1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <drm/drm_drv.h> 25 26 #include "amdgpu.h" 27 #include "amdgpu_trace.h" 28 #include "amdgpu_vm.h" 29 30 /* 31 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt 32 */ 33 struct amdgpu_vm_pt_cursor { 34 uint64_t pfn; 35 struct amdgpu_vm_bo_base *parent; 36 struct amdgpu_vm_bo_base *entry; 37 unsigned int level; 38 }; 39 40 /** 41 * amdgpu_vm_pt_level_shift - return the addr shift for each level 42 * 43 * @adev: amdgpu_device pointer 44 * @level: VMPT level 45 * 46 * Returns: 47 * The number of bits the pfn needs to be right shifted for a level. 48 */ 49 static unsigned int amdgpu_vm_pt_level_shift(struct amdgpu_device *adev, 50 unsigned int level) 51 { 52 switch (level) { 53 case AMDGPU_VM_PDB2: 54 case AMDGPU_VM_PDB1: 55 case AMDGPU_VM_PDB0: 56 return 9 * (AMDGPU_VM_PDB0 - level) + 57 adev->vm_manager.block_size; 58 case AMDGPU_VM_PTB: 59 return 0; 60 default: 61 return ~0; 62 } 63 } 64 65 /** 66 * amdgpu_vm_pt_num_entries - return the number of entries in a PD/PT 67 * 68 * @adev: amdgpu_device pointer 69 * @level: VMPT level 70 * 71 * Returns: 72 * The number of entries in a page directory or page table. 73 */ 74 static unsigned int amdgpu_vm_pt_num_entries(struct amdgpu_device *adev, 75 unsigned int level) 76 { 77 unsigned int shift; 78 79 shift = amdgpu_vm_pt_level_shift(adev, adev->vm_manager.root_level); 80 if (level == adev->vm_manager.root_level) 81 /* For the root directory */ 82 return round_up(adev->vm_manager.max_pfn, 1ULL << shift) 83 >> shift; 84 else if (level != AMDGPU_VM_PTB) 85 /* Everything in between */ 86 return 512; 87 88 /* For the page tables on the leaves */ 89 return AMDGPU_VM_PTE_COUNT(adev); 90 } 91 92 /** 93 * amdgpu_vm_pt_entries_mask - the mask to get the entry number of a PD/PT 94 * 95 * @adev: amdgpu_device pointer 96 * @level: VMPT level 97 * 98 * Returns: 99 * The mask to extract the entry number of a PD/PT from an address. 100 */ 101 static uint32_t amdgpu_vm_pt_entries_mask(struct amdgpu_device *adev, 102 unsigned int level) 103 { 104 if (level <= adev->vm_manager.root_level) 105 return 0xffffffff; 106 else if (level != AMDGPU_VM_PTB) 107 return 0x1ff; 108 else 109 return AMDGPU_VM_PTE_COUNT(adev) - 1; 110 } 111 112 /** 113 * amdgpu_vm_pt_size - returns the size of the page table in bytes 114 * 115 * @adev: amdgpu_device pointer 116 * @level: VMPT level 117 * 118 * Returns: 119 * The size of the BO for a page directory or page table in bytes. 120 */ 121 static unsigned int amdgpu_vm_pt_size(struct amdgpu_device *adev, 122 unsigned int level) 123 { 124 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_pt_num_entries(adev, level) * 8); 125 } 126 127 /** 128 * amdgpu_vm_pt_parent - get the parent page directory 129 * 130 * @pt: child page table 131 * 132 * Helper to get the parent entry for the child page table. NULL if we are at 133 * the root page directory. 