1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 #include <linux/firmware.h> 24 #include "drmP.h" 25 #include "amdgpu.h" 26 #include "gmc_v8_0.h" 27 #include "amdgpu_ucode.h" 28 29 #include "gmc/gmc_8_1_d.h" 30 #include "gmc/gmc_8_1_sh_mask.h" 31 32 #include "bif/bif_5_0_d.h" 33 #include "bif/bif_5_0_sh_mask.h" 34 35 #include "oss/oss_3_0_d.h" 36 #include "oss/oss_3_0_sh_mask.h" 37 38 #include "vid.h" 39 #include "vi.h" 40 41 42 static void gmc_v8_0_set_gart_funcs(struct amdgpu_device *adev); 43 static void gmc_v8_0_set_irq_funcs(struct amdgpu_device *adev); 44 45 MODULE_FIRMWARE("amdgpu/topaz_mc.bin"); 46 MODULE_FIRMWARE("amdgpu/tonga_mc.bin"); 47 MODULE_FIRMWARE("amdgpu/fiji_mc.bin"); 48 49 static const u32 golden_settings_tonga_a11[] = 50 { 51 mmMC_ARB_WTM_GRPWT_RD, 0x00000003, 0x00000000, 52 mmMC_HUB_RDREQ_DMIF_LIMIT, 0x0000007f, 0x00000028, 53 mmMC_HUB_WDP_UMC, 0x00007fb6, 0x00000991, 54 mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff, 55 mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff, 56 mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff, 57 mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff, 58 }; 59 60 static const u32 tonga_mgcg_cgcg_init[] = 61 { 62 mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104 63 }; 64 65 static const u32 golden_settings_fiji_a10[] = 66 { 67 mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff, 68 mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff, 69 mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff, 70 mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff, 71 }; 72 73 static const u32 fiji_mgcg_cgcg_init[] = 74 { 75 mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104 76 }; 77 78 static const u32 golden_settings_iceland_a11[] = 79 { 80 mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff, 81 mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff, 82 mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff, 83 mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff 84 }; 85 86 static const u32 iceland_mgcg_cgcg_init[] = 87 { 88 mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104 89 }; 90 91 static const u32 cz_mgcg_cgcg_init[] = 92 { 93 mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104 94 }; 95 96 static void gmc_v8_0_init_golden_registers(struct amdgpu_device *adev) 97 { 98 switch (adev->asic_type) { 99 case CHIP_TOPAZ: 100 amdgpu_program_register_sequence(adev, 101 iceland_mgcg_cgcg_init, 102 (const u32)ARRAY_SIZE(iceland_mgcg_cgcg_init)); 103 amdgpu_program_register_sequence(adev, 104 golden_settings_iceland_a11, 105 (const u32)ARRAY_SIZE(golden_settings_iceland_a11)); 106 break; 107 case CHIP_FIJI: 108 amdgpu_program_register_sequence(adev, 109 fiji_mgcg_cgcg_init, 110 (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init)); 111 amdgpu_program_register_sequence(adev, 112 golden_settings_fiji_a10, 113 (const u32)ARRAY_SIZE(golden_settings_fiji_a10)); 114 break; 115 case CHIP_TONGA: 116 amdgpu_program_register_sequence(adev, 117 tonga_mgcg_cgcg_init, 118 (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init)); 119 amdgpu_program_register_sequence(adev, 120 golden_settings_tonga_a11, 121 (const u32)ARRAY_SIZE(golden_settings_tonga_a11)); 122 break; 123 case CHIP_CARRIZO: 124 amdgpu_program_register_sequence(adev, 125 cz_mgcg_cgcg_init, 126 (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init)); 127 break; 128 default: 129 break; 130 } 131 } 132 133 /** 134 * gmc8_mc_wait_for_idle - wait for MC idle callback. 135 * 136 * @adev: amdgpu_device pointer 137 * 138 * Wait for the MC (memory controller) to be idle. 139 * (evergreen+). 140 * Returns 0 if the MC is idle, -1 if not. 141 */ 142 int gmc_v8_0_mc_wait_for_idle(struct amdgpu_device *adev) 143 { 144 unsigned i; 145 u32 tmp; 146 147 for (i = 0; i < adev->usec_timeout; i++) { 148 /* read MC_STATUS */ 149 tmp = RREG32(mmSRBM_STATUS) & (SRBM_STATUS__VMC_BUSY_MASK | 150 SRBM_STATUS__MCB_BUSY_MASK | 151 SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK | 152 SRBM_STATUS__MCC_BUSY_MASK | 153 SRBM_STATUS__MCD_BUSY_MASK | 154 SRBM_STATUS__VMC1_BUSY_MASK); 155 if (!tmp) 156 return 0; 157 udelay(1); 158 } 159 return -1; 160 } 161 162 void gmc_v8_0_mc_stop(struct amdgpu_device *adev, 163 struct amdgpu_mode_mc_save *save) 164 { 165 u32 blackout; 166 167 if (adev->mode_info.num_crtc) 168 amdgpu_display_stop_mc_access(adev, save); 169 170 amdgpu_asic_wait_for_mc_idle(adev); 171 172 blackout = RREG32(mmMC_SHARED_BLACKOUT_CNTL); 173 if (REG_GET_FIELD(blackout, MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE) != 1) { 174 /* Block CPU access */ 175 WREG32(mmBIF_FB_EN, 0); 176 /* blackout the MC */ 177 blackout = REG_SET_FIELD(blackout, 178 MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE, 1); 179 WREG32(mmMC_SHARED_BLACKOUT_CNTL, blackout); 180 } 181 /* wait for the MC to settle */ 182 udelay(100); 183 } 184 185 void gmc_v8_0_mc_resume(struct amdgpu_device *adev, 186 struct amdgpu_mode_mc_save *save) 187 { 188 u32 tmp; 189 190 /* unblackout the MC */ 191 tmp = RREG32(mmMC_SHARED_BLACKOUT_CNTL); 192 tmp = REG_SET_FIELD(tmp, MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE, 0); 193 WREG32(mmMC_SHARED_BLACKOUT_CNTL, tmp); 194 /* allow CPU access */ 195 tmp = REG_SET_FIELD(0, BIF_FB_EN, FB_READ_EN, 1); 196 tmp = REG_SET_FIELD(tmp, BIF_FB_EN, FB_WRITE_EN, 1); 197 WREG32(mmBIF_FB_EN, tmp); 198 199 if (adev->mode_info.num_crtc) 200 amdgpu_display_resume_mc_access(adev, save); 201 } 202 203 /** 204 * gmc_v8_0_init_microcode - load ucode images from disk 205 * 206 * @adev: amdgpu_device pointer 207 * 208 * Use the firmware interface to load the ucode images into 209 * the driver (not loaded into hw). 