1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 #include <linux/firmware.h> 24 #include "drmP.h" 25 #include "amdgpu.h" 26 #include "gmc_v8_0.h" 27 #include "amdgpu_ucode.h" 28 29 #include "gmc/gmc_8_1_d.h" 30 #include "gmc/gmc_8_1_sh_mask.h" 31 32 #include "bif/bif_5_0_d.h" 33 #include "bif/bif_5_0_sh_mask.h" 34 35 #include "oss/oss_3_0_d.h" 36 #include "oss/oss_3_0_sh_mask.h" 37 38 #include "vid.h" 39 #include "vi.h" 40 41 42 static void gmc_v8_0_set_gart_funcs(struct amdgpu_device *adev); 43 static void gmc_v8_0_set_irq_funcs(struct amdgpu_device *adev); 44 45 MODULE_FIRMWARE("amdgpu/tonga_mc.bin"); 46 47 static const u32 golden_settings_tonga_a11[] = 48 { 49 mmMC_ARB_WTM_GRPWT_RD, 0x00000003, 0x00000000, 50 mmMC_HUB_RDREQ_DMIF_LIMIT, 0x0000007f, 0x00000028, 51 mmMC_HUB_WDP_UMC, 0x00007fb6, 0x00000991, 52 mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff, 53 mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff, 54 mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff, 55 mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff, 56 }; 57 58 static const u32 tonga_mgcg_cgcg_init[] = 59 { 60 mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104 61 }; 62 63 static const u32 golden_settings_fiji_a10[] = 64 { 65 mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff, 66 mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff, 67 mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff, 68 mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff, 69 }; 70 71 static const u32 fiji_mgcg_cgcg_init[] = 72 { 73 mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104 74 }; 75 76 static const u32 cz_mgcg_cgcg_init[] = 77 { 78 mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104 79 }; 80 81 static const u32 stoney_mgcg_cgcg_init[] = 82 { 83 mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104 84 }; 85 86 87 static void gmc_v8_0_init_golden_registers(struct amdgpu_device *adev) 88 { 89 switch (adev->asic_type) { 90 case CHIP_FIJI: 91 amdgpu_program_register_sequence(adev, 92 fiji_mgcg_cgcg_init, 93 (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init)); 94 amdgpu_program_register_sequence(adev, 95 golden_settings_fiji_a10, 96 (const u32)ARRAY_SIZE(golden_settings_fiji_a10)); 97 break; 98 case CHIP_TONGA: 99 amdgpu_program_register_sequence(adev, 100 tonga_mgcg_cgcg_init, 101 (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init)); 102 amdgpu_program_register_sequence(adev, 103 golden_settings_tonga_a11, 104 (const u32)ARRAY_SIZE(golden_settings_tonga_a11)); 105 break; 106 case CHIP_CARRIZO: 107 amdgpu_program_register_sequence(adev, 108 cz_mgcg_cgcg_init, 109 (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init)); 110 break; 111 case CHIP_STONEY: 112 amdgpu_program_register_sequence(adev, 113 stoney_mgcg_cgcg_init, 114 (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init)); 115 break; 116 default: 117 break; 118 } 119 } 120 121 /** 122 * gmc8_mc_wait_for_idle - wait for MC idle callback. 123 * 124 * @adev: amdgpu_device pointer 125 * 126 * Wait for the MC (memory controller) to be idle. 127 * (evergreen+). 128 * Returns 0 if the MC is idle, -1 if not. 129 */ 130 int gmc_v8_0_mc_wait_for_idle(struct amdgpu_device *adev) 131 { 132 unsigned i; 133 u32 tmp; 134 135 for (i = 0; i < adev->usec_timeout; i++) { 136 /* read MC_STATUS */ 137 tmp = RREG32(mmSRBM_STATUS) & (SRBM_STATUS__VMC_BUSY_MASK | 138 SRBM_STATUS__MCB_BUSY_MASK | 139 SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK | 140 SRBM_STATUS__MCC_BUSY_MASK | 141 SRBM_STATUS__MCD_BUSY_MASK | 142 SRBM_STATUS__VMC1_BUSY_MASK); 143 if (!tmp) 144 return 0; 145 udelay(1); 146 } 147 return -1; 148 } 149 150 void gmc_v8_0_mc_stop(struct amdgpu_device *adev, 151 struct amdgpu_mode_mc_save *save) 152 { 153 u32 blackout; 154 155 if (adev->mode_info.num_crtc) 156 amdgpu_display_stop_mc_access(adev, save); 157 158 amdgpu_asic_wait_for_mc_idle(adev); 159 160 blackout = RREG32(mmMC_SHARED_BLACKOUT_CNTL); 161 if (REG_GET_FIELD(blackout, MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE) != 1) { 162 /* Block CPU access */ 163 WREG32(mmBIF_FB_EN, 0); 164 /* blackout the MC */ 165 blackout = REG_SET_FIELD(blackout, 166 MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE, 1); 167 WREG32(mmMC_SHARED_BLACKOUT_CNTL, blackout); 168 } 169 /* wait for the MC to settle */ 170 udelay(100); 171 } 172 173 void gmc_v8_0_mc_resume(struct amdgpu_device *adev, 174 struct amdgpu_mode_mc_save *save) 175 { 176 u32 tmp; 177 178 /* unblackout the MC */ 179 tmp = RREG32(mmMC_SHARED_BLACKOUT_CNTL); 180 tmp = REG_SET_FIELD(tmp, MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE, 0); 181 WREG32(mmMC_SHARED_BLACKOUT_CNTL, tmp); 182 /* allow CPU access */ 183 tmp = REG_SET_FIELD(0, BIF_FB_EN, FB_READ_EN, 1); 184 tmp = REG_SET_FIELD(tmp, BIF_FB_EN, FB_WRITE_EN, 1); 185 WREG32(mmBIF_FB_EN, tmp); 186 187 if (adev->mode_info.num_crtc) 188 amdgpu_display_resume_mc_access(adev, save); 189 } 190 191 /** 192 * gmc_v8_0_init_microcode - load ucode images from disk 193 * 194 * @adev: amdgpu_device pointer 195 * 196 * Use the firmware interface to load the ucode images into 197 * the driver (not loaded into hw). 198 * Returns 0 on success, error on failure. 199 */ 200 static int gmc_v8_0_init_microcode(struct amdgpu_device *adev) 201 { 202 const char *chip_name; 203 char fw_name[30]; 204 int err; 205 206 DRM_DEBUG("\n"); 207 208 switch (adev->asic_type) { 209 case CHIP_TONGA: 210 chip_name = "tonga"; 211 break; 212 case CHIP_FIJI: 213 case CHIP_CARRIZO: 214 case CHIP_STONEY: 215 return 0; 216 default: BUG(); 217 } 218 219 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mc.bin", chip_name); 220 err = request_firmware(&adev->mc.fw, fw_name, adev->dev); 221 if (err) 222 goto out; 223 err = amdgpu_ucode_validate(adev->mc.fw); 224 225 out: 226 if (err) { 227 printk(KERN_ERR 228 "mc: Failed to load firmware \"%s\"\n", 229 fw_name); 230 release_firmware(adev->mc.fw); 231 adev->mc.fw = NULL; 232 } 233 return err; 234 } 235 236 /** 237 * gmc_v8_0_mc_load_microcode - load MC ucode into the hw 238 * 239 * @adev: amdgpu_device pointer 240 * 241 * Load the GDDR MC ucode into the hw (CIK). 