134 */ 135 static struct amdgpu_vm_bo_base * 136 amdgpu_vm_pt_parent(struct amdgpu_vm_bo_base *pt) 137 { 138 struct amdgpu_bo *parent = pt->bo->parent; 139 140 if (!parent) 141 return NULL; 142 143 return parent->vm_bo; 144 } 145 146 /** 147 * amdgpu_vm_pt_start - start PD/PT walk 148 * 149 * @adev: amdgpu_device pointer 150 * @vm: amdgpu_vm structure 151 * @start: start address of the walk 152 * @cursor: state to initialize 153 * 154 * Initialize a amdgpu_vm_pt_cursor to start a walk. 155 */ 156 static void amdgpu_vm_pt_start(struct amdgpu_device *adev, 157 struct amdgpu_vm *vm, uint64_t start, 158 struct amdgpu_vm_pt_cursor *cursor) 159 { 160 cursor->pfn = start; 161 cursor->parent = NULL; 162 cursor->entry = &vm->root; 163 cursor->level = adev->vm_manager.root_level; 164 } 165 166 /** 167 * amdgpu_vm_pt_descendant - go to child node 168 * 169 * @adev: amdgpu_device pointer 170 * @cursor: current state 171 * 172 * Walk to the child node of the current node. 173 * Returns: 174 * True if the walk was possible, false otherwise. 175 */ 176 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev, 177 struct amdgpu_vm_pt_cursor *cursor) 178 { 179 unsigned int mask, shift, idx; 180 181 if ((cursor->level == AMDGPU_VM_PTB) || !cursor->entry || 182 !cursor->entry->bo) 183 return false; 184 185 mask = amdgpu_vm_pt_entries_mask(adev, cursor->level); 186 shift = amdgpu_vm_pt_level_shift(adev, cursor->level); 187 188 ++cursor->level; 189 idx = (cursor->pfn >> shift) & mask; 190 cursor->parent = cursor->entry; 191 cursor->entry = &to_amdgpu_bo_vm(cursor->entry->bo)->entries[idx]; 192 return true; 193 } 194 195 /** 196 * amdgpu_vm_pt_sibling - go to sibling node 197 * 198 * @adev: amdgpu_device pointer 199 * @cursor: current state 200 * 201 * Walk to the sibling node of the current node. 202 * Returns: 203 * True if the walk was possible, false otherwise. 204 */ 205 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev, 206 struct amdgpu_vm_pt_cursor *cursor) 207 { 208 209 unsigned int shift, num_entries; 210 struct amdgpu_bo_vm *parent; 211 212 /* Root doesn't have a sibling */ 213 if (!cursor->parent) 214 return false; 215 216 /* Go to our parents and see if we got a sibling */ 217 shift = amdgpu_vm_pt_level_shift(adev, cursor->level - 1); 218 num_entries = amdgpu_vm_pt_num_entries(adev, cursor->level - 1); 219 parent = to_amdgpu_bo_vm(cursor->parent->bo); 220 221 if (cursor->entry == &parent->entries[num_entries - 1]) 222 return false; 223 224 cursor->pfn += 1ULL << shift; 225 cursor->pfn &= ~((1ULL << shift) - 1); 226 ++cursor->entry; 227 return true; 228 } 229 230 /** 231 * amdgpu_vm_pt_ancestor - go to parent node 232 * 233 * @cursor: current state 234 * 235 * Walk to the parent node of the current node. 236 * Returns: 237 * True if the walk was possible, false otherwise. 238 */ 239 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor) 240 { 241 if (!cursor->parent) 242 return false; 243 244 --cursor->level; 245 cursor->entry = cursor->parent; 246 cursor->parent = amdgpu_vm_pt_parent(cursor->parent); 247 return true; 248 } 249 250 /** 251 * amdgpu_vm_pt_next - get next PD/PT in hieratchy 252 * 253 * @adev: amdgpu_device pointer 254 * @cursor: current state 255 * 256 * Walk the PD/PT tree to the next node. 257 */ 258 static void amdgpu_vm_pt_next(struct amdgpu_device *adev, 259 struct amdgpu_vm_pt_cursor *cursor) 260 { 261 /* First try a newborn child */ 262 if (amdgpu_vm_pt_descendant(adev, cursor)) 263 return; 264 265 /* If that didn't worked try to find a sibling */ 266 while (!amdgpu_vm_pt_sibling(adev, cursor)) { 267 /* No sibling, go to our parents and grandparents */ 268 if (!amdgpu_vm_pt_ancestor(cursor)) { 269 cursor->pfn = ~0ll; 270 return; 271 } 272 } 273 } 274 275 /** 276 * amdgpu_vm_pt_first_dfs - start a deep first search 277 * 278 * @adev: amdgpu_device structure 279 * @vm: amdgpu_vm structure 280 * @start: optional cursor to start with 281 * @cursor: state to initialize 282 * 283 * Starts a deep first traversal of the PD/PT tree. 284 */ 285 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev, 286 struct amdgpu_vm *vm, 287 struct amdgpu_vm_pt_cursor *start, 288 struct amdgpu_vm_pt_cursor *cursor) 289 { 290 if (start) 291 *cursor = *start; 292 else 293 amdgpu_vm_pt_start(adev, vm, 0, cursor); 294 295 while (amdgpu_vm_pt_descendant(adev, cursor)) 296 ; 297 } 298 299 /** 300 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue 301 * 302 * @start: starting point for the search 303 * @entry: current entry 304 * 305 * Returns: 306 * True when the search should continue, false otherwise. 307 */ 308 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start, 309 struct amdgpu_vm_bo_base *entry) 310 { 311 return entry && (!start || entry != start->entry); 312 } 313 314 /** 315 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search 316 * 317 * @adev: amdgpu_device structure 318 * @cursor: current state 319 * 320 * Move the cursor to the next node in a deep first search. 321 */ 322 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev, 323 struct amdgpu_vm_pt_cursor *cursor) 324 { 325 if (!cursor->entry) 326 return; 327 328 if (!cursor->parent) 329 cursor->entry = NULL; 330 else if (amdgpu_vm_pt_sibling(adev, cursor)) 331 while (amdgpu_vm_pt_descendant(adev, cursor)) 332 ; 333 else 334 amdgpu_vm_pt_ancestor(cursor); 335 } 336 337 /* 338 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs 339 */ 340 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) \ 341 for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)), \ 342 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\ 343 amdgpu_vm_pt_continue_dfs((start), (entry)); \ 344 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor))) 345 346 /** 347 * amdgpu_vm_pt_clear - initially clear the PDs/PTs 348 * 349 * @adev: amdgpu_device pointer 350 * @vm: VM to clear BO from 351 * @vmbo: BO to clear 352 * @immediate: use an immediate update 353 * 354 * Root PD needs to be reserved when calling this. 355 * 356 * Returns: 357 * 0 on success, errno otherwise. 358 */ 359 int amdgpu_vm_pt_clear(struct amdgpu_device *adev, struct amdgpu_vm *vm, 360 struct amdgpu_bo_vm *vmbo, bool immediate) 361 { 362 unsigned int level = adev->vm_manager.root_level; 363 struct ttm_operation_ctx ctx = { true, false }; 364 struct amdgpu_vm_update_params params; 365 struct amdgpu_bo *ancestor = &vmbo->bo; 366 unsigned int entries; 367 struct amdgpu_bo *bo = &vmbo->bo; 368 uint64_t addr; 369 int r, idx; 370 371 /* Figure out our place in the hierarchy */ 372 if (ancestor->parent) { 373 ++level; 374 while (ancestor->parent->parent) { 375 ++level; 376 ancestor = ancestor->parent; 377 } 378 } 379 380 entries = amdgpu_bo_size(bo) / 8; 381 382 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 383 if (r) 384 return r; 385 386 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 387 return -ENODEV; 388 389 r = vm->update_funcs->map_table(vmbo); 