1 /* 2 * Copyright 2022 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 23 #include <linux/firmware.h> 24 #include <drm/drm_drv.h> 25 26 #include "amdgpu.h" 27 #include "amdgpu_ucode.h" 28 #include "amdgpu_vpe.h" 29 #include "amdgpu_smu.h" 30 #include "soc15_common.h" 31 #include "vpe_v6_1.h" 32 33 #define AMDGPU_CSA_VPE_SIZE 64 34 /* VPE CSA resides in the 4th page of CSA */ 35 #define AMDGPU_CSA_VPE_OFFSET (4096 * 3) 36 37 /* 1 second timeout */ 38 #define VPE_IDLE_TIMEOUT msecs_to_jiffies(1000) 39 40 #define VPE_MAX_DPM_LEVEL 4 41 #define FIXED1_8_BITS_PER_FRACTIONAL_PART 8 42 #define GET_PRATIO_INTEGER_PART(x) ((x) >> FIXED1_8_BITS_PER_FRACTIONAL_PART) 43 44 static void vpe_set_ring_funcs(struct amdgpu_device *adev); 45 46 static inline uint16_t div16_u16_rem(uint16_t dividend, uint16_t divisor, uint16_t *remainder) 47 { 48 *remainder = dividend % divisor; 49 return dividend / divisor; 50 } 51 52 static inline uint16_t complete_integer_division_u16( 53 uint16_t dividend, 54 uint16_t divisor, 55 uint16_t *remainder) 56 { 57 return div16_u16_rem(dividend, divisor, (uint16_t *)remainder); 58 } 59 60 static uint16_t vpe_u1_8_from_fraction(uint16_t numerator, uint16_t denominator) 61 { 62 u16 arg1_value = numerator; 63 u16 arg2_value = denominator; 64 65 uint16_t remainder; 66 67 /* determine integer part */ 68 uint16_t res_value = complete_integer_division_u16( 69 arg1_value, arg2_value, &remainder); 70 71 if (res_value > 127 /* CHAR_MAX */) 72 return 0; 73 74 /* determine fractional part */ 75 { 76 unsigned int i = FIXED1_8_BITS_PER_FRACTIONAL_PART; 77 78 do { 79 remainder <<= 1; 80 81 res_value <<= 1; 82 83 if (remainder >= arg2_value) { 84 res_value |= 1; 85 remainder -= arg2_value; 86 } 87 } while (--i != 0); 88 } 89 90 /* round up LSB */ 91 { 92 uint16_t summand = (remainder << 1) >= arg2_value; 93 94 if ((res_value + summand) > 32767 /* SHRT_MAX */) 95 return 0; 96 97 res_value += summand; 98 } 99 100 return res_value; 101 } 102 103 static uint16_t vpe_internal_get_pratio(uint16_t from_frequency, uint16_t to_frequency) 104 { 105 uint16_t pratio = vpe_u1_8_from_fraction(from_frequency, to_frequency); 106 107 if (GET_PRATIO_INTEGER_PART(pratio) > 1) 108 pratio = 0; 109 110 return pratio; 111 } 112 113 /* 114 * VPE has 4 DPM levels from level 0 (lowerest) to 3 (highest), 115 * VPE FW will dynamically decide which level should be used according to current loading. 116 * 117 * Get VPE and SOC clocks from PM, and select the appropriate four clock values, 118 * calculate the ratios of adjusting from one clock to another. 119 * The VPE FW can then request the appropriate frequency from the PMFW. 120 */ 121 int amdgpu_vpe_configure_dpm(struct amdgpu_vpe *vpe) 122 { 123 struct amdgpu_device *adev = vpe->ring.adev; 124 uint32_t dpm_ctl; 125 126 if (adev->pm.dpm_enabled) { 127 struct dpm_clocks clock_table = { 0 }; 128 struct dpm_clock *VPEClks; 129 struct dpm_clock *SOCClks; 130 uint32_t idx; 131 uint32_t vpeclk_enalbled_num = 0; 132 uint32_t pratio_vmax_vnorm = 0, pratio_vnorm_vmid = 0, pratio_vmid_vmin = 0; 133 uint16_t pratio_vmin_freq = 0, pratio_vmid_freq = 0, pratio_vnorm_freq = 0, pratio_vmax_freq = 0; 134 135 dpm_ctl = RREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_enable)); 136 dpm_ctl |= 1; /* DPM enablement */ 137 WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_enable), dpm_ctl); 138 139 /* Get VPECLK and SOCCLK */ 140 if (amdgpu_dpm_get_dpm_clock_table(adev, &clock_table)) { 141 dev_dbg(adev->dev, "%s: get clock failed!