242 * Returns 0 on success, error on failure. 243 */ 244 static int gmc_v8_0_mc_load_microcode(struct amdgpu_device *adev) 245 { 246 const struct mc_firmware_header_v1_0 *hdr; 247 const __le32 *fw_data = NULL; 248 const __le32 *io_mc_regs = NULL; 249 u32 running, blackout = 0; 250 int i, ucode_size, regs_size; 251 252 if (!adev->mc.fw) 253 return -EINVAL; 254 255 /* Skip MC ucode loading on SR-IOV capable boards. 256 * vbios does this for us in asic_init in that case. 257 */ 258 if (adev->virtualization.supports_sr_iov) 259 return 0; 260 261 hdr = (const struct mc_firmware_header_v1_0 *)adev->mc.fw->data; 262 amdgpu_ucode_print_mc_hdr(&hdr->header); 263 264 adev->mc.fw_version = le32_to_cpu(hdr->header.ucode_version); 265 regs_size = le32_to_cpu(hdr->io_debug_size_bytes) / (4 * 2); 266 io_mc_regs = (const __le32 *) 267 (adev->mc.fw->data + le32_to_cpu(hdr->io_debug_array_offset_bytes)); 268 ucode_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4; 269 fw_data = (const __le32 *) 270 (adev->mc.fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes)); 271 272 running = REG_GET_FIELD(RREG32(mmMC_SEQ_SUP_CNTL), MC_SEQ_SUP_CNTL, RUN); 273 274 if (running == 0) { 275 if (running) { 276 blackout = RREG32(mmMC_SHARED_BLACKOUT_CNTL); 277 WREG32(mmMC_SHARED_BLACKOUT_CNTL, blackout | 1); 278 } 279 280 /* reset the engine and set to writable */ 281 WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008); 282 WREG32(mmMC_SEQ_SUP_CNTL, 0x00000010); 283 284 /* load mc io regs */ 285 for (i = 0; i < regs_size; i++) { 286 WREG32(mmMC_SEQ_IO_DEBUG_INDEX, le32_to_cpup(io_mc_regs++)); 287 WREG32(mmMC_SEQ_IO_DEBUG_DATA, le32_to_cpup(io_mc_regs++)); 288 } 289 /* load the MC ucode */ 290 for (i = 0; i < ucode_size; i++) 291 WREG32(mmMC_SEQ_SUP_PGM, le32_to_cpup(fw_data++)); 292 293 /* put the engine back into the active state */ 294 WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008); 295 WREG32(mmMC_SEQ_SUP_CNTL, 0x00000004); 296 WREG32(mmMC_SEQ_SUP_CNTL, 0x00000001); 297 298 /* wait for training to complete */ 299 for (i = 0; i < adev->usec_timeout; i++) { 300 if (REG_GET_FIELD(RREG32(mmMC_SEQ_TRAIN_WAKEUP_CNTL), 301 MC_SEQ_TRAIN_WAKEUP_CNTL, TRAIN_DONE_D0)) 302 break; 303 udelay(1); 304 } 305 for (i = 0; i < adev->usec_timeout; i++) { 306 if (REG_GET_FIELD(RREG32(mmMC_SEQ_TRAIN_WAKEUP_CNTL), 307 MC_SEQ_TRAIN_WAKEUP_CNTL, TRAIN_DONE_D1)) 308 break; 309 udelay(1); 310 } 311 312 if (running) 313 WREG32(mmMC_SHARED_BLACKOUT_CNTL, blackout); 314 } 315 316 return 0; 317 } 318 319 static void gmc_v8_0_vram_gtt_location(struct amdgpu_device *adev, 320 struct amdgpu_mc *mc) 321 { 322 if (mc->mc_vram_size > 0xFFC0000000ULL) { 323 /* leave room for at least 1024M GTT */ 324 dev_warn(adev->dev, "limiting VRAM\n"); 325 mc->real_vram_size = 0xFFC0000000ULL; 326 mc->mc_vram_size = 0xFFC0000000ULL; 327 } 328 amdgpu_vram_location(adev, &adev->mc, 0); 329 adev->mc.gtt_base_align = 0; 330 amdgpu_gtt_location(adev, mc); 331 } 332 333 /** 334 * gmc_v8_0_mc_program - program the GPU memory controller 335 * 336 * @adev: amdgpu_device pointer 337 * 338 * Set the location of vram, gart, and AGP in the GPU's 339 * physical address space (CIK). 340 */ 341 static void gmc_v8_0_mc_program(struct amdgpu_device *adev) 342 { 343 struct amdgpu_mode_mc_save save; 344 u32 tmp; 345 int i, j; 346 347 /* Initialize HDP */ 348 for (i = 0, j = 0; i < 32; i++, j += 0x6) { 349 WREG32((0xb05 + j), 0x00000000); 350 WREG32((0xb06 + j), 0x00000000); 351 WREG32((0xb07 + j), 0x00000000); 352 WREG32((0xb08 + j), 0x00000000); 353 WREG32((0xb09 + j), 0x00000000); 354 } 355 WREG32(mmHDP_REG_COHERENCY_FLUSH_CNTL, 0); 356 357 if (adev->mode_info.num_crtc) 358 amdgpu_display_set_vga_render_state(adev, false); 359 360 gmc_v8_0_mc_stop(adev, &save); 361 if (amdgpu_asic_wait_for_mc_idle(adev)) { 362 dev_warn(adev->dev, "Wait for MC idle timedout !\n"); 363 } 364 /* Update configuration */ 365 WREG32(mmMC_VM_SYSTEM_APERTURE_LOW_ADDR, 366 adev->mc.vram_start >> 12); 367 WREG32(mmMC_VM_SYSTEM_APERTURE_HIGH_ADDR, 368 adev->mc.vram_end >> 12); 369 WREG32(mmMC_VM_SYSTEM_APERTURE_DEFAULT_ADDR, 370 adev->vram_scratch.gpu_addr >> 12); 371 tmp = ((adev->mc.vram_end >> 24) & 0xFFFF) << 16; 372 tmp |= ((adev->mc.vram_start >> 24) & 0xFFFF); 373 WREG32(mmMC_VM_FB_LOCATION, tmp); 374 /* XXX double check these! */ 375 WREG32(mmHDP_NONSURFACE_BASE, (adev->mc.vram_start >> 8)); 376 WREG32(mmHDP_NONSURFACE_INFO, (2 << 7) | (1 << 30)); 377 WREG32(mmHDP_NONSURFACE_SIZE, 0x3FFFFFFF); 378 WREG32(mmMC_VM_AGP_BASE, 0); 379 WREG32(mmMC_VM_AGP_TOP, 0x0FFFFFFF); 380 WREG32(mmMC_VM_AGP_BOT, 0x0FFFFFFF); 381 if (amdgpu_asic_wait_for_mc_idle(adev)) { 382 dev_warn(adev->dev, "Wait for MC idle timedout !\n"); 383 } 384 gmc_v8_0_mc_resume(adev, &save); 385 386 WREG32(mmBIF_FB_EN, BIF_FB_EN__FB_READ_EN_MASK | BIF_FB_EN__FB_WRITE_EN_MASK); 387 388 tmp = RREG32(mmHDP_MISC_CNTL); 389 tmp = REG_SET_FIELD(tmp, HDP_MISC_CNTL, FLUSH_INVALIDATE_CACHE, 0); 390 WREG32(mmHDP_MISC_CNTL, tmp); 391 392 tmp = RREG32(mmHDP_HOST_PATH_CNTL); 393 WREG32(mmHDP_HOST_PATH_CNTL, tmp); 394 } 395 396 /** 397 * gmc_v8_0_mc_init - initialize the memory controller driver params 398 * 399 * @adev: amdgpu_device pointer 400 * 401 * Look up the amount of vram, vram width, and decide how to place 402 * vram and gart within the GPU's physical address space (CIK). 403 * Returns 0 for success. 