xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_vram_mgr.c (revision 26fbb4c8c7c3ee9a4c3b4de555a8587b5a19154e)
1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Christian König
23  */
24 
25 #include <linux/dma-mapping.h>
26 #include "amdgpu.h"
27 #include "amdgpu_vm.h"
28 #include "amdgpu_atomfirmware.h"
29 #include "atom.h"
30 
31 static inline struct amdgpu_vram_mgr *to_vram_mgr(struct ttm_resource_manager *man)
32 {
33 	return container_of(man, struct amdgpu_vram_mgr, manager);
34 }
35 
36 static inline struct amdgpu_device *to_amdgpu_device(struct amdgpu_vram_mgr *mgr)
37 {
38 	return container_of(mgr, struct amdgpu_device, mman.vram_mgr);
39 }
40 
41 /**
42  * DOC: mem_info_vram_total
43  *
44  * The amdgpu driver provides a sysfs API for reporting current total VRAM
45  * available on the device
46  * The file mem_info_vram_total is used for this and returns the total
47  * amount of VRAM in bytes
48  */
49 static ssize_t amdgpu_mem_info_vram_total_show(struct device *dev,
50 		struct device_attribute *attr, char *buf)
51 {
52 	struct drm_device *ddev = dev_get_drvdata(dev);
53 	struct amdgpu_device *adev = drm_to_adev(ddev);
54 
55 	return snprintf(buf, PAGE_SIZE, "%llu\n", adev->gmc.real_vram_size);
56 }
57 
58 /**
59  * DOC: mem_info_vis_vram_total
60  *
61  * The amdgpu driver provides a sysfs API for reporting current total
62  * visible VRAM available on the device
63  * The file mem_info_vis_vram_total is used for this and returns the total
64  * amount of visible VRAM in bytes
65  */
66 static ssize_t amdgpu_mem_info_vis_vram_total_show(struct device *dev,
67 		struct device_attribute *attr, char *buf)
68 {
69 	struct drm_device *ddev = dev_get_drvdata(dev);
70 	struct amdgpu_device *adev = drm_to_adev(ddev);
71 
72 	return snprintf(buf, PAGE_SIZE, "%llu\n", adev->gmc.visible_vram_size);
73 }
74 
75 /**
76  * DOC: mem_info_vram_used
77  *
78  * The amdgpu driver provides a sysfs API for reporting current total VRAM
79  * available on the device
80  * The file mem_info_vram_used is used for this and returns the total
81  * amount of currently used VRAM in bytes
82  */
83 static ssize_t amdgpu_mem_info_vram_used_show(struct device *dev,
84 		struct device_attribute *attr, char *buf)
85 {
86 	struct drm_device *ddev = dev_get_drvdata(dev);
87 	struct amdgpu_device *adev = drm_to_adev(ddev);
88 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
89 
90 	return snprintf(buf, PAGE_SIZE, "%llu\n",
91 			amdgpu_vram_mgr_usage(man));
92 }
93 
94 /**
95  * DOC: mem_info_vis_vram_used
96  *
97  * The amdgpu driver provides a sysfs API for reporting current total of
98  * used visible VRAM
99  * The file mem_info_vis_vram_used is used for this and returns the total
100  * amount of currently used visible VRAM in bytes
101  */
102 static ssize_t amdgpu_mem_info_vis_vram_used_show(struct device *dev,
103 		struct device_attribute *attr, char *buf)
104 {
105 	struct drm_device *ddev = dev_get_drvdata(dev);
106 	struct amdgpu_device *adev = drm_to_adev(ddev);
107 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
108 
109 	return snprintf(buf, PAGE_SIZE, "%llu\n",
110 			amdgpu_vram_mgr_vis_usage(man));
111 }
112 
