xref: /linux/drivers/gpu/drm/amd/amdgpu/gmc_v8_0.c (revision 4f58e6dceb0e44ca8f21568ed81e1df24e55964c)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 #include <linux/firmware.h>
24 #include "drmP.h"
25 #include "amdgpu.h"
26 #include "gmc_v8_0.h"
27 #include "amdgpu_ucode.h"
28 
29 #include "gmc/gmc_8_1_d.h"
30 #include "gmc/gmc_8_1_sh_mask.h"
31 
32 #include "bif/bif_5_0_d.h"
33 #include "bif/bif_5_0_sh_mask.h"
34 
35 #include "oss/oss_3_0_d.h"
36 #include "oss/oss_3_0_sh_mask.h"
37 
38 #include "vid.h"
39 #include "vi.h"
40 
41 
42 static void gmc_v8_0_set_gart_funcs(struct amdgpu_device *adev);
43 static void gmc_v8_0_set_irq_funcs(struct amdgpu_device *adev);
44 static int gmc_v8_0_wait_for_idle(void *handle);
45 
46 MODULE_FIRMWARE("amdgpu/tonga_mc.bin");
47 MODULE_FIRMWARE("amdgpu/polaris11_mc.bin");
48 MODULE_FIRMWARE("amdgpu/polaris10_mc.bin");
49 
50 static const u32 golden_settings_tonga_a11[] =
51 {
52 	mmMC_ARB_WTM_GRPWT_RD, 0x00000003, 0x00000000,
53 	mmMC_HUB_RDREQ_DMIF_LIMIT, 0x0000007f, 0x00000028,
54 	mmMC_HUB_WDP_UMC, 0x00007fb6, 0x00000991,
55 	mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
56 	mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
57 	mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
58 	mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff,
59 };
60 
61 static const u32 tonga_mgcg_cgcg_init[] =
62 {
63 	mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
64 };
65 
66 static const u32 golden_settings_fiji_a10[] =
67 {
68 	mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
69 	mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
70 	mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
71 	mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff,
72 };
73 
74 static const u32 fiji_mgcg_cgcg_init[] =
75 {
76 	mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
77 };
78 
79 static const u32 golden_settings_polaris11_a11[] =
80 {
81 	mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
82 	mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
83 	mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
84 	mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff
85 };
86 
87 static const u32 golden_settings_polaris10_a11[] =
88 {
89 	mmMC_ARB_WTM_GRPWT_RD, 0x00000003, 0x00000000,
90 	mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
91 	mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
92 	mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
93 	mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff
94 };
95 
96 static const u32 cz_mgcg_cgcg_init[] =
97 {
98 	mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
99 };
100 
101 static const u32 stoney_mgcg_cgcg_init[] =
102 {
103 	mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
104 };
105 
106 static const u32 golden_settings_stoney_common[] =
107 {
108 	mmMC_HUB_RDREQ_UVD, MC_HUB_RDREQ_UVD__PRESCALE_MASK, 0x00000004,
109 	mmMC_RD_GRP_OTH, MC_RD_GRP_OTH__UVD_MASK, 0x00600000
110 };
111 
112 static void gmc_v8_0_init_golden_registers(struct amdgpu_device *adev)
113 {
114 	switch (adev->asic_type) {
115 	case CHIP_FIJI:
116 		amdgpu_program_register_sequence(adev,
117 						 fiji_mgcg_cgcg_init,
118 						 (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
119 		amdgpu_program_register_sequence(adev,
120 						 golden_settings_fiji_a10,
121 						 (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
122 		break;
123 	case CHIP_TONGA:
124 		amdgpu_program_register_sequence(adev,
125 						 tonga_mgcg_cgcg_init,
126 						 (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
127 		amdgpu_program_register_sequence(adev,
128 						 golden_settings_tonga_a11,
129 						 (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
130 		break;
131 	case CHIP_POLARIS11:
132 		amdgpu_program_register_sequence(adev,
133 						 golden_settings_polaris11_a11,
134 						 (const u32)ARRAY_SIZE(golden_settings_polaris11_a11));
135 		break;
136 	case CHIP_POLARIS10:
137 		amdgpu_program_register_sequence(adev,
138 						 golden_settings_polaris10_a11,
139 						 (const u32)ARRAY_SIZE(golden_settings_polaris10_a11));
140 		break;
141 	case CHIP_CARRIZO:
142 		amdgpu_program_register_sequence(adev,
143 						 cz_mgcg_cgcg_init,
144 						 (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
145 		break;
146 	case CHIP_STONEY:
147 		amdgpu_program_register_sequence(adev,
148 						 stoney_mgcg_cgcg_init,
149 						 (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
150 		amdgpu_program_register_sequence(adev,
151 						 golden_settings_stoney_common,
152 						 (const u32)ARRAY_SIZE(golden_settings_stoney_common));
153 		break;
154 	default:
155 		break;
156 	}
157 }
158 
159 static void gmc_v8_0_mc_stop(struct amdgpu_device *adev,
160 			     struct amdgpu_mode_mc_save *save)
161 {
162 	u32 blackout;
163 
164 	if (adev->mode_info.num_crtc)
165 		amdgpu_display_stop_mc_access(adev, save);
166 
167 	gmc_v8_0_wait_for_idle(adev);
168 
169 	blackout = RREG32(mmMC_SHARED_BLACKOUT_CNTL);
170 	if (REG_GET_FIELD(blackout, MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE) != 1) {
171 		/* Block CPU access */
172 		WREG32(mmBIF_FB_EN, 0);
173 		/* blackout the MC */
174 		blackout = REG_SET_FIELD(blackout,
175 					 MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE, 1);
176 		WREG32(mmMC_SHARED_BLACKOUT_CNTL, blackout);
177 	}
178 	/* wait for the MC to settle */
179 	udelay(100);
180 }
181 
182 static void gmc_v8_0_mc_resume(struct amdgpu_device *adev,
183 			       struct amdgpu_mode_mc_save *save)
184 {
185 	u32 tmp;
186 
187 	/* unblackout the MC */
188 	tmp = RREG32(mmMC_SHARED_BLACKOUT_CNTL);
189 	tmp = REG_SET_FIELD(tmp, MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE, 0);
190 	WREG32(mmMC_SHARED_BLACKOUT_CNTL, tmp);
191 	/* allow CPU access */
192 	tmp = REG_SET_FIELD(0, BIF_FB_EN, FB_READ_EN, 1);
193 	tmp = REG_SET_FIELD(tmp, BIF_FB_EN, FB_WRITE_EN, 1);
194 	WREG32(mmBIF_FB_EN, tmp);
195 
196 	if (adev->mode_info.num_crtc)
197 		amdgpu_display_resume_mc_access(adev, save);
198 }
199 
200 /**
201  * gmc_v8_0_init_microcode - load ucode images from disk
202  *
203  * @adev: amdgpu_device pointer
204  *
205  * Use the firmware interface to load the ucode images into
206  * the driver (not loaded into hw).
207  * Returns 0 on success, error on failure.
208  */
209 static int gmc_v8_0_init_microcode(struct amdgpu_device *adev)
210 {
211 	const char *chip_name;
212 	char fw_name[30];
213 	int err;
214 
215 	DRM_DEBUG("\n");
216 
217 	switch (adev->asic_type) {
218 	case CHIP_TONGA:
219 		chip_name = "tonga";
220 		break;
221 	case CHIP_POLARIS11:
222 		chip_name = "polaris11";
223 		break;
224 	case CHIP_POLARIS10:
225 		chip_name = "polaris10";
226 		break;
227 	case CHIP_FIJI:
228 	case CHIP_CARRIZO:
229 	case CHIP_STONEY:
230 		return 0;
231 	default: BUG();
232 	}
233 
234 	snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mc.bin", chip_name);
235 	err = request_firmware(&adev->mc.fw, fw_name, adev->dev);
236 	if (err)
237 		goto out;
238 	err = amdgpu_ucode_validate(adev->mc.fw);
239 
240 out:
241 	if (err) {
242 		printk(KERN_ERR
243 		       "mc: Failed to load firmware \"%s\"\n",
244 		       fw_name);
245 		release_firmware(adev->mc.fw);
246 		adev->mc.fw = NULL;
247 	}
248 	return err;
249 }
250 
251 /**
252  * gmc_v8_0_mc_load_microcode - load MC ucode into the hw
253  *
254  * @adev: amdgpu_device pointer
255  *
256  * Load the GDDR MC ucode into the hw (CIK).