404 */ 405 static int gmc_v8_0_mc_init(struct amdgpu_device *adev) 406 { 407 u32 tmp; 408 int chansize, numchan; 409 410 /* Get VRAM informations */ 411 tmp = RREG32(mmMC_ARB_RAMCFG); 412 if (REG_GET_FIELD(tmp, MC_ARB_RAMCFG, CHANSIZE)) { 413 chansize = 64; 414 } else { 415 chansize = 32; 416 } 417 tmp = RREG32(mmMC_SHARED_CHMAP); 418 switch (REG_GET_FIELD(tmp, MC_SHARED_CHMAP, NOOFCHAN)) { 419 case 0: 420 default: 421 numchan = 1; 422 break; 423 case 1: 424 numchan = 2; 425 break; 426 case 2: 427 numchan = 4; 428 break; 429 case 3: 430 numchan = 8; 431 break; 432 case 4: 433 numchan = 3; 434 break; 435 case 5: 436 numchan = 6; 437 break; 438 case 6: 439 numchan = 10; 440 break; 441 case 7: 442 numchan = 12; 443 break; 444 case 8: 445 numchan = 16; 446 break; 447 } 448 adev->mc.vram_width = numchan * chansize; 449 /* Could aper size report 0 ? */ 450 adev->mc.aper_base = pci_resource_start(adev->pdev, 0); 451 adev->mc.aper_size = pci_resource_len(adev->pdev, 0); 452 /* size in MB on si */ 453 adev->mc.mc_vram_size = RREG32(mmCONFIG_MEMSIZE) * 1024ULL * 1024ULL; 454 adev->mc.real_vram_size = RREG32(mmCONFIG_MEMSIZE) * 1024ULL * 1024ULL; 455 adev->mc.visible_vram_size = adev->mc.aper_size; 456 457 /* In case the PCI BAR is larger than the actual amount of vram */ 458 if (adev->mc.visible_vram_size > adev->mc.real_vram_size) 459 adev->mc.visible_vram_size = adev->mc.real_vram_size; 460 461 /* unless the user had overridden it, set the gart 462 * size equal to the 1024 or vram, whichever is larger. 463 */ 464 if (amdgpu_gart_size == -1) 465 adev->mc.gtt_size = max((1024ULL << 20), adev->mc.mc_vram_size); 466 else 467 adev->mc.gtt_size = (uint64_t)amdgpu_gart_size << 20; 468 469 gmc_v8_0_vram_gtt_location(adev, &adev->mc); 470 471 return 0; 472 } 473 474 /* 475 * GART 476 * VMID 0 is the physical GPU addresses as used by the kernel. 477 * VMIDs 1-15 are used for userspace clients and are handled 478 * by the amdgpu vm/hsa code. 479 */ 480 481 /** 482 * gmc_v8_0_gart_flush_gpu_tlb - gart tlb flush callback 483 * 484 * @adev: amdgpu_device pointer 485 * @vmid: vm instance to flush 486 * 487 * Flush the TLB for the requested page table (CIK). 488 */ 489 static void gmc_v8_0_gart_flush_gpu_tlb(struct amdgpu_device *adev, 490 uint32_t vmid) 491 { 492 /* flush hdp cache */ 493 WREG32(mmHDP_MEM_COHERENCY_FLUSH_CNTL, 0); 494 495 /* bits 0-15 are the VM contexts0-15 */ 496 WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid); 497 } 498 499 /** 500 * gmc_v8_0_gart_set_pte_pde - update the page tables using MMIO 501 * 502 * @adev: amdgpu_device pointer 503 * @cpu_pt_addr: cpu address of the page table 504 * @gpu_page_idx: entry in the page table to update 505 * @addr: dst addr to write into pte/pde 506 * @flags: access flags 507 * 508 * Update the page tables using the CPU. 509 */ 510 static int gmc_v8_0_gart_set_pte_pde(struct amdgpu_device *adev, 511 void *cpu_pt_addr, 512 uint32_t gpu_page_idx, 513 uint64_t addr, 514 uint32_t flags) 515 { 516 void __iomem *ptr = (void *)cpu_pt_addr; 517 uint64_t value; 518 519 /* 520 * PTE format on VI: 521 * 63:40 reserved 522 * 39:12 4k physical page base address 523 * 11:7 fragment 524 * 6 write 525 * 5 read 526 * 4 exe 527 * 3 reserved 528 * 2 snooped 529 * 1 system 530 * 0 valid 531 * 532 * PDE format on VI: 533 * 63:59 block fragment size 534 * 58:40 reserved 535 * 39:1 physical base address of PTE 536 * bits 5:1 must be 0. 537 * 0 valid 538 */ 539 value = addr & 0x000000FFFFFFF000ULL; 540 value |= flags; 541 writeq(value, ptr + (gpu_page_idx * 8)); 542 543 return 0; 544 } 545 546 /** 547 * gmc_v8_0_set_fault_enable_default - update VM fault handling 548 * 549 * @adev: amdgpu_device pointer 550 * @value: true redirects VM faults to the default page 551 */ 552 static void gmc_v8_0_set_fault_enable_default(struct amdgpu_device *adev, 553 bool value) 554 { 555 u32 tmp; 556 557 tmp = RREG32(mmVM_CONTEXT1_CNTL); 558 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, 559 RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, value); 560 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, 561 DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT, value); 562 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, 563 PDE0_PROTECTION_FAULT_ENABLE_DEFAULT, value); 564 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, 565 VALID_PROTECTION_FAULT_ENABLE_DEFAULT, value); 566 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, 567 READ_PROTECTION_FAULT_ENABLE_DEFAULT, value); 568 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, 569 WRITE_PROTECTION_FAULT_ENABLE_DEFAULT, value); 570 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, 571 EXECUTE_PROTECTION_FAULT_ENABLE_DEFAULT, value); 572 WREG32(mmVM_CONTEXT1_CNTL, tmp); 573 } 574 575 /** 576 * gmc_v8_0_gart_enable - gart enable 577 * 578 * @adev: amdgpu_device pointer 579 * 580 * This sets up the TLBs, programs the page tables for VMID0, 581 * sets up the hw for VMIDs 1-15 which are allocated on 582 * demand, and sets up the global locations for the LDS, GDS, 583 * and GPUVM for FSA64 clients (CIK). 584 * Returns 0 for success, errors for failure. 585 */ 586 static int gmc_v8_0_gart_enable(struct amdgpu_device *adev) 587 { 588 int r, i; 589 u32 tmp; 590 591 if (adev->gart.robj == NULL) { 592 dev_err(adev->dev, "No VRAM object for PCIE GART.\n"); 593 return -EINVAL; 594 } 595 r = amdgpu_gart_table_vram_pin(adev); 596 if (r) 597 return r; 598 /* Setup TLB control */ 599 tmp = RREG32(mmMC_VM_MX_L1_TLB_CNTL); 600 tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_TLB, 1); 601 tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_FRAGMENT_PROCESSING, 1); 602 tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, SYSTEM_ACCESS_MODE, 3); 603 tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_ADVANCED_DRIVER_MODEL, 1); 604 tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, SYSTEM_APERTURE_UNMAPPED_ACCESS, 0); 605 WREG32(mmMC_VM_MX_L1_TLB_CNTL, tmp); 606 /* Setup L2 cache */ 607 tmp = RREG32(mmVM_L2_CNTL); 608 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_CACHE, 1); 609 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_FRAGMENT_PROCESSING, 1); 610 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE, 1); 611 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE, 1); 612 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, EFFECTIVE_L2_QUEUE_SIZE, 7); 613 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, CONTEXT1_IDENTITY_ACCESS_MODE, 1); 614 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_DEFAULT_PAGE_OUT_TO_SYSTEM_MEMORY, 1); 615 WREG32(mmVM_L2_CNTL, tmp); 616 tmp = RREG32(mmVM_L2_CNTL2); 617 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL2, INVALIDATE_ALL_L1_TLBS, 