1 /* 2 * Copyright 2022 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 23 #include <linux/firmware.h> 24 #include <drm/drm_drv.h> 25 26 #include "amdgpu.h" 27 #include "amdgpu_ucode.h" 28 #include "amdgpu_vpe.h" 29 #include "amdgpu_smu.h" 30 #include "soc15_common.h" 31 #include "vpe_v6_1.h" 32 33 #define AMDGPU_CSA_VPE_SIZE 64 34 /* VPE CSA resides in the 4th page of CSA */ 35 #define AMDGPU_CSA_VPE_OFFSET (4096 * 3) 36 37 /* 1 second timeout */ 38 #define VPE_IDLE_TIMEOUT msecs_to_jiffies(1000) 39 40 #define VPE_MAX_DPM_LEVEL 4 41 #define FIXED1_8_BITS_PER_FRACTIONAL_PART 8 42 #define GET_PRATIO_INTEGER_PART(x) ((x) >> FIXED1_8_BITS_PER_FRACTIONAL_PART) 43 44 static void vpe_set_ring_funcs(struct amdgpu_device *adev); 45 46 static inline uint16_t div16_u16_rem(uint16_t dividend, uint16_t divisor, uint16_t *remainder) 47 { 48 *remainder = dividend % divisor; 49 return dividend / divisor; 50 } 51 52 static inline uint16_t complete_integer_division_u16( 53 uint16_t dividend, 54 uint16_t divisor, 55 uint16_t *remainder) 56 { 57 return div16_u16_rem(dividend, divisor, (uint16_t *)remainder); 58 } 59 60 static uint16_t vpe_u1_8_from_fraction(uint16_t numerator, uint16_t denominator) 61 { 62 u16 arg1_value = numerator; 63 u16 arg2_value = denominator; 64 65 uint16_t remainder; 66 67 /* determine integer part */ 68 uint16_t res_value = complete_integer_division_u16( 69 arg1_value, arg2_value, &remainder); 70 71 if (res_value > 127 /* CHAR_MAX */) 72 return 0; 73 74 /* determine fractional part */ 75 { 76 unsigned int i = FIXED1_8_BITS_PER_FRACTIONAL_PART; 77 78 do { 79 remainder <<= 1; 80 81 res_value <<= 1; 82 83 if (remainder >= arg2_value) { 84 res_value |= 1; 85 remainder -= arg2_value; 86 } 87 } while (--i != 0); 88 } 89 90 /* round up LSB */ 91 { 92 uint16_t summand = (remainder << 1) >= arg2_value; 93 94 if ((res_value + summand) > 32767 /* SHRT_MAX */) 95 return 0; 96 97 res_value += summand; 98 } 99 100 return res_value; 101 } 102 103 static uint16_t vpe_internal_get_pratio(uint16_t from_frequency, uint16_t to_frequency) 104 { 105 uint16_t pratio = vpe_u1_8_from_fraction(from_frequency, to_frequency); 106 107 if (GET_PRATIO_INTEGER_PART(pratio) > 1) 108 pratio = 0; 109 110 return pratio; 111 } 112 113 /* 114 * VPE has 4 DPM levels from level 0 (lowerest) to 3 (highest), 115 * VPE FW will dynamically decide which level should be used according to current loading. 116 * 117 * Get VPE and SOC clocks from PM, and select the appropriate four clock values, 118 * calculate the ratios of adjusting from one clock to another. 119 * The VPE FW can then request the appropriate frequency from the PMFW. 120 */ 121 int amdgpu_vpe_configure_dpm(struct amdgpu_vpe *vpe) 122 { 123 struct amdgpu_device *adev = vpe->ring.adev; 124 uint32_t dpm_ctl; 125 126 if (adev->pm.dpm_enabled) { 127 struct dpm_clocks clock_table = { 0 }; 128 struct dpm_clock *VPEClks; 129 struct dpm_clock *SOCClks; 130 uint32_t idx; 131 uint32_t vpeclk_enalbled_num = 0; 132 uint32_t pratio_vmax_vnorm = 0, pratio_vnorm_vmid = 0, pratio_vmid_vmin = 0; 133 uint16_t pratio_vmin_freq = 0, pratio_vmid_freq = 0, pratio_vnorm_freq = 0, pratio_vmax_freq = 0; 134 135 dpm_ctl = RREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_enable)); 136 dpm_ctl |= 1; /* DPM enablement */ 137 WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_enable), dpm_ctl); 138 139 /* Get VPECLK and SOCCLK */ 140 if (amdgpu_dpm_get_dpm_clock_table(adev, &clock_table)) { 141 dev_dbg(adev->dev, "%s: get clock failed!