257  * Returns 0 on success, error on failure.
258  */
259 static int gmc_v8_0_mc_load_microcode(struct amdgpu_device *adev)
260 {
261 	const struct mc_firmware_header_v1_0 *hdr;
262 	const __le32 *fw_data = NULL;
263 	const __le32 *io_mc_regs = NULL;
264 	u32 running;
265 	int i, ucode_size, regs_size;
266 
267 	if (!adev->mc.fw)
268 		return -EINVAL;
269 
270 	/* Skip MC ucode loading on SR-IOV capable boards.
271 	 * vbios does this for us in asic_init in that case.
272 	 * Skip MC ucode loading on VF, because hypervisor will do that
273 	 * for this adaptor.
274 	 */
275 	if (amdgpu_sriov_bios(adev))
276 		return 0;
277 
278 	hdr = (const struct mc_firmware_header_v1_0 *)adev->mc.fw->data;
279 	amdgpu_ucode_print_mc_hdr(&hdr->header);
280 
281 	adev->mc.fw_version = le32_to_cpu(hdr->header.ucode_version);
282 	regs_size = le32_to_cpu(hdr->io_debug_size_bytes) / (4 * 2);
283 	io_mc_regs = (const __le32 *)
284 		(adev->mc.fw->data + le32_to_cpu(hdr->io_debug_array_offset_bytes));
285 	ucode_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
286 	fw_data = (const __le32 *)
287 		(adev->mc.fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes));
288 
289 	running = REG_GET_FIELD(RREG32(mmMC_SEQ_SUP_CNTL), MC_SEQ_SUP_CNTL, RUN);
290 
291 	if (running == 0) {
292 		/* reset the engine and set to writable */
293 		WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
294 		WREG32(mmMC_SEQ_SUP_CNTL, 0x00000010);
295 
296 		/* load mc io regs */
297 		for (i = 0; i < regs_size; i++) {
298 			WREG32(mmMC_SEQ_IO_DEBUG_INDEX, le32_to_cpup(io_mc_regs++));
299 			WREG32(mmMC_SEQ_IO_DEBUG_DATA, le32_to_cpup(io_mc_regs++));
300 		}
301 		/* load the MC ucode */
302 		for (i = 0; i < ucode_size; i++)
303 			WREG32(mmMC_SEQ_SUP_PGM, le32_to_cpup(fw_data++));
304 
305 		/* put the engine back into the active state */
306 		WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
307 		WREG32(mmMC_SEQ_SUP_CNTL, 0x00000004);
308 		WREG32(mmMC_SEQ_SUP_CNTL, 0x00000001);
309 
310 		/* wait for training to complete */
311 		for (i = 0; i < adev->usec_timeout; i++) {
312 			if (REG_GET_FIELD(RREG32(mmMC_SEQ_TRAIN_WAKEUP_CNTL),
313 					  MC_SEQ_TRAIN_WAKEUP_CNTL, TRAIN_DONE_D0))
314 				break;
315 			udelay(1);
316 		}
317 		for (i = 0; i < adev->usec_timeout; i++) {
318 			if (REG_GET_FIELD(RREG32(mmMC_SEQ_TRAIN_WAKEUP_CNTL),
319 					  MC_SEQ_TRAIN_WAKEUP_CNTL, TRAIN_DONE_D1))
320 				break;
321 			udelay(1);
322 		}
323 	}
324 
325 	return 0;
326 }
327 
328 static void gmc_v8_0_vram_gtt_location(struct amdgpu_device *adev,
329 				       struct amdgpu_mc *mc)
330 {
331 	if (mc->mc_vram_size > 0xFFC0000000ULL) {
332 		/* leave room for at least 1024M GTT */
333 		dev_warn(adev->dev, "limiting VRAM\n");
334 		mc->real_vram_size = 0xFFC0000000ULL;
335 		mc->mc_vram_size = 0xFFC0000000ULL;
336 	}
337 	amdgpu_vram_location(adev, &adev->mc, 0);
338 	adev->mc.gtt_base_align = 0;
339 	amdgpu_gtt_location(adev, mc);
340 }
341 
342 /**
343  * gmc_v8_0_mc_program - program the GPU memory controller
344  *
345  * @adev: amdgpu_device pointer
346  *
347  * Set the location of vram, gart, and AGP in the GPU's
348  * physical address space (CIK).
349  */
350 static void gmc_v8_0_mc_program(struct amdgpu_device *adev)
351 {
352 	struct amdgpu_mode_mc_save save;
353 	u32 tmp;
354 	int i, j;
355 
356 	/* Initialize HDP */
357 	for (i = 0, j = 0; i < 32; i++, j += 0x6) {
358 		WREG32((0xb05 + j), 0x00000000);
359 		WREG32((0xb06 + j), 0x00000000);
360 		WREG32((0xb07 + j), 0x00000000);
361 		WREG32((0xb08 + j), 0x00000000);
362 		WREG32((0xb09 + j), 0x00000000);
363 	}
364 	WREG32(mmHDP_REG_COHERENCY_FLUSH_CNTL, 0);
365 
366 	if (adev->mode_info.num_crtc)
367 		amdgpu_display_set_vga_render_state(adev, false);
368 
369 	gmc_v8_0_mc_stop(adev, &save);
370 	if (gmc_v8_0_wait_for_idle((void *)adev)) {
371 		dev_warn(adev->dev, "Wait for MC idle timedout !\n");
372 	}
373 	/* Update configuration */
374 	WREG32(mmMC_VM_SYSTEM_APERTURE_LOW_ADDR,
375 	       adev->mc.vram_start >> 12);
376 	WREG32(mmMC_VM_SYSTEM_APERTURE_HIGH_ADDR,
377 	       adev->mc.vram_end >> 12);
378 	WREG32(mmMC_VM_SYSTEM_APERTURE_DEFAULT_ADDR,
379 	       adev->vram_scratch.gpu_addr >> 12);
380 	tmp = ((adev->mc.vram_end >> 24) & 0xFFFF) << 16;
381 	tmp |= ((adev->mc.vram_start >> 24) & 0xFFFF);
382 	WREG32(mmMC_VM_FB_LOCATION, tmp);
383 	/* XXX double check these! */
384 	WREG32(mmHDP_NONSURFACE_BASE, (adev->mc.vram_start >> 8));
385 	WREG32(mmHDP_NONSURFACE_INFO, (2 << 7) | (1 << 30));
386 	WREG32(mmHDP_NONSURFACE_SIZE, 0x3FFFFFFF);
387 	WREG32(mmMC_VM_AGP_BASE, 0);
388 	WREG32(mmMC_VM_AGP_TOP, 0x0FFFFFFF);
389 	WREG32(mmMC_VM_AGP_BOT, 0x0FFFFFFF);
390 	if (gmc_v8_0_wait_for_idle((void *)adev)) {
391 		dev_warn(adev->dev, "Wait for MC idle timedout !\n");
392 	}
393 	gmc_v8_0_mc_resume(adev, &save);
394 
395 	WREG32(mmBIF_FB_EN, BIF_FB_EN__FB_READ_EN_MASK | BIF_FB_EN__FB_WRITE_EN_MASK);
396 
397 	tmp = RREG32(mmHDP_MISC_CNTL);
398 	tmp = REG_SET_FIELD(tmp, HDP_MISC_CNTL, FLUSH_INVALIDATE_CACHE, 0);
399 	WREG32(mmHDP_MISC_CNTL, tmp);
400 
401 	tmp = RREG32(mmHDP_HOST_PATH_CNTL);
402 	WREG32(mmHDP_HOST_PATH_CNTL, tmp);
403 }
404 
405 /**
406  * gmc_v8_0_mc_init - initialize the memory controller driver params
407  *
408  * @adev: amdgpu_device pointer
409  *
410  * Look up the amount of vram, vram width, and decide how to place
411  * vram and gart within the GPU's physical address space (CIK).
