmp = 0;
606 	u64 gpu_addr;
607 	long r;
608 
609 	r = amdgpu_device_wb_get(adev, &index);
610 	if (r)
611 		return r;
612 
613 	gpu_addr = adev->wb.gpu_addr + (index * 4);
614 	tmp = 0xCAFEDEAD;
615 	adev->wb.wb[index] = cpu_to_le32(tmp);
616 	memset(&ib, 0, sizeof(ib));
617 	r = amdgpu_ib_get(adev, NULL, 256, &ib);
618 	if (r)
619 		goto err0;
620 
621 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
622 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
623 	ib.ptr[1] = lower_32_bits(gpu_addr);
624 	ib.ptr[2] = upper_32_bits(gpu_addr);
625 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
626 	ib.ptr[4] = 0xDEADBEEF;
627 	ib.ptr[5] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
628 	ib.ptr[6] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
629 	ib.ptr[7] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
630 	ib.length_dw = 8;
631 
632 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
633 	if (r)
634 		goto err1;
635 
636 	r = dma_fence_wait_timeout(f, false, timeout);
637 	if (r == 0) {
638 		r = -ETIMEDOUT;
639 		goto err1;
640 	} else if (r < 0) {
641 		goto err1;
642 	}
643 	tmp = le32_to_cpu(adev->wb.wb[index]);
644 	if (tmp == 0xDEADBEEF)
645 		r = 0;
646 	else
647 		r = -EINVAL;
648 
649 err1:
650 	amdgpu_ib_free(adev, &ib, NULL);
651 	dma_fence_put(f);
652 err0:
653 	amdgpu_device_wb_free(adev, index);
654 	return r;
655 }
656 
657 /**
658  * sdma_v2_4_vm_copy_pte - update PTEs by copying them from the GART
659  *
660  * @ib: indirect buffer to fill with commands
661  * @pe: addr of the page entry
662  * @src: src addr to copy from
663  * @count: number of page entries to update
664  *
665  * Update PTEs by copying them from the GART using sDMA (CIK).
666  */
667 static void sdma_v2_4_vm_copy_pte(struct amdgpu_ib *ib,
668 				  uint64_t pe, uint64_t src,
669 				  unsigned count)
670 {
671 	unsigned bytes = count * 8;
672 
673 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
674 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
675 	ib->ptr[ib->length_dw++] = bytes;
676 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
677 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
678 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
679 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
680 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
681 }
682 
683 /**
684  * sdma_v2_4_vm_write_pte - update PTEs by writing them manually
685  *
686  * @ib: indirect buffer to fill with commands
687  * @pe: addr of the page entry
688  * @value: dst addr to write into pe
689  * @count: number of page entries to update
690  * @incr: increase next addr by incr bytes
691  *
692  * Update PTEs by writing them manually using sDMA (CIK).
693  */
694 static void sdma_v2_4_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
695 				   uint64_t value, unsigned count,
696 				   uint32_t incr)
697 {
698 	unsigned ndw = count * 2;
699 
700 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
701 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
702 	ib->ptr[ib->length_dw++] = pe;
703 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
704 	ib->ptr[ib->length_dw++] = ndw;
705 	for (; ndw > 0; ndw -= 2) {
706 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
707 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
708 		value += incr;
709 	}
710 }
711 
712 /**
713  * sdma_v2_4_vm_set_pte_pde - update the page tables using sDMA
714  *
715  * @ib: indirect buffer to fill with commands
716  * @pe: addr of the page entry
717  * @addr: dst addr to write into pe
718  * @count: number of page entries to update
719  * @incr: increase next addr by incr bytes
720  * @flags: access flags
721  *
722  * Update the page tables using sDMA (CIK).