\n", __func__); 142 goto disable_dpm; 143 } 144 145 SOCClks = clock_table.SocClocks; 146 VPEClks = clock_table.VPEClocks; 147 148 /* Comfirm enabled vpe clk num 149 * Enabled VPE clocks are ordered from low to high in VPEClks 150 * The highest valid clock index+1 is the number of VPEClks 151 */ 152 for (idx = PP_SMU_NUM_VPECLK_DPM_LEVELS; idx && !vpeclk_enalbled_num; idx--) 153 if (VPEClks[idx-1].Freq) 154 vpeclk_enalbled_num = idx; 155 156 /* vpe dpm only cares 4 levels. */ 157 for (idx = 0; idx < VPE_MAX_DPM_LEVEL; idx++) { 158 uint32_t soc_dpm_level; 159 uint32_t min_freq; 160 161 if (idx == 0) 162 soc_dpm_level = 0; 163 else 164 soc_dpm_level = (idx * 2) + 1; 165 166 /* clamp the max level */ 167 if (soc_dpm_level > vpeclk_enalbled_num - 1) 168 soc_dpm_level = vpeclk_enalbled_num - 1; 169 170 min_freq = (SOCClks[soc_dpm_level].Freq < VPEClks[soc_dpm_level].Freq) ? 171 SOCClks[soc_dpm_level].Freq : VPEClks[soc_dpm_level].Freq; 172 173 switch (idx) { 174 case 0: 175 pratio_vmin_freq = min_freq; 176 break; 177 case 1: 178 pratio_vmid_freq = min_freq; 179 break; 180 case 2: 181 pratio_vnorm_freq = min_freq; 182 break; 183 case 3: 184 pratio_vmax_freq = min_freq; 185 break; 186 default: 187 break; 188 } 189 } 190 191 if (pratio_vmin_freq && pratio_vmid_freq && pratio_vnorm_freq && pratio_vmax_freq) { 192 uint32_t pratio_ctl; 193 194 pratio_vmax_vnorm = (uint32_t)vpe_internal_get_pratio(pratio_vmax_freq, pratio_vnorm_freq); 195 pratio_vnorm_vmid = (uint32_t)vpe_internal_get_pratio(pratio_vnorm_freq, pratio_vmid_freq); 196 pratio_vmid_vmin = (uint32_t)vpe_internal_get_pratio(pratio_vmid_freq, pratio_vmin_freq); 197 198 pratio_ctl = pratio_vmax_vnorm | (pratio_vnorm_vmid << 9) | (pratio_vmid_vmin << 18); 199 WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_pratio), pratio_ctl); /* PRatio */ 200 WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_request_interval), 24000); /* 1ms, unit=1/24MHz */ 201 WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_decision_threshold), 1200000); /* 50ms */ 202 WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_busy_clamp_threshold), 1200000);/* 50ms */ 203 WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_idle_clamp_threshold), 1200000);/* 50ms */ 204 dev_dbg(adev->dev, "%s: configure vpe dpm pratio done!\n", __func__); 205 } else { 206 dev_dbg(adev->dev, "%s: invalid pratio parameters!\n", __func__); 207 goto disable_dpm; 208 } 209 } 210 return 0; 211 212 disable_dpm: 213 dpm_ctl = RREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_enable)); 214 dpm_ctl &= 0xfffffffe; /* Disable DPM */ 215 WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_enable), dpm_ctl); 216 dev_dbg(adev->dev, "%s: disable vpe dpm\n", __func__); 217 return -EINVAL; 218 } 219 220 int amdgpu_vpe_psp_update_sram(struct amdgpu_device *adev) 221 { 222 struct amdgpu_firmware_info ucode = { 223 .ucode_id = AMDGPU_UCODE_ID_VPE, 224 .mc_addr = adev->vpe.cmdbuf_gpu_addr, 225 .ucode_size = 8, 226 }; 227 228 return psp_execute_ip_fw_load(&adev->psp, &ucode); 229 } 230 231 int amdgpu_vpe_init_microcode(struct amdgpu_vpe *vpe) 232 { 233 struct amdgpu_device *adev = vpe->ring.adev; 234 const struct vpe_firmware_header_v1_0 *vpe_hdr; 235 char fw_prefix[32]; 236 int ret; 237 238 