412  * Returns 0 for success.
413  */
414 static int gmc_v8_0_mc_init(struct amdgpu_device *adev)
415 {
416 	u32 tmp;
417 	int chansize, numchan;
418 
419 	/* Get VRAM informations */
420 	tmp = RREG32(mmMC_ARB_RAMCFG);
421 	if (REG_GET_FIELD(tmp, MC_ARB_RAMCFG, CHANSIZE)) {
422 		chansize = 64;
423 	} else {
424 		chansize = 32;
425 	}
426 	tmp = RREG32(mmMC_SHARED_CHMAP);
427 	switch (REG_GET_FIELD(tmp, MC_SHARED_CHMAP, NOOFCHAN)) {
428 	case 0:
429 	default:
430 		numchan = 1;
431 		break;
432 	case 1:
433 		numchan = 2;
434 		break;
435 	case 2:
436 		numchan = 4;
437 		break;
438 	case 3:
439 		numchan = 8;
440 		break;
441 	case 4:
442 		numchan = 3;
443 		break;
444 	case 5:
445 		numchan = 6;
446 		break;
447 	case 6:
448 		numchan = 10;
449 		break;
450 	case 7:
451 		numchan = 12;
452 		break;
453 	case 8:
454 		numchan = 16;
455 		break;
456 	}
457 	adev->mc.vram_width = numchan * chansize;
458 	/* Could aper size report 0 ? */
459 	adev->mc.aper_base = pci_resource_start(adev->pdev, 0);
460 	adev->mc.aper_size = pci_resource_len(adev->pdev, 0);
461 	/* size in MB on si */
462 	adev->mc.mc_vram_size = RREG32(mmCONFIG_MEMSIZE) * 1024ULL * 1024ULL;
463 	adev->mc.real_vram_size = RREG32(mmCONFIG_MEMSIZE) * 1024ULL * 1024ULL;
464 	adev->mc.visible_vram_size = adev->mc.aper_size;
465 
466 	/* In case the PCI BAR is larger than the actual amount of vram */
467 	if (adev->mc.visible_vram_size > adev->mc.real_vram_size)
468 		adev->mc.visible_vram_size = adev->mc.real_vram_size;
469 
470 	/* unless the user had overridden it, set the gart
471 	 * size equal to the 1024 or vram, whichever is larger.
472 	 */
473 	if (amdgpu_gart_size == -1)
474 		adev->mc.gtt_size = amdgpu_ttm_get_gtt_mem_size(adev);
475 	else
476 		adev->mc.gtt_size = (uint64_t)amdgpu_gart_size << 20;
477 
478 	gmc_v8_0_vram_gtt_location(adev, &adev->mc);
479 
480 	return 0;
481 }
482 
483 /*
484  * GART
485  * VMID 0 is the physical GPU addresses as used by the kernel.
486  * VMIDs 1-15 are used for userspace clients and are handled
487  * by the amdgpu vm/hsa code.
488  */
489 
490 /**
491  * gmc_v8_0_gart_flush_gpu_tlb - gart tlb flush callback
492  *
493  * @adev: amdgpu_device pointer
494  * @vmid: vm instance to flush
495  *
496  * Flush the TLB for the requested page table (CIK).
497  */
498 static void gmc_v8_0_gart_flush_gpu_tlb(struct amdgpu_device *adev,
499 					uint32_t vmid)
500 {
501 	/* flush hdp cache */
502 	WREG32(mmHDP_MEM_COHERENCY_FLUSH_CNTL, 0);
503 
504 	/* bits 0-15 are the VM contexts0-15 */
505 	WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
506 }
507 
508 /**
509  * gmc_v8_0_gart_set_pte_pde - update the page tables using MMIO
510  *
511  * @adev: amdgpu_device pointer
512  * @cpu_pt_addr: cpu address of the page table
513  * @gpu_page_idx: entry in the page table to update
514  * @addr: dst addr to write into pte/pde
515  * @flags: access flags
516  *
517  * Update the page tables using the CPU.
518  */
519 static int gmc_v8_0_gart_set_pte_pde(struct amdgpu_device *adev,
520 				     void *cpu_pt_addr,
521 				     uint32_t gpu_page_idx,
522 				     uint64_t addr,
523 				     uint32_t flags)
524 {
525 	void __iomem *ptr = (void *)cpu_pt_addr;
526 	uint64_t value;
527 
528 	/*
529 	 * PTE format on VI:
530 	 * 63:40 reserved
531 	 * 39:12 4k physical page base address
532 	 * 11:7 fragment
533 	 * 6 write
534 	 * 5 read
535 	 * 4 exe
536 	 * 3 reserved
537 	 * 2 snooped
538 	 * 1 system
539 	 * 0 valid
540 	 *
541 	 * PDE format on VI:
542 	 * 63:59 block fragment size
543 	 * 58:40 reserved
544 	 * 39:1 physical base address of PTE
545 	 * bits 5:1 must be 0.
546 	 * 0 valid
547 	 */
548 	value = addr & 0x000000FFFFFFF000ULL;
549 	value |= flags;
550 	writeq(value, ptr + (gpu_page_idx * 8));
551 
552 	return 0;
553 }
554 
555 /**
556  * gmc_v8_0_set_fault_enable_default - update VM fault handling
557  *
558  * @adev: amdgpu_device pointer
559  * @value: true redirects VM faults to the default page
560  */
561 static void gmc_v8_0_set_fault_enable_default(struct amdgpu_device *adev,
562 					      bool value)
563 {
564 	u32 tmp;
565 
566 	tmp = RREG32(mmVM_CONTEXT1_CNTL);
567 	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
568 			    RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
569 	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
570 			    DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
571 	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
572 			    PDE0_PROTECTION_FAULT_ENABLE_DEFAULT, value);
573 	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
574 			    VALID_PROTECTION_FAULT_ENABLE_DEFAULT, value);
575 	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
576 			    READ_PROTECTION_FAULT_ENABLE_DEFAULT, value);
577 	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
578 			    WRITE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
579 	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
580 			    EXECUTE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
581 	WREG32(mmVM_CONTEXT1_CNTL, tmp);
582 }
583 
584 /**
585  * gmc_v8_0_gart_enable - gart enable
586  *
587  * @adev: amdgpu_device pointer
588  *
589  * This sets up the TLBs, programs the page tables for VMID0,
590  * sets up the hw for VMIDs 1-15 which are allocated on
591  * demand, and sets up the global locations for the LDS, GDS,
592  * and GPUVM for FSA64 clients (CIK).
593  * Returns 0 for success, errors for failure.