723  */
724 static void sdma_v2_4_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe,
725 				     uint64_t addr, unsigned count,
726 				     uint32_t incr, uint64_t flags)
727 {
728 	/* for physically contiguous pages (vram) */
729 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
730 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
731 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
732 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
733 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
734 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
735 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
736 	ib->ptr[ib->length_dw++] = incr; /* increment size */
737 	ib->ptr[ib->length_dw++] = 0;
738 	ib->ptr[ib->length_dw++] = count; /* number of entries */
739 }
740 
741 /**
742  * sdma_v2_4_ring_pad_ib - pad the IB to the required number of dw
743  *
744  * @ib: indirect buffer to fill with padding
745  *
746  */
747 static void sdma_v2_4_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
748 {
749 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
750 	u32 pad_count;
751 	int i;
752 
753 	pad_count = (8 - (ib->length_dw & 0x7)) % 8;
754 	for (i = 0; i < pad_count; i++)
755 		if (sdma && sdma->burst_nop && (i == 0))
756 			ib->ptr[ib->length_dw++] =
757 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
758 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
759 		else
760 			ib->ptr[ib->length_dw++] =
761 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
762 }
763 
764 /**
765  * sdma_v2_4_ring_emit_pipeline_sync - sync the pipeline
766  *
767  * @ring: amdgpu_ring pointer
768  *
769  * Make sure all previous operations are completed (CIK).
770  */
771 static void sdma_v2_4_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
772 {
773 	uint32_t seq = ring->fence_drv.sync_seq;
774 	uint64_t addr = ring->fence_drv.gpu_addr;
775 
776 	/* wait for idle */
777 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
778 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
779 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
780 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
781 	amdgpu_ring_write(ring, addr & 0xfffffffc);
782 	amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
783 	amdgpu_ring_write(ring, seq); /* reference */
784 	amdgpu_ring_write(ring, 0xffffffff); /* mask */
785 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
786 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
787 }
788 
789 /**
790  * sdma_v2_4_ring_emit_vm_flush - cik vm flush using sDMA
791  *
792  * @ring: amdgpu_ring pointer
793  * @vm: amdgpu_vm pointer
794  *
795  * Update the page table base and flush the VM TLB
796  * using sDMA (VI).
797  */
798 static void sdma_v2_4_ring_emit_vm_flush(struct amdgpu_ring *ring,
799 					 unsigned vmid, uint64_t pd_addr)
800 {
801 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
802 
803 	/* wait for flush */
804 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
805 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
806 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
807 	amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
808 	amdgpu_ring_write(ring, 0);
809 	amdgpu_ring_write(ring, 0); /* reference */
810 	amdgpu_ring_write(ring, 0); /* mask */
811 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
812 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
813 }
814 
815 static void sdma_v2_4_ring_emit_wreg(struct amdgpu_ring *ring,
816 				     uint32_t reg, uint32_t val)
817 {
818 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
819 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
820 	amdgpu_ring_write(ring, reg);
821 	amdgpu_ring_write(ring, val);
822 }
823 
824 static int sdma_v2_4_early_init(void *handle)
825 {
826 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
827 
828 	adev->sdma.num_instances = SDMA_MAX_INSTANCE;
829 
830 	sdma_v2_4_set_ring_funcs(adev);
831 	sdma_v2_4_set_buffer_funcs(adev);
832 	sdma_v2_4_set_vm_pte_funcs(adev);
833 	sdma_v2_4_set_irq_funcs(adev);
834 
835 	return 0;
836 }
837 
838 static int sdma_v2_4_sw_init(void *handle)
839 {
840 	struct amdgpu_ring *ring;
841 	int r, i;
842 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
843 
844 	/* SDMA trap event */
845 	r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_SDMA_TRAP,
846 			      &adev->sdma.trap_irq);
847 	if (r)
848 		return r;
849 
850 	/* SDMA Privileged inst */
851 	r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, 241,
852 			      &adev->sdma.illegal_inst_irq);
853 	if (r)
854 		return r;
855 
856 	/* SDMA Privileged inst */
857 	r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_SDMA_SRBM_WRITE,
858 			      &adev->sdma.illegal_inst_irq);
859 	if (r)
860 		return r;
861 
862 	r = sdma_v2_4_init_microcode(adev);
863 	if (r) {
864 		DRM_ERROR("Failed to load sdma firmware!\n");
865 		return r;
866 	}
867 
868 	for (i = 0; i < adev->sdma.num_instances; i++) {
869 		ring = &adev->sdma.instance[i].ring;
870 		ring->ring_obj = NULL;
871 		ring->use_doorbell = false;
872 		sprintf(ring->name, "sdma%d", i);
873 		r = amdgpu_ring_init(adev, ring, 1024,
874 				     &adev->sdma.trap_irq,
875 				     (i == 0) ?
