xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_vm_pt.c (revision ebb20fc19aa44404baa031466a9f7aa935fde8b9)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <drm/drm_drv.h>
25 
26 #include "amdgpu.h"
27 #include "amdgpu_trace.h"
28 #include "amdgpu_vm.h"
29 
30 /*
31  * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
32  */
33 struct amdgpu_vm_pt_cursor {
34 	uint64_t pfn;
35 	struct amdgpu_vm_bo_base *parent;
36 	struct amdgpu_vm_bo_base *entry;
37 	unsigned int level;
38 };
39 
40 /**
41  * amdgpu_vm_pt_level_shift - return the addr shift for each level
42  *
43  * @adev: amdgpu_device pointer
44  * @level: VMPT level
45  *
46  * Returns:
47  * The number of bits the pfn needs to be right shifted for a level.
48  */
49 static unsigned int amdgpu_vm_pt_level_shift(struct amdgpu_device *adev,
50 					     unsigned int level)
51 {
52 	switch (level) {
53 	case AMDGPU_VM_PDB2:
54 	case AMDGPU_VM_PDB1:
55 	case AMDGPU_VM_PDB0:
56 		return 9 * (AMDGPU_VM_PDB0 - level) +
57 			adev->vm_manager.block_size;
58 	case AMDGPU_VM_PTB:
59 		return 0;
60 	default:
61 		return ~0;
62 	}
63 }
64 
65 /**
66  * amdgpu_vm_pt_num_entries - return the number of entries in a PD/PT
67  *
68  * @adev: amdgpu_device pointer
69  * @level: VMPT level
70  *
71  * Returns:
72  * The number of entries in a page directory or page table.
73  */
74 static unsigned int amdgpu_vm_pt_num_entries(struct amdgpu_device *adev,
75 					     unsigned int level)
76 {
77 	unsigned int shift;
78 
79 	shift = amdgpu_vm_pt_level_shift(adev, adev->vm_manager.root_level);
80 	if (level == adev->vm_manager.root_level)
81 		/* For the root directory */
82 		return round_up(adev->vm_manager.max_pfn, 1ULL << shift)
83 			>> shift;
84 	else if (level != AMDGPU_VM_PTB)
85 		/* Everything in between */
86 		return 512;
87 
88 	/* For the page tables on the leaves */
89 	return AMDGPU_VM_PTE_COUNT(adev);
90 }
91 
92 /**
93  * amdgpu_vm_pt_entries_mask - the mask to get the entry number of a PD/PT
94  *
95  * @adev: amdgpu_device pointer
96  * @level: VMPT level
97  *
98  * Returns:
99  * The mask to extract the entry number of a PD/PT from an address.
100  */
101 static uint32_t amdgpu_vm_pt_entries_mask(struct amdgpu_device *adev,
102 					  unsigned int level)
103 {
104 	if (level <= adev->vm_manager.root_level)
105 		return 0xffffffff;
106 	else if (level != AMDGPU_VM_PTB)
107 		return 0x1ff;
108 	else
109 		return AMDGPU_VM_PTE_COUNT(adev) - 1;
110 }
111 
112 /**
113  * amdgpu_vm_pt_size - returns the size of the page table in bytes
114  *
115  * @adev: amdgpu_device pointer
116  * @level: VMPT level
117  *
118  * Returns:
119  * The size of the BO for a page directory or page table in bytes.
120  */
121 static unsigned int amdgpu_vm_pt_size(struct amdgpu_device *adev,
122 				      unsigned int level)
123 {
124 	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_pt_num_entries(adev, level) * 8);
125 }
126 
127 /**
128  * amdgpu_vm_pt_parent - get the parent page directory
129  *
130  * @pt: child page table
131  *
132  * Helper to get the parent entry for the child page table. NULL if we are at
133  * the root page directory.
134  */
135 static struct amdgpu_vm_bo_base *
136 amdgpu_vm_pt_parent(struct amdgpu_vm_bo_base *pt)
137 {
138 	struct amdgpu_bo *parent = pt->bo->parent;
139 
140 	if (!parent)
141 		return NULL;
142 
143 	return parent->vm_bo;
144 }
145 
146 /**
147  * amdgpu_vm_pt_start - start PD/PT walk
148  *
149  * @adev: amdgpu_device pointer
150  * @vm: amdgpu_vm structure
151  * @start: start address of the walk
152  * @cursor: state to initialize
153  *
154  * Initialize a amdgpu_vm_pt_cursor to start a walk.