1); 618 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL2, INVALIDATE_L2_CACHE, 1); 619 WREG32(mmVM_L2_CNTL2, tmp); 620 tmp = RREG32(mmVM_L2_CNTL3); 621 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY, 1); 622 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, BANK_SELECT, 4); 623 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, L2_CACHE_BIGK_FRAGMENT_SIZE, 4); 624 WREG32(mmVM_L2_CNTL3, tmp); 625 /* XXX: set to enable PTE/PDE in system memory */ 626 tmp = RREG32(mmVM_L2_CNTL4); 627 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_PHYSICAL, 0); 628 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_SHARED, 0); 629 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_SNOOP, 0); 630 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_PHYSICAL, 0); 631 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_SHARED, 0); 632 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_SNOOP, 0); 633 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_PHYSICAL, 0); 634 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_SHARED, 0); 635 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_SNOOP, 0); 636 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_PHYSICAL, 0); 637 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_SHARED, 0); 638 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_SNOOP, 0); 639 WREG32(mmVM_L2_CNTL4, tmp); 640 /* setup context0 */ 641 WREG32(mmVM_CONTEXT0_PAGE_TABLE_START_ADDR, adev->mc.gtt_start >> 12); 642 WREG32(mmVM_CONTEXT0_PAGE_TABLE_END_ADDR, adev->mc.gtt_end >> 12); 643 WREG32(mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR, adev->gart.table_addr >> 12); 644 WREG32(mmVM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR, 645 (u32)(adev->dummy_page.addr >> 12)); 646 WREG32(mmVM_CONTEXT0_CNTL2, 0); 647 tmp = RREG32(mmVM_CONTEXT0_CNTL); 648 tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, ENABLE_CONTEXT, 1); 649 tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, PAGE_TABLE_DEPTH, 0); 650 tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1); 651 WREG32(mmVM_CONTEXT0_CNTL, tmp); 652 653 WREG32(mmVM_L2_CONTEXT1_IDENTITY_APERTURE_LOW_ADDR, 0); 654 WREG32(mmVM_L2_CONTEXT1_IDENTITY_APERTURE_HIGH_ADDR, 0); 655 WREG32(mmVM_L2_CONTEXT_IDENTITY_PHYSICAL_OFFSET, 0); 656 657 /* empty context1-15 */ 658 /* FIXME start with 4G, once using 2 level pt switch to full 659 * vm size space 660 */ 661 /* set vm size, must be a multiple of 4 */ 662 WREG32(mmVM_CONTEXT1_PAGE_TABLE_START_ADDR, 0); 663 WREG32(mmVM_CONTEXT1_PAGE_TABLE_END_ADDR, adev->vm_manager.max_pfn - 1); 664 for (i = 1; i < 16; i++) { 665 if (i < 8) 666 WREG32(mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + i, 667 adev->gart.table_addr >> 12); 668 else 669 WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + i - 8, 670 adev->gart.table_addr >> 12); 671 } 672 673 /* enable context1-15 */ 674 WREG32(mmVM_CONTEXT1_PROTECTION_FAULT_DEFAULT_ADDR, 675 (u32)(adev->dummy_page.addr >> 12)); 676 WREG32(mmVM_CONTEXT1_CNTL2, 4); 677 tmp = RREG32(mmVM_CONTEXT1_CNTL); 678 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, ENABLE_CONTEXT, 1); 679 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PAGE_TABLE_DEPTH, 1); 680 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1); 681 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1); 682 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PDE0_PROTECTION_FAULT_ENABLE_DEFAULT, 1); 683 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, VALID_PROTECTION_FAULT_ENABLE_DEFAULT, 1); 684 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, READ_PROTECTION_FAULT_ENABLE_DEFAULT, 1); 685 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, WRITE_PROTECTION_FAULT_ENABLE_DEFAULT, 1); 686 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, EXECUTE_PROTECTION_FAULT_ENABLE_DEFAULT, 1); 687 tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PAGE_TABLE_BLOCK_SIZE, 688 amdgpu_vm_block_size - 9); 689 WREG32(mmVM_CONTEXT1_CNTL, tmp); 690 if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_ALWAYS) 691 gmc_v8_0_set_fault_enable_default(adev, false); 692 else 693 gmc_v8_0_set_fault_enable_default(adev, true); 694 695 gmc_v8_0_gart_flush_gpu_tlb(adev, 0); 696 DRM_INFO("PCIE GART of %uM enabled (table at 0x%016llX).\n", 697 (unsigned)(adev->mc.gtt_size >> 20), 698 (unsigned long long)adev->gart.table_addr); 699 adev->gart.ready = true; 700 return 0; 701 } 702 703 static int gmc_v8_0_gart_init(struct amdgpu_device *adev) 704 { 705 int r; 706 707 if (adev->gart.robj) { 708 WARN(1, "R600 PCIE GART already initialized\n"); 709 return 0; 710 } 711 /* Initialize common gart structure */ 712 r = amdgpu_gart_init(adev); 713 if (r) 714 return r; 715 adev->gart.table_size = adev->gart.num_gpu_pages * 8; 716 return amdgpu_gart_table_vram_alloc(adev); 717 } 718 719 /** 720 * gmc_v8_0_gart_disable - gart disable 721 * 722 * @adev: amdgpu_device pointer 723 * 724 * This disables all VM page table (CIK). 725 */ 726 static void gmc_v8_0_gart_disable(struct amdgpu_device *adev) 727 { 728 u32 tmp; 729 730 /* Disable all tables */ 731 WREG32(mmVM_CONTEXT0_CNTL, 0); 732 WREG32(mmVM_CONTEXT1_CNTL, 0); 733 /* Setup TLB control */ 734 tmp = RREG32(mmMC_VM_MX_L1_TLB_CNTL); 735 tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_TLB, 0); 736 tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_FRAGMENT_PROCESSING, 0); 737 tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_ADVANCED_DRIVER_MODEL, 0); 738 WREG32(mmMC_VM_MX_L1_TLB_CNTL, tmp); 739 /* Setup L2 cache */ 740 tmp = RREG32(mmVM_L2_CNTL); 741 tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_CACHE, 0); 742 WREG32(mmVM_L2_CNTL, tmp); 743 WREG32(mmVM_L2_CNTL2, 0); 744 amdgpu_gart_table_vram_unpin(adev); 745 } 746 747 /** 748 * gmc_v8_0_gart_fini - vm fini callback 749 * 750 * @adev: amdgpu_device pointer 751 * 752 * Tears down the driver GART/VM setup (CIK). 753 */ 754 static void gmc_v8_0_gart_fini(struct amdgpu_device *adev) 755 { 756 amdgpu_gart_table_vram_free(adev); 757 amdgpu_gart_fini(adev); 758 } 759 760 /* 761 * vm 762 * VMID 0 is the physical GPU addresses as used by the kernel. 