113 static ssize_t amdgpu_mem_info_vram_vendor(struct device *dev,
114 						 struct device_attribute *attr,
115 						 char *buf)
116 {
117 	struct drm_device *ddev = dev_get_drvdata(dev);
118 	struct amdgpu_device *adev = drm_to_adev(ddev);
119 
120 	switch (adev->gmc.vram_vendor) {
121 	case SAMSUNG:
122 		return snprintf(buf, PAGE_SIZE, "samsung\n");
123 	case INFINEON:
124 		return snprintf(buf, PAGE_SIZE, "infineon\n");
125 	case ELPIDA:
126 		return snprintf(buf, PAGE_SIZE, "elpida\n");
127 	case ETRON:
128 		return snprintf(buf, PAGE_SIZE, "etron\n");
129 	case NANYA:
130 		return snprintf(buf, PAGE_SIZE, "nanya\n");
131 	case HYNIX:
132 		return snprintf(buf, PAGE_SIZE, "hynix\n");
133 	case MOSEL:
134 		return snprintf(buf, PAGE_SIZE, "mosel\n");
135 	case WINBOND:
136 		return snprintf(buf, PAGE_SIZE, "winbond\n");
137 	case ESMT:
138 		return snprintf(buf, PAGE_SIZE, "esmt\n");
139 	case MICRON:
140 		return snprintf(buf, PAGE_SIZE, "micron\n");
141 	default:
142 		return snprintf(buf, PAGE_SIZE, "unknown\n");
143 	}
144 }
145 
146 static DEVICE_ATTR(mem_info_vram_total, S_IRUGO,
147 		   amdgpu_mem_info_vram_total_show, NULL);
148 static DEVICE_ATTR(mem_info_vis_vram_total, S_IRUGO,
149 		   amdgpu_mem_info_vis_vram_total_show,NULL);
150 static DEVICE_ATTR(mem_info_vram_used, S_IRUGO,
151 		   amdgpu_mem_info_vram_used_show, NULL);
152 static DEVICE_ATTR(mem_info_vis_vram_used, S_IRUGO,
153 		   amdgpu_mem_info_vis_vram_used_show, NULL);
154 static DEVICE_ATTR(mem_info_vram_vendor, S_IRUGO,
155 		   amdgpu_mem_info_vram_vendor, NULL);
156 
157 static const struct attribute *amdgpu_vram_mgr_attributes[] = {
158 	&dev_attr_mem_info_vram_total.attr,
159 	&dev_attr_mem_info_vis_vram_total.attr,
160 	&dev_attr_mem_info_vram_used.attr,
161 	&dev_attr_mem_info_vis_vram_used.attr,
162 	&dev_attr_mem_info_vram_vendor.attr,
163 	NULL
164 };
165 
166 static const struct ttm_resource_manager_func amdgpu_vram_mgr_func;
167 
168 /**
169  * amdgpu_vram_mgr_init - init VRAM manager and DRM MM
170  *
171  * @adev: amdgpu_device pointer
172  *
173  * Allocate and initialize the VRAM manager.
174  */
175 int amdgpu_vram_mgr_init(struct amdgpu_device *adev)
176 {
177 	struct amdgpu_vram_mgr *mgr = &adev->mman.vram_mgr;
178 	struct ttm_resource_manager *man = &mgr->manager;
179 	int ret;
180 
181 	ttm_resource_manager_init(man, adev->gmc.real_vram_size >> PAGE_SHIFT);
182 
183 	man->func = &amdgpu_vram_mgr_func;
184 
185 	drm_mm_init(&mgr->mm, 0, man->size);
186 	spin_lock_init(&mgr->lock);
187 	INIT_LIST_HEAD(&mgr->reservations_pending);
188 	INIT_LIST_HEAD(&mgr->reserved_pages);
189 
190 	/* Add the two VRAM-related sysfs files */
191 	ret = sysfs_create_files(&adev->dev->kobj, amdgpu_vram_mgr_attributes);
192 	if (ret)
193 		DRM_ERROR("Failed to register sysfs\n");
194 
195 	ttm_set_driver_manager(&adev->mman.bdev, TTM_PL_VRAM, &mgr->manager);
196 	ttm_resource_manager_set_used(man, true);
197 	return 0;
198 }
199 
200 /**
201  * amdgpu_vram_mgr_fini - free and destroy VRAM manager
202  *
203  * @adev: amdgpu_device pointer
204  *
205  * Destroy and free the VRAM manager, returns -EBUSY if ranges are still
206  * allocated inside it.