155  */
156 static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
157 			       struct amdgpu_vm *vm, uint64_t start,
158 			       struct amdgpu_vm_pt_cursor *cursor)
159 {
160 	cursor->pfn = start;
161 	cursor->parent = NULL;
162 	cursor->entry = &vm->root;
163 	cursor->level = adev->vm_manager.root_level;
164 }
165 
166 /**
167  * amdgpu_vm_pt_descendant - go to child node
168  *
169  * @adev: amdgpu_device pointer
170  * @cursor: current state
171  *
172  * Walk to the child node of the current node.
173  * Returns:
174  * True if the walk was possible, false otherwise.
175  */
176 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
177 				    struct amdgpu_vm_pt_cursor *cursor)
178 {
179 	unsigned int mask, shift, idx;
180 
181 	if ((cursor->level == AMDGPU_VM_PTB) || !cursor->entry ||
182 	    !cursor->entry->bo)
183 		return false;
184 
185 	mask = amdgpu_vm_pt_entries_mask(adev, cursor->level);
186 	shift = amdgpu_vm_pt_level_shift(adev, cursor->level);
187 
188 	++cursor->level;
189 	idx = (cursor->pfn >> shift) & mask;
190 	cursor->parent = cursor->entry;
191 	cursor->entry = &to_amdgpu_bo_vm(cursor->entry->bo)->entries[idx];
192 	return true;
193 }
194 
195 /**
196  * amdgpu_vm_pt_sibling - go to sibling node
197  *
198  * @adev: amdgpu_device pointer
199  * @cursor: current state
200  *
201  * Walk to the sibling node of the current node.
202  * Returns:
203  * True if the walk was possible, false otherwise.
204  */
205 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
206 				 struct amdgpu_vm_pt_cursor *cursor)
207 {
208 
209 	unsigned int shift, num_entries;
210 	struct amdgpu_bo_vm *parent;
211 
212 	/* Root doesn't have a sibling */
213 	if (!cursor->parent)
214 		return false;
215 
216 	/* Go to our parents and see if we got a sibling */
217 	shift = amdgpu_vm_pt_level_shift(adev, cursor->level - 1);
218 	num_entries = amdgpu_vm_pt_num_entries(adev, cursor->level - 1);
219 	parent = to_amdgpu_bo_vm(cursor->parent->bo);
220 
221 	if (cursor->entry == &parent->entries[num_entries - 1])
222 		return false;
223 
224 	cursor->pfn += 1ULL << shift;
225 	cursor->pfn &= ~((1ULL << shift) - 1);
226 	++cursor->entry;
227 	return true;
228 }
229 
230 /**
231  * amdgpu_vm_pt_ancestor - go to parent node
232  *
233  * @cursor: current state
234  *
235  * Walk to the parent node of the current node.
236  * Returns:
237  * True if the walk was possible, false otherwise.
238  */
239 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
240 {
241 	if (!cursor->parent)
242 		return false;
243 
244 	--cursor->level;
245 	cursor->entry = cursor->parent;
246 	cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
247 	return true;
248 }
249 
250 /**
251  * amdgpu_vm_pt_next - get next PD/PT in hieratchy
252  *
253  * @adev: amdgpu_device pointer
254  * @cursor: current state
255  *
256  * Walk the PD/PT tree to the next node.
257  */
258 static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
259 			      struct amdgpu_vm_pt_cursor *cursor)
260 {
261 	/* First try a newborn child */
262 	if (amdgpu_vm_pt_descendant(adev, cursor))
263 		return;
264 
265 	/* If that didn't worked try to find a sibling */
266 	while (!amdgpu_vm_pt_sibling(adev, cursor)) {
267 		/* No sibling, go to our parents and grandparents */
268 		if (!amdgpu_vm_pt_ancestor(cursor)) {
269 			cursor->pfn = ~0ll;
270 			return;
271 		}
272 	}
273 }
274 
275 /**
276  * amdgpu_vm_pt_first_dfs - start a deep first search
277  *
278  * @adev: amdgpu_device structure
279  * @vm: amdgpu_vm structure
280  * @start: optional cursor to start with
281  * @cursor: state to initialize
282  *
283  * Starts a deep first traversal of the PD/PT tree.
284  */
285 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
286 				   struct amdgpu_vm *vm,
287 				   struct amdgpu_vm_pt_cursor *start,
288 				   struct amdgpu_vm_pt_cursor *cursor)
289 {
290 	if (start)
291 		*cursor = *start;
292 	else
293 		amdgpu_vm_pt_start(adev, vm, 0, cursor);
294 
295 	while (amdgpu_vm_pt_descendant(adev, cursor))
296 		;
297 }
298 
299 /**
300  * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
301  *
302  * @start: starting point for the search
303  * @entry: current entry
304  *
305  * Returns:
306  * True when the search should continue, false otherwise.