210 * Returns 0 on success, error on failure. 211 */ 212 static int gmc_v8_0_init_microcode(struct amdgpu_device *adev) 213 { 214 const char *chip_name; 215 char fw_name[30]; 216 int err; 217 218 DRM_DEBUG("\n"); 219 220 switch (adev->asic_type) { 221 case CHIP_TOPAZ: 222 chip_name = "topaz"; 223 break; 224 case CHIP_TONGA: 225 chip_name = "tonga"; 226 break; 227 case CHIP_FIJI: 228 chip_name = "fiji"; 229 break; 230 case CHIP_CARRIZO: 231 return 0; 232 default: BUG(); 233 } 234 235 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mc.bin", chip_name); 236 err = request_firmware(&adev->mc.fw, fw_name, adev->dev); 237 if (err) 238 goto out; 239 err = amdgpu_ucode_validate(adev->mc.fw); 240 241 out: 242 if (err) { 243 printk(KERN_ERR 244 "mc: Failed to load firmware \"%s\"\n", 245 fw_name); 246 release_firmware(adev->mc.fw); 247 adev->mc.fw = NULL; 248 } 249 return err; 250 } 251 252 /** 253 * gmc_v8_0_mc_load_microcode - load MC ucode into the hw 254 * 255 * @adev: amdgpu_device pointer 256 * 257 * Load the GDDR MC ucode into the hw (CIK). 258 * Returns 0 on success, error on failure. 259 */ 260 static int gmc_v8_0_mc_load_microcode(struct amdgpu_device *adev) 261 { 262 const struct mc_firmware_header_v1_0 *hdr; 263 const __le32 *fw_data = NULL; 264 const __le32 *io_mc_regs = NULL; 265 u32 running, blackout = 0; 266 int i, ucode_size, regs_size; 267 268 if (!adev->mc.fw) 269 return -EINVAL; 270 271 hdr = (const struct mc_firmware_header_v1_0 *)adev->mc.fw->data; 272 amdgpu_ucode_print_mc_hdr(&hdr->header); 273 274 adev->mc.fw_version = le32_to_cpu(hdr->header.ucode_version); 275 regs_size = le32_to_cpu(hdr->io_debug_size_bytes) / (4 * 2); 276 io_mc_regs = (const __le32 *) 277 (adev->mc.fw->data + le32_to_cpu(hdr->io_debug_array_offset_bytes)); 278 ucode_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4; 279 fw_data = (const __le32 *) 280 (adev->mc.fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes)); 281 282 running = REG_GET_FIELD(RREG32(mmMC_SEQ_SUP_CNTL), MC_SEQ_SUP_CNTL, RUN); 283 284 if (running == 0) { 285 if (running) { 286 blackout = RREG32(mmMC_SHARED_BLACKOUT_CNTL); 287 WREG32(mmMC_SHARED_BLACKOUT_CNTL, blackout | 1); 288 } 289 290 /* reset the engine and set to writable */ 291 WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008); 292 WREG32(mmMC_SEQ_SUP_CNTL, 0x00000010); 293 294 /* load mc io regs */ 295 for (i = 0; i < regs_size; i++) { 296 WREG32(mmMC_SEQ_IO_DEBUG_INDEX, le32_to_cpup(io_mc_regs++)); 297 WREG32(mmMC_SEQ_IO_DEBUG_DATA, le32_to_cpup(io_mc_regs++)); 298 } 299 /* load the MC ucode */ 300 for (i = 0; i < ucode_size; i++) 301 WREG32(mmMC_SEQ_SUP_PGM, le32_to_cpup(fw_data++)); 302 303 /* put the engine back into the active state */ 304 WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008); 305 WREG32(mmMC_SEQ_SUP_CNTL, 0x00000004); 306 WREG32(mmMC_SEQ_SUP_CNTL, 0x00000001); 307 308 /* wait for training to complete */ 309 for (i = 0; i < adev->usec_timeout; i++) { 310 if (REG_GET_FIELD(RREG32(mmMC_SEQ_TRAIN_WAKEUP_CNTL), 311 MC_SEQ_TRAIN_WAKEUP_CNTL, TRAIN_DONE_D0)) 312 break; 313 udelay(1); 314 } 315 for (i = 0; i < adev->usec_timeout; i++) { 316 if (REG_GET_FIELD(RREG32(mmMC_SEQ_TRAIN_WAKEUP_CNTL), 317 MC_SEQ_TRAIN_WAKEUP_CNTL, TRAIN_DONE_D1)) 318 break; 319 udelay(1); 320 } 321 322 if (running) 323 WREG32(mmMC_SHARED_BLACKOUT_CNTL, blackout); 324 } 325 326 return 0; 327 } 328 329 static void gmc_v8_0_vram_gtt_location(struct amdgpu_device *adev, 330 struct amdgpu_mc *mc) 331 { 332 if (mc->mc_vram_size > 0xFFC0000000ULL) { 333 /* leave room for at least 1024M GTT */ 334 dev_warn(adev->dev, "limiting VRAM\n"); 335 mc->real_vram_size = 0xFFC0000000ULL; 336 mc->mc_vram_size = 0xFFC0000000ULL; 337 } 338 amdgpu_vram_location(adev, &adev->mc, 0); 339 adev->mc.gtt_base_align = 0; 340 amdgpu_gtt_location(adev, mc); 341 } 342 343 /** 344 * gmc_v8_0_mc_program - program the GPU memory controller 345 * 346 * @adev: amdgpu_device pointer 347 * 348 * Set the location of vram, gart, and AGP in the GPU's 349 * physical address space (CIK). 350 */ 351 static void gmc_v8_0_mc_program(struct amdgpu_device *adev) 352 { 353 struct amdgpu_mode_mc_save save; 354 u32 tmp; 355 int i, j; 356 357 /* Initialize HDP */ 358 for (i = 0, j = 0; i < 32; i++, j += 0x6) { 359 WREG32((0xb05 + j), 0x00000000); 360 WREG32((0xb06 + j), 0x00000000); 361 WREG32((0xb07 + j), 0x00000000); 362 WREG32((0xb08 + j), 0x00000000); 363 WREG32((0xb09 + j), 0x00000000); 364 } 365 WREG32(mmHDP_REG_COHERENCY_FLUSH_CNTL, 0); 366 367 if (adev->mode_info.num_crtc) 368 amdgpu_display_set_vga_render_state(adev, false); 369 370 gmc_v8_0_mc_stop(adev, &save); 371 if (amdgpu_asic_wait_for_mc_idle(adev)) { 372 dev_warn(adev->dev, "Wait for MC idle timedout !