207  */
208 void amdgpu_vram_mgr_fini(struct amdgpu_device *adev)
209 {
210 	struct amdgpu_vram_mgr *mgr = &adev->mman.vram_mgr;
211 	struct ttm_resource_manager *man = &mgr->manager;
212 	int ret;
213 	struct amdgpu_vram_reservation *rsv, *temp;
214 
215 	ttm_resource_manager_set_used(man, false);
216 
217 	ret = ttm_resource_manager_evict_all(&adev->mman.bdev, man);
218 	if (ret)
219 		return;
220 
221 	spin_lock(&mgr->lock);
222 	list_for_each_entry_safe(rsv, temp, &mgr->reservations_pending, node)
223 		kfree(rsv);
224 
225 	list_for_each_entry_safe(rsv, temp, &mgr->reserved_pages, node) {
226 		drm_mm_remove_node(&rsv->mm_node);
227 		kfree(rsv);
228 	}
229 	drm_mm_takedown(&mgr->mm);
230 	spin_unlock(&mgr->lock);
231 
232 	sysfs_remove_files(&adev->dev->kobj, amdgpu_vram_mgr_attributes);
233 
234 	ttm_resource_manager_cleanup(man);
235 	ttm_set_driver_manager(&adev->mman.bdev, TTM_PL_VRAM, NULL);
236 }
237 
238 /**
239  * amdgpu_vram_mgr_vis_size - Calculate visible node size
240  *
241  * @adev: amdgpu_device pointer
242  * @node: MM node structure
243  *
244  * Calculate how many bytes of the MM node are inside visible VRAM
245  */
246 static u64 amdgpu_vram_mgr_vis_size(struct amdgpu_device *adev,
247 				    struct drm_mm_node *node)
248 {
249 	uint64_t start = node->start << PAGE_SHIFT;
250 	uint64_t end = (node->size + node->start) << PAGE_SHIFT;
251 
252 	if (start >= adev->gmc.visible_vram_size)
253 		return 0;
254 
255 	return (end > adev->gmc.visible_vram_size ?
256 		adev->gmc.visible_vram_size : end) - start;
257 }
258 
259 /**
260  * amdgpu_vram_mgr_bo_visible_size - CPU visible BO size
261  *
262  * @bo: &amdgpu_bo buffer object (must be in VRAM)
263  *
264  * Returns:
265  * How much of the given &amdgpu_bo buffer object lies in CPU visible VRAM.
266  */
267 u64 amdgpu_vram_mgr_bo_visible_size(struct amdgpu_bo *bo)
268 {
269 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
270 	struct ttm_resource *mem = &bo->tbo.mem;
271 	struct drm_mm_node *nodes = mem->mm_node;
272 	unsigned pages = mem->num_pages;
273 	u64 usage;
274 
275 	if (amdgpu_gmc_vram_full_visible(&adev->gmc))
276 		return amdgpu_bo_size(bo);
277 
278 	if (mem->start >= adev->gmc.visible_vram_size >> PAGE_SHIFT)
279 		return 0;
280 
281 	for (usage = 0; nodes && pages; pages -= nodes->size, nodes++)
282 		usage += amdgpu_vram_mgr_vis_size(adev, nodes);
283 
284 	return usage;
285 }
286 
287 static void amdgpu_vram_mgr_do_reserve(struct ttm_resource_manager *man)
288 {
289 	struct amdgpu_vram_mgr *mgr = to_vram_mgr(man);
290 	struct amdgpu_device *adev = to_amdgpu_device(mgr);
291 	struct drm_mm *mm = &mgr->mm;
292 	struct amdgpu_vram_reservation *rsv, *temp;
293 	uint64_t vis_usage;
294 
295 	list_for_each_entry_safe(rsv, temp, &mgr->reservations_pending, node) {
296 		if (drm_mm_reserve_node(mm, &rsv->mm_node))
297 			continue;
298 
299 		dev_dbg(adev->dev, "Reservation 0x%llx - %lld, Succeeded\n",
300 			rsv->mm_node.start, rsv->mm_node.size);
301 
302 		vis_usage = amdgpu_vram_mgr_vis_size(adev, &rsv->mm_node);
303 		atomic64_add(vis_usage, &mgr->vis_usage);