307  */
308 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
309 				      struct amdgpu_vm_bo_base *entry)
310 {
311 	return entry && (!start || entry != start->entry);
312 }
313 
314 /**
315  * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
316  *
317  * @adev: amdgpu_device structure
318  * @cursor: current state
319  *
320  * Move the cursor to the next node in a deep first search.
321  */
322 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
323 				  struct amdgpu_vm_pt_cursor *cursor)
324 {
325 	if (!cursor->entry)
326 		return;
327 
328 	if (!cursor->parent)
329 		cursor->entry = NULL;
330 	else if (amdgpu_vm_pt_sibling(adev, cursor))
331 		while (amdgpu_vm_pt_descendant(adev, cursor))
332 			;
333 	else
334 		amdgpu_vm_pt_ancestor(cursor);
335 }
336 
337 /*
338  * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
339  */
340 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)		\
341 	for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)),		\
342 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
343 	     amdgpu_vm_pt_continue_dfs((start), (entry));			\
344 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
345 
346 /**
347  * amdgpu_vm_pt_clear - initially clear the PDs/PTs
348  *
349  * @adev: amdgpu_device pointer
350  * @vm: VM to clear BO from
351  * @vmbo: BO to clear
352  * @immediate: use an immediate update
353  *
354  * Root PD needs to be reserved when calling this.
355  *
356  * Returns:
357  * 0 on success, errno otherwise.
358  */
359 int amdgpu_vm_pt_clear(struct amdgpu_device *adev, struct amdgpu_vm *vm,
360 		       struct amdgpu_bo_vm *vmbo, bool immediate)
361 {
362 	unsigned int level = adev->vm_manager.root_level;
363 	struct ttm_operation_ctx ctx = { true, false };
364 	struct amdgpu_vm_update_params params;
365 	struct amdgpu_bo *ancestor = &vmbo->bo;
366 	unsigned int entries;
367 	struct amdgpu_bo *bo = &vmbo->bo;
368 	uint64_t addr;
369 	int r, idx;
370 
371 	/* Figure out our place in the hierarchy */
372 	if (ancestor->parent) {
373 		++level;
374 		while (ancestor->parent->parent) {
375 			++level;
376 			ancestor = ancestor->parent;
377 		}
378 	}
379 
380 	entries = amdgpu_bo_size(bo) / 8;
381 
382 	r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
383 	if (r)
384 		return r;
385 
386 	if (vmbo->shadow) {
387 		struct amdgpu_bo *shadow = vmbo->shadow;
388 
389 		r = ttm_bo_validate(&shadow->tbo, &shadow->placement, &ctx);
390 		if (r)
391 			return r;
392 	}
393 
394 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
395 		return -ENODEV;
396 
397 	r = vm->update_funcs->map_table(vmbo);
398 	if (r)
399 		goto exit;
400 
401 	memset(&params, 0, sizeof(params));
402 	params.adev = adev;
403 	params.vm = vm;
404 	params.immediate = immediate;
405 
406 	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
407 	if (r)
408 		goto exit;
409 
410 	addr = 0;
411 
412 	if (entries) {
413 		uint64_t value = 0, flags = 0;
414 
415 		if (adev->asic_type >= CHIP_VEGA10) {
416 			if (level != AMDGPU_VM_PTB) {
417 				/* Handle leaf PDEs as PTEs */
418 				flags |= AMDGPU_PDE_PTE;
419 				amdgpu_gmc_get_vm_pde(adev, level,
420 						      &value, &flags);
421 			} else {
422 				/* Workaround for fault priority problem on GMC9 */
423 				flags = AMDGPU_PTE_EXECUTABLE;
424 			}
425 		}
426 
427 		r = vm->update_funcs->update(&params, vmbo, addr, 0, entries,
428 					     value, flags);
429 		if (r)
430 			goto exit;
431 	}
432 
433 	r = vm->update_funcs->commit(&params, NULL);
434 exit:
435 	drm_dev_exit(idx);
436 	return r;
437 }
438 
439 /**