763 * VMIDs 1-15 are used for userspace clients and are handled 764 * by the amdgpu vm/hsa code. 765 */ 766 /** 767 * gmc_v8_0_vm_init - cik vm init callback 768 * 769 * @adev: amdgpu_device pointer 770 * 771 * Inits cik specific vm parameters (number of VMs, base of vram for 772 * VMIDs 1-15) (CIK). 773 * Returns 0 for success. 774 */ 775 static int gmc_v8_0_vm_init(struct amdgpu_device *adev) 776 { 777 /* 778 * number of VMs 779 * VMID 0 is reserved for System 780 * amdgpu graphics/compute will use VMIDs 1-7 781 * amdkfd will use VMIDs 8-15 782 */ 783 adev->vm_manager.num_ids = AMDGPU_NUM_OF_VMIDS; 784 amdgpu_vm_manager_init(adev); 785 786 /* base offset of vram pages */ 787 if (adev->flags & AMD_IS_APU) { 788 u64 tmp = RREG32(mmMC_VM_FB_OFFSET); 789 tmp <<= 22; 790 adev->vm_manager.vram_base_offset = tmp; 791 } else 792 adev->vm_manager.vram_base_offset = 0; 793 794 return 0; 795 } 796 797 /** 798 * gmc_v8_0_vm_fini - cik vm fini callback 799 * 800 * @adev: amdgpu_device pointer 801 * 802 * Tear down any asic specific VM setup (CIK). 803 */ 804 static void gmc_v8_0_vm_fini(struct amdgpu_device *adev) 805 { 806 } 807 808 /** 809 * gmc_v8_0_vm_decode_fault - print human readable fault info 810 * 811 * @adev: amdgpu_device pointer 812 * @status: VM_CONTEXT1_PROTECTION_FAULT_STATUS register value 813 * @addr: VM_CONTEXT1_PROTECTION_FAULT_ADDR register value 814 * 815 * Print human readable fault information (CIK). 816 */ 817 static void gmc_v8_0_vm_decode_fault(struct amdgpu_device *adev, 818 u32 status, u32 addr, u32 mc_client) 819 { 820 u32 mc_id; 821 u32 vmid = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID); 822 u32 protections = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, 823 PROTECTIONS); 824 char block[5] = { mc_client >> 24, (mc_client >> 16) & 0xff, 825 (mc_client >> 8) & 0xff, mc_client & 0xff, 0 }; 826 827 mc_id = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, 828 MEMORY_CLIENT_ID); 829 830 printk("VM fault (0x%02x, vmid %d) at page %u, %s from '%s' (0x%08x) (%d)\n", 831 protections, vmid, addr, 832 REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, 833 MEMORY_CLIENT_RW) ? 834 "write" : "read", block, mc_client, mc_id); 835 } 836 837 static int gmc_v8_0_convert_vram_type(int mc_seq_vram_type) 838 { 839 switch (mc_seq_vram_type) { 840 case MC_SEQ_MISC0__MT__GDDR1: 841 return AMDGPU_VRAM_TYPE_GDDR1; 842 case MC_SEQ_MISC0__MT__DDR2: 843 return AMDGPU_VRAM_TYPE_DDR2; 844 case MC_SEQ_MISC0__MT__GDDR3: 845 return AMDGPU_VRAM_TYPE_GDDR3; 846 case MC_SEQ_MISC0__MT__GDDR4: 847 return AMDGPU_VRAM_TYPE_GDDR4; 848 case MC_SEQ_MISC0__MT__GDDR5: 849 return AMDGPU_VRAM_TYPE_GDDR5; 850 case MC_SEQ_MISC0__MT__HBM: 851 return AMDGPU_VRAM_TYPE_HBM; 852 case MC_SEQ_MISC0__MT__DDR3: 853 return AMDGPU_VRAM_TYPE_DDR3; 854 default: 855 return AMDGPU_VRAM_TYPE_UNKNOWN; 856 } 857 } 858 859 static int gmc_v8_0_early_init(void *handle) 860 { 861 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 862 863 gmc_v8_0_set_gart_funcs(adev); 864 gmc_v8_0_set_irq_funcs(adev); 865 866 return 0; 867 } 868 869 static int gmc_v8_0_late_init(void *handle) 870 { 871 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 872 873 return amdgpu_irq_get(adev, &adev->mc.vm_fault, 0); 874 } 875 876 #define mmMC_SEQ_MISC0_FIJI 0xA71 877 878 static int gmc_v8_0_sw_init(void *handle) 879 { 880 int r; 881 int dma_bits; 882 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 883 884 if (adev->flags & AMD_IS_APU) { 885 adev->mc.vram_type = AMDGPU_VRAM_TYPE_UNKNOWN; 886 } else { 887 u32 tmp; 888 889 if (adev->asic_type == CHIP_FIJI) 890 tmp = RREG32(mmMC_SEQ_MISC0_FIJI); 891 else 892 tmp = RREG32(mmMC_SEQ_MISC0); 893 tmp &= MC_SEQ_MISC0__MT__MASK; 894 adev->mc.vram_type = gmc_v8_0_convert_vram_type(tmp); 895 } 896 897 r = amdgpu_irq_add_id(adev, 146, &adev->mc.vm_fault); 898 if (r) 899 return r; 900 901 r = amdgpu_irq_add_id(adev, 147, &adev->mc.vm_fault); 902 if (r) 903 return r; 904 905 /* Adjust VM size here. 906 * Currently set to 4GB ((1 << 20) 4k pages). 907 * Max GPUVM size for cayman and SI is 40 bits. 908 */ 909 adev->vm_manager.max_pfn = amdgpu_vm_size << 18; 910 911 /* Set the internal MC address mask 912 * This is the max address of the GPU's 913 * internal address space. 914 */ 915 adev->mc.mc_mask = 0xffffffffffULL; /* 40 bit MC */ 916 917 /* set DMA mask + need_dma32 flags. 918 * PCIE - can handle 40-bits. 919 * IGP - can handle 40-bits 920 * PCI - dma32 for legacy pci gart, 40 bits on newer asics 921 */ 922 adev->need_dma32 = false; 923 dma_bits = adev->need_dma32 ? 32 : 40; 924 r = pci_set_dma_mask(adev->pdev, DMA_BIT_MASK(dma_bits)); 925 if (r) { 926 adev->need_dma32 = true; 927 dma_bits = 32; 928 printk(KERN_WARNING "amdgpu: No suitable DMA available.\n"); 929 } 930 r = pci_set_consistent_dma_mask(adev->pdev, DMA_BIT_MASK(dma_bits)); 931 if (r) { 932 pci_set_consistent_dma_mask(adev->pdev, DMA_BIT_MASK(32)); 933 printk(KERN_WARNING "amdgpu: No coherent DMA available.\n"); 934 } 935 936 r = gmc_v8_0_init_microcode(adev); 937 if (r) { 938 DRM_ERROR("Failed to load mc firmware!\n"); 939 return r; 940 } 941 942 r = gmc_v8_0_mc_init(adev); 943 if (r) 944 return r; 945 946 /* Memory manager */ 947 r = amdgpu_bo_init(adev); 948 if (r) 949 return r; 950 951 r = gmc_v8_0_gart_init(adev); 952 if (r) 953 return r; 954 955 if (!adev->vm_manager.enabled) { 956 r = gmc_v8_0_vm_init(adev); 957 if (r) { 958 dev_err(adev->dev, "vm manager initialization failed (%d).\n", r); 959 return r; 960 } 961 adev->vm_manager.enabled = true; 962 } 963 964 return r; 965 } 966 967 static int gmc_v8_0_sw_fini(void *handle) 968 { 969 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 970 971 if (adev->vm_manager.enabled) { 972 amdgpu_vm_manager_fini(adev); 973 gmc_v8_0_vm_fini(adev); 974 adev->vm_manager.enabled = false; 975 } 976 gmc_v8_0_gart_fini(adev); 977 amdgpu_gem_force_release(adev); 978 amdgpu_bo_fini(adev); 979 980 return 0; 981 } 982 983 static int gmc_v8_0_hw_init(void *handle) 984 { 985 int r; 986 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 987 988 gmc_v8_0_init_golden_registers(adev); 989 990 gmc_v8_0_mc_program(adev); 991 992 if (adev->asic_type == CHIP_TONGA) { 993 r = gmc_v8_0_mc_load_microcode(adev); 994 if (r) { 995 DRM_ERROR("Failed to load MC firmware!