\n"); 373 } 374 /* Update configuration */ 375 WREG32(mmMC_VM_SYSTEM_APERTURE_LOW_ADDR, 376 adev->mc.vram_start >> 12); 377 WREG32(mmMC_VM_SYSTEM_APERTURE_HIGH_ADDR, 378 adev->mc.vram_end >> 12); 379 WREG32(mmMC_VM_SYSTEM_APERTURE_DEFAULT_ADDR, 380 adev->vram_scratch.gpu_addr >> 12); 381 tmp = ((adev->mc.vram_end >> 24) & 0xFFFF) << 16; 382 tmp |= ((adev->mc.vram_start >> 24) & 0xFFFF); 383 WREG32(mmMC_VM_FB_LOCATION, tmp); 384 /* XXX double check these! */ 385 WREG32(mmHDP_NONSURFACE_BASE, (adev->mc.vram_start >> 8)); 386 WREG32(mmHDP_NONSURFACE_INFO, (2 << 7) | (1 << 30)); 387 WREG32(mmHDP_NONSURFACE_SIZE, 0x3FFFFFFF); 388 WREG32(mmMC_VM_AGP_BASE, 0); 389 WREG32(mmMC_VM_AGP_TOP, 0x0FFFFFFF); 390 WREG32(mmMC_VM_AGP_BOT, 0x0FFFFFFF); 391 if (amdgpu_asic_wait_for_mc_idle(adev)) { 392 dev_warn(adev->dev, "Wait for MC idle timedout !\n"); 393 } 394 gmc_v8_0_mc_resume(adev, &save); 395 396 WREG32(mmBIF_FB_EN, BIF_FB_EN__FB_READ_EN_MASK | BIF_FB_EN__FB_WRITE_EN_MASK); 397 398 tmp = RREG32(mmHDP_MISC_CNTL); 399 tmp = REG_SET_FIELD(tmp, HDP_MISC_CNTL, FLUSH_INVALIDATE_CACHE, 1); 400 WREG32(mmHDP_MISC_CNTL, tmp); 401 402 tmp = RREG32(mmHDP_HOST_PATH_CNTL); 403 WREG32(mmHDP_HOST_PATH_CNTL, tmp); 404 } 405 406 /** 407 * gmc_v8_0_mc_init - initialize the memory controller driver params 408 * 409 * @adev: amdgpu_device pointer 410 * 411 * Look up the amount of vram, vram width, and decide how to place 412 * vram and gart within the GPU's physical address space (CIK). 413 * Returns 0 for success. 414 */ 415 static int gmc_v8_0_mc_init(struct amdgpu_device *adev) 416 { 417 u32 tmp; 418 int chansize, numchan; 419 420 /* Get VRAM informations */ 421 tmp = RREG32(mmMC_ARB_RAMCFG); 422 if (REG_GET_FIELD(tmp, MC_ARB_RAMCFG, CHANSIZE)) { 423 chansize = 64; 424 } else { 425 chansize = 32; 426 } 427 tmp = RREG32(mmMC_SHARED_CHMAP); 428 switch (REG_GET_FIELD(tmp, MC_SHARED_CHMAP, NOOFCHAN)) { 429 case 0: 430 default: 431 numchan = 1; 432 break; 433 case 1: 434 numchan = 2; 435 break; 436 case 2: 437 numchan = 4; 438 break; 439 case 3: 440 numchan = 8; 441 break; 442 case 4: 443 numchan = 3; 444 break; 445 case 5: 446 numchan = 6; 447 break; 448 case 6: 449 numchan = 10; 450 break; 451 case 7: 452 numchan = 12; 453 break; 454 case 8: 455 numchan = 16; 456 break; 457 } 458 adev->mc.vram_width = numchan * chansize; 459 /* Could aper size report 0 ? */ 460 adev->mc.aper_base = pci_resource_start(adev->pdev, 0); 461 adev->mc.aper_size = pci_resource_len(adev->pdev, 0); 462 /* size in MB on si */ 463 adev->mc.mc_vram_size = RREG32(mmCONFIG_MEMSIZE) * 1024ULL * 1024ULL; 464 adev->mc.real_vram_size = RREG32(mmCONFIG_MEMSIZE) * 1024ULL * 1024ULL; 465 adev->mc.visible_vram_size = adev->mc.aper_size; 466 467 /* unless the user had overridden it, set the gart 468 * size equal to the 1024 or vram, whichever is larger. 469 */ 470 if (amdgpu_gart_size == -1) 471 adev->mc.gtt_size = max((1024ULL << 20), adev->mc.mc_vram_size); 472 else 473 adev->mc.gtt_size = (uint64_t)amdgpu_gart_size << 20; 474 475 gmc_v8_0_vram_gtt_location(adev, &adev->mc); 476 477 return 0; 478 } 479 480 /* 481 * GART 482 * VMID 0 is the physical GPU addresses as used by the kernel. 483 * VMIDs 1-15 are used for userspace clients and are handled 484 * by the amdgpu vm/hsa code. 485 */ 486 487 /** 488 * gmc_v8_0_gart_flush_gpu_tlb - gart tlb flush callback 489 * 490 * @adev: amdgpu_device pointer 491 * @vmid: vm instance to flush 492 * 493 * Flush the TLB for the requested page table (CIK). 494 */ 495 static void gmc_v8_0_gart_flush_gpu_tlb(struct amdgpu_device *adev, 496 uint32_t vmid) 497 { 498 /* flush hdp cache */ 499 WREG32(mmHDP_MEM_COHERENCY_FLUSH_CNTL, 0); 500 501 /* bits 0-15 are the VM contexts0-15 */ 502 WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid); 503 } 504 505 /** 506 * gmc_v8_0_gart_set_pte_pde - update the page tables using MMIO 507 * 508 * @adev: amdgpu_device pointer 509 * @cpu_pt_addr: cpu address of the page table 510 * @gpu_page_idx: entry in the page table to update 511 * @addr: dst addr to write into pte/pde 512 * @flags: access flags 513 * 514 * Update the page tables using the CPU. 515 */ 516 static int gmc_v8_0_gart_set_pte_pde(struct amdgpu_device *adev, 517 void *cpu_pt_addr, 518 uint32_t gpu_page_idx, 519 uint64_t addr, 520 uint32_t flags) 521 { 522 void __iomem *ptr = (void *)cpu_pt_addr; 523 uint64_t value; 524 525 /* 526 * PTE format on VI: 527 * 63:40 reserved 528 * 39:12 4k physical page base address 529 * 11:7 fragment 530 * 6 write 531 * 5 read 532 * 4 exe 533 * 3 reserved 534 * 2 snooped 535 * 1 system 536 * 0 valid 537 * 538 * PDE format on VI: 539 * 63:59 block fragment size 540 * 58:40 reserved 541 * 39:1 physical base address of PTE 542 * bits 5:1 must be 0. 543 * 0 valid 544 */ 545 value = addr & 0x000000FFFFFFF000ULL; 546 value |= flags; 547 writeq(value, ptr + (gpu_page_idx * 8)); 548 549 return 0; 550 } 551 552 /** 553 * gmc_v8_0_gart_enable - gart enable 554 * 555 * @adev: amdgpu_device pointer 556 * 557 * This sets up the TLBs, programs the page tables for VMID0, 558 * sets up the hw for VMIDs 1-15 which are allocated on 559 * demand, and sets up the global locations for the LDS, GDS, 560 * and GPUVM for FSA64 clients (CIK). 561 * Returns 0 for success, errors for failure. 