amdgpu_ucode_ip_version_decode(adev, VPE_HWIP, fw_prefix, sizeof(fw_prefix)); 239 ret = amdgpu_ucode_request(adev, &adev->vpe.fw, "amdgpu/%s.bin", fw_prefix); 240 if (ret) 241 goto out; 242 243 vpe_hdr = (const struct vpe_firmware_header_v1_0 *)adev->vpe.fw->data; 244 adev->vpe.fw_version = le32_to_cpu(vpe_hdr->header.ucode_version); 245 adev->vpe.feature_version = le32_to_cpu(vpe_hdr->ucode_feature_version); 246 247 if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { 248 struct amdgpu_firmware_info *info; 249 250 info = &adev->firmware.ucode[AMDGPU_UCODE_ID_VPE_CTX]; 251 info->ucode_id = AMDGPU_UCODE_ID_VPE_CTX; 252 info->fw = adev->vpe.fw; 253 adev->firmware.fw_size += 254 ALIGN(le32_to_cpu(vpe_hdr->ctx_ucode_size_bytes), PAGE_SIZE); 255 256 info = &adev->firmware.ucode[AMDGPU_UCODE_ID_VPE_CTL]; 257 info->ucode_id = AMDGPU_UCODE_ID_VPE_CTL; 258 info->fw = adev->vpe.fw; 259 adev->firmware.fw_size += 260 ALIGN(le32_to_cpu(vpe_hdr->ctl_ucode_size_bytes), PAGE_SIZE); 261 } 262 263 return 0; 264 out: 265 dev_err(adev->dev, "fail to initialize vpe microcode\n"); 266 release_firmware(adev->vpe.fw); 267 adev->vpe.fw = NULL; 268 return ret; 269 } 270 271 int amdgpu_vpe_ring_init(struct amdgpu_vpe *vpe) 272 { 273 struct amdgpu_device *adev = container_of(vpe, struct amdgpu_device, vpe); 274 struct amdgpu_ring *ring = &vpe->ring; 275 int ret; 276 277 ring->ring_obj = NULL; 278 ring->use_doorbell = true; 279 ring->vm_hub = AMDGPU_MMHUB0(0); 280 ring->doorbell_index = (adev->doorbell_index.vpe_ring << 1); 281 snprintf(ring->name, 4, "vpe"); 282 283 ret = amdgpu_ring_init(adev, ring, 1024, &vpe->trap_irq, 0, 284 AMDGPU_RING_PRIO_DEFAULT, NULL); 285 if (ret) 286 return ret; 287 288 return 0; 289 } 290 291 int amdgpu_vpe_ring_fini(struct amdgpu_vpe *vpe) 292 { 293 amdgpu_ring_fini(&vpe->ring); 294 295 return 0; 296 } 297 298 static int vpe_early_init(struct amdgpu_ip_block *ip_block) 299 { 300 struct amdgpu_device *adev = ip_block->adev; 301 struct amdgpu_vpe *vpe = &adev->vpe; 302 303 switch (amdgpu_ip_version(adev, VPE_HWIP, 0)) { 304 case IP_VERSION(6, 1, 0): 305 case IP_VERSION(6, 1, 3): 306 vpe_v6_1_set_funcs(vpe); 307 break; 308 case IP_VERSION(6, 1, 1): 309 vpe_v6_1_set_funcs(vpe); 310 vpe->collaborate_mode = true; 311 break; 312 default: 313 return -EINVAL; 314 } 315 316 vpe_set_ring_funcs(adev); 317 vpe_set_regs(vpe); 318 319 dev_info(adev->dev, "VPE: collaborate mode %s", vpe->collaborate_mode ? "true" : "false"); 320 321 return 0; 322 } 323 324 static void vpe_idle_work_handler(struct work_struct *work) 325 { 326 struct amdgpu_device *adev = 327 container_of(work, struct amdgpu_device, vpe.idle_work.work); 328 unsigned int fences = 0; 329 330 fences += amdgpu_fence_count_emitted(&adev->vpe.ring); 331 332 if (fences == 0) 333 amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VPE, AMD_PG_STATE_GATE); 334 else 335 schedule_delayed_work(&adev->vpe.idle_work, VPE_IDLE_TIMEOUT); 336 } 337 338 static int vpe_common_init(struct amdgpu_vpe *vpe) 339 { 340 struct amdgpu_device *adev = container_of(vpe, struct amdgpu_device, vpe); 341 int r; 342 343 r = amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE, 344 AMDGPU_GEM_DOMAIN_GTT, 345 &adev->vpe.cmdbuf_obj, 346 &adev->vpe.cmdbuf_gpu_addr, 347 (void **)&adev->vpe.cmdbuf_cpu_addr); 348 if (r) { 349 dev_err(adev->dev, "VPE: failed to allocate cmdbuf bo %d\n", r); 350 return r; 351 } 352 353 vpe->context_started = false; 354 