594  */
595 static int gmc_v8_0_gart_enable(struct amdgpu_device *adev)
596 {
597 	int r, i;
598 	u32 tmp;
599 
600 	if (adev->gart.robj == NULL) {
601 		dev_err(adev->dev, "No VRAM object for PCIE GART.\n");
602 		return -EINVAL;
603 	}
604 	r = amdgpu_gart_table_vram_pin(adev);
605 	if (r)
606 		return r;
607 	/* Setup TLB control */
608 	tmp = RREG32(mmMC_VM_MX_L1_TLB_CNTL);
609 	tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_TLB, 1);
610 	tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_FRAGMENT_PROCESSING, 1);
611 	tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, SYSTEM_ACCESS_MODE, 3);
612 	tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_ADVANCED_DRIVER_MODEL, 1);
613 	tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, SYSTEM_APERTURE_UNMAPPED_ACCESS, 0);
614 	WREG32(mmMC_VM_MX_L1_TLB_CNTL, tmp);
615 	/* Setup L2 cache */
616 	tmp = RREG32(mmVM_L2_CNTL);
617 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_CACHE, 1);
618 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_FRAGMENT_PROCESSING, 1);
619 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE, 1);
620 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE, 1);
621 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, EFFECTIVE_L2_QUEUE_SIZE, 7);
622 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, CONTEXT1_IDENTITY_ACCESS_MODE, 1);
623 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_DEFAULT_PAGE_OUT_TO_SYSTEM_MEMORY, 1);
624 	WREG32(mmVM_L2_CNTL, tmp);
625 	tmp = RREG32(mmVM_L2_CNTL2);
626 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL2, INVALIDATE_ALL_L1_TLBS, 1);
627 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL2, INVALIDATE_L2_CACHE, 1);
628 	WREG32(mmVM_L2_CNTL2, tmp);
629 	tmp = RREG32(mmVM_L2_CNTL3);
630 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY, 1);
631 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, BANK_SELECT, 4);
632 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, L2_CACHE_BIGK_FRAGMENT_SIZE, 4);
633 	WREG32(mmVM_L2_CNTL3, tmp);
634 	/* XXX: set to enable PTE/PDE in system memory */
635 	tmp = RREG32(mmVM_L2_CNTL4);
636 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_PHYSICAL, 0);
637 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_SHARED, 0);
638 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_SNOOP, 0);
639 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_PHYSICAL, 0);
640 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_SHARED, 0);
641 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_SNOOP, 0);
642 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_PHYSICAL, 0);
643 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_SHARED, 0);
644 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_SNOOP, 0);
645 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_PHYSICAL, 0);
646 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_SHARED, 0);
647 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_SNOOP, 0);
648 	WREG32(mmVM_L2_CNTL4, tmp);
649 	/* setup context0 */
650 	WREG32(mmVM_CONTEXT0_PAGE_TABLE_START_ADDR, adev->mc.gtt_start >> 12);
651 	WREG32(mmVM_CONTEXT0_PAGE_TABLE_END_ADDR, adev->mc.gtt_end >> 12);
652 	WREG32(mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR, adev->gart.table_addr >> 12);
653 	WREG32(mmVM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR,
654 			(u32)(adev->dummy_page.addr >> 12));
655 	WREG32(mmVM_CONTEXT0_CNTL2, 0);
656 	tmp = RREG32(mmVM_CONTEXT0_CNTL);
657 	tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, ENABLE_CONTEXT, 1);
658 	tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, PAGE_TABLE_DEPTH, 0);
659 	tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
660 	WREG32(mmVM_CONTEXT0_CNTL, tmp);
661 
662 	WREG32(mmVM_L2_CONTEXT1_IDENTITY_APERTURE_LOW_ADDR, 0);
663 	WREG32(mmVM_L2_CONTEXT1_IDENTITY_APERTURE_HIGH_ADDR, 0);
664 	WREG32(mmVM_L2_CONTEXT_IDENTITY_PHYSICAL_OFFSET, 0);
665 
666 	/* empty context1-15 */
667 	/* FIXME start with 4G, once using 2 level pt switch to full
668 	 * vm size space
669 	 */
670 	/* set vm size, must be a multiple of 4 */
671 	WREG32(mmVM_CONTEXT1_PAGE_TABLE_START_ADDR, 0);
672 	WREG32(mmVM_CONTEXT1_PAGE_TABLE_END_ADDR, adev->vm_manager.max_pfn - 1);
673 	for (i = 1; i < 16; i++) {
674 		if (i < 8)
675 			WREG32(mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + i,
676 			       adev->gart.table_addr >> 12);
677 		else
678 			WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + i - 8,
679 			       adev->gart.table_addr >> 12);
680 	}
681 
682 	/* enable context1-15 */
683 	WREG32(mmVM_CONTEXT1_PROTECTION_FAULT_DEFAULT_ADDR,
684 	       (u32)(adev->dummy_page.addr >> 12));
685 	WREG32(mmVM_CONTEXT1_CNTL2, 4);
686 	tmp = RREG32(mmVM_CONTEXT1_CNTL);
687 	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, ENABLE_CONTEXT, 1);
688 	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PAGE_TABLE_DEPTH, 1);
689 	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
690 	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
691 	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PDE0_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
692 	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, VALID_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
693 	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, READ_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
694 	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, WRITE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
695 	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, EXECUTE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
696 	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PAGE_TABLE_BLOCK_SIZE,
697 			    amdgpu_vm_block_size - 9);
698 	WREG32(mmVM_CONTEXT1_CNTL, tmp);
699 	if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_ALWAYS)
700 		gmc_v8_0_set_fault_enable_default(adev, false);
701 	else
702 		gmc_v8_0_set_fault_enable_default(adev, true);
703 
704 	gmc_v8_0_gart_flush_gpu_tlb(adev, 0);
705 	DRM_INFO("PCIE GART of %uM enabled (table at 0x%016llX).\n",
706 		 (unsigned)(adev->mc.gtt_size >> 20),
707 		 (unsigned long long)adev->gart.table_addr);
708 	adev->gart.ready = true;
709 	return 0;
710 }
711 
712 static int gmc_v8_0_gart_init(struct amdgpu_device *adev)
713 {
714 	int r;
715 
716 	if (adev->gart.robj) {
717 		WARN(1, "R600 PCIE GART already initialized\n");
718 		return 0;
719 	}
720 	/* Initialize common gart structure */
721 	r = amdgpu_gart_init(adev);
722 	if (r)
723 		return r;
724 	adev->gart.table_size = adev->gart.num_gpu_pages * 8;
725 	return amdgpu_gart_table_vram_alloc(adev);
726 }
727 
728 /**
729  * gmc_v8_0_gart_disable - gart disable
730  *
731  * @adev: amdgpu_device pointer
732  *
733  * This disables all VM page table (CIK).
734  */
735 static void gmc_v8_0_gart_disable(struct amdgpu_device *adev)
736 {
737 	u32 tmp;
738 
739 	/* Disable all tables */
740 	WREG32(mmVM_CONTEXT0_CNTL, 0);
741 	WREG32(mmVM_CONTEXT1_CNTL, 0);
742 	/* Setup TLB control */
743 	tmp = RREG32(mmMC_VM_MX_L1_TLB_CNTL);
744 	tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_TLB, 0);
745 	tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_FRAGMENT_PROCESSING, 0);
746 	tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_ADVANCED_DRIVER_MODEL, 0);
747 	WREG32(mmMC_VM_MX_L1_TLB_CNTL, tmp);
748 	/* Setup L2 cache */
749 	tmp = RREG32(mmVM_L2_CNTL);
750 	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_CACHE, 0);
751 	WREG32(mmVM_L2_CNTL, tmp);
752 	WREG32(mmVM_L2_CNTL2, 0);
753 	amdgpu_gart_table_vram_unpin(adev);
754 }
755 
756 /**
757  * gmc_v8_0_gart_fini - vm fini callback
758  *
759  * @adev: amdgpu_device pointer
760  *
761  * Tears down the driver GART/VM setup (CIK).
762  */
763 static void gmc_v8_0_gart_fini(struct amdgpu_device *adev)
764 {
765 	amdgpu_gart_table_vram_free(adev);
766 	amdgpu_gart_fini(adev);
767 }
768 
769 /*
770  * vm
771  * VMID 0 is the physical GPU addresses as used by the kernel.