440  * amdgpu_vm_pt_create - create bo for PD/PT
441  *
442  * @adev: amdgpu_device pointer
443  * @vm: requesting vm
444  * @level: the page table level
445  * @immediate: use a immediate update
446  * @vmbo: pointer to the buffer object pointer
447  * @xcp_id: GPU partition id
448  */
449 int amdgpu_vm_pt_create(struct amdgpu_device *adev, struct amdgpu_vm *vm,
450 			int level, bool immediate, struct amdgpu_bo_vm **vmbo,
451 			int32_t xcp_id)
452 {
453 	struct amdgpu_bo_param bp;
454 	struct amdgpu_bo *bo;
455 	struct dma_resv *resv;
456 	unsigned int num_entries;
457 	int r;
458 
459 	memset(&bp, 0, sizeof(bp));
460 
461 	bp.size = amdgpu_vm_pt_size(adev, level);
462 	bp.byte_align = AMDGPU_GPU_PAGE_SIZE;
463 
464 	if (!adev->gmc.is_app_apu)
465 		bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
466 	else
467 		bp.domain = AMDGPU_GEM_DOMAIN_GTT;
468 
469 	bp.domain = amdgpu_bo_get_preferred_domain(adev, bp.domain);
470 	bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
471 		AMDGPU_GEM_CREATE_CPU_GTT_USWC;
472 
473 	if (level < AMDGPU_VM_PTB)
474 		num_entries = amdgpu_vm_pt_num_entries(adev, level);
475 	else
476 		num_entries = 0;
477 
478 	bp.bo_ptr_size = struct_size((*vmbo), entries, num_entries);
479 
480 	if (vm->use_cpu_for_update)
481 		bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
482 
483 	bp.type = ttm_bo_type_kernel;
484 	bp.no_wait_gpu = immediate;
485 	bp.xcp_id_plus1 = xcp_id + 1;
486 
487 	if (vm->root.bo)
488 		bp.resv = vm->root.bo->tbo.base.resv;
489 
490 	r = amdgpu_bo_create_vm(adev, &bp, vmbo);
491 	if (r)
492 		return r;
493 
494 	bo = &(*vmbo)->bo;
495 	if (vm->is_compute_context || (adev->flags & AMD_IS_APU)) {
496 		(*vmbo)->shadow = NULL;
497 		return 0;
498 	}
499 
500 	if (!bp.resv)
501 		WARN_ON(dma_resv_lock(bo->tbo.base.resv,
502 				      NULL));
503 	resv = bp.resv;
504 	memset(&bp, 0, sizeof(bp));
505 	bp.size = amdgpu_vm_pt_size(adev, level);
506 	bp.domain = AMDGPU_GEM_DOMAIN_GTT;
507 	bp.flags = AMDGPU_GEM_CREATE_CPU_GTT_USWC;
508 	bp.type = ttm_bo_type_kernel;
509 	bp.resv = bo->tbo.base.resv;
510 	bp.bo_ptr_size = sizeof(struct amdgpu_bo);
511 	bp.xcp_id_plus1 = xcp_id + 1;
512 
513 	r = amdgpu_bo_create(adev, &bp, &(*vmbo)->shadow);
514 
515 	if (!resv)
516 		dma_resv_unlock(bo->tbo.base.resv);
517 
518 	if (r) {
519 		amdgpu_bo_unref(&bo);
520 		return r;
521 	}
522 
523 	amdgpu_bo_add_to_shadow_list(*vmbo);
524 
525 	return 0;
526 }
527 
528 /**
529  * amdgpu_vm_pt_alloc - Allocate a specific page table
530  *
531  * @adev: amdgpu_device pointer
532  * @vm: VM to allocate page tables for
533  * @cursor: Which page table to allocate
534  * @immediate: use an immediate update
535  *
536  * Make sure a specific page table or directory is allocated.
537  *
538  * Returns:
539  * 1 if page table needed to be allocated, 0 if page table was already
540  * allocated, negative errno if an error occurred.
541  */
542 static int amdgpu_vm_pt_alloc(struct amdgpu_device *adev,
543 			      struct amdgpu_vm *vm,
544 			      struct amdgpu_vm_pt_cursor *cursor,
545 			      bool immediate)
546 {
547 	struct amdgpu_vm_bo_base *entry = cursor->entry;
548 	struct amdgpu_bo *pt_bo;
549 	struct amdgpu_bo_vm *pt;
550 	int r;
551 
552 	if (entry->bo)
553 		return 0;
554 
555 	amdgpu_vm_eviction_unlock(vm);
556 	r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt,
557 				vm->root.bo->xcp_id);
558 	amdgpu_vm_eviction_lock(vm);
559 	if (r)
560 		return r;
561 
562 	/* Keep a reference to the root directory to avoid
563 	 * freeing them up in the wrong order.