562 */ 563 static int gmc_v8_0_gart_enable(struct amdgpu_device *adev) 564 { 565 int r, i; 566 u32 tmp; 567 568 if (adev->gart.robj == NULL) { 569 dev_err(adev->dev, "No VRAM object for PCIE GART.\n"); 570 return -EINVAL; 571 } 572 r = amdgpu_gart_table_vram_pin(adev); 573 if (r) 574 return r; 575 /* Setup TLB control */ 576 tmp = RREG32(mmMC_VM_MX_L1_TLB_CNTL); 577 tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_TLB, 1); 578 tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_FRAGMENT_PROCESSING, 1); 579 tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, SYSTEM_ACCESS_MODE, 3); 580 tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_ADVANCED_DRIVER_MODEL, 1); 581 tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, SYSTEM_APERTURE_UNMAPPED_ACCESS, 0); 582 WREG32(mmMC_VM_MX_L1_TLB_CNTL, tmp); 583 /* Setup L2 cache */ 584 tmp = RREG32(mmVM_L2_CNTL); 585 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_CACHE, 1); 586 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_FRAGMENT_PROCESSING, 1); 587 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE, 1); 588 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE, 1); 589 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, EFFECTIVE_L2_QUEUE_SIZE, 7); 590 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, CONTEXT1_IDENTITY_ACCESS_MODE, 1); 591 WREG32(mmVM_L2_CNTL, tmp); 592 tmp = RREG32(mmVM_L2_CNTL2); 593 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL2, INVALIDATE_ALL_L1_TLBS, 1); 594 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL2, INVALIDATE_L2_CACHE, 1); 595 WREG32(mmVM_L2_CNTL2, tmp); 596 tmp = RREG32(mmVM_L2_CNTL3); 597 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY, 1); 598 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, BANK_SELECT, 4); 599 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, L2_CACHE_BIGK_FRAGMENT_SIZE, 4); 600 WREG32(mmVM_L2_CNTL3, tmp); 601 /* XXX: set to enable PTE/PDE in system memory */ 602 tmp = RREG32(mmVM_L2_CNTL4); 603 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_PHYSICAL, 0); 604 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_SHARED, 0); 605 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_SNOOP, 0); 606 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_PHYSICAL, 0); 607 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_SHARED, 0); 608 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_SNOOP, 0); 609 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_PHYSICAL, 0); 610 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_SHARED, 0); 611 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_SNOOP, 0); 612 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_PHYSICAL, 0); 613 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_SHARED, 0); 614 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_SNOOP, 0); 615 WREG32(mmVM_L2_CNTL4, tmp); 616 /* setup context0 */ 617 WREG32(mmVM_CONTEXT0_PAGE_TABLE_START_ADDR, adev->mc.gtt_start >> 12); 618 WREG32(mmVM_CONTEXT0_PAGE_TABLE_END_ADDR, (adev->mc.gtt_end >> 12) - 1); 619 WREG32(mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR, adev->gart.table_addr >> 12); 620 WREG32(mmVM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR, 621 (u32)(adev->dummy_page.addr >> 12)); 622 WREG32(mmVM_CONTEXT0_CNTL2, 0); 623 tmp = RREG32(mmVM_CONTEXT0_CNTL); 624 tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, ENABLE_CONTEXT, 1); 625 tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, PAGE_TABLE_DEPTH, 0); 626 tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1); 627 WREG32(mmVM_CONTEXT0_CNTL, tmp); 628 629 WREG32(mmVM_L2_CONTEXT1_IDENTITY_APERTURE_LOW_ADDR, 0); 630 WREG32(mmVM_L2_CONTEXT1_IDENTITY_APERTURE_HIGH_ADDR, 0); 631 WREG32(mmVM_L2_CONTEXT_IDENTITY_PHYSICAL_OFFSET, 0); 632 633 /* empty context1-15 */ 634 /* FIXME start with 4G, once using 2 level pt switch to full 635 * vm size space 636 */ 637 /* set vm size, must be a multiple of 4 */ 638 WREG32(mmVM_CONTEXT1_PAGE_TABLE_START_ADDR, 0); 639 WREG32(mmVM_CONTEXT1_PAGE_TABLE_END_ADDR, adev->vm_manager.max_pfn - 1); 640 for (i = 1; i < 16; i++) { 641 if (i < 8) 642 WREG32(mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + i, 643 adev->gart.table_addr >> 12); 644 else 645 WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + i - 8, 646 adev->gart.table_addr >> 12); 647 } 648 649 /* enable context1-15 */ 650 WREG32(mmVM_CONTEXT1_PROTECTION_FAULT_DEFAULT_ADDR, 651 (u32)(adev->dummy_page.addr >> 12)); 652 WREG32(mmVM_CONTEXT1_CNTL2, 4); 653 tmp = RREG32(mmVM_CONTEXT1_CNTL); 654 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, ENABLE_CONTEXT, 1); 655 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PAGE_TABLE_DEPTH, 1); 656 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1); 657 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1); 658 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PDE0_PROTECTION_FAULT_ENABLE_DEFAULT, 1); 659 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, VALID_PROTECTION_FAULT_ENABLE_DEFAULT, 1); 660 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, READ_PROTECTION_FAULT_ENABLE_DEFAULT, 1); 661 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, WRITE_PROTECTION_FAULT_ENABLE_DEFAULT, 1); 662 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, EXECUTE_PROTECTION_FAULT_ENABLE_DEFAULT, 1); 663 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PAGE_TABLE_BLOCK_SIZE, 664 amdgpu_vm_block_size - 9); 665 WREG32(mmVM_CONTEXT1_CNTL, tmp); 666 667 gmc_v8_0_gart_flush_gpu_tlb(adev, 0); 668 DRM_INFO("PCIE GART of %uM enabled (table at 0x%016llX).