876 				     AMDGPU_SDMA_IRQ_INSTANCE0 :
877 				     AMDGPU_SDMA_IRQ_INSTANCE1);
878 		if (r)
879 			return r;
880 	}
881 
882 	return r;
883 }
884 
885 static int sdma_v2_4_sw_fini(void *handle)
886 {
887 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
888 	int i;
889 
890 	for (i = 0; i < adev->sdma.num_instances; i++)
891 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
892 
893 	sdma_v2_4_free_microcode(adev);
894 	return 0;
895 }
896 
897 static int sdma_v2_4_hw_init(void *handle)
898 {
899 	int r;
900 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
901 
902 	sdma_v2_4_init_golden_registers(adev);
903 
904 	r = sdma_v2_4_start(adev);
905 	if (r)
906 		return r;
907 
908 	return r;
909 }
910 
911 static int sdma_v2_4_hw_fini(void *handle)
912 {
913 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
914 
915 	sdma_v2_4_enable(adev, false);
916 
917 	return 0;
918 }
919 
920 static int sdma_v2_4_suspend(void *handle)
921 {
922 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
923 
924 	return sdma_v2_4_hw_fini(adev);
925 }
926 
927 static int sdma_v2_4_resume(void *handle)
928 {
929 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
930 
931 	return sdma_v2_4_hw_init(adev);
932 }
933 
934 static bool sdma_v2_4_is_idle(void *handle)
935 {
936 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
937 	u32 tmp = RREG32(mmSRBM_STATUS2);
938 
939 	if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
940 		   SRBM_STATUS2__SDMA1_BUSY_MASK))
941 	    return false;
942 
943 	return true;
944 }
945 
946 static int sdma_v2_4_wait_for_idle(void *handle)
947 {
948 	unsigned i;
949 	u32 tmp;
950 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
951 
952 	for (i = 0; i < adev->usec_timeout; i++) {
953 		tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
954 				SRBM_STATUS2__SDMA1_BUSY_MASK);
955 
956 		if (!tmp)
957 			return 0;
958 		udelay(1);
959 	}
960 	return -ETIMEDOUT;
961 }
962 
963 static int sdma_v2_4_soft_reset(void *handle)
964 {
965 	u32 srbm_soft_reset = 0;
966 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
967 	u32 tmp = RREG32(mmSRBM_STATUS2);
968 
969 	if (tmp & SRBM_STATUS2__SDMA_BUSY_MASK) {
970 		/* sdma0 */
971 		tmp = RREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET);
972 		tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
973 		WREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET, tmp);
974 		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
975 	}
976 	if (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK) {
977 		/* sdma1 */
978 		tmp = RREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET);
979 		tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
980 		WREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET, tmp);
981 		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
982 	}
983 
984 	if (srbm_soft_reset) {
985 		tmp = RREG32(mmSRBM_SOFT_RESET);
986 		tmp |= srbm_soft_reset;
987 		dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
988 		WREG32(mmSRBM_SOFT_RESET, tmp);
989 		tmp = RREG32(mmSRBM_SOFT_RESET);
990 
991 		udelay(50);
992 
993 		tmp &= ~srbm_soft_reset;
994 		WREG32(mmSRBM_SOFT_RESET, tmp);
995 		tmp = RREG32(mmSRBM_SOFT_RESET);
996 