\n"); 996 return r; 997 } 998 } 999 1000 r = gmc_v8_0_gart_enable(adev); 1001 if (r) 1002 return r; 1003 1004 return r; 1005 } 1006 1007 static int gmc_v8_0_hw_fini(void *handle) 1008 { 1009 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1010 1011 amdgpu_irq_put(adev, &adev->mc.vm_fault, 0); 1012 gmc_v8_0_gart_disable(adev); 1013 1014 return 0; 1015 } 1016 1017 static int gmc_v8_0_suspend(void *handle) 1018 { 1019 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1020 1021 if (adev->vm_manager.enabled) { 1022 gmc_v8_0_vm_fini(adev); 1023 adev->vm_manager.enabled = false; 1024 } 1025 gmc_v8_0_hw_fini(adev); 1026 1027 return 0; 1028 } 1029 1030 static int gmc_v8_0_resume(void *handle) 1031 { 1032 int r; 1033 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1034 1035 r = gmc_v8_0_hw_init(adev); 1036 if (r) 1037 return r; 1038 1039 if (!adev->vm_manager.enabled) { 1040 r = gmc_v8_0_vm_init(adev); 1041 if (r) { 1042 dev_err(adev->dev, "vm manager initialization failed (%d).\n", r); 1043 return r; 1044 } 1045 adev->vm_manager.enabled = true; 1046 } 1047 1048 return r; 1049 } 1050 1051 static bool gmc_v8_0_is_idle(void *handle) 1052 { 1053 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1054 u32 tmp = RREG32(mmSRBM_STATUS); 1055 1056 if (tmp & (SRBM_STATUS__MCB_BUSY_MASK | SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK | 1057 SRBM_STATUS__MCC_BUSY_MASK | SRBM_STATUS__MCD_BUSY_MASK | SRBM_STATUS__VMC_BUSY_MASK)) 1058 return false; 1059 1060 return true; 1061 } 1062 1063 static int gmc_v8_0_wait_for_idle(void *handle) 1064 { 1065 unsigned i; 1066 u32 tmp; 1067 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1068 1069 for (i = 0; i < adev->usec_timeout; i++) { 1070 /* read MC_STATUS */ 1071 tmp = RREG32(mmSRBM_STATUS) & (SRBM_STATUS__MCB_BUSY_MASK | 1072 SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK | 1073 SRBM_STATUS__MCC_BUSY_MASK | 1074 SRBM_STATUS__MCD_BUSY_MASK | 1075 SRBM_STATUS__VMC_BUSY_MASK | 1076 SRBM_STATUS__VMC1_BUSY_MASK); 1077 if (!tmp) 1078 return 0; 1079 udelay(1); 1080 } 1081 return -ETIMEDOUT; 1082 1083 } 1084 1085 static void gmc_v8_0_print_status(void *handle) 1086 { 1087 int i, j; 1088 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1089 1090 dev_info(adev->dev, "GMC 8.x registers\n"); 1091 dev_info(adev->dev, " SRBM_STATUS=0x%08X\n", 1092 RREG32(mmSRBM_STATUS)); 1093 dev_info(adev->dev, " SRBM_STATUS2=0x%08X\n", 1094 RREG32(mmSRBM_STATUS2)); 1095 1096 dev_info(adev->dev, " VM_CONTEXT1_PROTECTION_FAULT_ADDR 0x%08X\n", 1097 RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_ADDR)); 1098 dev_info(adev->dev, " VM_CONTEXT1_PROTECTION_FAULT_STATUS 0x%08X\n", 1099 RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS)); 1100 dev_info(adev->dev, " MC_VM_MX_L1_TLB_CNTL=0x%08X\n", 1101 RREG32(mmMC_VM_MX_L1_TLB_CNTL)); 1102 dev_info(adev->dev, " VM_L2_CNTL=0x%08X\n", 1103 RREG32(mmVM_L2_CNTL)); 1104 dev_info(adev->dev, " VM_L2_CNTL2=0x%08X\n", 1105 RREG32(mmVM_L2_CNTL2)); 1106 dev_info(adev->dev, " VM_L2_CNTL3=0x%08X\n", 1107 RREG32(mmVM_L2_CNTL3)); 1108 dev_info(adev->dev, " VM_L2_CNTL4=0x%08X\n", 1109 RREG32(mmVM_L2_CNTL4)); 1110 dev_info(adev->dev, " VM_CONTEXT0_PAGE_TABLE_START_ADDR=0x%08X\n", 1111 RREG32(mmVM_CONTEXT0_PAGE_TABLE_START_ADDR)); 1112 dev_info(adev->dev, " VM_CONTEXT0_PAGE_TABLE_END_ADDR=0x%08X\n", 1113 RREG32(mmVM_CONTEXT0_PAGE_TABLE_END_ADDR)); 1114 dev_info(adev->dev, " VM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR=0x%08X\n", 1115 RREG32(mmVM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR)); 1116 dev_info(adev->dev, " VM_CONTEXT0_CNTL2=0x%08X\n", 1117 RREG32(mmVM_CONTEXT0_CNTL2)); 1118 dev_info(adev->dev, " VM_CONTEXT0_CNTL=0x%08X\n", 1119 RREG32(mmVM_CONTEXT0_CNTL)); 1120 dev_info(adev->dev, " VM_L2_CONTEXT1_IDENTITY_APERTURE_LOW_ADDR=0x%08X\n", 1121 RREG32(mmVM_L2_CONTEXT1_IDENTITY_APERTURE_LOW_ADDR)); 1122 dev_info(adev->dev, " VM_L2_CONTEXT1_IDENTITY_APERTURE_HIGH_ADDR=0x%08X\n", 1123 RREG32(mmVM_L2_CONTEXT1_IDENTITY_APERTURE_HIGH_ADDR)); 1124 dev_info(adev->dev, " mmVM_L2_CONTEXT_IDENTITY_PHYSICAL_OFFSET=0x%08X\n", 1125 RREG32(mmVM_L2_CONTEXT_IDENTITY_PHYSICAL_OFFSET)); 1126 dev_info(adev->dev, " VM_CONTEXT1_PAGE_TABLE_START_ADDR=0x%08X\n", 1127 RREG32(mmVM_CONTEXT1_PAGE_TABLE_START_ADDR)); 1128 dev_info(adev->dev, " VM_CONTEXT1_PAGE_TABLE_END_ADDR=0x%08X\n", 1129 RREG32(mmVM_CONTEXT1_PAGE_TABLE_END_ADDR)); 1130 dev_info(adev->dev, " VM_CONTEXT1_PROTECTION_FAULT_DEFAULT_ADDR=0x%08X\n", 1131 RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_DEFAULT_ADDR)); 1132 dev_info(adev->dev, " VM_CONTEXT1_CNTL2=0x%08X\n", 1133 RREG32(mmVM_CONTEXT1_CNTL2)); 1134 dev_info(adev->dev, " VM_CONTEXT1_CNTL=0x%08X\n", 1135 RREG32(mmVM_CONTEXT1_CNTL)); 1136 for (i = 0; i < 16; i++) { 1137 if (i < 8) 1138 dev_info(adev->dev, " VM_CONTEXT%d_PAGE_TABLE_BASE_ADDR=0x%08X\n", 1139 i, RREG32(mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + i)); 1140 else 1141 dev_info(adev->dev, " VM_CONTEXT%d_PAGE_TABLE_BASE_ADDR=0x%08X\n", 1142 i, RREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + i - 8)); 1143 } 1144 dev_info(adev->dev, " MC_VM_SYSTEM_APERTURE_LOW_ADDR=0x%08X\n", 1145 RREG32(mmMC_VM_SYSTEM_APERTURE_LOW_ADDR)); 1146 dev_info(adev->dev, " MC_VM_SYSTEM_APERTURE_HIGH_ADDR=0x%08X\n", 1147 RREG32(mmMC_VM_SYSTEM_APERTURE_HIGH_ADDR)); 1148 dev_info(adev->dev, " MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR=0x%08X\n", 1149 RREG32(mmMC_VM_SYSTEM_APERTURE_DEFAULT_ADDR)); 1150 dev_info(adev->dev, " MC_VM_FB_LOCATION=0x%08X\n", 1151 RREG32(mmMC_VM_FB_LOCATION)); 1152 dev_info(adev->dev, " MC_VM_AGP_BASE=0x%08X\n", 1153 RREG32(mmMC_VM_AGP_BASE)); 1154 dev_info(adev->dev, " MC_VM_AGP_TOP=0x%08X\n", 1155 RREG32(mmMC_VM_AGP_TOP)); 1156 dev_info(adev->dev, " MC_VM_AGP_BOT=0x%08X\n", 1157 RREG32(mmMC_VM_AGP_BOT)); 1158 1159 