\n", 669 (unsigned)(adev->mc.gtt_size >> 20), 670 (unsigned long long)adev->gart.table_addr); 671 adev->gart.ready = true; 672 return 0; 673 } 674 675 static int gmc_v8_0_gart_init(struct amdgpu_device *adev) 676 { 677 int r; 678 679 if (adev->gart.robj) { 680 WARN(1, "R600 PCIE GART already initialized\n"); 681 return 0; 682 } 683 /* Initialize common gart structure */ 684 r = amdgpu_gart_init(adev); 685 if (r) 686 return r; 687 adev->gart.table_size = adev->gart.num_gpu_pages * 8; 688 return amdgpu_gart_table_vram_alloc(adev); 689 } 690 691 /** 692 * gmc_v8_0_gart_disable - gart disable 693 * 694 * @adev: amdgpu_device pointer 695 * 696 * This disables all VM page table (CIK). 697 */ 698 static void gmc_v8_0_gart_disable(struct amdgpu_device *adev) 699 { 700 u32 tmp; 701 702 /* Disable all tables */ 703 WREG32(mmVM_CONTEXT0_CNTL, 0); 704 WREG32(mmVM_CONTEXT1_CNTL, 0); 705 /* Setup TLB control */ 706 tmp = RREG32(mmMC_VM_MX_L1_TLB_CNTL); 707 tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_TLB, 0); 708 tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_FRAGMENT_PROCESSING, 0); 709 tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_ADVANCED_DRIVER_MODEL, 0); 710 WREG32(mmMC_VM_MX_L1_TLB_CNTL, tmp); 711 /* Setup L2 cache */ 712 tmp = RREG32(mmVM_L2_CNTL); 713 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_CACHE, 0); 714 WREG32(mmVM_L2_CNTL, tmp); 715 WREG32(mmVM_L2_CNTL2, 0); 716 amdgpu_gart_table_vram_unpin(adev); 717 } 718 719 /** 720 * gmc_v8_0_gart_fini - vm fini callback 721 * 722 * @adev: amdgpu_device pointer 723 * 724 * Tears down the driver GART/VM setup (CIK). 725 */ 726 static void gmc_v8_0_gart_fini(struct amdgpu_device *adev) 727 { 728 amdgpu_gart_table_vram_free(adev); 729 amdgpu_gart_fini(adev); 730 } 731 732 /* 733 * vm 734 * VMID 0 is the physical GPU addresses as used by the kernel. 735 * VMIDs 1-15 are used for userspace clients and are handled 736 * by the amdgpu vm/hsa code. 737 */ 738 /** 739 * gmc_v8_0_vm_init - cik vm init callback 740 * 741 * @adev: amdgpu_device pointer 742 * 743 * Inits cik specific vm parameters (number of VMs, base of vram for 744 * VMIDs 1-15) (CIK). 745 * Returns 0 for success. 746 */ 747 static int gmc_v8_0_vm_init(struct amdgpu_device *adev) 748 { 749 /* 750 * number of VMs 751 * VMID 0 is reserved for System 752 * amdgpu graphics/compute will use VMIDs 1-7 753 * amdkfd will use VMIDs 8-15 754 */ 755 adev->vm_manager.nvm = AMDGPU_NUM_OF_VMIDS; 756 757 /* base offset of vram pages */ 758 if (adev->flags & AMD_IS_APU) { 759 u64 tmp = RREG32(mmMC_VM_FB_OFFSET); 760 tmp <<= 22; 761 adev->vm_manager.vram_base_offset = tmp; 762 } else 763 adev->vm_manager.vram_base_offset = 0; 764 765 return 0; 766 } 767 768 /** 769 * gmc_v8_0_vm_fini - cik vm fini callback 770 * 771 * @adev: amdgpu_device pointer 772 * 773 * Tear down any asic specific VM setup (CIK). 774 */ 775 static void gmc_v8_0_vm_fini(struct amdgpu_device *adev) 776 { 777 } 778 779 /** 780 * gmc_v8_0_vm_decode_fault - print human readable fault info 781 * 782 * @adev: amdgpu_device pointer 783 * @status: VM_CONTEXT1_PROTECTION_FAULT_STATUS register value 784 * @addr: VM_CONTEXT1_PROTECTION_FAULT_ADDR register value 785 * 786 * Print human readable fault information (CIK). 787 */ 788 static void gmc_v8_0_vm_decode_fault(struct amdgpu_device *adev, 789 u32 status, u32 addr, u32 mc_client) 790 { 791 u32 mc_id; 792 u32 vmid = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID); 793 u32 protections = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, 794 PROTECTIONS); 795 char block[5] = { mc_client >> 24, (mc_client >> 16) & 0xff, 796 (mc_client >> 8) & 0xff, mc_client & 0xff, 0 }; 797 798 mc_id = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, 799 MEMORY_CLIENT_ID); 800 801 printk("VM fault (0x%02x, vmid %d) at page %u, %s from '%s' (0x%08x) (%d)\n", 802 protections, vmid, addr, 803 REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, 804 MEMORY_CLIENT_RW) ? 805 "write" : "read", block, mc_client, mc_id); 806 } 807 808 static int gmc_v8_0_convert_vram_type(int mc_seq_vram_type) 809 { 810 switch (mc_seq_vram_type) { 811 case MC_SEQ_MISC0__MT__GDDR1: 812 return AMDGPU_VRAM_TYPE_GDDR1; 813 case MC_SEQ_MISC0__MT__DDR2: 814 return AMDGPU_VRAM_TYPE_DDR2; 815 case MC_SEQ_MISC0__MT__GDDR3: 816 return AMDGPU_VRAM_TYPE_GDDR3; 817 case MC_SEQ_MISC0__MT__GDDR4: 818 return AMDGPU_VRAM_TYPE_GDDR4; 819 case MC_SEQ_MISC0__MT__GDDR5: 820 return AMDGPU_VRAM_TYPE_GDDR5; 821 case MC_SEQ_MISC0__MT__HBM: 822 return AMDGPU_VRAM_TYPE_HBM; 823 case MC_SEQ_MISC0__MT__DDR3: 824 return AMDGPU_VRAM_TYPE_DDR3; 825 default: 826 return AMDGPU_VRAM_TYPE_UNKNOWN; 827 } 828 } 829 830 static int gmc_v8_0_early_init(void *handle) 831 { 832 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 833 834 gmc_v8_0_set_gart_funcs(adev); 835 gmc_v8_0_set_irq_funcs(adev); 836 837 if (adev->flags & AMD_IS_APU) { 