564 	 */
565 	pt_bo = &pt->bo;
566 	pt_bo->parent = amdgpu_bo_ref(cursor->parent->bo);
567 	amdgpu_vm_bo_base_init(entry, vm, pt_bo);
568 	r = amdgpu_vm_pt_clear(adev, vm, pt, immediate);
569 	if (r)
570 		goto error_free_pt;
571 
572 	return 0;
573 
574 error_free_pt:
575 	amdgpu_bo_unref(&pt->shadow);
576 	amdgpu_bo_unref(&pt_bo);
577 	return r;
578 }
579 
580 /**
581  * amdgpu_vm_pt_free - free one PD/PT
582  *
583  * @entry: PDE to free
584  */
585 static void amdgpu_vm_pt_free(struct amdgpu_vm_bo_base *entry)
586 {
587 	struct amdgpu_bo *shadow;
588 
589 	if (!entry->bo)
590 		return;
591 
592 	entry->bo->vm_bo = NULL;
593 	shadow = amdgpu_bo_shadowed(entry->bo);
594 	if (shadow) {
595 		ttm_bo_set_bulk_move(&shadow->tbo, NULL);
596 		amdgpu_bo_unref(&shadow);
597 	}
598 	ttm_bo_set_bulk_move(&entry->bo->tbo, NULL);
599 
600 	spin_lock(&entry->vm->status_lock);
601 	list_del(&entry->vm_status);
602 	spin_unlock(&entry->vm->status_lock);
603 	amdgpu_bo_unref(&entry->bo);
604 }
605 
606 void amdgpu_vm_pt_free_work(struct work_struct *work)
607 {
608 	struct amdgpu_vm_bo_base *entry, *next;
609 	struct amdgpu_vm *vm;
610 	LIST_HEAD(pt_freed);
611 
612 	vm = container_of(work, struct amdgpu_vm, pt_free_work);
613 
614 	spin_lock(&vm->status_lock);
615 	list_splice_init(&vm->pt_freed, &pt_freed);
616 	spin_unlock(&vm->status_lock);
617 
618 	/* flush_work in amdgpu_vm_fini ensure vm->root.bo is valid. */
619 	amdgpu_bo_reserve(vm->root.bo, true);
620 
621 	list_for_each_entry_safe(entry, next, &pt_freed, vm_status)
622 		amdgpu_vm_pt_free(entry);
623 
624 	amdgpu_bo_unreserve(vm->root.bo);
625 }
626 
627 /**
628  * amdgpu_vm_pt_free_dfs - free PD/PT levels
629  *
630  * @adev: amdgpu device structure
631  * @vm: amdgpu vm structure
632  * @start: optional cursor where to start freeing PDs/PTs
633  * @unlocked: vm resv unlock status
634  *
635  * Free the page directory or page table level and all sub levels.
636  */
637 static void amdgpu_vm_pt_free_dfs(struct amdgpu_device *adev,
638 				  struct amdgpu_vm *vm,
639 				  struct amdgpu_vm_pt_cursor *start,
640 				  bool unlocked)
641 {
642 	struct amdgpu_vm_pt_cursor cursor;
643 	struct amdgpu_vm_bo_base *entry;
644 
645 	if (unlocked) {
646 		spin_lock(&vm->status_lock);
647 		for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
648 			list_move(&entry->vm_status, &vm->pt_freed);
649 
650 		if (start)
651 			list_move(&start->entry->vm_status, &vm->pt_freed);
652 		spin_unlock(&vm->status_lock);
653 		schedule_work(&vm->pt_free_work);
654 		return;
655 	}
656 
657 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
658 		amdgpu_vm_pt_free(entry);
659 
660 	if (start)
661 		amdgpu_vm_pt_free(start->entry);
662 }
663 
664 /**
665  * amdgpu_vm_pt_free_root - free root PD
666  * @adev: amdgpu device structure
667  * @vm: amdgpu vm structure
668  *
669  * Free the root page directory and everything below it.
670  */
671 void amdgpu_vm_pt_free_root(struct amdgpu_device *adev, struct amdgpu_vm *vm)
672 {
673 	amdgpu_vm_pt_free_dfs(adev, vm, NULL, false);
674 }
675 
676 /**
677  * amdgpu_vm_pt_is_root_clean - check if a root PD is clean
678  *
679  * @adev: amdgpu_device pointer
680  * @vm: the VM to check
681  *
682  * Check all entries of the root PD, if any subsequent PDs are allocated,
683  * it means there are page table creating and filling, and is no a clean
684  * VM
685  *
686  * Returns:
687  *	0 if this VM is clean
688  */
689 bool amdgpu_vm_pt_is_root_clean(struct amdgpu_device *adev,
690 				struct amdgpu_vm *vm)
691 {
692 	enum amdgpu_vm_level root = adev->vm_manager.root_level;
693 	unsigned int entries = amdgpu_vm_pt_num_entries(adev, root);
694 	unsigned int i = 0;
695 
696 	for (i = 0; i < entries; i++) {
697 		if (to_amdgpu_bo_vm(vm->root.bo)->entries[i].bo)
698 			return false;
699 	}
700 	return true;
701 }
702 
703 /**
704  * amdgpu_vm_pde_update - update a single level in the hierarchy
705  *
706  * @params: parameters for the update
707  * @entry: entry to update
708  *
709  * Makes sure the requested entry in parent is up to date.