INIT_DELAYED_WORK(&adev->vpe.idle_work, vpe_idle_work_handler); 355 356 return 0; 357 } 358 359 static int vpe_sw_init(struct amdgpu_ip_block *ip_block) 360 { 361 struct amdgpu_device *adev = ip_block->adev; 362 struct amdgpu_vpe *vpe = &adev->vpe; 363 int ret; 364 365 ret = vpe_common_init(vpe); 366 if (ret) 367 goto out; 368 369 ret = vpe_irq_init(vpe); 370 if (ret) 371 goto out; 372 373 ret = vpe_ring_init(vpe); 374 if (ret) 375 goto out; 376 377 ret = vpe_init_microcode(vpe); 378 if (ret) 379 goto out; 380 out: 381 return ret; 382 } 383 384 static int vpe_sw_fini(struct amdgpu_ip_block *ip_block) 385 { 386 struct amdgpu_device *adev = ip_block->adev; 387 struct amdgpu_vpe *vpe = &adev->vpe; 388 389 release_firmware(vpe->fw); 390 vpe->fw = NULL; 391 392 vpe_ring_fini(vpe); 393 394 amdgpu_bo_free_kernel(&adev->vpe.cmdbuf_obj, 395 &adev->vpe.cmdbuf_gpu_addr, 396 (void **)&adev->vpe.cmdbuf_cpu_addr); 397 398 return 0; 399 } 400 401 static int vpe_hw_init(struct amdgpu_ip_block *ip_block) 402 { 403 struct amdgpu_device *adev = ip_block->adev; 404 struct amdgpu_vpe *vpe = &adev->vpe; 405 int ret; 406 407 /* Power on VPE */ 408 ret = amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VPE, 409 AMD_PG_STATE_UNGATE); 410 if (ret) 411 return ret; 412 413 ret = vpe_load_microcode(vpe); 414 if (ret) 415 return ret; 416 417 ret = vpe_ring_start(vpe); 418 if (ret) 419 return ret; 420 421 return 0; 422 } 423 424 static int vpe_hw_fini(struct amdgpu_ip_block *ip_block) 425 { 426 struct amdgpu_device *adev = ip_block->adev; 427 struct amdgpu_vpe *vpe = &adev->vpe; 428 429 vpe_ring_stop(vpe); 430 431 /* Power off VPE */ 432 amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VPE, AMD_PG_STATE_GATE); 433 434 return 0; 435 } 436 437 static int vpe_suspend(struct amdgpu_ip_block *ip_block) 438 { 439 struct amdgpu_device *adev = ip_block->adev; 440 441 cancel_delayed_work_sync(&adev->vpe.idle_work); 442 443 return vpe_hw_fini(ip_block); 444 } 445 446 static int vpe_resume(struct amdgpu_ip_block *ip_block) 447 { 448 return vpe_hw_init(ip_block); 449 } 450 451 static void vpe_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count) 452 { 453 int i; 454 455 for (i = 0; i < count; i++) 456 if (i == 0) 457 amdgpu_ring_write(ring, ring->funcs->nop | 458 VPE_CMD_NOP_HEADER_COUNT(count - 1)); 459 else 460 amdgpu_ring_write(ring, ring->funcs->nop); 461 } 462 463 static uint64_t vpe_get_csa_mc_addr(struct amdgpu_ring *ring, uint32_t vmid) 464 { 465 struct amdgpu_device *adev = ring->adev; 466 uint32_t index = 0; 467 uint64_t csa_mc_addr; 468 469 if (amdgpu_sriov_vf(adev) || vmid == 0 || !adev->gfx.mcbp) 470 return 0; 471 472 csa_mc_addr = amdgpu_csa_vaddr(adev) + AMDGPU_CSA_VPE_OFFSET + 473 index * AMDGPU_CSA_VPE_SIZE; 474 475 return csa_mc_addr; 476 } 477 478 static void vpe_ring_emit_pred_exec(struct amdgpu_ring *ring, 479 uint32_t device_select, 480 uint32_t exec_count) 481 { 482 if (!ring->adev->vpe.collaborate_mode) 483 return; 484 485 amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_PRED_EXE, 0) | 486 (device_select << 16)); 487 amdgpu_ring_write(ring, exec_count & 0x1fff); 488 } 489 490 static void vpe_ring_emit_ib(struct amdgpu_ring *ring, 491 struct amdgpu_job *job, 492 struct amdgpu_ib *ib, 493 uint32_t flags) 494 { 495 uint32_t vmid = AMDGPU_JOB_GET_VMID(job); 496 uint64_t csa_mc_addr = vpe_get_csa_mc_addr(ring, vmid); 497 498 amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_INDIRECT, 0) | 499 VPE_CMD_INDIRECT_HEADER_VMID(vmid & 0xf)); 500 501 /* base must be 32 byte aligned */ 502 amdgpu_ring_write(ring, ib->gpu_addr & 0xffffffe0); 503 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr)); 504 amdgpu_ring_write(ring, ib->length_dw); 505 amdgpu_ring_write(ring, lower_32_bits(csa_mc_addr)); 506 amdgpu_ring_write(ring, upper_32_bits(csa_mc_addr)); 507 } 508 509 static void vpe_ring_emit_fence(struct amdgpu_ring *ring, uint64_t addr, 510 uint64_t seq, unsigned int flags) 511 { 512 int i = 0; 513 514 do { 515 /* write the fence */ 516 amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_FENCE, 0)); 517 /* zero in first two bits */ 518 WARN_ON_ONCE(addr & 0x3); 519 amdgpu_ring_write(ring, lower_32_bits(addr)); 520 amdgpu_ring_write(ring, upper_32_bits(addr)); 521 amdgpu_ring_write(ring, i == 0 ? lower_32_bits(seq) : upper_32_bits(seq)); 522 addr += 4; 523 } while ((flags & AMDGPU_FENCE_FLAG_64BIT) && (i++ < 1)); 524 525 if (flags & AMDGPU_FENCE_FLAG_INT) { 526 /* generate an interrupt */ 527 amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_TRAP, 0)); 528 amdgpu_ring_write(ring, 0); 529 } 530 531 } 532 533 static void vpe_ring_emit_pipeline_sync(struct amdgpu_ring *ring) 534 { 535 uint32_t seq = ring->fence_drv.sync_seq; 536 uint64_t addr = ring->fence_drv.gpu_addr; 537 538 vpe_ring_emit_pred_exec(ring, 0, 6); 539 540 /* wait for idle */ 541 amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_POLL_REGMEM, 542 VPE_POLL_REGMEM_SUBOP_REGMEM) | 543 VPE_CMD_POLL_REGMEM_HEADER_FUNC(3) | /* equal */ 544 VPE_CMD_POLL_REGMEM_HEADER_MEM(1)); 545 amdgpu_ring_write(ring, addr & 0xfffffffc); 546 amdgpu_ring_write(ring, upper_32_bits(addr)); 547 amdgpu_ring_write(ring, seq); /* reference */ 548 amdgpu_ring_write(ring, 0xffffffff); /* mask */ 549 amdgpu_ring_write(ring, VPE_CMD_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 550 VPE_CMD_POLL_REGMEM_DW5_INTERVAL(4)); 551 } 552 553 static void vpe_ring_emit_wreg(struct amdgpu_ring *ring, uint32_t reg, uint32_t val) 554 { 555 vpe_ring_emit_pred_exec(ring, 0, 3); 556 557 amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_REG_WRITE, 0)); 558 amdgpu_ring_write(ring, reg << 2); 559 amdgpu_ring_write(ring, val); 560 } 561 562 static void vpe_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg, 563 uint32_t val, uint32_t mask) 564 { 565 vpe_ring_emit_pred_exec(ring, 0, 6); 566 567 amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_POLL_REGMEM, 568 VPE_POLL_REGMEM_SUBOP_REGMEM) | 569 VPE_CMD_POLL_REGMEM_HEADER_FUNC(3) | /* equal */ 570 VPE_CMD_POLL_REGMEM_HEADER_MEM(0)); 571 amdgpu_ring_write(ring, reg << 2); 572 amdgpu_ring_write(ring, 0); 573 amdgpu_ring_write(ring, val); /* reference */ 574 amdgpu_ring_write(ring, mask); /* mask */ 575 amdgpu_ring_write(ring, VPE_CMD_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 576 VPE_CMD_POLL_REGMEM_DW5_INTERVAL(10)); 577 } 578 579 static void vpe_ring_emit_vm_flush(struct amdgpu_ring *ring, unsigned int vmid, 580 uint64_t pd_addr) 581 { 582 amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr); 583 } 584 585 static unsigned int vpe_ring_init_cond_exec(struct amdgpu_ring *ring, 586 uint64_t addr) 587 { 588 unsigned int ret; 589 590 amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_COND_EXE, 0)); 591 amdgpu_ring_write(ring, lower_32_bits(addr)); 592 