772  * VMIDs 1-15 are used for userspace clients and are handled
773  * by the amdgpu vm/hsa code.
774  */
775 /**
776  * gmc_v8_0_vm_init - cik vm init callback
777  *
778  * @adev: amdgpu_device pointer
779  *
780  * Inits cik specific vm parameters (number of VMs, base of vram for
781  * VMIDs 1-15) (CIK).
782  * Returns 0 for success.
783  */
784 static int gmc_v8_0_vm_init(struct amdgpu_device *adev)
785 {
786 	/*
787 	 * number of VMs
788 	 * VMID 0 is reserved for System
789 	 * amdgpu graphics/compute will use VMIDs 1-7
790 	 * amdkfd will use VMIDs 8-15
791 	 */
792 	adev->vm_manager.num_ids = AMDGPU_NUM_OF_VMIDS;
793 	amdgpu_vm_manager_init(adev);
794 
795 	/* base offset of vram pages */
796 	if (adev->flags & AMD_IS_APU) {
797 		u64 tmp = RREG32(mmMC_VM_FB_OFFSET);
798 		tmp <<= 22;
799 		adev->vm_manager.vram_base_offset = tmp;
800 	} else
801 		adev->vm_manager.vram_base_offset = 0;
802 
803 	return 0;
804 }
805 
806 /**
807  * gmc_v8_0_vm_fini - cik vm fini callback
808  *
809  * @adev: amdgpu_device pointer
810  *
811  * Tear down any asic specific VM setup (CIK).
812  */
813 static void gmc_v8_0_vm_fini(struct amdgpu_device *adev)
814 {
815 }
816 
817 /**
818  * gmc_v8_0_vm_decode_fault - print human readable fault info
819  *
820  * @adev: amdgpu_device pointer
821  * @status: VM_CONTEXT1_PROTECTION_FAULT_STATUS register value
822  * @addr: VM_CONTEXT1_PROTECTION_FAULT_ADDR register value
823  *
824  * Print human readable fault information (CIK).
825  */
826 static void gmc_v8_0_vm_decode_fault(struct amdgpu_device *adev,
827 				     u32 status, u32 addr, u32 mc_client)
828 {
829 	u32 mc_id;
830 	u32 vmid = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID);
831 	u32 protections = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
832 					PROTECTIONS);
833 	char block[5] = { mc_client >> 24, (mc_client >> 16) & 0xff,
834 		(mc_client >> 8) & 0xff, mc_client & 0xff, 0 };
835 
836 	mc_id = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
837 			      MEMORY_CLIENT_ID);
838 
839 	printk("VM fault (0x%02x, vmid %d) at page %u, %s from '%s' (0x%08x) (%d)\n",
840 	       protections, vmid, addr,
841 	       REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
842 			     MEMORY_CLIENT_RW) ?
843 	       "write" : "read", block, mc_client, mc_id);
844 }
845 
846 static int gmc_v8_0_convert_vram_type(int mc_seq_vram_type)
847 {
848 	switch (mc_seq_vram_type) {
849 	case MC_SEQ_MISC0__MT__GDDR1:
850 		return AMDGPU_VRAM_TYPE_GDDR1;
851 	case MC_SEQ_MISC0__MT__DDR2:
852 		return AMDGPU_VRAM_TYPE_DDR2;
853 	case MC_SEQ_MISC0__MT__GDDR3:
854 		return AMDGPU_VRAM_TYPE_GDDR3;
855 	case MC_SEQ_MISC0__MT__GDDR4:
856 		return AMDGPU_VRAM_TYPE_GDDR4;
857 	case MC_SEQ_MISC0__MT__GDDR5:
858 		return AMDGPU_VRAM_TYPE_GDDR5;
859 	case MC_SEQ_MISC0__MT__HBM:
860 		return AMDGPU_VRAM_TYPE_HBM;
861 	case MC_SEQ_MISC0__MT__DDR3:
862 		return AMDGPU_VRAM_TYPE_DDR3;
863 	default:
864 		return AMDGPU_VRAM_TYPE_UNKNOWN;
865 	}
866 }
867 
868 static int gmc_v8_0_early_init(void *handle)
869 {
870 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
871 
872 	gmc_v8_0_set_gart_funcs(adev);
873 	gmc_v8_0_set_irq_funcs(adev);
874 
875 	return 0;
876 }
877 
878 static int gmc_v8_0_late_init(void *handle)
879 {
880 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
881 
882 	if (amdgpu_vm_fault_stop != AMDGPU_VM_FAULT_STOP_ALWAYS)
883 		return amdgpu_irq_get(adev, &adev->mc.vm_fault, 0);
884 	else
885 		return 0;
886 }
887 
888 #define mmMC_SEQ_MISC0_FIJI 0xA71
889 
890 static int gmc_v8_0_sw_init(void *handle)
891 {
892 	int r;
893 	int dma_bits;
894 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
895 
896 	if (adev->flags & AMD_IS_APU) {
897 		adev->mc.vram_type = AMDGPU_VRAM_TYPE_UNKNOWN;
898 	} else {
899 		u32 tmp;
900 
901 		if (adev->asic_type == CHIP_FIJI)
902 			tmp = RREG32(mmMC_SEQ_MISC0_FIJI);
903 		else
904 			tmp = RREG32(mmMC_SEQ_MISC0);
905 		tmp &= MC_SEQ_MISC0__MT__MASK;
906 		adev->mc.vram_type = gmc_v8_0_convert_vram_type(tmp);
907 	}
908 
909 	r = amdgpu_irq_add_id(adev, 146, &adev->mc.vm_fault);
910 	if (r)
911 		return r;
912 
913 	r = amdgpu_irq_add_id(adev, 147, &adev->mc.vm_fault);
914 	if (r)
915 		return r;
916 
917 	/* Adjust VM size here.
918 	 * Currently set to 4GB ((1 << 20) 4k pages).
919 	 * Max GPUVM size for cayman and SI is 40 bits.
920 	 */
921 	adev->vm_manager.max_pfn = amdgpu_vm_size << 18;
922 
923 	/* Set the internal MC address mask
924 	 * This is the max address of the GPU's
925 	 * internal address space.
926 	 */
927 	adev->mc.mc_mask = 0xffffffffffULL; /* 40 bit MC */
928 
929 	/* set DMA mask + need_dma32 flags.
930 	 * PCIE - can handle 40-bits.