838 adev->mc.vram_type = AMDGPU_VRAM_TYPE_UNKNOWN; 839 } else { 840 u32 tmp = RREG32(mmMC_SEQ_MISC0); 841 tmp &= MC_SEQ_MISC0__MT__MASK; 842 adev->mc.vram_type = gmc_v8_0_convert_vram_type(tmp); 843 } 844 845 return 0; 846 } 847 848 static int gmc_v8_0_late_init(void *handle) 849 { 850 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 851 852 return amdgpu_irq_get(adev, &adev->mc.vm_fault, 0); 853 } 854 855 static int gmc_v8_0_sw_init(void *handle) 856 { 857 int r; 858 int dma_bits; 859 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 860 861 r = amdgpu_gem_init(adev); 862 if (r) 863 return r; 864 865 r = amdgpu_irq_add_id(adev, 146, &adev->mc.vm_fault); 866 if (r) 867 return r; 868 869 r = amdgpu_irq_add_id(adev, 147, &adev->mc.vm_fault); 870 if (r) 871 return r; 872 873 /* Adjust VM size here. 874 * Currently set to 4GB ((1 << 20) 4k pages). 875 * Max GPUVM size for cayman and SI is 40 bits. 876 */ 877 adev->vm_manager.max_pfn = amdgpu_vm_size << 18; 878 879 /* Set the internal MC address mask 880 * This is the max address of the GPU's 881 * internal address space. 882 */ 883 adev->mc.mc_mask = 0xffffffffffULL; /* 40 bit MC */ 884 885 /* set DMA mask + need_dma32 flags. 886 * PCIE - can handle 40-bits. 887 * IGP - can handle 40-bits 888 * PCI - dma32 for legacy pci gart, 40 bits on newer asics 889 */ 890 adev->need_dma32 = false; 891 dma_bits = adev->need_dma32 ? 32 : 40; 892 r = pci_set_dma_mask(adev->pdev, DMA_BIT_MASK(dma_bits)); 893 if (r) { 894 adev->need_dma32 = true; 895 dma_bits = 32; 896 printk(KERN_WARNING "amdgpu: No suitable DMA available.\n"); 897 } 898 r = pci_set_consistent_dma_mask(adev->pdev, DMA_BIT_MASK(dma_bits)); 899 if (r) { 900 pci_set_consistent_dma_mask(adev->pdev, DMA_BIT_MASK(32)); 901 printk(KERN_WARNING "amdgpu: No coherent DMA available.\n"); 902 } 903 904 r = gmc_v8_0_init_microcode(adev); 905 if (r) { 906 DRM_ERROR("Failed to load mc firmware!\n"); 907 return r; 908 } 909 910 r = gmc_v8_0_mc_init(adev); 911 if (r) 912 return r; 913 914 /* Memory manager */ 915 r = amdgpu_bo_init(adev); 916 if (r) 917 return r; 918 919 r = gmc_v8_0_gart_init(adev); 920 if (r) 921 return r; 922 923 if (!adev->vm_manager.enabled) { 924 r = gmc_v8_0_vm_init(adev); 925 if (r) { 926 dev_err(adev->dev, "vm manager initialization failed (%d).\n", r); 927 return r; 928 } 929 adev->vm_manager.enabled = true; 930 } 931 932 return r; 933 } 934 935 static int gmc_v8_0_sw_fini(void *handle) 936 { 937 int i; 938 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 939 940 if (adev->vm_manager.enabled) { 941 for (i = 0; i < AMDGPU_NUM_VM; ++i) 942 amdgpu_fence_unref(&adev->vm_manager.active[i]); 943 gmc_v8_0_vm_fini(adev); 944 adev->vm_manager.enabled = false; 945 } 946 gmc_v8_0_gart_fini(adev); 947 amdgpu_gem_fini(adev); 948 amdgpu_bo_fini(adev); 949 950 return 0; 951 } 952 953 static int gmc_v8_0_hw_init(void *handle) 954 { 955 int r; 956 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 957 958 gmc_v8_0_init_golden_registers(adev); 959 960 gmc_v8_0_mc_program(adev); 961 962 if (!(adev->flags & AMD_IS_APU)) { 963 r = gmc_v8_0_mc_load_microcode(adev); 964 if (r) { 965 DRM_ERROR("Failed to load MC firmware!\n"); 966 return r; 967 } 968 } 969 970 r = gmc_v8_0_gart_enable(adev); 971 if (r) 972 return r; 973 974 return r; 975 } 976 977 static int gmc_v8_0_hw_fini(void *handle) 978 { 979 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 980 981 amdgpu_irq_put(adev, &adev->mc.vm_fault, 0); 982 gmc_v8_0_gart_disable(adev); 983 984 return 0; 985 } 986 987 static int gmc_v8_0_suspend(void *handle) 988 { 989 int i; 990 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 991 992 if (adev->vm_manager.enabled) { 993 for (i = 0; i < AMDGPU_NUM_VM; ++i) 994 amdgpu_fence_unref(&adev->vm_manager.active[i]); 995 gmc_v8_0_vm_fini(adev); 996 adev->vm_manager.enabled = false; 997 } 998 gmc_v8_0_hw_fini(adev); 999 1000 return 0; 1001 } 1002 1003 static int gmc_v8_0_resume(void *handle) 1004 { 1005 int r; 1006 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1007 1008 r = gmc_v8_0_hw_init(adev); 1009 if (r) 1010 return r; 1011 1012 if (!adev->vm_manager.enabled) { 1013 r = gmc_v8_0_vm_init(adev); 1014 if (r) { 1015 dev_err(adev->dev, "vm manager initialization failed (%d).\n", r); 1016 return r; 1017 } 1018 adev->vm_manager.enabled = true; 1019 } 1020 1021 return r; 1022 } 1023 1024 static bool gmc_v8_0_is_idle(void *handle) 1025 { 1026 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1027 u32 tmp = RREG32(mmSRBM_STATUS); 1028 1029 if (tmp & (SRBM_STATUS__MCB_BUSY_MASK | SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK | 1030 SRBM_STATUS__MCC_BUSY_MASK | SRBM_STATUS__MCD_BUSY_MASK | SRBM_STATUS__VMC_BUSY_MASK)) 1031 return false; 1032 1033 return true; 1034 } 1035 1036 static int gmc_v8_0_wait_for_idle(void *handle) 1037 { 1038 unsigned i; 1039 u32 tmp; 1040 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1041 1042 for (i = 0; i < adev->usec_timeout; i++) { 1043 /* read MC_STATUS */ 1044 tmp = RREG32(mmSRBM_STATUS) & (SRBM_STATUS__MCB_BUSY_MASK | 1045 SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK | 1046 SRBM_STATUS__MCC_BUSY_MASK | 1047 SRBM_STATUS__MCD_BUSY_MASK | 1048 SRBM_STATUS__VMC_BUSY_MASK | 