amdgpu_ring_write(ring, upper_32_bits(addr)); 593 amdgpu_ring_write(ring, 1); 594 ret = ring->wptr & ring->buf_mask; 595 amdgpu_ring_write(ring, 0); 596 597 return ret; 598 } 599 600 static int vpe_ring_preempt_ib(struct amdgpu_ring *ring) 601 { 602 struct amdgpu_device *adev = ring->adev; 603 struct amdgpu_vpe *vpe = &adev->vpe; 604 uint32_t preempt_reg = vpe->regs.queue0_preempt; 605 int i, r = 0; 606 607 /* assert preemption condition */ 608 amdgpu_ring_set_preempt_cond_exec(ring, false); 609 610 /* emit the trailing fence */ 611 ring->trail_seq += 1; 612 amdgpu_ring_alloc(ring, 10); 613 vpe_ring_emit_fence(ring, ring->trail_fence_gpu_addr, ring->trail_seq, 0); 614 amdgpu_ring_commit(ring); 615 616 /* assert IB preemption */ 617 WREG32(vpe_get_reg_offset(vpe, ring->me, preempt_reg), 1); 618 619 /* poll the trailing fence */ 620 for (i = 0; i < adev->usec_timeout; i++) { 621 if (ring->trail_seq == 622 le32_to_cpu(*(ring->trail_fence_cpu_addr))) 623 break; 624 udelay(1); 625 } 626 627 if (i >= adev->usec_timeout) { 628 r = -EINVAL; 629 dev_err(adev->dev, "ring %d failed to be preempted\n", ring->idx); 630 } 631 632 /* deassert IB preemption */ 633 WREG32(vpe_get_reg_offset(vpe, ring->me, preempt_reg), 0); 634 635 /* deassert the preemption condition */ 636 amdgpu_ring_set_preempt_cond_exec(ring, true); 637 638 return r; 639 } 640 641 static int vpe_set_clockgating_state(void *handle, 642 enum amd_clockgating_state state) 643 { 644 return 0; 645 } 646 647 static int vpe_set_powergating_state(void *handle, 648 enum amd_powergating_state state) 649 { 650 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 651 struct amdgpu_vpe *vpe = &adev->vpe; 652 653 if (!adev->pm.dpm_enabled) 654 dev_err(adev->dev, "Without PM, cannot support powergating\n"); 655 656 dev_dbg(adev->dev, "%s: %s!\n", __func__, (state == AMD_PG_STATE_GATE) ? "GATE":"UNGATE"); 657 658 if (state == AMD_PG_STATE_GATE) { 659 amdgpu_dpm_enable_vpe(adev, false); 660 vpe->context_started = false; 661 } else { 662 amdgpu_dpm_enable_vpe(adev, true); 663 } 664 665 return 0; 666 } 667 668 static uint64_t vpe_ring_get_rptr(struct amdgpu_ring *ring) 669 { 670 struct amdgpu_device *adev = ring->adev; 671 struct amdgpu_vpe *vpe = &adev->vpe; 672 uint64_t rptr; 673 674 if (ring->use_doorbell) { 675 rptr = atomic64_read((atomic64_t *)ring->rptr_cpu_addr); 676 dev_dbg(adev->dev, "rptr/doorbell before shift == 0x%016llx\n", rptr); 677 } else { 678 rptr = RREG32(vpe_get_reg_offset(vpe, ring->me, vpe->regs.queue0_rb_rptr_hi)); 679 rptr = rptr << 32; 680 rptr |= RREG32(vpe_get_reg_offset(vpe, ring->me, vpe->regs.queue0_rb_rptr_lo)); 681 dev_dbg(adev->dev, "rptr before shift [%i] == 0x%016llx\n", ring->me, rptr); 682 } 683 684 return (rptr >> 2); 685 } 686 687 static uint64_t vpe_ring_get_wptr(struct amdgpu_ring *ring) 688 { 689 struct amdgpu_device *adev = ring->adev; 690 struct amdgpu_vpe *vpe = &adev->vpe; 691 uint64_t wptr; 692 693 if (ring->use_doorbell) { 694 wptr = atomic64_read((atomic64_t *)ring->wptr_cpu_addr); 695 dev_dbg(adev->dev, "wptr/doorbell before shift == 0x%016llx\n", wptr); 696 } else { 697 wptr = RREG32(vpe_get_reg_offset(vpe, ring->me, vpe->regs.queue0_rb_wptr_hi)); 698 wptr = wptr << 32; 699 wptr |= RREG32(vpe_get_reg_offset(vpe, ring->me, vpe->regs.queue0_rb_wptr_lo)); 700 dev_dbg(adev->dev, "wptr before shift [%i] == 0x%016llx\n", ring->me, wptr); 701 } 702 703 return (wptr >> 2); 