390 if (r) 391 goto exit; 392 393 memset(¶ms, 0, sizeof(params)); 394 params.adev = adev; 395 params.vm = vm; 396 params.immediate = immediate; 397 398 r = vm->update_funcs->prepare(¶ms, NULL); 399 if (r) 400 goto exit; 401 402 addr = 0; 403 404 uint64_t value = 0, flags = 0; 405 if (adev->asic_type >= CHIP_VEGA10) { 406 if (level != AMDGPU_VM_PTB) { 407 /* Handle leaf PDEs as PTEs */ 408 flags |= AMDGPU_PDE_PTE_FLAG(adev); 409 amdgpu_gmc_get_vm_pde(adev, level, 410 &value, &flags); 411 } else { 412 /* Workaround for fault priority problem on GMC9 */ 413 flags = AMDGPU_PTE_EXECUTABLE; 414 } 415 } 416 417 r = vm->update_funcs->update(¶ms, vmbo, addr, 0, entries, 418 value, flags); 419 if (r) 420 goto exit; 421 422 r = vm->update_funcs->commit(¶ms, NULL); 423 exit: 424 drm_dev_exit(idx); 425 return r; 426 } 427 428 /** 429 * amdgpu_vm_pt_create - create bo for PD/PT 430 * 431 * @adev: amdgpu_device pointer 432 * @vm: requesting vm 433 * @level: the page table level 434 * @immediate: use a immediate update 435 * @vmbo: pointer to the buffer object pointer 436 * @xcp_id: GPU partition id 437 */ 438 int amdgpu_vm_pt_create(struct amdgpu_device *adev, struct amdgpu_vm *vm, 439 int level, bool immediate, struct amdgpu_bo_vm **vmbo, 440 int32_t xcp_id) 441 { 442 struct amdgpu_bo_param bp; 443 unsigned int num_entries; 444 445 memset(&bp, 0, sizeof(bp)); 446 447 bp.size = amdgpu_vm_pt_size(adev, level); 448 bp.byte_align = AMDGPU_GPU_PAGE_SIZE; 449 450 if (!adev->gmc.is_app_apu) 451 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 452 else 453 bp.domain = AMDGPU_GEM_DOMAIN_GTT; 454 455 bp.domain = amdgpu_bo_get_preferred_domain(adev, bp.domain); 456 bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 457 AMDGPU_GEM_CREATE_CPU_GTT_USWC; 458 459 if (level < AMDGPU_VM_PTB) 460 num_entries = amdgpu_vm_pt_num_entries(adev, level); 461 else 462 num_entries = 0; 463 464 bp.bo_ptr_size = struct_size((*vmbo), entries, num_entries); 465 466 if (vm->use_cpu_for_update) 467 bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 468 469 bp.type = ttm_bo_type_kernel; 470 bp.no_wait_gpu = immediate; 471 bp.xcp_id_plus1 = xcp_id + 1; 472 473 if (vm->root.bo) 474 bp.resv = vm->root.bo->tbo.base.resv; 475 476 return amdgpu_bo_create_vm(adev, &bp, vmbo); 477 } 478 479 /** 480 * amdgpu_vm_pt_alloc - Allocate a specific page table 481 * 482 * @adev: amdgpu_device pointer 483 * @vm: VM to allocate page tables for 484 * @cursor: Which page table to allocate 485 * @immediate: use an immediate update 486 * 487 * Make sure a specific page table or directory is allocated. 488 * 489 * Returns: 490 * 1 if page table needed to be allocated, 0 if page table was already 491 * allocated, negative errno if an error occurred. 492 */ 493 static int amdgpu_vm_pt_alloc(struct amdgpu_device *adev, 494 struct amdgpu_vm *vm, 495 struct amdgpu_vm_pt_cursor *cursor, 496 bool immediate) 497 { 498 struct amdgpu_vm_bo_base *entry = cursor->entry; 499 struct amdgpu_bo *pt_bo; 500 struct amdgpu_bo_vm *pt; 501 int r; 502 503 if (entry->bo) 504 return 0; 505 506 amdgpu_vm_eviction_unlock(vm); 507 r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt, 508 vm->root.bo->xcp_id); 509 amdgpu_vm_eviction_lock(vm); 510 if (r) 511 return r; 512 513 /* Keep a reference to the root directory to avoid 514 * freeing them up in the wrong order. 