\n", __func__); 142 goto disable_dpm; 143 } 144 145 SOCClks = clock_table.SocClocks; 146 VPEClks = clock_table.VPEClocks; 147 148 /* Comfirm enabled vpe clk num 149 * Enabled VPE clocks are ordered from low to high in VPEClks 150 * The highest valid clock index+1 is the number of VPEClks 151 */ 152 for (idx = PP_SMU_NUM_VPECLK_DPM_LEVELS; idx && !vpeclk_enalbled_num; idx--) 153 if (VPEClks[idx-1].Freq) 154 vpeclk_enalbled_num = idx; 155 156 /* vpe dpm only cares 4 levels. */ 157 for (idx = 0; idx < VPE_MAX_DPM_LEVEL; idx++) { 158 uint32_t soc_dpm_level; 159 uint32_t min_freq; 160 161 if (idx == 0) 162 soc_dpm_level = 0; 163 else 164 soc_dpm_level = (idx * 2) + 1; 165 166 /* clamp the max level */ 167 if (soc_dpm_level > vpeclk_enalbled_num - 1) 168 soc_dpm_level = vpeclk_enalbled_num - 1; 169 170 min_freq = (SOCClks[soc_dpm_level].Freq < VPEClks[soc_dpm_level].Freq) ? 171 SOCClks[soc_dpm_level].Freq : VPEClks[soc_dpm_level].Freq; 172 173 switch (idx) { 174 case 0: 175 pratio_vmin_freq = min_freq; 176 break; 177 case 1: 178 pratio_vmid_freq = min_freq; 179 break; 180 case 2: 181 pratio_vnorm_freq = min_freq; 182 break; 183 case 3: 184 pratio_vmax_freq = min_freq; 185 break; 186 default: 187 break; 188 } 189 } 190 191 if (pratio_vmin_freq && pratio_vmid_freq && pratio_vnorm_freq && pratio_vmax_freq) { 192 uint32_t pratio_ctl; 193 194 pratio_vmax_vnorm = (uint32_t)vpe_internal_get_pratio(pratio_vmax_freq, pratio_vnorm_freq); 195 pratio_vnorm_vmid = (uint32_t)vpe_internal_get_pratio(pratio_vnorm_freq, pratio_vmid_freq); 196 pratio_vmid_vmin = (uint32_t)vpe_internal_get_pratio(pratio_vmid_freq, pratio_vmin_freq); 197 198 pratio_ctl = pratio_vmax_vnorm | (pratio_vnorm_vmid << 9) | (pratio_vmid_vmin << 18); 199 WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_pratio), pratio_ctl); /* PRatio */ 200 WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_request_interval), 24000); /* 1ms, unit=1/24MHz */ 201 WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_decision_threshold), 1200000); /* 50ms */ 202 WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_busy_clamp_threshold), 1200000);/* 50ms */ 203 WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_idle_clamp_threshold), 1200000);/* 50ms */ 204 dev_dbg(adev->dev, "%s: configure vpe dpm pratio done!\n", __func__); 205 } else { 206 dev_dbg(adev->dev, "%s: invalid pratio parameters!\n", __func__); 207 goto disable_dpm; 208 } 209 } 210 return 0; 211 212 disable_dpm: 213 dpm_ctl = RREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_enable)); 214 dpm_ctl &= 0xfffffffe; /* Disable DPM */ 215 WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_enable), dpm_ctl); 216 dev_dbg(adev->dev, "%s: disable vpe dpm\n", __func__); 217 return -EINVAL; 218 } 219 220 int amdgpu_vpe_psp_update_sram(struct amdgpu_device *adev) 221 { 222 struct amdgpu_firmware_info ucode = { 223 .ucode_id = AMDGPU_UCODE_ID_VPE, 224 .mc_addr = adev->vpe.cmdbuf_gpu_addr, 225 .ucode_size = 8, 226 }; 227 228 return psp_execute_ip_fw_load(&adev->psp, &ucode); 229 } 230 231 int amdgpu_vpe_init_microcode(struct amdgpu_vpe *vpe) 232 { 233 struct amdgpu_device *adev = vpe->ring.adev; 234 const struct vpe_firmware_header_v1_0 *vpe_hdr; 235 char fw_prefix[32]; 236 int ret; 237 238 