997 		/* Wait a little for things to settle down */
998 		udelay(50);
999 	}
1000 
1001 	return 0;
1002 }
1003 
1004 static int sdma_v2_4_set_trap_irq_state(struct amdgpu_device *adev,
1005 					struct amdgpu_irq_src *src,
1006 					unsigned type,
1007 					enum amdgpu_interrupt_state state)
1008 {
1009 	u32 sdma_cntl;
1010 
1011 	switch (type) {
1012 	case AMDGPU_SDMA_IRQ_INSTANCE0:
1013 		switch (state) {
1014 		case AMDGPU_IRQ_STATE_DISABLE:
1015 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1016 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1017 			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1018 			break;
1019 		case AMDGPU_IRQ_STATE_ENABLE:
1020 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1021 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1022 			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1023 			break;
1024 		default:
1025 			break;
1026 		}
1027 		break;
1028 	case AMDGPU_SDMA_IRQ_INSTANCE1:
1029 		switch (state) {
1030 		case AMDGPU_IRQ_STATE_DISABLE:
1031 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1032 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1033 			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1034 			break;
1035 		case AMDGPU_IRQ_STATE_ENABLE:
1036 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1037 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1038 			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1039 			break;
1040 		default:
1041 			break;
1042 		}
1043 		break;
1044 	default:
1045 		break;
1046 	}
1047 	return 0;
1048 }
1049 
1050 static int sdma_v2_4_process_trap_irq(struct amdgpu_device *adev,
1051 				      struct amdgpu_irq_src *source,
1052 				      struct amdgpu_iv_entry *entry)
1053 {
1054 	u8 instance_id, queue_id;
1055 
1056 	instance_id = (entry->ring_id & 0x3) >> 0;
1057 	queue_id = (entry->ring_id & 0xc) >> 2;
1058 	DRM_DEBUG("IH: SDMA trap\n");
1059 	switch (instance_id) {
1060 	case 0:
1061 		switch (queue_id) {
1062 		case 0:
1063 			amdgpu_fence_process(&adev->sdma.instance[0].ring);
1064 			break;
1065 		case 1:
1066 			/* XXX compute */
1067 			break;
1068 		case 2:
1069 			/* XXX compute */
1070 			break;
1071 		}
1072 		break;
1073 	case 1:
1074 		switch (queue_id) {
1075 		case 0:
1076 			amdgpu_fence_process(&adev->sdma.instance[1].ring);
1077 			break;
1078 		case 1:
1079 			/* XXX compute */
1080 			break;
1081 		case 2:
1082 			/* XXX compute */
1083 			break;
1084 		}
1085 		break;
1086 	}
1087 	return 0;
1088 }
1089 
1090 static int sdma_v2_4_process_illegal_inst_irq(struct amdgpu_device *adev,
1091 					      struct amdgpu_irq_src *source,
1092 					      struct amdgpu_iv_entry *entry)
1093 {
1094 	u8 instance_id, queue_id;
1095 
1096 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
1097 	instance_id = (entry->ring_id & 0x3) >> 0;
1098 	queue_id = (entry->ring_id & 0xc) >> 2;
1099 
1100 	if (instance_id <= 1 && queue_id == 0)
1101 		drm_sched_fault(&adev->sdma.instance[instance_id].ring.sched);
1102 	return 0;
1103 }
1104 
1105 static int sdma_v2_4_set_clockgating_state(void *handle,
1106 					  enum amd_clockgating_state state)
1107 {
1108 	/* XXX handled via the smc on VI */
1109 	return 0;
1110 }
1111 