1049 SRBM_STATUS__VMC1_BUSY_MASK); 1050 if (!tmp) 1051 return 0; 1052 udelay(1); 1053 } 1054 return -ETIMEDOUT; 1055 1056 } 1057 1058 static void gmc_v8_0_print_status(void *handle) 1059 { 1060 int i, j; 1061 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1062 1063 dev_info(adev->dev, "GMC 8.x registers\n"); 1064 dev_info(adev->dev, " SRBM_STATUS=0x%08X\n", 1065 RREG32(mmSRBM_STATUS)); 1066 dev_info(adev->dev, " SRBM_STATUS2=0x%08X\n", 1067 RREG32(mmSRBM_STATUS2)); 1068 1069 dev_info(adev->dev, " VM_CONTEXT1_PROTECTION_FAULT_ADDR 0x%08X\n", 1070 RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_ADDR)); 1071 dev_info(adev->dev, " VM_CONTEXT1_PROTECTION_FAULT_STATUS 0x%08X\n", 1072 RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS)); 1073 dev_info(adev->dev, " MC_VM_MX_L1_TLB_CNTL=0x%08X\n", 1074 RREG32(mmMC_VM_MX_L1_TLB_CNTL)); 1075 dev_info(adev->dev, " VM_L2_CNTL=0x%08X\n", 1076 RREG32(mmVM_L2_CNTL)); 1077 dev_info(adev->dev, " VM_L2_CNTL2=0x%08X\n", 1078 RREG32(mmVM_L2_CNTL2)); 1079 dev_info(adev->dev, " VM_L2_CNTL3=0x%08X\n", 1080 RREG32(mmVM_L2_CNTL3)); 1081 dev_info(adev->dev, " VM_L2_CNTL4=0x%08X\n", 1082 RREG32(mmVM_L2_CNTL4)); 1083 dev_info(adev->dev, " VM_CONTEXT0_PAGE_TABLE_START_ADDR=0x%08X\n", 1084 RREG32(mmVM_CONTEXT0_PAGE_TABLE_START_ADDR)); 1085 dev_info(adev->dev, " VM_CONTEXT0_PAGE_TABLE_END_ADDR=0x%08X\n", 1086 RREG32(mmVM_CONTEXT0_PAGE_TABLE_END_ADDR)); 1087 dev_info(adev->dev, " VM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR=0x%08X\n", 1088 RREG32(mmVM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR)); 1089 dev_info(adev->dev, " VM_CONTEXT0_CNTL2=0x%08X\n", 1090 RREG32(mmVM_CONTEXT0_CNTL2)); 1091 dev_info(adev->dev, " VM_CONTEXT0_CNTL=0x%08X\n", 1092 RREG32(mmVM_CONTEXT0_CNTL)); 1093 dev_info(adev->dev, " VM_L2_CONTEXT1_IDENTITY_APERTURE_LOW_ADDR=0x%08X\n", 1094 RREG32(mmVM_L2_CONTEXT1_IDENTITY_APERTURE_LOW_ADDR)); 1095 dev_info(adev->dev, " VM_L2_CONTEXT1_IDENTITY_APERTURE_HIGH_ADDR=0x%08X\n", 1096 RREG32(mmVM_L2_CONTEXT1_IDENTITY_APERTURE_HIGH_ADDR)); 1097 dev_info(adev->dev, " mmVM_L2_CONTEXT_IDENTITY_PHYSICAL_OFFSET=0x%08X\n", 1098 RREG32(mmVM_L2_CONTEXT_IDENTITY_PHYSICAL_OFFSET)); 1099 dev_info(adev->dev, " VM_CONTEXT1_PAGE_TABLE_START_ADDR=0x%08X\n", 1100 RREG32(mmVM_CONTEXT1_PAGE_TABLE_START_ADDR)); 1101 dev_info(adev->dev, " VM_CONTEXT1_PAGE_TABLE_END_ADDR=0x%08X\n", 1102 RREG32(mmVM_CONTEXT1_PAGE_TABLE_END_ADDR)); 1103 dev_info(adev->dev, " VM_CONTEXT1_PROTECTION_FAULT_DEFAULT_ADDR=0x%08X\n", 1104 RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_DEFAULT_ADDR)); 1105 dev_info(adev->dev, " VM_CONTEXT1_CNTL2=0x%08X\n", 1106 RREG32(mmVM_CONTEXT1_CNTL2)); 1107 dev_info(adev->dev, " VM_CONTEXT1_CNTL=0x%08X\n", 1108 RREG32(mmVM_CONTEXT1_CNTL)); 1109 for (i = 0; i < 16; i++) { 1110 if (i < 8) 1111 dev_info(adev->dev, " VM_CONTEXT%d_PAGE_TABLE_BASE_ADDR=0x%08X\n", 1112 i, RREG32(mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + i)); 1113 else 1114 dev_info(adev->dev, " VM_CONTEXT%d_PAGE_TABLE_BASE_ADDR=0x%08X\n", 1115 i, RREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + i - 8)); 1116 } 1117 dev_info(adev->dev, " MC_VM_SYSTEM_APERTURE_LOW_ADDR=0x%08X\n", 1118 RREG32(mmMC_VM_SYSTEM_APERTURE_LOW_ADDR)); 1119 dev_info(adev->dev, " MC_VM_SYSTEM_APERTURE_HIGH_ADDR=0x%08X\n", 1120 RREG32(mmMC_VM_SYSTEM_APERTURE_HIGH_ADDR)); 1121 dev_info(adev->dev, " MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR=0x%08X\n", 1122 RREG32(mmMC_VM_SYSTEM_APERTURE_DEFAULT_ADDR)); 1123 dev_info(adev->dev, " MC_VM_FB_LOCATION=0x%08X\n", 1124 RREG32(mmMC_VM_FB_LOCATION)); 1125 dev_info(adev->dev, " MC_VM_AGP_BASE=0x%08X\n", 1126 RREG32(mmMC_VM_AGP_BASE)); 1127 dev_info(adev->dev, " MC_VM_AGP_TOP=0x%08X\n", 1128 RREG32(mmMC_VM_AGP_TOP)); 1129 dev_info(adev->dev, " MC_VM_AGP_BOT=0x%08X\n", 1130 RREG32(mmMC_VM_AGP_BOT)); 1131 1132 dev_info(adev->dev, " HDP_REG_COHERENCY_FLUSH_CNTL=0x%08X\n", 1133 RREG32(mmHDP_REG_COHERENCY_FLUSH_CNTL)); 1134 dev_info(adev->dev, " HDP_NONSURFACE_BASE=0x%08X\n", 1135 RREG32(mmHDP_NONSURFACE_BASE)); 1136 dev_info(adev->dev, " HDP_NONSURFACE_INFO=0x%08X\n", 1137 RREG32(mmHDP_NONSURFACE_INFO)); 1138 dev_info(adev->dev, " HDP_NONSURFACE_SIZE=0x%08X\n", 1139 RREG32(mmHDP_NONSURFACE_SIZE)); 1140 dev_info(adev->dev, " HDP_MISC_CNTL=0x%08X\n", 1141 RREG32(mmHDP_MISC_CNTL)); 1142 dev_info(adev->dev, " HDP_HOST_PATH_CNTL=0x%08X\n", 1143 RREG32(mmHDP_HOST_PATH_CNTL)); 1144 1145 for (i = 0, j = 0; i < 32; i++, j += 0x6) { 1146 dev_info(adev->dev, " %d:\n", i); 1147 dev_info(adev->dev, " 0x%04X=0x%08X\n", 1148 0xb05 + j, RREG32(0xb05 + j)); 1149 dev_info(adev->dev, " 0x%04X=0x%08X\n", 1150 0xb06 + j, RREG32(0xb06 + j)); 1151 dev_info(adev->dev, " 0x%04X=0x%08X\n", 1152 0xb07 + j, RREG32(0xb07 + j)); 1153 dev_info(adev->dev, " 0x%04X=0x%08X\n", 1154 0xb08 + j, RREG32(0xb08 + j)); 1155 dev_info(adev->dev, " 0x%04X=0x%08X\n", 1156 0xb09 + j, RREG32(0xb09 + j)); 1157 } 1158 1159 dev_info(adev->dev, " BIF_FB_EN=0x%08X\n", 1160 RREG32(mmBIF_FB_EN)); 1161 } 1162 1163 static int gmc_v8_0_soft_reset(void *handle) 1164 { 1165 struct amdgpu_mode_mc_save save; 1166 u32 srbm_soft_reset = 0; 1167 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1168 u32 tmp = RREG32(mmSRBM_STATUS); 1169 1170 if (tmp & SRBM_STATUS__VMC_BUSY_MASK) 1171 srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset, 1172 SRBM_SOFT_RESET, SOFT_RESET_VMC, 1); 1173 1174 if (tmp & (SRBM_STATUS__MCB_BUSY_MASK | SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK | 1175 SRBM_STATUS__MCC_BUSY_MASK | SRBM_STATUS__MCD_BUSY_MASK)) { 1176 if (!