amdgpu_ucode_ip_version_decode(adev, VPE_HWIP, fw_prefix, sizeof(fw_prefix)); 239 ret = amdgpu_ucode_request(adev, &adev->vpe.fw, "amdgpu/%s.bin", fw_prefix); 240 if (ret) 241 goto out; 242 243 vpe_hdr = (const struct vpe_firmware_header_v1_0 *)adev->vpe.fw->data; 244 adev->vpe.fw_version = le32_to_cpu(vpe_hdr->header.ucode_version); 245 adev->vpe.feature_version = le32_to_cpu(vpe_hdr->ucode_feature_version); 246 247 if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { 248 struct amdgpu_firmware_info *info; 249 250 info = &adev->firmware.ucode[AMDGPU_UCODE_ID_VPE_CTX]; 251 info->ucode_id = AMDGPU_UCODE_ID_VPE_CTX; 252 info->fw = adev->vpe.fw; 253 adev->firmware.fw_size += 254 ALIGN(le32_to_cpu(vpe_hdr->ctx_ucode_size_bytes), PAGE_SIZE); 255 256 info = &adev->firmware.ucode[AMDGPU_UCODE_ID_VPE_CTL]; 257 info->ucode_id = AMDGPU_UCODE_ID_VPE_CTL; 258 info->fw = adev->vpe.fw; 259 adev->firmware.fw_size += 260 ALIGN(le32_to_cpu(vpe_hdr->ctl_ucode_size_bytes), PAGE_SIZE); 261 } 262 263 return 0; 264 out: 265 dev_err(adev->dev, "fail to initialize vpe microcode\n"); 266 release_firmware(adev->vpe.fw); 267 adev->vpe.fw = NULL; 268 return ret; 269 } 270 271 int amdgpu_vpe_ring_init(struct amdgpu_vpe *vpe) 272 { 273 struct amdgpu_device *adev = container_of(vpe, struct amdgpu_device, vpe); 274 struct amdgpu_ring *ring = &vpe->ring; 275 int ret; 276 277 ring->ring_obj = NULL; 278 ring->use_doorbell = true; 279 ring->vm_hub = AMDGPU_MMHUB0(0); 280 ring->doorbell_index = (adev->doorbell_index.vpe_ring << 1); 281 snprintf(ring->name, 4, "vpe"); 282 283 ret = amdgpu_ring_init(adev, ring, 1024, &vpe->trap_irq, 0, 284 AMDGPU_RING_PRIO_DEFAULT, NULL); 285 if (ret) 286 return ret; 287 288 return 0; 289 } 290 291 int amdgpu_vpe_ring_fini(struct amdgpu_vpe *vpe) 292 { 293 amdgpu_ring_fini(&vpe->ring); 294 295 return 0; 296 } 297 298 static int vpe_early_init(void *handle) 299 { 300 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 301 struct amdgpu_vpe *vpe = &adev->vpe; 302 303 switch (amdgpu_ip_version(adev, VPE_HWIP, 0)) { 304 case IP_VERSION(6, 1, 0): 305 vpe_v6_1_set_funcs(vpe); 306 break; 307 case IP_VERSION(6, 1, 1): 308 vpe_v6_1_set_funcs(vpe); 309 vpe->collaborate_mode = true; 310 break; 311 default: 312 return -EINVAL; 313 } 314 315 vpe_set_ring_funcs(adev); 316 vpe_set_regs(vpe); 317 318 dev_info(adev->dev, "VPE: collaborate mode %s", vpe->collaborate_mode ? "true" : "false"); 319 320 return 0; 321 } 322 323 static void vpe_idle_work_handler(struct work_struct *work) 324 { 325 struct amdgpu_device *adev = 326 container_of(work, struct amdgpu_device, vpe.idle_work.work); 327 unsigned int fences = 0; 328 329 fences += amdgpu_fence_count_emitted(&adev->vpe.ring); 330 331 if (fences == 0) 332 amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VPE, AMD_PG_STATE_GATE); 333 else 334 schedule_delayed_work(&adev->vpe.idle_work, VPE_IDLE_TIMEOUT); 335 } 336 337 static int vpe_common_init(struct amdgpu_vpe *vpe) 338 { 339 struct amdgpu_device *adev = container_of(vpe, struct amdgpu_device, vpe); 340 int r; 341 342 r = amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE, 343 AMDGPU_GEM_DOMAIN_GTT, 344 &adev->vpe.cmdbuf_obj, 345 &adev->vpe.cmdbuf_gpu_addr, 346 (void **)&adev->vpe.cmdbuf_cpu_addr); 347 if (r) { 348 dev_err(adev->dev, "VPE: failed to allocate cmdbuf bo %d\n", r); 349 return r; 350 } 351 352 vpe->context_started = false; 353 INIT_DELAYED_WORK(&adev->vpe.idle_work, vpe_idle_work_handler); 