710  */
711 int amdgpu_vm_pde_update(struct amdgpu_vm_update_params *params,
712 			 struct amdgpu_vm_bo_base *entry)
713 {
714 	struct amdgpu_vm_bo_base *parent = amdgpu_vm_pt_parent(entry);
715 	struct amdgpu_bo *bo = parent->bo, *pbo;
716 	struct amdgpu_vm *vm = params->vm;
717 	uint64_t pde, pt, flags;
718 	unsigned int level;
719 
720 	for (level = 0, pbo = bo->parent; pbo; ++level)
721 		pbo = pbo->parent;
722 
723 	level += params->adev->vm_manager.root_level;
724 	amdgpu_gmc_get_pde_for_bo(entry->bo, level, &pt, &flags);
725 	pde = (entry - to_amdgpu_bo_vm(parent->bo)->entries) * 8;
726 	return vm->update_funcs->update(params, to_amdgpu_bo_vm(bo), pde, pt,
727 					1, 0, flags);
728 }
729 
730 /**
731  * amdgpu_vm_pte_update_noretry_flags - Update PTE no-retry flags
732  *
733  * @adev: amdgpu_device pointer
734  * @flags: pointer to PTE flags
735  *
736  * Update PTE no-retry flags when TF is enabled.
737  */
738 static void amdgpu_vm_pte_update_noretry_flags(struct amdgpu_device *adev,
739 						uint64_t *flags)
740 {
741 	/*
742 	 * Update no-retry flags with the corresponding TF
743 	 * no-retry combination.
744 	 */
745 	if ((*flags & AMDGPU_VM_NORETRY_FLAGS) == AMDGPU_VM_NORETRY_FLAGS) {
746 		*flags &= ~AMDGPU_VM_NORETRY_FLAGS;
747 		*flags |= adev->gmc.noretry_flags;
748 	}
749 }
750 
751 /*
752  * amdgpu_vm_pte_update_flags - figure out flags for PTE updates
753  *
754  * Make sure to set the right flags for the PTEs at the desired level.
755  */
756 static void amdgpu_vm_pte_update_flags(struct amdgpu_vm_update_params *params,
757 				       struct amdgpu_bo_vm *pt,
758 				       unsigned int level,
759 				       uint64_t pe, uint64_t addr,
760 				       unsigned int count, uint32_t incr,
761 				       uint64_t flags)
762 {
763 	struct amdgpu_device *adev = params->adev;
764 
765 	if (level != AMDGPU_VM_PTB) {
766 		flags |= AMDGPU_PDE_PTE;
767 		amdgpu_gmc_get_vm_pde(adev, level, &addr, &flags);
768 
769 	} else if (adev->asic_type >= CHIP_VEGA10 &&
770 		   !(flags & AMDGPU_PTE_VALID) &&
771 		   !(flags & AMDGPU_PTE_PRT)) {
772 
773 		/* Workaround for fault priority problem on GMC9 */
774 		flags |= AMDGPU_PTE_EXECUTABLE;
775 	}
776 
777 	/*
778 	 * Update no-retry flags to use the no-retry flag combination
779 	 * with TF enabled. The AMDGPU_VM_NORETRY_FLAGS flag combination
780 	 * does not work when TF is enabled. So, replace them with
781 	 * AMDGPU_VM_NORETRY_FLAGS_TF flag combination which works for
782 	 * all cases.
783 	 */
784 	if (level == AMDGPU_VM_PTB)
785 		amdgpu_vm_pte_update_noretry_flags(adev, &flags);
786 
787 	/* APUs mapping system memory may need different MTYPEs on different
788 	 * NUMA nodes. Only do this for contiguous ranges that can be assumed
789 	 * to be on the same NUMA node.
790 	 */
791 	if ((flags & AMDGPU_PTE_SYSTEM) && (adev->flags & AMD_IS_APU) &&
792 	    adev->gmc.gmc_funcs->override_vm_pte_flags &&
793 	    num_possible_nodes() > 1 && !params->pages_addr && params->allow_override)
794 		amdgpu_gmc_override_vm_pte_flags(adev, params->vm, addr, &flags);
795 
796 	params->vm->update_funcs->update(params, pt, pe, addr, count, incr,
797 					 flags);
798 }
799 
800 /**
801  * amdgpu_vm_pte_fragment - get fragment for PTEs
802  *
803  * @params: see amdgpu_vm_update_params definition
804  * @start: first PTE to handle
805  * @end: last PTE to handle
806  * @flags: hw mapping flags
807  * @frag: resulting fragment size
808  * @frag_end: end of this fragment
809  *
810  * Returns the first possible fragment for the start and end address.