931 	 * IGP - can handle 40-bits
932 	 * PCI - dma32 for legacy pci gart, 40 bits on newer asics
933 	 */
934 	adev->need_dma32 = false;
935 	dma_bits = adev->need_dma32 ? 32 : 40;
936 	r = pci_set_dma_mask(adev->pdev, DMA_BIT_MASK(dma_bits));
937 	if (r) {
938 		adev->need_dma32 = true;
939 		dma_bits = 32;
940 		printk(KERN_WARNING "amdgpu: No suitable DMA available.\n");
941 	}
942 	r = pci_set_consistent_dma_mask(adev->pdev, DMA_BIT_MASK(dma_bits));
943 	if (r) {
944 		pci_set_consistent_dma_mask(adev->pdev, DMA_BIT_MASK(32));
945 		printk(KERN_WARNING "amdgpu: No coherent DMA available.\n");
946 	}
947 
948 	r = gmc_v8_0_init_microcode(adev);
949 	if (r) {
950 		DRM_ERROR("Failed to load mc firmware!\n");
951 		return r;
952 	}
953 
954 	r = amdgpu_ttm_global_init(adev);
955 	if (r) {
956 		return r;
957 	}
958 
959 	r = gmc_v8_0_mc_init(adev);
960 	if (r)
961 		return r;
962 
963 	/* Memory manager */
964 	r = amdgpu_bo_init(adev);
965 	if (r)
966 		return r;
967 
968 	r = gmc_v8_0_gart_init(adev);
969 	if (r)
970 		return r;
971 
972 	if (!adev->vm_manager.enabled) {
973 		r = gmc_v8_0_vm_init(adev);
974 		if (r) {
975 			dev_err(adev->dev, "vm manager initialization failed (%d).\n", r);
976 			return r;
977 		}
978 		adev->vm_manager.enabled = true;
979 	}
980 
981 	return r;
982 }
983 
984 static int gmc_v8_0_sw_fini(void *handle)
985 {
986 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
987 
988 	if (adev->vm_manager.enabled) {
989 		amdgpu_vm_manager_fini(adev);
990 		gmc_v8_0_vm_fini(adev);
991 		adev->vm_manager.enabled = false;
992 	}
993 	gmc_v8_0_gart_fini(adev);
994 	amdgpu_gem_force_release(adev);
995 	amdgpu_bo_fini(adev);
996 
997 	return 0;
998 }
999 
1000 static int gmc_v8_0_hw_init(void *handle)
1001 {
1002 	int r;
1003 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1004 
1005 	gmc_v8_0_init_golden_registers(adev);
1006 
1007 	gmc_v8_0_mc_program(adev);
1008 
1009 	if (adev->asic_type == CHIP_TONGA) {
1010 		r = gmc_v8_0_mc_load_microcode(adev);
1011 		if (r) {
1012 			DRM_ERROR("Failed to load MC firmware!\n");
1013 			return r;
1014 		}
1015 	}
1016 
1017 	r = gmc_v8_0_gart_enable(adev);
1018 	if (r)
1019 		return r;
1020 
1021 	return r;
1022 }
1023 
1024 static int gmc_v8_0_hw_fini(void *handle)
1025 {
1026 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1027 
1028 	amdgpu_irq_put(adev, &adev->mc.vm_fault, 0);
1029 	gmc_v8_0_gart_disable(adev);
1030 
1031 	return 0;
1032 }
1033 
1034 static int gmc_v8_0_suspend(void *handle)
1035 {
1036 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1037 
1038 	if (adev->vm_manager.enabled) {
1039 		gmc_v8_0_vm_fini(adev);
1040 		adev->vm_manager.enabled = false;
1041 	}
1042 	gmc_v8_0_hw_fini(adev);
1043 
1044 	return 0;
1045 }
1046 
1047 static int gmc_v8_0_resume(void *handle)
1048 {
1049 	int r;
1050 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1051 
1052 	r = gmc_v8_0_hw_init(adev);
1053 	if (r)
1054 		return r;
1055 
1056 	if (!adev->vm_manager.enabled) {
1057 		r = gmc_v8_0_vm_init(adev);
1058 		if (r) {
1059 			dev_err(adev->dev, "vm manager initialization failed (%d).\n", r);
1060 			return r;
1061 		}
1062 		adev->vm_manager.enabled = true;
1063 	}
1064 
1065 	return r;
1066 }
1067 
1068 static bool gmc_v8_0_is_idle(void *handle)
1069 {
1070 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1071 	u32 tmp = RREG32(mmSRBM_STATUS);
1072 
1073 	if (tmp & (SRBM_STATUS__MCB_BUSY_MASK | SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
1074 		   SRBM_STATUS__MCC_BUSY_MASK | SRBM_STATUS__MCD_BUSY_MASK | SRBM_STATUS__VMC_BUSY_MASK))
1075 		return false;
1076 
1077 	return true;
1078 }
1079 
1080 static int gmc_v8_0_wait_for_idle(void *handle)
1081 {
1082 	unsigned i;
1083 	u32 tmp;
1084 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1085 
1086 	for (i = 0; i < adev->usec_timeout; i++) {
1087 		/* read MC_STATUS */
1088 		tmp = RREG32(mmSRBM_STATUS) & (SRBM_STATUS__MCB_BUSY_MASK |
1089 					       SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
1090 					       SRBM_STATUS__MCC_BUSY_MASK |
1091 					       SRBM_STATUS__MCD_BUSY_MASK |
1092 					       SRBM_STATUS__VMC_BUSY_MASK |
1093 					       SRBM_STATUS__VMC1_BUSY_MASK);
1094 		if (!tmp)
1095 			return 0;
1096 		udelay(1);
1097 	}
1098 	return -ETIMEDOUT;
1099 
1100 }
1101 
1102 static int gmc_v8_0_check_soft_reset(void *handle)
1103 {
1104 	u32 srbm_soft_reset = 0;
1105 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1106 	u32 tmp = RREG32(mmSRBM_STATUS);
1107 
1108 	if (tmp & SRBM_STATUS__VMC_BUSY_MASK)
1109 		srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset,
1110 						SRBM_SOFT_RESET, SOFT_RESET_VMC, 1);
1111 
1112 	if (tmp & (SRBM_STATUS__MCB_BUSY_MASK | SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
1113 		   SRBM_STATUS__MCC_BUSY_MASK | SRBM_STATUS__MCD_BUSY_MASK)) {
1114 		if (!(adev->flags & AMD_IS_APU))
1115 			srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset,
1116 							SRBM_SOFT_RESET, SOFT_RESET_MC, 1);
1117 	}
1118 	if (srbm_soft_reset) {
1119 		adev->ip_block_status[AMD_IP_BLOCK_TYPE_GMC].hang = true;
1120 		adev->mc.srbm_soft_reset = srbm_soft_reset;
1121 	} else {
1122 		adev->ip_block_status[AMD_IP_BLOCK_TYPE_GMC].hang = false;
1123 		adev->mc.srbm_soft_reset = 0;
1124 	}
1125 	return 0;
1126 }
1127 
1128 static int gmc_v8_0_pre_soft_reset(void *handle)
1129 {
1130 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1131 
1132 	if (!adev->ip_block_status[AMD_IP_BLOCK_TYPE_GMC].hang)
1133 		return 0;
1134 
1135 	gmc_v8_0_mc_stop(adev, &adev->mc.save);
1136 	if (gmc_v8_0_wait_for_idle(adev)) {
1137 		dev_warn(adev->dev, "Wait for GMC idle timed out !\n");
1138 	}