354 355 return 0; 356 } 357 358 static int vpe_sw_init(void *handle) 359 { 360 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 361 struct amdgpu_vpe *vpe = &adev->vpe; 362 int ret; 363 364 ret = vpe_common_init(vpe); 365 if (ret) 366 goto out; 367 368 ret = vpe_irq_init(vpe); 369 if (ret) 370 goto out; 371 372 ret = vpe_ring_init(vpe); 373 if (ret) 374 goto out; 375 376 ret = vpe_init_microcode(vpe); 377 if (ret) 378 goto out; 379 out: 380 return ret; 381 } 382 383 static int vpe_sw_fini(void *handle) 384 { 385 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 386 struct amdgpu_vpe *vpe = &adev->vpe; 387 388 release_firmware(vpe->fw); 389 vpe->fw = NULL; 390 391 vpe_ring_fini(vpe); 392 393 amdgpu_bo_free_kernel(&adev->vpe.cmdbuf_obj, 394 &adev->vpe.cmdbuf_gpu_addr, 395 (void **)&adev->vpe.cmdbuf_cpu_addr); 396 397 return 0; 398 } 399 400 static int vpe_hw_init(void *handle) 401 { 402 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 403 struct amdgpu_vpe *vpe = &adev->vpe; 404 int ret; 405 406 /* Power on VPE */ 407 ret = amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VPE, 408 AMD_PG_STATE_UNGATE); 409 if (ret) 410 return ret; 411 412 ret = vpe_load_microcode(vpe); 413 if (ret) 414 return ret; 415 416 ret = vpe_ring_start(vpe); 417 if (ret) 418 return ret; 419 420 return 0; 421 } 422 423 static int vpe_hw_fini(void *handle) 424 { 425 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 426 struct amdgpu_vpe *vpe = &adev->vpe; 427 428 vpe_ring_stop(vpe); 429 430 /* Power off VPE */ 431 amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VPE, AMD_PG_STATE_GATE); 432 433 return 0; 434 } 435 436 static int vpe_suspend(void *handle) 437 { 438 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 439 440 cancel_delayed_work_sync(&adev->vpe.idle_work); 441 442 return vpe_hw_fini(adev); 443 } 444 445 static int vpe_resume(void *handle) 446 { 447 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 448 449 return vpe_hw_init(adev); 450 } 451 452 static void vpe_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count) 453 { 454 int i; 455 456 for (i = 0; i < count; i++) 457 if (i == 0) 458 amdgpu_ring_write(ring, ring->funcs->nop | 459 VPE_CMD_NOP_HEADER_COUNT(count - 1)); 460 else 461 amdgpu_ring_write(ring, ring->funcs->nop); 462 } 463 464 static uint64_t vpe_get_csa_mc_addr(struct amdgpu_ring *ring, uint32_t vmid) 465 { 466 struct amdgpu_device *adev = ring->adev; 467 uint32_t index = 0; 468 uint64_t csa_mc_addr; 469 470 if (amdgpu_sriov_vf(adev) || vmid == 0 || !adev->gfx.mcbp) 471 return 0; 472 473 csa_mc_addr = amdgpu_csa_vaddr(adev) + AMDGPU_CSA_VPE_OFFSET + 474 index * AMDGPU_CSA_VPE_SIZE; 475 476 return csa_mc_addr; 477 } 478 479 static void vpe_ring_emit_pred_exec(struct amdgpu_ring *ring, 480 uint32_t device_select, 481 uint32_t exec_count) 482 { 483 if (!ring->adev->vpe.collaborate_mode) 484 return; 485 486 amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_PRED_EXE, 0) | 487 (device_select << 16)); 488 amdgpu_ring_write(ring, exec_count & 0x1fff); 489 } 490 491 static void vpe_ring_emit_ib(struct amdgpu_ring *ring, 492 struct amdgpu_job *job, 493 struct amdgpu_ib *ib, 494 uint32_t flags) 495 { 496 uint32_t vmid = AMDGPU_JOB_GET_VMID(job); 497 uint64_t csa_mc_addr = vpe_get_csa_mc_addr(ring, vmid); 498 499 amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_INDIRECT, 0) | 