1112 static int sdma_v2_4_set_powergating_state(void *handle,
1113 					  enum amd_powergating_state state)
1114 {
1115 	return 0;
1116 }
1117 
1118 static const struct amd_ip_funcs sdma_v2_4_ip_funcs = {
1119 	.name = "sdma_v2_4",
1120 	.early_init = sdma_v2_4_early_init,
1121 	.late_init = NULL,
1122 	.sw_init = sdma_v2_4_sw_init,
1123 	.sw_fini = sdma_v2_4_sw_fini,
1124 	.hw_init = sdma_v2_4_hw_init,
1125 	.hw_fini = sdma_v2_4_hw_fini,
1126 	.suspend = sdma_v2_4_suspend,
1127 	.resume = sdma_v2_4_resume,
1128 	.is_idle = sdma_v2_4_is_idle,
1129 	.wait_for_idle = sdma_v2_4_wait_for_idle,
1130 	.soft_reset = sdma_v2_4_soft_reset,
1131 	.set_clockgating_state = sdma_v2_4_set_clockgating_state,
1132 	.set_powergating_state = sdma_v2_4_set_powergating_state,
1133 };
1134 
1135 static const struct amdgpu_ring_funcs sdma_v2_4_ring_funcs = {
1136 	.type = AMDGPU_RING_TYPE_SDMA,
1137 	.align_mask = 0xf,
1138 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1139 	.support_64bit_ptrs = false,
1140 	.get_rptr = sdma_v2_4_ring_get_rptr,
1141 	.get_wptr = sdma_v2_4_ring_get_wptr,
1142 	.set_wptr = sdma_v2_4_ring_set_wptr,
1143 	.emit_frame_size =
1144 		6 + /* sdma_v2_4_ring_emit_hdp_flush */
1145 		3 + /* hdp invalidate */
1146 		6 + /* sdma_v2_4_ring_emit_pipeline_sync */
1147 		VI_FLUSH_GPU_TLB_NUM_WREG * 3 + 6 + /* sdma_v2_4_ring_emit_vm_flush */
1148 		10 + 10 + 10, /* sdma_v2_4_ring_emit_fence x3 for user fence, vm fence */
1149 	.emit_ib_size = 7 + 6, /* sdma_v2_4_ring_emit_ib */
1150 	.emit_ib = sdma_v2_4_ring_emit_ib,
1151 	.emit_fence = sdma_v2_4_ring_emit_fence,
1152 	.emit_pipeline_sync = sdma_v2_4_ring_emit_pipeline_sync,
1153 	.emit_vm_flush = sdma_v2_4_ring_emit_vm_flush,
1154 	.emit_hdp_flush = sdma_v2_4_ring_emit_hdp_flush,
1155 	.test_ring = sdma_v2_4_ring_test_ring,
1156 	.test_ib = sdma_v2_4_ring_test_ib,
1157 	.insert_nop = sdma_v2_4_ring_insert_nop,
1158 	.pad_ib = sdma_v2_4_ring_pad_ib,
1159 	.emit_wreg = sdma_v2_4_ring_emit_wreg,
1160 };
1161 
1162 static void sdma_v2_4_set_ring_funcs(struct amdgpu_device *adev)
1163 {
1164 	int i;
1165 
1166 	for (i = 0; i < adev->sdma.num_instances; i++) {
1167 		adev->sdma.instance[i].ring.funcs = &sdma_v2_4_ring_funcs;
1168 		adev->sdma.instance[i].ring.me = i;
1169 	}
1170 }
1171 
1172 static const struct amdgpu_irq_src_funcs sdma_v2_4_trap_irq_funcs = {
1173 	.set = sdma_v2_4_set_trap_irq_state,
1174 	.process = sdma_v2_4_process_trap_irq,
1175 };
1176 
1177 static const struct amdgpu_irq_src_funcs sdma_v2_4_illegal_inst_irq_funcs = {
1178 	.process = sdma_v2_4_process_illegal_inst_irq,
1179 };
1180 
1181 static void sdma_v2_4_set_irq_funcs(struct amdgpu_device *adev)
1182 {
1183 	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1184 	adev->sdma.trap_irq.funcs = &sdma_v2_4_trap_irq_funcs;
1185 	adev->sdma.illegal_inst_irq.funcs = &sdma_v2_4_illegal_inst_irq_funcs;
1186 }
1187 
1188 /**
1189  * sdma_v2_4_emit_copy_buffer - copy buffer using the sDMA engine
1190  *
1191  * @ring: amdgpu_ring structure holding ring information
1192  * @src_offset: src GPU address
1193  * @dst_offset: dst GPU address
1194  * @byte_count: number of bytes to xfer
1195  *
1196  * Copy GPU buffers using the DMA engine (VI).