1139 
1140 	return 0;
1141 }
1142 
1143 static int gmc_v8_0_soft_reset(void *handle)
1144 {
1145 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1146 	u32 srbm_soft_reset;
1147 
1148 	if (!adev->ip_block_status[AMD_IP_BLOCK_TYPE_GMC].hang)
1149 		return 0;
1150 	srbm_soft_reset = adev->mc.srbm_soft_reset;
1151 
1152 	if (srbm_soft_reset) {
1153 		u32 tmp;
1154 
1155 		tmp = RREG32(mmSRBM_SOFT_RESET);
1156 		tmp |= srbm_soft_reset;
1157 		dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1158 		WREG32(mmSRBM_SOFT_RESET, tmp);
1159 		tmp = RREG32(mmSRBM_SOFT_RESET);
1160 
1161 		udelay(50);
1162 
1163 		tmp &= ~srbm_soft_reset;
1164 		WREG32(mmSRBM_SOFT_RESET, tmp);
1165 		tmp = RREG32(mmSRBM_SOFT_RESET);
1166 
1167 		/* Wait a little for things to settle down */
1168 		udelay(50);
1169 	}
1170 
1171 	return 0;
1172 }
1173 
1174 static int gmc_v8_0_post_soft_reset(void *handle)
1175 {
1176 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1177 
1178 	if (!adev->ip_block_status[AMD_IP_BLOCK_TYPE_GMC].hang)
1179 		return 0;
1180 
1181 	gmc_v8_0_mc_resume(adev, &adev->mc.save);
1182 	return 0;
1183 }
1184 
1185 static int gmc_v8_0_vm_fault_interrupt_state(struct amdgpu_device *adev,
1186 					     struct amdgpu_irq_src *src,
1187 					     unsigned type,
1188 					     enum amdgpu_interrupt_state state)
1189 {
1190 	u32 tmp;
1191 	u32 bits = (VM_CONTEXT1_CNTL__RANGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
1192 		    VM_CONTEXT1_CNTL__DUMMY_PAGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
1193 		    VM_CONTEXT1_CNTL__PDE0_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
1194 		    VM_CONTEXT1_CNTL__VALID_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
1195 		    VM_CONTEXT1_CNTL__READ_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
1196 		    VM_CONTEXT1_CNTL__WRITE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
1197 		    VM_CONTEXT1_CNTL__EXECUTE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK);
1198 
1199 	switch (state) {
1200 	case AMDGPU_IRQ_STATE_DISABLE:
1201 		/* system context */
1202 		tmp = RREG32(mmVM_CONTEXT0_CNTL);
1203 		tmp &= ~bits;
1204 		WREG32(mmVM_CONTEXT0_CNTL, tmp);
1205 		/* VMs */
1206 		tmp = RREG32(mmVM_CONTEXT1_CNTL);
1207 		tmp &= ~bits;
1208 		WREG32(mmVM_CONTEXT1_CNTL, tmp);
1209 		break;
1210 	case AMDGPU_IRQ_STATE_ENABLE:
1211 		/* system context */
1212 		tmp = RREG32(mmVM_CONTEXT0_CNTL);
1213 		tmp |= bits;
1214 		WREG32(mmVM_CONTEXT0_CNTL, tmp);
1215 		/* VMs */
1216 		tmp = RREG32(mmVM_CONTEXT1_CNTL);
1217 		tmp |= bits;
1218 		WREG32(mmVM_CONTEXT1_CNTL, tmp);
1219 		break;
1220 	default:
1221 		break;
1222 	}
1223 
1224 	return 0;
1225 }
1226 
1227 static int gmc_v8_0_process_interrupt(struct amdgpu_device *adev,
1228 				      struct amdgpu_irq_src *source,
1229 				      struct amdgpu_iv_entry *entry)
1230 {
1231 	u32 addr, status, mc_client;
1232 
1233 	addr = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_ADDR);
1234 	status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS);
1235 	mc_client = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_MCCLIENT);
1236 	/* reset addr and status */
1237 	WREG32_P(mmVM_CONTEXT1_CNTL2, 1, ~1);
1238 
1239 	if (!addr && !status)
1240 		return 0;
1241 
1242 	if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_FIRST)
1243 		gmc_v8_0_set_fault_enable_default(adev, false);
1244 
1245 	dev_err(adev->dev, "GPU fault detected: %d 0x%08x\n",
1246 		entry->src_id, entry->src_data);
1247 	dev_err(adev->dev, "  VM_CONTEXT1_PROTECTION_FAULT_ADDR   0x%08X\n",
1248 		addr);
1249 	dev_err(adev->dev, "  VM_CONTEXT1_PROTECTION_FAULT_STATUS 0x%08X\n",
1250 		status);
1251 	gmc_v8_0_vm_decode_fault(adev, status, addr, mc_client);
1252 
1253 	return 0;
1254 }
1255 
1256 static void fiji_update_mc_medium_grain_clock_gating(struct amdgpu_device *adev,
1257 						     bool enable)
1258 {
1259 	uint32_t data;
1260 
1261 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_MC_MGCG)) {
1262 		data = RREG32(mmMC_HUB_MISC_HUB_CG);
1263 		data |= MC_HUB_MISC_HUB_CG__ENABLE_MASK;
1264 		WREG32(mmMC_HUB_MISC_HUB_CG, data);
1265 
1266 		data = RREG32(mmMC_HUB_MISC_SIP_CG);
1267 		data |= MC_HUB_MISC_SIP_CG__ENABLE_MASK;
1268 		WREG32(mmMC_HUB_MISC_SIP_CG, data);
1269 
1270 		data = RREG32(mmMC_HUB_MISC_VM_CG);
1271 		data |= MC_HUB_MISC_VM_CG__ENABLE_MASK;
1272 		WREG32(mmMC_HUB_MISC_VM_CG, data);
1273 
1274 		data = RREG32(mmMC_XPB_CLK_GAT);
1275 		data |= MC_XPB_CLK_GAT__ENABLE_MASK;
1276 		WREG32(mmMC_XPB_CLK_GAT, data);
1277 
1278 		data = RREG32(mmATC_MISC_CG);
1279 		data |= ATC_MISC_CG__ENABLE_MASK;
1280 		WREG32(mmATC_MISC_CG, data);
1281 
1282 		data = RREG32(mmMC_CITF_MISC_WR_CG);
1283 		data |= MC_CITF_MISC_WR_CG__ENABLE_MASK;
1284 		WREG32(mmMC_CITF_MISC_WR_CG, data);
1285 
1286 		data = RREG32(mmMC_CITF_MISC_RD_CG);
1287 		data |= MC_CITF_MISC_RD_CG__ENABLE_MASK;
1288 		WREG32(mmMC_CITF_MISC_RD_CG, data);
1289 
1290 		data = RREG32(mmMC_CITF_MISC_VM_CG);
1291 		data |= MC_CITF_MISC_VM_CG__ENABLE_MASK;
1292 		WREG32(mmMC_CITF_MISC_VM_CG, data);
1293 
1294 		data = RREG32(mmVM_L2_CG);
1295 		data |= VM_L2_CG__ENABLE_MASK;
1296 		WREG32(mmVM_L2_CG, data);
1297 	} else {
1298 		data = RREG32(mmMC_HUB_MISC_HUB_CG);
1299 		data &= ~MC_HUB_MISC_HUB_CG__ENABLE_MASK;
1300 		WREG32(mmMC_HUB_MISC_HUB_CG, data);
1301 
1302 		data = RREG32(mmMC_HUB_MISC_SIP_CG);
1303 		data &= ~MC_HUB_MISC_SIP_CG__ENABLE_MASK;
1304 		WREG32(mmMC_HUB_MISC_SIP_CG, data);
1305 
1306 		data = RREG32(mmMC_HUB_MISC_VM_CG);
1307 		data &= ~MC_HUB_MISC_VM_CG__ENABLE_MASK;
1308 		WREG32(mmMC_HUB_MISC_VM_CG, data);
1309 
1310 		data = RREG32(mmMC_XPB_CLK_GAT);
1311 		data &= ~MC_XPB_CLK_GAT__ENABLE_MASK;