500 VPE_CMD_INDIRECT_HEADER_VMID(vmid & 0xf)); 501 502 /* base must be 32 byte aligned */ 503 amdgpu_ring_write(ring, ib->gpu_addr & 0xffffffe0); 504 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr)); 505 amdgpu_ring_write(ring, ib->length_dw); 506 amdgpu_ring_write(ring, lower_32_bits(csa_mc_addr)); 507 amdgpu_ring_write(ring, upper_32_bits(csa_mc_addr)); 508 } 509 510 static void vpe_ring_emit_fence(struct amdgpu_ring *ring, uint64_t addr, 511 uint64_t seq, unsigned int flags) 512 { 513 int i = 0; 514 515 do { 516 /* write the fence */ 517 amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_FENCE, 0)); 518 /* zero in first two bits */ 519 WARN_ON_ONCE(addr & 0x3); 520 amdgpu_ring_write(ring, lower_32_bits(addr)); 521 amdgpu_ring_write(ring, upper_32_bits(addr)); 522 amdgpu_ring_write(ring, i == 0 ? lower_32_bits(seq) : upper_32_bits(seq)); 523 addr += 4; 524 } while ((flags & AMDGPU_FENCE_FLAG_64BIT) && (i++ < 1)); 525 526 if (flags & AMDGPU_FENCE_FLAG_INT) { 527 /* generate an interrupt */ 528 amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_TRAP, 0)); 529 amdgpu_ring_write(ring, 0); 530 } 531 532 } 533 534 static void vpe_ring_emit_pipeline_sync(struct amdgpu_ring *ring) 535 { 536 uint32_t seq = ring->fence_drv.sync_seq; 537 uint64_t addr = ring->fence_drv.gpu_addr; 538 539 vpe_ring_emit_pred_exec(ring, 0, 6); 540 541 /* wait for idle */ 542 amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_POLL_REGMEM, 543 VPE_POLL_REGMEM_SUBOP_REGMEM) | 544 VPE_CMD_POLL_REGMEM_HEADER_FUNC(3) | /* equal */ 545 VPE_CMD_POLL_REGMEM_HEADER_MEM(1)); 546 amdgpu_ring_write(ring, addr & 0xfffffffc); 547 amdgpu_ring_write(ring, upper_32_bits(addr)); 548 amdgpu_ring_write(ring, seq); /* reference */ 549 amdgpu_ring_write(ring, 0xffffffff); /* mask */ 550 amdgpu_ring_write(ring, VPE_CMD_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 551 VPE_CMD_POLL_REGMEM_DW5_INTERVAL(4)); 552 } 553 554 static void vpe_ring_emit_wreg(struct amdgpu_ring *ring, uint32_t reg, uint32_t val) 555 { 556 vpe_ring_emit_pred_exec(ring, 0, 3); 557 558 amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_REG_WRITE, 0)); 559 amdgpu_ring_write(ring, reg << 2); 560 amdgpu_ring_write(ring, val); 561 } 562 563 static void vpe_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg, 564 uint32_t val, uint32_t mask) 565 { 566 vpe_ring_emit_pred_exec(ring, 0, 6); 567 568 amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_POLL_REGMEM, 569 VPE_POLL_REGMEM_SUBOP_REGMEM) | 570 VPE_CMD_POLL_REGMEM_HEADER_FUNC(3) | /* equal */ 571 VPE_CMD_POLL_REGMEM_HEADER_MEM(0)); 572 amdgpu_ring_write(ring, reg << 2); 573 amdgpu_ring_write(ring, 0); 574 amdgpu_ring_write(ring, val); /* reference */ 575 amdgpu_ring_write(ring, mask); /* mask */ 576 amdgpu_ring_write(ring, VPE_CMD_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 577 VPE_CMD_POLL_REGMEM_DW5_INTERVAL(10)); 578 } 579 580 static void vpe_ring_emit_vm_flush(struct amdgpu_ring *ring, unsigned int vmid, 581 uint64_t pd_addr) 582 { 583 amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr); 584 } 585 586 static unsigned int vpe_ring_init_cond_exec(struct amdgpu_ring *ring, 587 uint64_t addr) 588 { 589 unsigned int ret; 590 591 amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_COND_EXE, 0)); 592 amdgpu_ring_write(ring, lower_32_bits(addr)); 593 amdgpu_ring_write(ring, upper_32_bits(addr)); 594 amdgpu_ring_write(ring, 