(adev->flags & AMD_IS_APU)) 1177 srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset, 1178 SRBM_SOFT_RESET, SOFT_RESET_MC, 1); 1179 } 1180 1181 if (srbm_soft_reset) { 1182 gmc_v8_0_print_status((void *)adev); 1183 1184 gmc_v8_0_mc_stop(adev, &save); 1185 if (gmc_v8_0_wait_for_idle(adev)) { 1186 dev_warn(adev->dev, "Wait for GMC idle timed out !\n"); 1187 } 1188 1189 1190 tmp = RREG32(mmSRBM_SOFT_RESET); 1191 tmp |= srbm_soft_reset; 1192 dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp); 1193 WREG32(mmSRBM_SOFT_RESET, tmp); 1194 tmp = RREG32(mmSRBM_SOFT_RESET); 1195 1196 udelay(50); 1197 1198 tmp &= ~srbm_soft_reset; 1199 WREG32(mmSRBM_SOFT_RESET, tmp); 1200 tmp = RREG32(mmSRBM_SOFT_RESET); 1201 1202 /* Wait a little for things to settle down */ 1203 udelay(50); 1204 1205 gmc_v8_0_mc_resume(adev, &save); 1206 udelay(50); 1207 1208 gmc_v8_0_print_status((void *)adev); 1209 } 1210 1211 return 0; 1212 } 1213 1214 static int gmc_v8_0_vm_fault_interrupt_state(struct amdgpu_device *adev, 1215 struct amdgpu_irq_src *src, 1216 unsigned type, 1217 enum amdgpu_interrupt_state state) 1218 { 1219 u32 tmp; 1220 u32 bits = (VM_CONTEXT1_CNTL__RANGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK | 1221 VM_CONTEXT1_CNTL__DUMMY_PAGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK | 1222 VM_CONTEXT1_CNTL__PDE0_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK | 1223 VM_CONTEXT1_CNTL__VALID_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK | 1224 VM_CONTEXT1_CNTL__READ_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK | 1225 VM_CONTEXT1_CNTL__WRITE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK | 1226 VM_CONTEXT1_CNTL__EXECUTE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK); 1227 1228 switch (state) { 1229 case AMDGPU_IRQ_STATE_DISABLE: 1230 /* system context */ 1231 tmp = RREG32(mmVM_CONTEXT0_CNTL); 1232 tmp &= ~bits; 1233 WREG32(mmVM_CONTEXT0_CNTL, tmp); 1234 /* VMs */ 1235 tmp = RREG32(mmVM_CONTEXT1_CNTL); 1236 tmp &= ~bits; 1237 WREG32(mmVM_CONTEXT1_CNTL, tmp); 1238 break; 1239 case AMDGPU_IRQ_STATE_ENABLE: 1240 /* system context */ 1241 tmp = RREG32(mmVM_CONTEXT0_CNTL); 1242 tmp |= bits; 1243 WREG32(mmVM_CONTEXT0_CNTL, tmp); 1244 /* VMs */ 1245 tmp = RREG32(mmVM_CONTEXT1_CNTL); 1246 tmp |= bits; 1247 WREG32(mmVM_CONTEXT1_CNTL, tmp); 1248 break; 1249 default: 1250 break; 1251 } 1252 1253 return 0; 1254 } 1255 1256 static int gmc_v8_0_process_interrupt(struct amdgpu_device *adev, 1257 struct amdgpu_irq_src *source, 1258 struct amdgpu_iv_entry *entry) 1259 { 1260 u32 addr, status, mc_client; 1261 1262 addr = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_ADDR); 1263 status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS); 1264 mc_client = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_MCCLIENT); 1265 /* reset addr and status */ 1266 WREG32_P(mmVM_CONTEXT1_CNTL2, 1, ~1); 1267 1268 if (!addr && !status) 1269 return 0; 1270 1271 dev_err(adev->dev, "GPU fault detected: %d 0x%08x\n", 1272 entry->src_id, entry->src_data); 1273 dev_err(adev->dev, " VM_CONTEXT1_PROTECTION_FAULT_ADDR 0x%08X\n", 1274 addr); 1275 dev_err(adev->dev, " VM_CONTEXT1_PROTECTION_FAULT_STATUS 0x%08X\n", 1276 status); 1277 gmc_v8_0_vm_decode_fault(adev, status, addr, mc_client); 1278 1279 return 0; 1280 } 1281 1282 static int gmc_v8_0_set_clockgating_state(void *handle, 1283 enum amd_clockgating_state state) 1284 { 1285 return 0; 1286 } 1287 1288 static int gmc_v8_0_set_powergating_state(void *handle, 1289 enum amd_powergating_state state) 1290 { 1291 return 0; 1292 } 1293 1294 const struct amd_ip_funcs gmc_v8_0_ip_funcs = { 1295 .early_init = gmc_v8_0_early_init, 1296 .late_init = gmc_v8_0_late_init, 1297 .sw_init = gmc_v8_0_sw_init, 1298 .sw_fini = gmc_v8_0_sw_fini, 1299 .hw_init = gmc_v8_0_hw_init, 1300 .hw_fini = gmc_v8_0_hw_fini, 1301 .suspend = gmc_v8_0_suspend, 1302 .resume = gmc_v8_0_resume, 1303 .is_idle = gmc_v8_0_is_idle, 1304 .wait_for_idle = gmc_v8_0_wait_for_idle, 1305 .soft_reset = gmc_v8_0_soft_reset, 1306 .print_status = gmc_v8_0_print_status, 1307 .set_clockgating_state = gmc_v8_0_set_clockgating_state, 1308 .set_powergating_state = gmc_v8_0_set_powergating_state, 1309 }; 1310 1311 static const struct amdgpu_gart_funcs gmc_v8_0_gart_funcs = { 1312 .flush_gpu_tlb = gmc_v8_0_gart_flush_gpu_tlb, 1313 .set_pte_pde = gmc_v8_0_gart_set_pte_pde, 1314 }; 1315 1316 static const struct amdgpu_irq_src_funcs gmc_v8_0_irq_funcs = { 1317 .set = gmc_v8_0_vm_fault_interrupt_state, 1318 .process = gmc_v8_0_process_interrupt, 1319 }; 1320 1321 static void gmc_v8_0_set_gart_funcs(struct amdgpu_device *adev) 1322 { 1323 if (adev->gart.gart_funcs == NULL) 1324 adev->gart.gart_funcs = &gmc_v8_0_gart_funcs; 1325 } 1326 1327 static void gmc_v8_0_set_irq_funcs(struct amdgpu_device *adev) 1328 { 1329 adev->mc.vm_fault.num_types = 1; 1330 adev->mc.vm_fault.funcs = &gmc_v8_0_irq_funcs; 1331 } 1332