dev_info(adev->dev, " HDP_REG_COHERENCY_FLUSH_CNTL=0x%08X\n", 1160 RREG32(mmHDP_REG_COHERENCY_FLUSH_CNTL)); 1161 dev_info(adev->dev, " HDP_NONSURFACE_BASE=0x%08X\n", 1162 RREG32(mmHDP_NONSURFACE_BASE)); 1163 dev_info(adev->dev, " HDP_NONSURFACE_INFO=0x%08X\n", 1164 RREG32(mmHDP_NONSURFACE_INFO)); 1165 dev_info(adev->dev, " HDP_NONSURFACE_SIZE=0x%08X\n", 1166 RREG32(mmHDP_NONSURFACE_SIZE)); 1167 dev_info(adev->dev, " HDP_MISC_CNTL=0x%08X\n", 1168 RREG32(mmHDP_MISC_CNTL)); 1169 dev_info(adev->dev, " HDP_HOST_PATH_CNTL=0x%08X\n", 1170 RREG32(mmHDP_HOST_PATH_CNTL)); 1171 1172 for (i = 0, j = 0; i < 32; i++, j += 0x6) { 1173 dev_info(adev->dev, " %d:\n", i); 1174 dev_info(adev->dev, " 0x%04X=0x%08X\n", 1175 0xb05 + j, RREG32(0xb05 + j)); 1176 dev_info(adev->dev, " 0x%04X=0x%08X\n", 1177 0xb06 + j, RREG32(0xb06 + j)); 1178 dev_info(adev->dev, " 0x%04X=0x%08X\n", 1179 0xb07 + j, RREG32(0xb07 + j)); 1180 dev_info(adev->dev, " 0x%04X=0x%08X\n", 1181 0xb08 + j, RREG32(0xb08 + j)); 1182 dev_info(adev->dev, " 0x%04X=0x%08X\n", 1183 0xb09 + j, RREG32(0xb09 + j)); 1184 } 1185 1186 dev_info(adev->dev, " BIF_FB_EN=0x%08X\n", 1187 RREG32(mmBIF_FB_EN)); 1188 } 1189 1190 static int gmc_v8_0_soft_reset(void *handle) 1191 { 1192 struct amdgpu_mode_mc_save save; 1193 u32 srbm_soft_reset = 0; 1194 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1195 u32 tmp = RREG32(mmSRBM_STATUS); 1196 1197 if (tmp & SRBM_STATUS__VMC_BUSY_MASK) 1198 srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset, 1199 SRBM_SOFT_RESET, SOFT_RESET_VMC, 1); 1200 1201 if (tmp & (SRBM_STATUS__MCB_BUSY_MASK | SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK | 1202 SRBM_STATUS__MCC_BUSY_MASK | SRBM_STATUS__MCD_BUSY_MASK)) { 1203 if (!(adev->flags & AMD_IS_APU)) 1204 srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset, 1205 SRBM_SOFT_RESET, SOFT_RESET_MC, 1); 1206 } 1207 1208 if (srbm_soft_reset) { 1209 gmc_v8_0_print_status((void *)adev); 1210 1211 gmc_v8_0_mc_stop(adev, &save); 1212 if (gmc_v8_0_wait_for_idle(adev)) { 1213 dev_warn(adev->dev, "Wait for GMC idle timed out !\n"); 1214 } 1215 1216 1217 tmp = RREG32(mmSRBM_SOFT_RESET); 1218 tmp |= srbm_soft_reset; 1219 dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp); 1220 WREG32(mmSRBM_SOFT_RESET, tmp); 1221 tmp = RREG32(mmSRBM_SOFT_RESET); 1222 1223 udelay(50); 1224 1225 tmp &= ~srbm_soft_reset; 1226 WREG32(mmSRBM_SOFT_RESET, tmp); 1227 tmp = RREG32(mmSRBM_SOFT_RESET); 1228 1229 /* Wait a little for things to settle down */ 1230 udelay(50); 1231 1232 gmc_v8_0_mc_resume(adev, &save); 1233 udelay(50); 1234 1235 gmc_v8_0_print_status((void *)adev); 1236 } 1237 1238 return 0; 1239 } 1240 1241 static int gmc_v8_0_vm_fault_interrupt_state(struct amdgpu_device *adev, 1242 struct amdgpu_irq_src *src, 1243 unsigned type, 1244 enum amdgpu_interrupt_state state) 1245 { 1246 u32 tmp; 1247 u32 bits = (VM_CONTEXT1_CNTL__RANGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK | 1248 VM_CONTEXT1_CNTL__DUMMY_PAGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK | 1249 VM_CONTEXT1_CNTL__PDE0_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK | 1250 VM_CONTEXT1_CNTL__VALID_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK | 1251 VM_CONTEXT1_CNTL__READ_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK | 1252 VM_CONTEXT1_CNTL__WRITE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK | 1253 VM_CONTEXT1_CNTL__EXECUTE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK); 1254 1255 switch (state) { 1256 case AMDGPU_IRQ_STATE_DISABLE: 1257 /* system context */ 1258 tmp = RREG32(mmVM_CONTEXT0_CNTL); 1259 tmp &= ~bits; 1260 WREG32(mmVM_CONTEXT0_CNTL, tmp); 1261 /* VMs */ 1262 tmp = RREG32(mmVM_CONTEXT1_CNTL); 1263 tmp &= ~bits; 1264 WREG32(mmVM_CONTEXT1_CNTL, tmp); 1265 break; 1266 case AMDGPU_IRQ_STATE_ENABLE: 1267 /* system context */ 1268 tmp = RREG32(mmVM_CONTEXT0_CNTL); 1269 tmp |= bits; 1270 WREG32(mmVM_CONTEXT0_CNTL, tmp); 1271 /* VMs */ 1272 tmp = RREG32(mmVM_CONTEXT1_CNTL); 1273 tmp |= bits; 1274 WREG32(mmVM_CONTEXT1_CNTL, tmp); 1275 break; 1276 default: 1277 break; 1278 } 1279 1280 return 0; 1281 } 1282 1283 static int gmc_v8_0_process_interrupt(struct amdgpu_device *adev, 1284 struct amdgpu_irq_src *source, 1285 struct amdgpu_iv_entry *entry) 1286 { 1287 u32 addr, status, mc_client; 1288 1289 addr = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_ADDR); 1290 status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS); 1291 mc_client = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_MCCLIENT); 1292 /* reset addr and status */ 1293 WREG32_P(mmVM_CONTEXT1_CNTL2, 1, ~1); 1294 1295 if (!addr && !status) 1296 return 0; 1297 1298 if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_FIRST) 1299 gmc_v8_0_set_fault_enable_default(adev, false); 1300 1301 dev_err(adev->dev, "GPU fault detected: %d 0x%08x\n", 1302 entry->src_id, entry->src_data); 1303 dev_err(adev->dev, " VM_CONTEXT1_PROTECTION_FAULT_ADDR 0x%08X\n", 1304 addr); 1305 dev_err(adev->dev, " VM_CONTEXT1_PROTECTION_FAULT_STATUS 0x%08X\n", 1306 status); 1307 gmc_v8_0_vm_decode_fault(adev, status, addr, mc_client); 1308 1309 return 0; 1310 } 1311 1312 static void fiji_update_mc_medium_grain_clock_gating(struct amdgpu_device *adev, 1313 bool enable) 1314 { 1315 uint32_t data; 1316 1317 if (enable) { 1318 data = RREG32(mmMC_HUB_MISC_HUB_CG); 1319 data |= MC_HUB_MISC_HUB_CG__ENABLE_MASK; 1320 WREG32(mmMC_HUB_MISC_HUB_CG, data); 1321 1322 data = RREG32(mmMC_HUB_MISC_SIP_CG); 1323 data |= MC_HUB_MISC_SIP_CG__ENABLE_MASK; 1324 WREG32(mmMC_HUB_MISC_SIP_CG, data); 1325 1326 data = RREG32(mmMC_HUB_MISC_VM_CG); 1327 data |= MC_HUB_MISC_VM_CG__ENABLE_MASK; 1328 WREG32(mmMC_HUB_MISC_VM_CG, data); 1329 1330 data = RREG32(mmMC_XPB_CLK_GAT); 1331 data |= MC_XPB_CLK_GAT__ENABLE_MASK; 1332 WREG32(mmMC_XPB_CLK_GAT, data); 1333 1334 data = RREG32(mmATC_MISC_CG); 1335 data |= ATC_MISC_CG__ENABLE_MASK; 1336 WREG32(mmATC_MISC_CG, data); 1337 1338 data = RREG32(mmMC_CITF_MISC_WR_CG); 1339 data |= MC_CITF_MISC_WR_CG__ENABLE_MASK; 1340 WREG32(mmMC_CITF_MISC_WR_CG, data); 1341 1342 data = RREG32(mmMC_CITF_MISC_RD_CG); 