515 */ 516 pt_bo = &pt->bo; 517 pt_bo->parent = amdgpu_bo_ref(cursor->parent->bo); 518 amdgpu_vm_bo_base_init(entry, vm, pt_bo); 519 r = amdgpu_vm_pt_clear(adev, vm, pt, immediate); 520 if (r) 521 goto error_free_pt; 522 523 return 0; 524 525 error_free_pt: 526 amdgpu_bo_unref(&pt_bo); 527 return r; 528 } 529 530 /** 531 * amdgpu_vm_pt_free - free one PD/PT 532 * 533 * @entry: PDE to free 534 */ 535 static void amdgpu_vm_pt_free(struct amdgpu_vm_bo_base *entry) 536 { 537 if (!entry->bo) 538 return; 539 540 amdgpu_vm_update_stats(entry, entry->bo->tbo.resource, -1); 541 entry->bo->vm_bo = NULL; 542 ttm_bo_set_bulk_move(&entry->bo->tbo, NULL); 543 544 spin_lock(&entry->vm->status_lock); 545 list_del(&entry->vm_status); 546 spin_unlock(&entry->vm->status_lock); 547 amdgpu_bo_unref(&entry->bo); 548 } 549 550 void amdgpu_vm_pt_free_work(struct work_struct *work) 551 { 552 struct amdgpu_vm_bo_base *entry, *next; 553 struct amdgpu_vm *vm; 554 LIST_HEAD(pt_freed); 555 556 vm = container_of(work, struct amdgpu_vm, pt_free_work); 557 558 spin_lock(&vm->status_lock); 559 list_splice_init(&vm->pt_freed, &pt_freed); 560 spin_unlock(&vm->status_lock); 561 562 /* flush_work in amdgpu_vm_fini ensure vm->root.bo is valid. */ 563 amdgpu_bo_reserve(vm->root.bo, true); 564 565 list_for_each_entry_safe(entry, next, &pt_freed, vm_status) 566 amdgpu_vm_pt_free(entry); 567 568 amdgpu_bo_unreserve(vm->root.bo); 569 } 570 571 /** 572 * amdgpu_vm_pt_free_list - free PD/PT levels 573 * 574 * @adev: amdgpu device structure 575 * @params: see amdgpu_vm_update_params definition 576 * 577 * Free the page directory objects saved in the flush list 578 */ 579 void amdgpu_vm_pt_free_list(struct amdgpu_device *adev, 580 struct amdgpu_vm_update_params *params) 581 { 582 struct amdgpu_vm_bo_base *entry, *next; 583 struct amdgpu_vm *vm = params->vm; 584 bool unlocked = params->unlocked; 585 586 if (list_empty(¶ms->tlb_flush_waitlist)) 587 return; 588 589 if (unlocked) { 590 spin_lock(&vm->status_lock); 591 list_splice_init(¶ms->tlb_flush_waitlist, &vm->pt_freed); 592 spin_unlock(&vm->status_lock); 593 schedule_work(&vm->pt_free_work); 594 return; 595 } 596 597 list_for_each_entry_safe(entry, next, ¶ms->tlb_flush_waitlist, vm_status) 598 amdgpu_vm_pt_free(entry); 599 } 600 601 /** 602 * amdgpu_vm_pt_add_list - add PD/PT level to the flush list 603 * 604 * @params: parameters for the update 605 * @cursor: first PT entry to start DF search from, non NULL 606 * 607 * This list will be freed after TLB flush. 608 */ 609 static void amdgpu_vm_pt_add_list(struct amdgpu_vm_update_params *params, 610 struct amdgpu_vm_pt_cursor *cursor) 611 { 612 struct amdgpu_vm_pt_cursor seek; 613 struct amdgpu_vm_bo_base *entry; 614 615 spin_lock(¶ms->vm->status_lock); 616 for_each_amdgpu_vm_pt_dfs_safe(params->adev, params->vm, cursor, seek, entry) { 617 if (entry && entry->bo) 618 list_move(&entry->vm_status, ¶ms->tlb_flush_waitlist); 619 } 620 621 /* enter start node now */ 622 list_move(&cursor->entry->vm_status, ¶ms->tlb_flush_waitlist); 623 spin_unlock(¶ms->vm->status_lock); 624 } 625 626 /** 627 * amdgpu_vm_pt_free_root - free root PD 628 * @adev: amdgpu device structure 629 * @vm: amdgpu vm structure 630 * 631 * Free the root page directory and everything below it. 632 */ 633 void amdgpu_vm_pt_free_root(struct amdgpu_device *adev, struct amdgpu_vm *vm) 634 { 635 struct amdgpu_vm_pt_cursor cursor; 636 struct amdgpu_vm_bo_base *entry; 637 638 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry) { 639 if (entry) 640 amdgpu_vm_pt_free(entry); 641 } 642 } 643 644 /** 645 * amdgpu_vm_pde_update - update a single level in the hierarchy 646 * 647 * @params: parameters for the update 648 * @entry: entry to update 649 * 650 * Makes sure the requested entry in parent is up to date. 651 */ 652 int amdgpu_vm_pde_update(struct amdgpu_vm_update_params *params, 653 struct amdgpu_vm_bo_base *entry) 654 { 655 struct amdgpu_vm_bo_base *parent = amdgpu_vm_pt_parent(entry); 656 struct amdgpu_bo *bo, *pbo; 657 struct amdgpu_vm *vm = params->vm; 658 uint64_t pde, pt, flags; 659 unsigned int level; 660 661 if (WARN_ON(!parent)) 662 return -EINVAL; 663 664 bo = parent->bo; 665 for (level = 0, pbo = bo->parent; pbo; ++level) 666 pbo = pbo->parent; 667 668 level += params->adev->vm_manager.root_level; 669 amdgpu_gmc_get_pde_for_bo(entry->bo, level, &pt, &flags); 670 pde = (entry - to_amdgpu_bo_vm(parent->bo)->entries) * 8; 671 return vm->update_funcs->update(params, to_amdgpu_bo_vm(bo), pde, pt, 672 1, 0, flags); 673 } 674 675 /** 676 * amdgpu_vm_pte_update_noretry_flags - Update PTE no-retry flags 677 * 678 * @adev: amdgpu_device pointer 679 * @flags: pointer to PTE flags 680 * 681 * Update PTE no-retry flags when TF is enabled. 682 */ 683 static void amdgpu_vm_pte_update_noretry_flags(struct amdgpu_device *adev, 684 uint64_t *flags) 685 { 686 /* 687 * Update no-retry flags with the corresponding TF 688 * no-retry combination. 689 */ 690 if ((*flags & AMDGPU_VM_NORETRY_FLAGS) == AMDGPU_VM_NORETRY_FLAGS) { 691 *flags &= ~AMDGPU_VM_NORETRY_FLAGS; 692 *flags |= adev->gmc.noretry_flags; 693 } 694 } 695 696 /* 697 * amdgpu_vm_pte_update_flags - figure out flags for PTE updates 698 * 699 * Make sure to set the right flags for the PTEs at the desired level. 700 */ 701 static void amdgpu_vm_pte_update_flags(struct amdgpu_vm_update_params *params, 702 struct amdgpu_bo_vm *pt, 703 unsigned int level, 704 uint64_t pe, uint64_t addr, 705 unsigned int count, uint32_t incr, 706 uint64_t flags) 707 { 708 struct amdgpu_device *adev = params->adev; 709 710 if (level != AMDGPU_VM_PTB) { 711 flags |= AMDGPU_PDE_PTE_FLAG(params->adev); 712 amdgpu_gmc_get_vm_pde(adev, level, &addr, &flags); 713 714 } else if (adev->asic_type >= CHIP_VEGA10 && 715 !(flags & AMDGPU_PTE_VALID) && 716 !(flags & AMDGPU_PTE_PRT_FLAG(params->adev))) { 717 718 /* Workaround for fault priority problem on GMC9 */ 719 flags |= AMDGPU_PTE_EXECUTABLE; 720 } 721 722 /* 723 * Update no-retry flags to use the no-retry flag combination 724 * with TF enabled. The AMDGPU_VM_NORETRY_FLAGS flag combination 725 * does not work when TF is enabled. So, replace them with 726 * AMDGPU_VM_NORETRY_FLAGS_TF flag combination which works for 727 * all cases. 