704 } 705 706 static void vpe_ring_set_wptr(struct amdgpu_ring *ring) 707 { 708 struct amdgpu_device *adev = ring->adev; 709 struct amdgpu_vpe *vpe = &adev->vpe; 710 711 if (ring->use_doorbell) { 712 dev_dbg(adev->dev, "Using doorbell, \ 713 wptr_offs == 0x%08x, \ 714 lower_32_bits(ring->wptr) << 2 == 0x%08x, \ 715 upper_32_bits(ring->wptr) << 2 == 0x%08x\n", 716 ring->wptr_offs, 717 lower_32_bits(ring->wptr << 2), 718 upper_32_bits(ring->wptr << 2)); 719 atomic64_set((atomic64_t *)ring->wptr_cpu_addr, ring->wptr << 2); 720 WDOORBELL64(ring->doorbell_index, ring->wptr << 2); 721 if (vpe->collaborate_mode) 722 WDOORBELL64(ring->doorbell_index + 4, ring->wptr << 2); 723 } else { 724 int i; 725 726 for (i = 0; i < vpe->num_instances; i++) { 727 dev_dbg(adev->dev, "Not using doorbell, \ 728 regVPEC_QUEUE0_RB_WPTR == 0x%08x, \ 729 regVPEC_QUEUE0_RB_WPTR_HI == 0x%08x\n", 730 lower_32_bits(ring->wptr << 2), 731 upper_32_bits(ring->wptr << 2)); 732 WREG32(vpe_get_reg_offset(vpe, i, vpe->regs.queue0_rb_wptr_lo), 733 lower_32_bits(ring->wptr << 2)); 734 WREG32(vpe_get_reg_offset(vpe, i, vpe->regs.queue0_rb_wptr_hi), 735 upper_32_bits(ring->wptr << 2)); 736 } 737 } 738 } 739 740 static int vpe_ring_test_ring(struct amdgpu_ring *ring) 741 { 742 struct amdgpu_device *adev = ring->adev; 743 const uint32_t test_pattern = 0xdeadbeef; 744 uint32_t index, i; 745 uint64_t wb_addr; 746 int ret; 747 748 ret = amdgpu_device_wb_get(adev, &index); 749 if (ret) { 750 dev_err(adev->dev, "(%d) failed to allocate wb slot\n", ret); 751 return ret; 752 } 753 754 adev->wb.wb[index] = 0; 755 wb_addr = adev->wb.gpu_addr + (index * 4); 756 757 ret = amdgpu_ring_alloc(ring, 4); 758 if (ret) { 759 dev_err(adev->dev, "amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, ret); 760 goto out; 761 } 762 763 amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_FENCE, 0)); 764 amdgpu_ring_write(ring, lower_32_bits(wb_addr)); 765 amdgpu_ring_write(ring, upper_32_bits(wb_addr)); 766 amdgpu_ring_write(ring, test_pattern); 767 amdgpu_ring_commit(ring); 768 769 for (i = 0; i < adev->usec_timeout; i++) { 770 if (le32_to_cpu(adev->wb.wb[index]) == test_pattern) 771 goto out; 772 udelay(1); 773 } 774 775 ret = -ETIMEDOUT; 776 out: 777 amdgpu_device_wb_free(adev, index); 778 779 return ret; 780 } 781 782 static int vpe_ring_test_ib(struct amdgpu_ring *ring, long timeout) 783 { 784 struct amdgpu_device *adev = ring->adev; 785 const uint32_t test_pattern = 0xdeadbeef; 786 struct amdgpu_ib ib = {}; 787 struct dma_fence *f = NULL; 788 uint32_t index; 789 uint64_t wb_addr; 790 int ret; 791 792 ret = amdgpu_device_wb_get(adev, &index); 793 if (ret) { 794 dev_err(adev->dev, "(%d) failed to allocate wb slot\n", ret); 795 return ret; 796 } 797 798 adev->wb.wb[index] = 0; 799 wb_addr = adev->wb.gpu_addr + (index * 4); 800 801 ret = amdgpu_ib_get(adev, NULL, 256, AMDGPU_IB_POOL_DIRECT, &ib); 802 if (ret) 803 goto err0; 804 805 ib.ptr[0] = VPE_CMD_HEADER(VPE_CMD_OPCODE_FENCE, 0); 806 ib.ptr[1] = lower_32_bits(wb_addr); 807 ib.ptr[2] = upper_32_bits(wb_addr); 808 ib.ptr[3] = test_pattern; 809 ib.ptr[4] = VPE_CMD_HEADER(VPE_CMD_OPCODE_NOP, 0); 810 ib.ptr[5] = VPE_CMD_HEADER(VPE_CMD_OPCODE_NOP, 0); 811 ib.ptr[6] = VPE_CMD_HEADER(VPE_CMD_OPCODE_NOP, 0); 812 ib.ptr[7] = VPE_CMD_HEADER(VPE_CMD_OPCODE_NOP, 0); 813 ib.length_dw = 8; 814 815 ret = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f); 816 if (ret) 817 goto err1; 818 819 ret = dma_fence_wait_timeout(f, false, timeout); 820 if (ret <= 0) { 821 ret = ret ? : -ETIMEDOUT; 822 goto err1; 823 } 824 825 ret = (le32_to_cpu(adev->wb.wb[index]) == test_pattern) ? 