304 		atomic64_add(rsv->mm_node.size << PAGE_SHIFT, &mgr->usage);
305 		list_move(&rsv->node, &mgr->reserved_pages);
306 	}
307 }
308 
309 /**
310  * amdgpu_vram_mgr_reserve_range - Reserve a range from VRAM
311  *
312  * @man: TTM memory type manager
313  * @start: start address of the range in VRAM
314  * @size: size of the range
315  *
316  * Reserve memory from start addess with the specified size in VRAM
317  */
318 int amdgpu_vram_mgr_reserve_range(struct ttm_resource_manager *man,
319 				  uint64_t start, uint64_t size)
320 {
321 	struct amdgpu_vram_mgr *mgr = to_vram_mgr(man);
322 	struct amdgpu_vram_reservation *rsv;
323 
324 	rsv = kzalloc(sizeof(*rsv), GFP_KERNEL);
325 	if (!rsv)
326 		return -ENOMEM;
327 
328 	INIT_LIST_HEAD(&rsv->node);
329 	rsv->mm_node.start = start >> PAGE_SHIFT;
330 	rsv->mm_node.size = size >> PAGE_SHIFT;
331 
332 	spin_lock(&mgr->lock);
333 	list_add_tail(&mgr->reservations_pending, &rsv->node);
334 	amdgpu_vram_mgr_do_reserve(man);
335 	spin_unlock(&mgr->lock);
336 
337 	return 0;
338 }
339 
340 /**
341  * amdgpu_vram_mgr_query_page_status - query the reservation status
342  *
343  * @man: TTM memory type manager
344  * @start: start address of a page in VRAM
345  *
346  * Returns:
347  *	-EBUSY: the page is still hold and in pending list
348  *	0: the page has been reserved
349  *	-ENOENT: the input page is not a reservation
350  */
351 int amdgpu_vram_mgr_query_page_status(struct ttm_resource_manager *man,
352 				      uint64_t start)
353 {
354 	struct amdgpu_vram_mgr *mgr = to_vram_mgr(man);
355 	struct amdgpu_vram_reservation *rsv;
356 	int ret;
357 
358 	spin_lock(&mgr->lock);
359 
360 	list_for_each_entry(rsv, &mgr->reservations_pending, node) {
361 		if ((rsv->mm_node.start <= start) &&
362 		    (start < (rsv->mm_node.start + rsv->mm_node.size))) {
363 			ret = -EBUSY;
364 			goto out;
365 		}
366 	}
367 
368 	list_for_each_entry(rsv, &mgr->reserved_pages, node) {
369 		if ((rsv->mm_node.start <= start) &&
370 		    (start < (rsv->mm_node.start + rsv->mm_node.size))) {
371 			ret = 0;
372 			goto out;
373 		}
374 	}
375 
376 	ret = -ENOENT;
377 out:
378 	spin_unlock(&mgr->lock);
379 	return ret;
380 }
381 
382 /**
383  * amdgpu_vram_mgr_virt_start - update virtual start address
384  *
385  * @mem: ttm_resource to update
386  * @node: just allocated node
387  *
388  * Calculate a virtual BO start address to easily check if everything is CPU
389  * accessible.
390  */
391 static void amdgpu_vram_mgr_virt_start(struct ttm_resource *mem,
392 				       struct drm_mm_node *node)
393 {
394 	unsigned long start;
395 
396 	start = node->start + node->size;
397 	if (start > mem->num_pages)
398 		start -= mem->num_pages;
399 	else
400 		start = 0;
401 	mem->start = max(mem->start, start);
402 }
403 
404 /**
405  * amdgpu_vram_mgr_new - allocate new ranges
406  *
407  * @man: TTM memory type manager
408  * @tbo: TTM BO we need this range for
409  * @place: placement flags and restrictions
410  * @mem: the resulting mem object
411  *
412  * Allocate VRAM for the given BO.