811  */
812 static void amdgpu_vm_pte_fragment(struct amdgpu_vm_update_params *params,
813 				   uint64_t start, uint64_t end, uint64_t flags,
814 				   unsigned int *frag, uint64_t *frag_end)
815 {
816 	/**
817 	 * The MC L1 TLB supports variable sized pages, based on a fragment
818 	 * field in the PTE. When this field is set to a non-zero value, page
819 	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
820 	 * flags are considered valid for all PTEs within the fragment range
821 	 * and corresponding mappings are assumed to be physically contiguous.
822 	 *
823 	 * The L1 TLB can store a single PTE for the whole fragment,
824 	 * significantly increasing the space available for translation
825 	 * caching. This leads to large improvements in throughput when the
826 	 * TLB is under pressure.
827 	 *
828 	 * The L2 TLB distributes small and large fragments into two
829 	 * asymmetric partitions. The large fragment cache is significantly
830 	 * larger. Thus, we try to use large fragments wherever possible.
831 	 * Userspace can support this by aligning virtual base address and
832 	 * allocation size to the fragment size.
833 	 *
834 	 * Starting with Vega10 the fragment size only controls the L1. The L2
835 	 * is now directly feed with small/huge/giant pages from the walker.
836 	 */
837 	unsigned int max_frag;
838 
839 	if (params->adev->asic_type < CHIP_VEGA10)
840 		max_frag = params->adev->vm_manager.fragment_size;
841 	else
842 		max_frag = 31;
843 
844 	/* system pages are non continuously */
845 	if (params->pages_addr) {
846 		*frag = 0;
847 		*frag_end = end;
848 		return;
849 	}
850 
851 	/* This intentionally wraps around if no bit is set */
852 	*frag = min_t(unsigned int, ffs(start) - 1, fls64(end - start) - 1);
853 	if (*frag >= max_frag) {
854 		*frag = max_frag;
855 		*frag_end = end & ~((1ULL << max_frag) - 1);
856 	} else {
857 		*frag_end = start + (1 << *frag);
858 	}
859 }
860 
861 /**
862  * amdgpu_vm_ptes_update - make sure that page tables are valid
863  *
864  * @params: see amdgpu_vm_update_params definition
865  * @start: start of GPU address range
866  * @end: end of GPU address range
867  * @dst: destination address to map to, the next dst inside the function
868  * @flags: mapping flags
869  *
870  * Update the page tables in the range @start - @end.
871  *
872  * Returns:
873  * 0 for success, -EINVAL for failure.
874  */
875 int amdgpu_vm_ptes_update(struct amdgpu_vm_update_params *params,
876 			  uint64_t start, uint64_t end,
877 			  uint64_t dst, uint64_t flags)
878 {
879 	struct amdgpu_device *adev = params->adev;
880 	struct amdgpu_vm_pt_cursor cursor;
881 	uint64_t frag_start = start, frag_end;
882 	unsigned int frag;
883 	int r;
884 
885 	/* figure out the initial fragment */
886 	amdgpu_vm_pte_fragment(params, frag_start, end, flags, &frag,
887 			       &frag_end);
888 
889 	/* walk over the address space and update the PTs */
890 	amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
891 	while (cursor.pfn < end) {
892 		unsigned int shift, parent_shift, mask;
893 		uint64_t incr, entry_end, pe_start;
894 		struct amdgpu_bo *pt;
895 
896 		if (!params->unlocked) {
897 			/* make sure that the page tables covering the
898 			 * address range are actually allocated
899 			 */
900 			r = amdgpu_vm_pt_alloc(params->adev, params->vm,
901 					       &cursor, params->immediate);
902 			if (r)
903 				return r;
904 		}
905 
906 		shift = amdgpu_vm_pt_level_shift(adev, cursor.level);
907 		parent_shift = amdgpu_vm_pt_level_shift(adev, cursor.level - 1);
908 		if (params->unlocked) {
909 			/* Unlocked updates are only allowed on the leaves */
910 			if (amdgpu_vm_pt_descendant(adev, &cursor))
911 				continue;
912 		} else if (adev->asic_type < CHIP_VEGA10 &&
913 			   (flags & AMDGPU_PTE_VALID)) {
914 			/* No huge page support before GMC v9 */
915 			if (cursor.level != AMDGPU_VM_PTB) {
916 				if (!amdgpu_vm_pt_descendant(adev, &cursor))
917 					return -ENOENT;
918 				continue;
919 			}
920 		} else if (frag < shift) {
921 			/* We can't use this level when the fragment size is
922 			 * smaller than the address shift. Go to the next
923 			 * child entry and try again.