1312 		WREG32(mmMC_XPB_CLK_GAT, data);
1313 
1314 		data = RREG32(mmATC_MISC_CG);
1315 		data &= ~ATC_MISC_CG__ENABLE_MASK;
1316 		WREG32(mmATC_MISC_CG, data);
1317 
1318 		data = RREG32(mmMC_CITF_MISC_WR_CG);
1319 		data &= ~MC_CITF_MISC_WR_CG__ENABLE_MASK;
1320 		WREG32(mmMC_CITF_MISC_WR_CG, data);
1321 
1322 		data = RREG32(mmMC_CITF_MISC_RD_CG);
1323 		data &= ~MC_CITF_MISC_RD_CG__ENABLE_MASK;
1324 		WREG32(mmMC_CITF_MISC_RD_CG, data);
1325 
1326 		data = RREG32(mmMC_CITF_MISC_VM_CG);
1327 		data &= ~MC_CITF_MISC_VM_CG__ENABLE_MASK;
1328 		WREG32(mmMC_CITF_MISC_VM_CG, data);
1329 
1330 		data = RREG32(mmVM_L2_CG);
1331 		data &= ~VM_L2_CG__ENABLE_MASK;
1332 		WREG32(mmVM_L2_CG, data);
1333 	}
1334 }
1335 
1336 static void fiji_update_mc_light_sleep(struct amdgpu_device *adev,
1337 				       bool enable)
1338 {
1339 	uint32_t data;
1340 
1341 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_MC_LS)) {
1342 		data = RREG32(mmMC_HUB_MISC_HUB_CG);
1343 		data |= MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK;
1344 		WREG32(mmMC_HUB_MISC_HUB_CG, data);
1345 
1346 		data = RREG32(mmMC_HUB_MISC_SIP_CG);
1347 		data |= MC_HUB_MISC_SIP_CG__MEM_LS_ENABLE_MASK;
1348 		WREG32(mmMC_HUB_MISC_SIP_CG, data);
1349 
1350 		data = RREG32(mmMC_HUB_MISC_VM_CG);
1351 		data |= MC_HUB_MISC_VM_CG__MEM_LS_ENABLE_MASK;
1352 		WREG32(mmMC_HUB_MISC_VM_CG, data);
1353 
1354 		data = RREG32(mmMC_XPB_CLK_GAT);
1355 		data |= MC_XPB_CLK_GAT__MEM_LS_ENABLE_MASK;
1356 		WREG32(mmMC_XPB_CLK_GAT, data);
1357 
1358 		data = RREG32(mmATC_MISC_CG);
1359 		data |= ATC_MISC_CG__MEM_LS_ENABLE_MASK;
1360 		WREG32(mmATC_MISC_CG, data);
1361 
1362 		data = RREG32(mmMC_CITF_MISC_WR_CG);
1363 		data |= MC_CITF_MISC_WR_CG__MEM_LS_ENABLE_MASK;
1364 		WREG32(mmMC_CITF_MISC_WR_CG, data);
1365 
1366 		data = RREG32(mmMC_CITF_MISC_RD_CG);
1367 		data |= MC_CITF_MISC_RD_CG__MEM_LS_ENABLE_MASK;
1368 		WREG32(mmMC_CITF_MISC_RD_CG, data);
1369 
1370 		data = RREG32(mmMC_CITF_MISC_VM_CG);
1371 		data |= MC_CITF_MISC_VM_CG__MEM_LS_ENABLE_MASK;
1372 		WREG32(mmMC_CITF_MISC_VM_CG, data);
1373 
1374 		data = RREG32(mmVM_L2_CG);
1375 		data |= VM_L2_CG__MEM_LS_ENABLE_MASK;
1376 		WREG32(mmVM_L2_CG, data);
1377 	} else {
1378 		data = RREG32(mmMC_HUB_MISC_HUB_CG);
1379 		data &= ~MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK;
1380 		WREG32(mmMC_HUB_MISC_HUB_CG, data);
1381 
1382 		data = RREG32(mmMC_HUB_MISC_SIP_CG);
1383 		data &= ~MC_HUB_MISC_SIP_CG__MEM_LS_ENABLE_MASK;
1384 		WREG32(mmMC_HUB_MISC_SIP_CG, data);
1385 
1386 		data = RREG32(mmMC_HUB_MISC_VM_CG);
1387 		data &= ~MC_HUB_MISC_VM_CG__MEM_LS_ENABLE_MASK;
1388 		WREG32(mmMC_HUB_MISC_VM_CG, data);
1389 
1390 		data = RREG32(mmMC_XPB_CLK_GAT);
1391 		data &= ~MC_XPB_CLK_GAT__MEM_LS_ENABLE_MASK;
1392 		WREG32(mmMC_XPB_CLK_GAT, data);
1393 
1394 		data = RREG32(mmATC_MISC_CG);
1395 		data &= ~ATC_MISC_CG__MEM_LS_ENABLE_MASK;
1396 		WREG32(mmATC_MISC_CG, data);
1397 
1398 		data = RREG32(mmMC_CITF_MISC_WR_CG);
1399 		data &= ~MC_CITF_MISC_WR_CG__MEM_LS_ENABLE_MASK;
1400 		WREG32(mmMC_CITF_MISC_WR_CG, data);
1401 
1402 		data = RREG32(mmMC_CITF_MISC_RD_CG);
1403 		data &= ~MC_CITF_MISC_RD_CG__MEM_LS_ENABLE_MASK;
1404 		WREG32(mmMC_CITF_MISC_RD_CG, data);
1405 
1406 		data = RREG32(mmMC_CITF_MISC_VM_CG);
1407 		data &= ~MC_CITF_MISC_VM_CG__MEM_LS_ENABLE_MASK;
1408 		WREG32(mmMC_CITF_MISC_VM_CG, data);
1409 
1410 		data = RREG32(mmVM_L2_CG);
1411 		data &= ~VM_L2_CG__MEM_LS_ENABLE_MASK;
1412 		WREG32(mmVM_L2_CG, data);
1413 	}
1414 }
1415 
1416 static int gmc_v8_0_set_clockgating_state(void *handle,
1417 					  enum amd_clockgating_state state)
1418 {
1419 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1420 
1421 	switch (adev->asic_type) {
1422 	case CHIP_FIJI:
1423 		fiji_update_mc_medium_grain_clock_gating(adev,
1424 				state == AMD_CG_STATE_GATE ? true : false);
1425 		fiji_update_mc_light_sleep(adev,
1426 				state == AMD_CG_STATE_GATE ? true : false);
1427 		break;
1428 	default:
1429 		break;
1430 	}
1431 	return 0;
1432 }
1433 
1434 static int gmc_v8_0_set_powergating_state(void *handle,
1435 					  enum amd_powergating_state state)
1436 {
1437 	return 0;
1438 }
1439 
1440 const struct amd_ip_funcs gmc_v8_0_ip_funcs = {
1441 	.name = "gmc_v8_0",
1442 	.early_init = gmc_v8_0_early_init,
1443 	.late_init = gmc_v8_0_late_init,
1444 	.sw_init = gmc_v8_0_sw_init,
1445 	.sw_fini = gmc_v8_0_sw_fini,
1446 	.hw_init = gmc_v8_0_hw_init,
1447 	.hw_fini = gmc_v8_0_hw_fini,
1448 	.suspend = gmc_v8_0_suspend,
1449 	.resume = gmc_v8_0_resume,
1450 	.is_idle = gmc_v8_0_is_idle,
1451 	.wait_for_idle = gmc_v8_0_wait_for_idle,
1452 	.check_soft_reset = gmc_v8_0_check_soft_reset,
1453 	.pre_soft_reset = gmc_v8_0_pre_soft_reset,
1454 	.soft_reset = gmc_v8_0_soft_reset,
1455 	.post_soft_reset = gmc_v8_0_post_soft_reset,
1456 	.set_clockgating_state = gmc_v8_0_set_clockgating_state,
1457 	.set_powergating_state = gmc_v8_0_set_powergating_state,
1458 };
1459 
1460 static const struct amdgpu_gart_funcs gmc_v8_0_gart_funcs = {
1461 	.flush_gpu_tlb = gmc_v8_0_gart_flush_gpu_tlb,
1462 	.set_pte_pde = gmc_v8_0_gart_set_pte_pde,
1463 };
1464 
1465 static const struct amdgpu_irq_src_funcs gmc_v8_0_irq_funcs = {
1466 	.set = gmc_v8_0_vm_fault_interrupt_state,
1467 	.process = gmc_v8_0_process_interrupt,
1468 };
1469 
1470 static void gmc_v8_0_set_gart_funcs(struct amdgpu_device *adev)
1471 {
1472 	if (adev->gart.gart_funcs == NULL)
1473 		adev->gart.gart_funcs = &gmc_v8_0_gart_funcs;
1474 }
1475 
1476 static void gmc_v8_0_set_irq_funcs(struct amdgpu_device *adev)
1477 {
1478 	adev->mc.vm_fault.num_types = 1;
1479 	adev->mc.vm_fault.funcs = &gmc_v8_0_irq_funcs;
1480 }
1481