413  */
414 static int amdgpu_vram_mgr_new(struct ttm_resource_manager *man,
415 			       struct ttm_buffer_object *tbo,
416 			       const struct ttm_place *place,
417 			       struct ttm_resource *mem)
418 {
419 	struct amdgpu_vram_mgr *mgr = to_vram_mgr(man);
420 	struct amdgpu_device *adev = to_amdgpu_device(mgr);
421 	struct drm_mm *mm = &mgr->mm;
422 	struct drm_mm_node *nodes;
423 	enum drm_mm_insert_mode mode;
424 	unsigned long lpfn, num_nodes, pages_per_node, pages_left;
425 	uint64_t vis_usage = 0, mem_bytes, max_bytes;
426 	unsigned i;
427 	int r;
428 
429 	lpfn = place->lpfn;
430 	if (!lpfn)
431 		lpfn = man->size;
432 
433 	max_bytes = adev->gmc.mc_vram_size;
434 	if (tbo->type != ttm_bo_type_kernel)
435 		max_bytes -= AMDGPU_VM_RESERVED_VRAM;
436 
437 	/* bail out quickly if there's likely not enough VRAM for this BO */
438 	mem_bytes = (u64)mem->num_pages << PAGE_SHIFT;
439 	if (atomic64_add_return(mem_bytes, &mgr->usage) > max_bytes) {
440 		atomic64_sub(mem_bytes, &mgr->usage);
441 		return -ENOSPC;
442 	}
443 
444 	if (place->flags & TTM_PL_FLAG_CONTIGUOUS) {
445 		pages_per_node = ~0ul;
446 		num_nodes = 1;
447 	} else {
448 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
449 		pages_per_node = HPAGE_PMD_NR;
450 #else
451 		/* default to 2MB */
452 		pages_per_node = (2UL << (20UL - PAGE_SHIFT));
453 #endif
454 		pages_per_node = max((uint32_t)pages_per_node, mem->page_alignment);
455 		num_nodes = DIV_ROUND_UP(mem->num_pages, pages_per_node);
456 	}
457 
458 	nodes = kvmalloc_array((uint32_t)num_nodes, sizeof(*nodes),
459 			       GFP_KERNEL | __GFP_ZERO);
460 	if (!nodes) {
461 		atomic64_sub(mem_bytes, &mgr->usage);
462 		return -ENOMEM;
463 	}
464 
465 	mode = DRM_MM_INSERT_BEST;
466 	if (place->flags & TTM_PL_FLAG_TOPDOWN)
467 		mode = DRM_MM_INSERT_HIGH;
468 
469 	mem->start = 0;
470 	pages_left = mem->num_pages;
471 
472 	spin_lock(&mgr->lock);
473 	for (i = 0; pages_left >= pages_per_node; ++i) {
474 		unsigned long pages = rounddown_pow_of_two(pages_left);
475 
476 		/* Limit maximum size to 2GB due to SG table limitations */
477 		pages = min(pages, (2UL << (30 - PAGE_SHIFT)));
478 
479 		r = drm_mm_insert_node_in_range(mm, &nodes[i], pages,
480 						pages_per_node, 0,
481 						place->fpfn, lpfn,
482 						mode);
483 		if (unlikely(r))
484 			break;
485 
486 		vis_usage += amdgpu_vram_mgr_vis_size(adev, &nodes[i]);
487 		amdgpu_vram_mgr_virt_start(mem, &nodes[i]);
488 		pages_left -= pages;
489 	}
490 
491 	for (; pages_left; ++i) {
492 		unsigned long pages = min(pages_left, pages_per_node);
493 		uint32_t alignment = mem->page_alignment;
494 
495 		if (pages == pages_per_node)
496 			alignment = pages_per_node;
497 
498 		r = drm_mm_insert_node_in_range(mm, &nodes[i],
499 						pages, alignment, 0,
500 						place->fpfn, lpfn,
501 						mode);
502 		if (unlikely(r))
503 			goto error;
504 
505 		vis_usage += amdgpu_vram_mgr_vis_size(adev, &nodes[i]);
506 		amdgpu_vram_mgr_virt_start(mem, &nodes[i]);
507 		pages_left -= pages;
508 	}
509 	spin_unlock(&mgr->lock);
510 
511 	atomic64_add(vis_usage, &mgr->vis_usage);
512 
513 	mem->mm_node = nodes;
514 
515 	return 0;
516 
517 error:
518 	while (i--)
519 		drm_mm_remove_node(&nodes[i]);
520 	spin_unlock(&mgr->lock);
521 	atomic64_sub(mem->num_pages << PAGE_SHIFT, &mgr->usage);
522 
523 	kvfree(nodes);
524 	return r;
525 }
526 
527 /**
528  * amdgpu_vram_mgr_del - free ranges
529  *
530  * @man: TTM memory type manager
531  * @mem: TTM memory object
532  *
533  * Free the allocated VRAM again.