1); 595 ret = ring->wptr & ring->buf_mask; 596 amdgpu_ring_write(ring, 0); 597 598 return ret; 599 } 600 601 static int vpe_ring_preempt_ib(struct amdgpu_ring *ring) 602 { 603 struct amdgpu_device *adev = ring->adev; 604 struct amdgpu_vpe *vpe = &adev->vpe; 605 uint32_t preempt_reg = vpe->regs.queue0_preempt; 606 int i, r = 0; 607 608 /* assert preemption condition */ 609 amdgpu_ring_set_preempt_cond_exec(ring, false); 610 611 /* emit the trailing fence */ 612 ring->trail_seq += 1; 613 amdgpu_ring_alloc(ring, 10); 614 vpe_ring_emit_fence(ring, ring->trail_fence_gpu_addr, ring->trail_seq, 0); 615 amdgpu_ring_commit(ring); 616 617 /* assert IB preemption */ 618 WREG32(vpe_get_reg_offset(vpe, ring->me, preempt_reg), 1); 619 620 /* poll the trailing fence */ 621 for (i = 0; i < adev->usec_timeout; i++) { 622 if (ring->trail_seq == 623 le32_to_cpu(*(ring->trail_fence_cpu_addr))) 624 break; 625 udelay(1); 626 } 627 628 if (i >= adev->usec_timeout) { 629 r = -EINVAL; 630 dev_err(adev->dev, "ring %d failed to be preempted\n", ring->idx); 631 } 632 633 /* deassert IB preemption */ 634 WREG32(vpe_get_reg_offset(vpe, ring->me, preempt_reg), 0); 635 636 /* deassert the preemption condition */ 637 amdgpu_ring_set_preempt_cond_exec(ring, true); 638 639 return r; 640 } 641 642 static int vpe_set_clockgating_state(void *handle, 643 enum amd_clockgating_state state) 644 { 645 return 0; 646 } 647 648 static int vpe_set_powergating_state(void *handle, 649 enum amd_powergating_state state) 650 { 651 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 652 struct amdgpu_vpe *vpe = &adev->vpe; 653 654 if (!adev->pm.dpm_enabled) 655 dev_err(adev->dev, "Without PM, cannot support powergating\n"); 656 657 dev_dbg(adev->dev, "%s: %s!\n", __func__, (state == AMD_PG_STATE_GATE) ? "GATE":"UNGATE"); 658 659 if (state == AMD_PG_STATE_GATE) { 660 amdgpu_dpm_enable_vpe(adev, false); 661 vpe->context_started = false; 662 } else { 663 amdgpu_dpm_enable_vpe(adev, true); 664 } 665 666 return 0; 667 } 668 669 static uint64_t vpe_ring_get_rptr(struct amdgpu_ring *ring) 670 { 671 struct amdgpu_device *adev = ring->adev; 672 struct amdgpu_vpe *vpe = &adev->vpe; 673 uint64_t rptr; 674 675 if (ring->use_doorbell) { 676 rptr = atomic64_read((atomic64_t *)ring->rptr_cpu_addr); 677 dev_dbg(adev->dev, "rptr/doorbell before shift == 0x%016llx\n", rptr); 678 } else { 679 rptr = RREG32(vpe_get_reg_offset(vpe, ring->me, vpe->regs.queue0_rb_rptr_hi)); 680 rptr = rptr << 32; 681 rptr |= RREG32(vpe_get_reg_offset(vpe, ring->me, vpe->regs.queue0_rb_rptr_lo)); 682 dev_dbg(adev->dev, "rptr before shift [%i] == 0x%016llx\n", ring->me, rptr); 683 } 684 685 return (rptr >> 2); 686 } 687 688 static uint64_t vpe_ring_get_wptr(struct amdgpu_ring *ring) 689 { 690 struct amdgpu_device *adev = ring->adev; 691 struct amdgpu_vpe *vpe = &adev->vpe; 692 uint64_t wptr; 693 694 if (ring->use_doorbell) { 695 wptr = atomic64_read((atomic64_t *)ring->wptr_cpu_addr); 696 dev_dbg(adev->dev, "wptr/doorbell before shift == 0x%016llx\n", wptr); 697 } else { 698 wptr = RREG32(vpe_get_reg_offset(vpe, ring->me, vpe->regs.queue0_rb_wptr_hi)); 699 wptr = wptr << 32; 700 wptr |= RREG32(vpe_get_reg_offset(vpe, ring->me, vpe->regs.queue0_rb_wptr_lo)); 701 dev_dbg(adev->dev, "wptr before shift [%i] == 0x%016llx\n", ring->me, wptr); 702 } 703 704 return (wptr >> 2); 705 } 706 707 static void vpe_ring_set_wptr(struct