1343 data |= MC_CITF_MISC_RD_CG__ENABLE_MASK; 1344 WREG32(mmMC_CITF_MISC_RD_CG, data); 1345 1346 data = RREG32(mmMC_CITF_MISC_VM_CG); 1347 data |= MC_CITF_MISC_VM_CG__ENABLE_MASK; 1348 WREG32(mmMC_CITF_MISC_VM_CG, data); 1349 1350 data = RREG32(mmVM_L2_CG); 1351 data |= VM_L2_CG__ENABLE_MASK; 1352 WREG32(mmVM_L2_CG, data); 1353 } else { 1354 data = RREG32(mmMC_HUB_MISC_HUB_CG); 1355 data &= ~MC_HUB_MISC_HUB_CG__ENABLE_MASK; 1356 WREG32(mmMC_HUB_MISC_HUB_CG, data); 1357 1358 data = RREG32(mmMC_HUB_MISC_SIP_CG); 1359 data &= ~MC_HUB_MISC_SIP_CG__ENABLE_MASK; 1360 WREG32(mmMC_HUB_MISC_SIP_CG, data); 1361 1362 data = RREG32(mmMC_HUB_MISC_VM_CG); 1363 data &= ~MC_HUB_MISC_VM_CG__ENABLE_MASK; 1364 WREG32(mmMC_HUB_MISC_VM_CG, data); 1365 1366 data = RREG32(mmMC_XPB_CLK_GAT); 1367 data &= ~MC_XPB_CLK_GAT__ENABLE_MASK; 1368 WREG32(mmMC_XPB_CLK_GAT, data); 1369 1370 data = RREG32(mmATC_MISC_CG); 1371 data &= ~ATC_MISC_CG__ENABLE_MASK; 1372 WREG32(mmATC_MISC_CG, data); 1373 1374 data = RREG32(mmMC_CITF_MISC_WR_CG); 1375 data &= ~MC_CITF_MISC_WR_CG__ENABLE_MASK; 1376 WREG32(mmMC_CITF_MISC_WR_CG, data); 1377 1378 data = RREG32(mmMC_CITF_MISC_RD_CG); 1379 data &= ~MC_CITF_MISC_RD_CG__ENABLE_MASK; 1380 WREG32(mmMC_CITF_MISC_RD_CG, data); 1381 1382 data = RREG32(mmMC_CITF_MISC_VM_CG); 1383 data &= ~MC_CITF_MISC_VM_CG__ENABLE_MASK; 1384 WREG32(mmMC_CITF_MISC_VM_CG, data); 1385 1386 data = RREG32(mmVM_L2_CG); 1387 data &= ~VM_L2_CG__ENABLE_MASK; 1388 WREG32(mmVM_L2_CG, data); 1389 } 1390 } 1391 1392 static void fiji_update_mc_light_sleep(struct amdgpu_device *adev, 1393 bool enable) 1394 { 1395 uint32_t data; 1396 1397 if (enable) { 1398 data = RREG32(mmMC_HUB_MISC_HUB_CG); 1399 data |= MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK; 1400 WREG32(mmMC_HUB_MISC_HUB_CG, data); 1401 1402 data = RREG32(mmMC_HUB_MISC_SIP_CG); 1403 data |= MC_HUB_MISC_SIP_CG__MEM_LS_ENABLE_MASK; 1404 WREG32(mmMC_HUB_MISC_SIP_CG, data); 1405 1406 data = RREG32(mmMC_HUB_MISC_VM_CG); 1407 data |= MC_HUB_MISC_VM_CG__MEM_LS_ENABLE_MASK; 1408 WREG32(mmMC_HUB_MISC_VM_CG, data); 1409 1410 data = RREG32(mmMC_XPB_CLK_GAT); 1411 data |= MC_XPB_CLK_GAT__MEM_LS_ENABLE_MASK; 1412 WREG32(mmMC_XPB_CLK_GAT, data); 1413 1414 data = RREG32(mmATC_MISC_CG); 1415 data |= ATC_MISC_CG__MEM_LS_ENABLE_MASK; 1416 WREG32(mmATC_MISC_CG, data); 1417 1418 data = RREG32(mmMC_CITF_MISC_WR_CG); 1419 data |= MC_CITF_MISC_WR_CG__MEM_LS_ENABLE_MASK; 1420 WREG32(mmMC_CITF_MISC_WR_CG, data); 1421 1422 data = RREG32(mmMC_CITF_MISC_RD_CG); 1423 data |= MC_CITF_MISC_RD_CG__MEM_LS_ENABLE_MASK; 1424 WREG32(mmMC_CITF_MISC_RD_CG, data); 1425 1426 data = RREG32(mmMC_CITF_MISC_VM_CG); 1427 data |= MC_CITF_MISC_VM_CG__MEM_LS_ENABLE_MASK; 1428 WREG32(mmMC_CITF_MISC_VM_CG, data); 1429 1430 data = RREG32(mmVM_L2_CG); 1431 data |= VM_L2_CG__MEM_LS_ENABLE_MASK; 1432 WREG32(mmVM_L2_CG, data); 1433 } else { 1434 data = RREG32(mmMC_HUB_MISC_HUB_CG); 1435 data &= ~MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK; 1436 WREG32(mmMC_HUB_MISC_HUB_CG, data); 1437 1438 data = RREG32(mmMC_HUB_MISC_SIP_CG); 1439 data &= ~MC_HUB_MISC_SIP_CG__MEM_LS_ENABLE_MASK; 1440 WREG32(mmMC_HUB_MISC_SIP_CG, data); 1441 1442 data = RREG32(mmMC_HUB_MISC_VM_CG); 1443 data &= ~MC_HUB_MISC_VM_CG__MEM_LS_ENABLE_MASK; 1444 WREG32(mmMC_HUB_MISC_VM_CG, data); 1445 1446 data = RREG32(mmMC_XPB_CLK_GAT); 1447 data &= ~MC_XPB_CLK_GAT__MEM_LS_ENABLE_MASK; 1448 WREG32(mmMC_XPB_CLK_GAT, data); 1449 1450 data = RREG32(mmATC_MISC_CG); 1451 data &= ~ATC_MISC_CG__MEM_LS_ENABLE_MASK; 1452 WREG32(mmATC_MISC_CG, data); 1453 1454 data = RREG32(mmMC_CITF_MISC_WR_CG); 1455 data &= ~MC_CITF_MISC_WR_CG__MEM_LS_ENABLE_MASK; 1456 WREG32(mmMC_CITF_MISC_WR_CG, data); 1457 1458 data = RREG32(mmMC_CITF_MISC_RD_CG); 1459 data &= ~MC_CITF_MISC_RD_CG__MEM_LS_ENABLE_MASK; 1460 WREG32(mmMC_CITF_MISC_RD_CG, data); 1461 1462 data = RREG32(mmMC_CITF_MISC_VM_CG); 1463 data &= ~MC_CITF_MISC_VM_CG__MEM_LS_ENABLE_MASK; 1464 WREG32(mmMC_CITF_MISC_VM_CG, data); 1465 1466 data = RREG32(mmVM_L2_CG); 1467 data &= ~VM_L2_CG__MEM_LS_ENABLE_MASK; 1468 WREG32(mmVM_L2_CG, data); 1469 } 1470 } 1471 1472 static int gmc_v8_0_set_clockgating_state(void *handle, 1473 enum amd_clockgating_state state) 1474 { 1475 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1476 1477 switch (adev->asic_type) { 1478 case CHIP_FIJI: 1479 fiji_update_mc_medium_grain_clock_gating(adev, 1480 state == AMD_CG_STATE_GATE ? true : false); 1481 fiji_update_mc_light_sleep(adev, 1482 state == AMD_CG_STATE_GATE ? true : false); 1483 break; 1484 default: 1485 break; 1486 } 1487 return 0; 1488 } 1489 1490 static int gmc_v8_0_set_powergating_state(void *handle, 1491 enum amd_powergating_state state) 1492 { 1493 return 0; 1494 } 1495 1496 const struct amd_ip_funcs gmc_v8_0_ip_funcs = { 1497 .early_init = gmc_v8_0_early_init, 1498 .late_init = gmc_v8_0_late_init, 1499 .sw_init = gmc_v8_0_sw_init, 1500 .sw_fini = gmc_v8_0_sw_fini, 1501 .hw_init = gmc_v8_0_hw_init, 1502 .hw_fini = gmc_v8_0_hw_fini, 1503 .suspend = gmc_v8_0_suspend, 1504 .resume = gmc_v8_0_resume, 1505 .is_idle = gmc_v8_0_is_idle, 1506 .wait_for_idle = gmc_v8_0_wait_for_idle, 1507 .soft_reset = gmc_v8_0_soft_reset, 1508 .print_status = gmc_v8_0_print_status, 1509 .set_clockgating_state = gmc_v8_0_set_clockgating_state, 1510 .set_powergating_state = gmc_v8_0_set_powergating_state, 1511 }; 1512 1513 static const struct amdgpu_gart_funcs gmc_v8_0_gart_funcs = { 1514 .flush_gpu_tlb = gmc_v8_0_gart_flush_gpu_tlb, 1515 .set_pte_pde = gmc_v8_0_gart_set_pte_pde, 1516 }; 1517 1518 static const struct amdgpu_irq_src_funcs gmc_v8_0_irq_funcs = { 1519 .set = gmc_v8_0_vm_fault_interrupt_state, 1520 .process = gmc_v8_0_process_interrupt, 1521 }; 1522 1523 static void gmc_v8_0_set_gart_funcs(struct amdgpu_device *adev) 1524 { 1525 if (adev->gart.gart_funcs == NULL) 1526 adev->gart.gart_funcs = &gmc_v8_0_gart_funcs; 1527 } 1528 1529 static void gmc_v8_0_set_irq_funcs(struct amdgpu_device *adev) 1530 { 1531 adev->mc.vm_fault.num_types = 1; 1532 adev->mc.vm_fault.funcs = &gmc_v8_0_irq_funcs; 1533 } 1534