924 			 */
925 			if (amdgpu_vm_pt_descendant(adev, &cursor))
926 				continue;
927 		} else if (frag >= parent_shift) {
928 			/* If the fragment size is even larger than the parent
929 			 * shift we should go up one level and check it again.
930 			 */
931 			if (!amdgpu_vm_pt_ancestor(&cursor))
932 				return -EINVAL;
933 			continue;
934 		}
935 
936 		pt = cursor.entry->bo;
937 		if (!pt) {
938 			/* We need all PDs and PTs for mapping something, */
939 			if (flags & AMDGPU_PTE_VALID)
940 				return -ENOENT;
941 
942 			/* but unmapping something can happen at a higher
943 			 * level.
944 			 */
945 			if (!amdgpu_vm_pt_ancestor(&cursor))
946 				return -EINVAL;
947 
948 			pt = cursor.entry->bo;
949 			shift = parent_shift;
950 			frag_end = max(frag_end, ALIGN(frag_start + 1,
951 				   1ULL << shift));
952 		}
953 
954 		/* Looks good so far, calculate parameters for the update */
955 		incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
956 		mask = amdgpu_vm_pt_entries_mask(adev, cursor.level);
957 		pe_start = ((cursor.pfn >> shift) & mask) * 8;
958 		entry_end = ((uint64_t)mask + 1) << shift;
959 		entry_end += cursor.pfn & ~(entry_end - 1);
960 		entry_end = min(entry_end, end);
961 
962 		do {
963 			struct amdgpu_vm *vm = params->vm;
964 			uint64_t upd_end = min(entry_end, frag_end);
965 			unsigned int nptes = (upd_end - frag_start) >> shift;
966 			uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag);
967 
968 			/* This can happen when we set higher level PDs to
969 			 * silent to stop fault floods.
970 			 */
971 			nptes = max(nptes, 1u);
972 
973 			trace_amdgpu_vm_update_ptes(params, frag_start, upd_end,
974 						    min(nptes, 32u), dst, incr,
975 						    upd_flags,
976 						    vm->task_info.tgid,
977 						    vm->immediate.fence_context);
978 			amdgpu_vm_pte_update_flags(params, to_amdgpu_bo_vm(pt),
979 						   cursor.level, pe_start, dst,
980 						   nptes, incr, upd_flags);
981 
982 			pe_start += nptes * 8;
983 			dst += nptes * incr;
984 
985 			frag_start = upd_end;
986 			if (frag_start >= frag_end) {
987 				/* figure out the next fragment */
988 				amdgpu_vm_pte_fragment(params, frag_start, end,
989 						       flags, &frag, &frag_end);
990 				if (frag < shift)
991 					break;
992 			}
993 		} while (frag_start < entry_end);
994 
995 		if (amdgpu_vm_pt_descendant(adev, &cursor)) {
996 			/* Free all child entries.
997 			 * Update the tables with the flags and addresses and free up subsequent
998 			 * tables in the case of huge pages or freed up areas.
999 			 * This is the maximum you can free, because all other page tables are not
1000 			 * completely covered by the range and so potentially still in use.
1001 			 */
1002 			while (cursor.pfn < frag_start) {
1003 				/* Make sure previous mapping is freed */
1004 				if (cursor.entry->bo) {
1005 					params->table_freed = true;
1006 					amdgpu_vm_pt_free_dfs(adev, params->vm,
1007 							      &cursor,
1008 							      params->unlocked);
1009 				}
1010 				amdgpu_vm_pt_next(adev, &cursor);
1011 			}
1012 
1013 		} else if (frag >= shift) {
1014 			/* or just move on to the next on the same level. */
1015 			amdgpu_vm_pt_next(adev, &cursor);
1016 		}
1017 	}
1018 
1019 	return 0;
1020 }
1021 
1022 /**
1023  * amdgpu_vm_pt_map_tables - have bo of root PD cpu accessible
1024  * @adev: amdgpu device structure
1025  * @vm: amdgpu vm structure
1026  *
1027  * make root page directory and everything below it cpu accessible.
1028  */
1029 int amdgpu_vm_pt_map_tables(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1030 {
1031 	struct amdgpu_vm_pt_cursor cursor;
1032 	struct amdgpu_vm_bo_base *entry;
1033 
1034 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry) {
1035 
1036 		struct amdgpu_bo_vm *bo;
1037 		int r;
1038 
1039 		if (entry->bo) {
1040 			bo = to_amdgpu_bo_vm(entry->bo);
1041 			r = vm->update_funcs->map_table(bo);
1042 			if (r)
1043 				return r;
1044 		}
1045 	}
1046 
1047 	return 0;
1048 }
1049