534  */
535 static void amdgpu_vram_mgr_del(struct ttm_resource_manager *man,
536 				struct ttm_resource *mem)
537 {
538 	struct amdgpu_vram_mgr *mgr = to_vram_mgr(man);
539 	struct amdgpu_device *adev = to_amdgpu_device(mgr);
540 	struct drm_mm_node *nodes = mem->mm_node;
541 	uint64_t usage = 0, vis_usage = 0;
542 	unsigned pages = mem->num_pages;
543 
544 	if (!mem->mm_node)
545 		return;
546 
547 	spin_lock(&mgr->lock);
548 	while (pages) {
549 		pages -= nodes->size;
550 		drm_mm_remove_node(nodes);
551 		usage += nodes->size << PAGE_SHIFT;
552 		vis_usage += amdgpu_vram_mgr_vis_size(adev, nodes);
553 		++nodes;
554 	}
555 	amdgpu_vram_mgr_do_reserve(man);
556 	spin_unlock(&mgr->lock);
557 
558 	atomic64_sub(usage, &mgr->usage);
559 	atomic64_sub(vis_usage, &mgr->vis_usage);
560 
561 	kvfree(mem->mm_node);
562 	mem->mm_node = NULL;
563 }
564 
565 /**
566  * amdgpu_vram_mgr_alloc_sgt - allocate and fill a sg table
567  *
568  * @adev: amdgpu device pointer
569  * @mem: TTM memory object
570  * @dev: the other device
571  * @dir: dma direction
572  * @sgt: resulting sg table
573  *
574  * Allocate and fill a sg table from a VRAM allocation.
575  */
576 int amdgpu_vram_mgr_alloc_sgt(struct amdgpu_device *adev,
577 			      struct ttm_resource *mem,
578 			      struct device *dev,
579 			      enum dma_data_direction dir,
580 			      struct sg_table **sgt)
581 {
582 	struct drm_mm_node *node;
583 	struct scatterlist *sg;
584 	int num_entries = 0;
585 	unsigned int pages;
586 	int i, r;
587 
588 	*sgt = kmalloc(sizeof(**sgt), GFP_KERNEL);
589 	if (!*sgt)
590 		return -ENOMEM;
591 
592 	for (pages = mem->num_pages, node = mem->mm_node;
593 	     pages; pages -= node->size, ++node)
594 		++num_entries;
595 
596 	r = sg_alloc_table(*sgt, num_entries, GFP_KERNEL);
597 	if (r)
598 		goto error_free;
599 
600 	for_each_sgtable_sg((*sgt), sg, i)
601 		sg->length = 0;
602 
603 	node = mem->mm_node;
604 	for_each_sgtable_sg((*sgt), sg, i) {
605 		phys_addr_t phys = (node->start << PAGE_SHIFT) +
606 			adev->gmc.aper_base;
607 		size_t size = node->size << PAGE_SHIFT;
608 		dma_addr_t addr;
609 
610 		++node;
611 		addr = dma_map_resource(dev, phys, size, dir,
612 					DMA_ATTR_SKIP_CPU_SYNC);
613 		r = dma_mapping_error(dev, addr);
614 		if (r)
615 			goto error_unmap;
616 
617 		sg_set_page(sg, NULL, size, 0);
618 		sg_dma_address(sg) = addr;
619 		sg_dma_len(sg) = size;
620 	}
621 	return 0;
622 
623 error_unmap:
624 	for_each_sgtable_sg((*sgt), sg, i) {
625 		if (!sg->length)
626 			continue;
627 