728 */ 729 if (level == AMDGPU_VM_PTB) 730 amdgpu_vm_pte_update_noretry_flags(adev, &flags); 731 732 /* APUs mapping system memory may need different MTYPEs on different 733 * NUMA nodes. Only do this for contiguous ranges that can be assumed 734 * to be on the same NUMA node. 735 */ 736 if ((flags & AMDGPU_PTE_SYSTEM) && (adev->flags & AMD_IS_APU) && 737 adev->gmc.gmc_funcs->override_vm_pte_flags && 738 num_possible_nodes() > 1 && !params->pages_addr && params->allow_override) 739 amdgpu_gmc_override_vm_pte_flags(adev, params->vm, addr, &flags); 740 741 params->vm->update_funcs->update(params, pt, pe, addr, count, incr, 742 flags); 743 } 744 745 /** 746 * amdgpu_vm_pte_fragment - get fragment for PTEs 747 * 748 * @params: see amdgpu_vm_update_params definition 749 * @start: first PTE to handle 750 * @end: last PTE to handle 751 * @flags: hw mapping flags 752 * @frag: resulting fragment size 753 * @frag_end: end of this fragment 754 * 755 * Returns the first possible fragment for the start and end address. 756 */ 757 static void amdgpu_vm_pte_fragment(struct amdgpu_vm_update_params *params, 758 uint64_t start, uint64_t end, uint64_t flags, 759 unsigned int *frag, uint64_t *frag_end) 760 { 761 /** 762 * The MC L1 TLB supports variable sized pages, based on a fragment 763 * field in the PTE. When this field is set to a non-zero value, page 764 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 765 * flags are considered valid for all PTEs within the fragment range 766 * and corresponding mappings are assumed to be physically contiguous. 767 * 768 * The L1 TLB can store a single PTE for the whole fragment, 769 * significantly increasing the space available for translation 770 * caching. This leads to large improvements in throughput when the 771 * TLB is under pressure. 772 * 773 * The L2 TLB distributes small and large fragments into two 774 * asymmetric partitions. The large fragment cache is significantly 775 * larger. Thus, we try to use large fragments wherever possible. 776 * Userspace can support this by aligning virtual base address and 777 * allocation size to the fragment size. 778 * 779 * Starting with Vega10 the fragment size only controls the L1. The L2 780 * is now directly feed with small/huge/giant pages from the walker. 781 */ 782 unsigned int max_frag; 783 784 if (params->adev->asic_type < CHIP_VEGA10) 785 max_frag = params->adev->vm_manager.fragment_size; 786 else 787 max_frag = 31; 788 789 /* system pages are non continuously */ 790 if (params->pages_addr) { 791 *frag = 0; 792 *frag_end = end; 793 return; 794 } 795 796 /* This intentionally wraps around if no bit is set */ 797 *frag = min_t(unsigned int, ffs(start) - 1, fls64(end - start) - 1); 798 if (*frag >= max_frag) { 799 *frag = max_frag; 800 *frag_end = end & ~((1ULL << max_frag) - 1); 801 } else { 802 *frag_end = start + (1 << *frag); 803 } 804 } 805 806 /** 807 * amdgpu_vm_ptes_update - make sure that page tables are valid 808 * 809 * @params: see amdgpu_vm_update_params definition 810 * @start: start of GPU address range 811 * @end: end of GPU address range 812 * @dst: destination address to map to, the next dst inside the function 813 * @flags: mapping flags 814 * 815 * Update the page tables in the range @start - @end. 816 * 817 * Returns: 818 * 0 for success, -EINVAL for failure. 