0 : -EINVAL; 826 827 err1: 828 amdgpu_ib_free(adev, &ib, NULL); 829 dma_fence_put(f); 830 err0: 831 amdgpu_device_wb_free(adev, index); 832 833 return ret; 834 } 835 836 static void vpe_ring_begin_use(struct amdgpu_ring *ring) 837 { 838 struct amdgpu_device *adev = ring->adev; 839 struct amdgpu_vpe *vpe = &adev->vpe; 840 841 cancel_delayed_work_sync(&adev->vpe.idle_work); 842 843 /* Power on VPE and notify VPE of new context */ 844 if (!vpe->context_started) { 845 uint32_t context_notify; 846 847 /* Power on VPE */ 848 amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VPE, AMD_PG_STATE_UNGATE); 849 850 /* Indicates that a job from a new context has been submitted. */ 851 context_notify = RREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.context_indicator)); 852 if ((context_notify & 0x1) == 0) 853 context_notify |= 0x1; 854 else 855 context_notify &= ~(0x1); 856 WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.context_indicator), context_notify); 857 vpe->context_started = true; 858 } 859 } 860 861 static void vpe_ring_end_use(struct amdgpu_ring *ring) 862 { 863 struct amdgpu_device *adev = ring->adev; 864 865 schedule_delayed_work(&adev->vpe.idle_work, VPE_IDLE_TIMEOUT); 866 } 867 868 static const struct amdgpu_ring_funcs vpe_ring_funcs = { 869 .type = AMDGPU_RING_TYPE_VPE, 870 .align_mask = 0xf, 871 .nop = VPE_CMD_HEADER(VPE_CMD_OPCODE_NOP, 0), 872 .support_64bit_ptrs = true, 873 .get_rptr = vpe_ring_get_rptr, 874 .get_wptr = vpe_ring_get_wptr, 875 .set_wptr = vpe_ring_set_wptr, 876 .emit_frame_size = 877 5 + /* vpe_ring_init_cond_exec */ 878 6 + /* vpe_ring_emit_pipeline_sync */ 879 10 + 10 + 10 + /* vpe_ring_emit_fence */ 880 /* vpe_ring_emit_vm_flush */ 881 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + 882 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6, 883 .emit_ib_size = 7 + 6, 884 .emit_ib = vpe_ring_emit_ib, 885 .emit_pipeline_sync = vpe_ring_emit_pipeline_sync, 886 .emit_fence = vpe_ring_emit_fence, 887 .emit_vm_flush = vpe_ring_emit_vm_flush, 888 .emit_wreg = vpe_ring_emit_wreg, 889 .emit_reg_wait = vpe_ring_emit_reg_wait, 890 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper, 891 .insert_nop = vpe_ring_insert_nop, 892 .pad_ib = amdgpu_ring_generic_pad_ib, 893 .test_ring = vpe_ring_test_ring, 894 .test_ib = vpe_ring_test_ib, 895 .init_cond_exec = vpe_ring_init_cond_exec, 896 .preempt_ib = vpe_ring_preempt_ib, 897 .begin_use = vpe_ring_begin_use, 898 .end_use = vpe_ring_end_use, 899 }; 900 901 static void vpe_set_ring_funcs(struct amdgpu_device *adev) 902 { 903 adev->vpe.ring.funcs = &vpe_ring_funcs; 904 } 905 906 const struct amd_ip_funcs vpe_ip_funcs = { 907 .name = "vpe_v6_1", 908 .early_init = vpe_early_init, 909 .sw_init = vpe_sw_init, 910 .sw_fini = vpe_sw_fini, 911 .hw_init = vpe_hw_init, 912 .hw_fini = vpe_hw_fini, 913 .suspend = vpe_suspend, 914 .resume = vpe_resume, 915 .set_clockgating_state = vpe_set_clockgating_state, 916 .set_powergating_state = vpe_set_powergating_state, 917 }; 918 919 const struct amdgpu_ip_block_version vpe_v6_1_ip_block = { 920 .type = AMD_IP_BLOCK_TYPE_VPE, 921 .major = 6, 922 .minor = 1, 923 .rev = 0, 924 .funcs = &vpe_ip_funcs, 925 }; 926