amdgpu_ring *ring) 708 { 709 struct amdgpu_device *adev = ring->adev; 710 struct amdgpu_vpe *vpe = &adev->vpe; 711 712 if (ring->use_doorbell) { 713 dev_dbg(adev->dev, "Using doorbell, \ 714 wptr_offs == 0x%08x, \ 715 lower_32_bits(ring->wptr) << 2 == 0x%08x, \ 716 upper_32_bits(ring->wptr) << 2 == 0x%08x\n", 717 ring->wptr_offs, 718 lower_32_bits(ring->wptr << 2), 719 upper_32_bits(ring->wptr << 2)); 720 atomic64_set((atomic64_t *)ring->wptr_cpu_addr, ring->wptr << 2); 721 WDOORBELL64(ring->doorbell_index, ring->wptr << 2); 722 if (vpe->collaborate_mode) 723 WDOORBELL64(ring->doorbell_index + 4, ring->wptr << 2); 724 } else { 725 int i; 726 727 for (i = 0; i < vpe->num_instances; i++) { 728 dev_dbg(adev->dev, "Not using doorbell, \ 729 regVPEC_QUEUE0_RB_WPTR == 0x%08x, \ 730 regVPEC_QUEUE0_RB_WPTR_HI == 0x%08x\n", 731 lower_32_bits(ring->wptr << 2), 732 upper_32_bits(ring->wptr << 2)); 733 WREG32(vpe_get_reg_offset(vpe, i, vpe->regs.queue0_rb_wptr_lo), 734 lower_32_bits(ring->wptr << 2)); 735 WREG32(vpe_get_reg_offset(vpe, i, vpe->regs.queue0_rb_wptr_hi), 736 upper_32_bits(ring->wptr << 2)); 737 } 738 } 739 } 740 741 static int vpe_ring_test_ring(struct amdgpu_ring *ring) 742 { 743 struct amdgpu_device *adev = ring->adev; 744 const uint32_t test_pattern = 0xdeadbeef; 745 uint32_t index, i; 746 uint64_t wb_addr; 747 int ret; 748 749 ret = amdgpu_device_wb_get(adev, &index); 750 if (ret) { 751 dev_err(adev->dev, "(%d) failed to allocate wb slot\n", ret); 752 return ret; 753 } 754 755 adev->wb.wb[index] = 0; 756 wb_addr = adev->wb.gpu_addr + (index * 4); 757 758 ret = amdgpu_ring_alloc(ring, 4); 759 if (ret) { 760 dev_err(adev->dev, "amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, ret); 761 goto out; 762 } 763 764 amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_FENCE, 0)); 765 amdgpu_ring_write(ring, lower_32_bits(wb_addr)); 766 amdgpu_ring_write(ring, upper_32_bits(wb_addr)); 767 amdgpu_ring_write(ring, test_pattern); 768 amdgpu_ring_commit(ring); 769 770 for (i = 0; i < adev->usec_timeout; i++) { 771 if (le32_to_cpu(adev->wb.wb[index]) == test_pattern) 772 goto out; 773 udelay(1); 774 } 775 776 ret = -ETIMEDOUT; 777 out: 778 amdgpu_device_wb_free(adev, index); 779 780 return ret; 781 } 782 783 static int vpe_ring_test_ib(struct amdgpu_ring *ring, long timeout) 784 { 785 struct amdgpu_device *adev = ring->adev; 786 const uint32_t test_pattern = 0xdeadbeef; 787 struct amdgpu_ib ib = {}; 788 struct dma_fence *f = NULL; 789 uint32_t index; 790 uint64_t wb_addr; 791 int ret; 792 793 ret = amdgpu_device_wb_get(adev, &index); 794 if (ret) { 795 dev_err(adev->dev, "(%d) failed to allocate wb slot\n", ret); 796 return ret; 797 } 798 799 adev->wb.wb[index] = 0; 800 wb_addr = adev->wb.gpu_addr + (index * 4); 801 802 ret = amdgpu_ib_get(adev, NULL, 256, AMDGPU_IB_POOL_DIRECT, &ib); 803 if (ret) 804 goto err0; 805 806 ib.ptr[0] = VPE_CMD_HEADER(VPE_CMD_OPCODE_FENCE, 0); 807 ib.ptr[1] = lower_32_bits(wb_addr); 808 ib.ptr[2] = upper_32_bits(wb_addr); 809 ib.ptr[3] = test_pattern; 810 ib.ptr[4] = VPE_CMD_HEADER(VPE_CMD_OPCODE_NOP, 0); 811 ib.ptr[5] = VPE_CMD_HEADER(VPE_CMD_OPCODE_NOP, 0); 812 ib.ptr[6] = VPE_CMD_HEADER(VPE_CMD_OPCODE_NOP, 0); 813 ib.ptr[7] = VPE_CMD_HEADER(VPE_CMD_OPCODE_NOP, 0); 814 ib.length_dw = 8; 815 816 ret = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f); 817 if (ret) 818 goto err1; 819 820 ret = dma_fence_wait_timeout(f, false, timeout); 821 if (ret <= 0) { 822 ret = ret ? : -ETIMEDOUT; 823 goto err1; 824 } 825 826 ret = (le32_to_cpu(adev->wb.wb[index]) == test_pattern) ? 