628 		dma_unmap_resource(dev, sg->dma_address,
629 				   sg->length, dir,
630 				   DMA_ATTR_SKIP_CPU_SYNC);
631 	}
632 	sg_free_table(*sgt);
633 
634 error_free:
635 	kfree(*sgt);
636 	return r;
637 }
638 
639 /**
640  * amdgpu_vram_mgr_free_sgt - allocate and fill a sg table
641  *
642  * @adev: amdgpu device pointer
643  * @dev: device pointer
644  * @dir: data direction of resource to unmap
645  * @sgt: sg table to free
646  *
647  * Free a previously allocate sg table.
648  */
649 void amdgpu_vram_mgr_free_sgt(struct amdgpu_device *adev,
650 			      struct device *dev,
651 			      enum dma_data_direction dir,
652 			      struct sg_table *sgt)
653 {
654 	struct scatterlist *sg;
655 	int i;
656 
657 	for_each_sgtable_sg(sgt, sg, i)
658 		dma_unmap_resource(dev, sg->dma_address,
659 				   sg->length, dir,
660 				   DMA_ATTR_SKIP_CPU_SYNC);
661 	sg_free_table(sgt);
662 	kfree(sgt);
663 }
664 
665 /**
666  * amdgpu_vram_mgr_usage - how many bytes are used in this domain
667  *
668  * @man: TTM memory type manager
669  *
670  * Returns how many bytes are used in this domain.
671  */
672 uint64_t amdgpu_vram_mgr_usage(struct ttm_resource_manager *man)
673 {
674 	struct amdgpu_vram_mgr *mgr = to_vram_mgr(man);
675 
676 	return atomic64_read(&mgr->usage);
677 }
678 
679 /**
680  * amdgpu_vram_mgr_vis_usage - how many bytes are used in the visible part
681  *
682  * @man: TTM memory type manager
683  *
684  * Returns how many bytes are used in the visible part of VRAM
685  */
686 uint64_t amdgpu_vram_mgr_vis_usage(struct ttm_resource_manager *man)
687 {
688 	struct amdgpu_vram_mgr *mgr = to_vram_mgr(man);
689 
690 	return atomic64_read(&mgr->vis_usage);
691 }
692 
693 /**
694  * amdgpu_vram_mgr_debug - dump VRAM table
695  *
696  * @man: TTM memory type manager
697  * @printer: DRM printer to use
698  *
699  * Dump the table content using printk.
700  */
701 static void amdgpu_vram_mgr_debug(struct ttm_resource_manager *man,
702 				  struct drm_printer *printer)
703 {
704 	struct amdgpu_vram_mgr *mgr = to_vram_mgr(man);
705 
706 	spin_lock(&mgr->lock);
707 	drm_mm_print(&mgr->mm, printer);
708 	spin_unlock(&mgr->lock);
709 
710 	drm_printf(printer, "man size:%llu pages, ram usage:%lluMB, vis usage:%lluMB\n",
711 		   man->size, amdgpu_vram_mgr_usage(man) >> 20,
712 		   amdgpu_vram_mgr_vis_usage(man) >> 20);
713 }
714 
715 static const struct ttm_resource_manager_func amdgpu_vram_mgr_func = {
716 	.alloc	= amdgpu_vram_mgr_new,
717 	.free	= amdgpu_vram_mgr_del,
718 	.debug	= amdgpu_vram_mgr_debug
719 };
720