1197  * Used by the amdgpu ttm implementation to move pages if
1198  * registered as the asic copy callback.
1199  */
1200 static void sdma_v2_4_emit_copy_buffer(struct amdgpu_ib *ib,
1201 				       uint64_t src_offset,
1202 				       uint64_t dst_offset,
1203 				       uint32_t byte_count)
1204 {
1205 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1206 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1207 	ib->ptr[ib->length_dw++] = byte_count;
1208 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1209 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1210 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1211 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1212 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1213 }
1214 
1215 /**
1216  * sdma_v2_4_emit_fill_buffer - fill buffer using the sDMA engine
1217  *
1218  * @ring: amdgpu_ring structure holding ring information
1219  * @src_data: value to write to buffer
1220  * @dst_offset: dst GPU address
1221  * @byte_count: number of bytes to xfer
1222  *
1223  * Fill GPU buffers using the DMA engine (VI).
1224  */
1225 static void sdma_v2_4_emit_fill_buffer(struct amdgpu_ib *ib,
1226 				       uint32_t src_data,
1227 				       uint64_t dst_offset,
1228 				       uint32_t byte_count)
1229 {
1230 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1231 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1232 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1233 	ib->ptr[ib->length_dw++] = src_data;
1234 	ib->ptr[ib->length_dw++] = byte_count;
1235 }
1236 
1237 static const struct amdgpu_buffer_funcs sdma_v2_4_buffer_funcs = {
1238 	.copy_max_bytes = 0x1fffff,
1239 	.copy_num_dw = 7,
1240 	.emit_copy_buffer = sdma_v2_4_emit_copy_buffer,
1241 
1242 	.fill_max_bytes = 0x1fffff,
1243 	.fill_num_dw = 7,
1244 	.emit_fill_buffer = sdma_v2_4_emit_fill_buffer,
1245 };
1246 
1247 static void sdma_v2_4_set_buffer_funcs(struct amdgpu_device *adev)
1248 {
1249 	adev->mman.buffer_funcs = &sdma_v2_4_buffer_funcs;
1250 	adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1251 }
1252 
1253 static const struct amdgpu_vm_pte_funcs sdma_v2_4_vm_pte_funcs = {
1254 	.copy_pte_num_dw = 7,
1255 	.copy_pte = sdma_v2_4_vm_copy_pte,
1256 
1257 	.write_pte = sdma_v2_4_vm_write_pte,
1258 	.set_pte_pde = sdma_v2_4_vm_set_pte_pde,
1259 };
1260 
1261 static void sdma_v2_4_set_vm_pte_funcs(struct amdgpu_device *adev)
1262 {
1263 	struct drm_gpu_scheduler *sched;
1264 	unsigned i;
1265 
1266 	adev->vm_manager.vm_pte_funcs = &sdma_v2_4_vm_pte_funcs;
1267 	for (i = 0; i < adev->sdma.num_instances; i++) {
1268 		sched = &adev->sdma.instance[i].ring.sched;
1269 		adev->vm_manager.vm_pte_rqs[i] =
1270 			&sched->sched_rq[DRM_SCHED_PRIORITY_KERNEL];
1271 	}
1272 	adev->vm_manager.vm_pte_num_rqs = adev->sdma.num_instances;
1273 }
1274 
1275 const struct amdgpu_ip_block_version sdma_v2_4_ip_block =
1276 {
1277 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1278 	.major = 2,
1279 	.minor = 4,
1280 	.rev = 0,
1281 	.funcs = &sdma_v2_4_ip_funcs,
1282 };
1283