0 : -EINVAL; 827 828 err1: 829 amdgpu_ib_free(adev, &ib, NULL); 830 dma_fence_put(f); 831 err0: 832 amdgpu_device_wb_free(adev, index); 833 834 return ret; 835 } 836 837 static void vpe_ring_begin_use(struct amdgpu_ring *ring) 838 { 839 struct amdgpu_device *adev = ring->adev; 840 struct amdgpu_vpe *vpe = &adev->vpe; 841 842 cancel_delayed_work_sync(&adev->vpe.idle_work); 843 844 /* Power on VPE and notify VPE of new context */ 845 if (!vpe->context_started) { 846 uint32_t context_notify; 847 848 /* Power on VPE */ 849 amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VPE, AMD_PG_STATE_UNGATE); 850 851 /* Indicates that a job from a new context has been submitted. */ 852 context_notify = RREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.context_indicator)); 853 if ((context_notify & 0x1) == 0) 854 context_notify |= 0x1; 855 else 856 context_notify &= ~(0x1); 857 WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.context_indicator), context_notify); 858 vpe->context_started = true; 859 } 860 } 861 862 static void vpe_ring_end_use(struct amdgpu_ring *ring) 863 { 864 struct amdgpu_device *adev = ring->adev; 865 866 schedule_delayed_work(&adev->vpe.idle_work, VPE_IDLE_TIMEOUT); 867 } 868 869 static const struct amdgpu_ring_funcs vpe_ring_funcs = { 870 .type = AMDGPU_RING_TYPE_VPE, 871 .align_mask = 0xf, 872 .nop = VPE_CMD_HEADER(VPE_CMD_OPCODE_NOP, 0), 873 .support_64bit_ptrs = true, 874 .get_rptr = vpe_ring_get_rptr, 875 .get_wptr = vpe_ring_get_wptr, 876 .set_wptr = vpe_ring_set_wptr, 877 .emit_frame_size = 878 5 + /* vpe_ring_init_cond_exec */ 879 6 + /* vpe_ring_emit_pipeline_sync */ 880 10 + 10 + 10 + /* vpe_ring_emit_fence */ 881 /* vpe_ring_emit_vm_flush */ 882 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + 883 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6, 884 .emit_ib_size = 7 + 6, 885 .emit_ib = vpe_ring_emit_ib, 886 .emit_pipeline_sync = vpe_ring_emit_pipeline_sync, 887 .emit_fence = vpe_ring_emit_fence, 888 .emit_vm_flush = vpe_ring_emit_vm_flush, 889 .emit_wreg = vpe_ring_emit_wreg, 890 .emit_reg_wait = vpe_ring_emit_reg_wait, 891 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper, 892 .insert_nop = vpe_ring_insert_nop, 893 .pad_ib = amdgpu_ring_generic_pad_ib, 894 .test_ring = vpe_ring_test_ring, 895 .test_ib = vpe_ring_test_ib, 896 .init_cond_exec = vpe_ring_init_cond_exec, 897 .preempt_ib = vpe_ring_preempt_ib, 898 .begin_use = vpe_ring_begin_use, 899 .end_use = vpe_ring_end_use, 900 }; 901 902 static void vpe_set_ring_funcs(struct amdgpu_device *adev) 903 { 904 adev->vpe.ring.funcs = &vpe_ring_funcs; 905 } 906 907 const struct amd_ip_funcs vpe_ip_funcs = { 908 .name = "vpe_v6_1", 909 .early_init = vpe_early_init, 910 .late_init = NULL, 911 .sw_init = vpe_sw_init, 912 .sw_fini = vpe_sw_fini, 913 .hw_init = vpe_hw_init, 914 .hw_fini = vpe_hw_fini, 915 .suspend = vpe_suspend, 916 .resume = vpe_resume, 917 .soft_reset = NULL, 918 .set_clockgating_state = vpe_set_clockgating_state, 919 .set_powergating_state = vpe_set_powergating_state, 920 }; 921 922 const struct amdgpu_ip_block_version vpe_v6_1_ip_block = { 923 .type = AMD_IP_BLOCK_TYPE_VPE, 924 .major = 6, 925 .minor = 1, 926 .rev = 0, 927 .funcs = &vpe_ip_funcs, 928 }; 929