819 */ 820 int amdgpu_vm_ptes_update(struct amdgpu_vm_update_params *params, 821 uint64_t start, uint64_t end, 822 uint64_t dst, uint64_t flags) 823 { 824 struct amdgpu_device *adev = params->adev; 825 struct amdgpu_vm_pt_cursor cursor; 826 uint64_t frag_start = start, frag_end; 827 unsigned int frag; 828 int r; 829 830 /* figure out the initial fragment */ 831 amdgpu_vm_pte_fragment(params, frag_start, end, flags, &frag, 832 &frag_end); 833 834 /* walk over the address space and update the PTs */ 835 amdgpu_vm_pt_start(adev, params->vm, start, &cursor); 836 while (cursor.pfn < end) { 837 unsigned int shift, parent_shift, mask; 838 uint64_t incr, entry_end, pe_start; 839 struct amdgpu_bo *pt; 840 841 if (!params->unlocked) { 842 /* make sure that the page tables covering the 843 * address range are actually allocated 844 */ 845 r = amdgpu_vm_pt_alloc(params->adev, params->vm, 846 &cursor, params->immediate); 847 if (r) 848 return r; 849 } 850 851 shift = amdgpu_vm_pt_level_shift(adev, cursor.level); 852 parent_shift = amdgpu_vm_pt_level_shift(adev, cursor.level - 1); 853 if (params->unlocked) { 854 /* Unlocked updates are only allowed on the leaves */ 855 if (amdgpu_vm_pt_descendant(adev, &cursor)) 856 continue; 857 } else if (adev->asic_type < CHIP_VEGA10 && 858 (flags & AMDGPU_PTE_VALID)) { 859 /* No huge page support before GMC v9 */ 860 if (cursor.level != AMDGPU_VM_PTB) { 861 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 862 return -ENOENT; 863 continue; 864 } 865 } else if (frag < shift) { 866 /* We can't use this level when the fragment size is 867 * smaller than the address shift. Go to the next 868 * child entry and try again. 869 */ 870 if (amdgpu_vm_pt_descendant(adev, &cursor)) 871 continue; 872 } else if (frag >= parent_shift) { 873 /* If the fragment size is even larger than the parent 874 * shift we should go up one level and check it again. 875 */ 876 if (!amdgpu_vm_pt_ancestor(&cursor)) 877 return -EINVAL; 878 continue; 879 } 880 881 pt = cursor.entry->bo; 882 if (!pt) { 883 /* We need all PDs and PTs for mapping something, */ 884 if (flags & AMDGPU_PTE_VALID) 885 return -ENOENT; 886 887 /* but unmapping something can happen at a higher 888 * level. 889 */ 890 if (!amdgpu_vm_pt_ancestor(&cursor)) 891 return -EINVAL; 892 893 pt = cursor.entry->bo; 894 shift = parent_shift; 895 frag_end = max(frag_end, ALIGN(frag_start + 1, 896 1ULL << shift)); 897 } 898 899 /* Looks good so far, calculate parameters for the update */ 900 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift; 901 mask = amdgpu_vm_pt_entries_mask(adev, cursor.level); 902 pe_start = ((cursor.pfn >> shift) & mask) * 8; 903 entry_end = ((uint64_t)mask + 1) << shift; 904 entry_end += cursor.pfn & ~(entry_end - 1); 905 entry_end = min(entry_end, end); 906 907 do { 908 struct amdgpu_vm *vm = params->vm; 909 uint64_t upd_end = min(entry_end, frag_end); 910 unsigned int nptes = (upd_end - frag_start) >> shift; 911 uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag); 912 913 /* This can happen when we set higher level PDs to 914 * silent to stop fault floods. 915 */ 916 nptes = max(nptes, 1u); 917 918 trace_amdgpu_vm_update_ptes(params, frag_start, upd_end, 919 min(nptes, 32u), dst, incr, 920 upd_flags, 921 vm->task_info ? vm->task_info->tgid : 0, 922 vm->immediate.fence_context); 923 amdgpu_vm_pte_update_flags(params, to_amdgpu_bo_vm(pt), 924 cursor.level, pe_start, dst, 925 nptes, incr, upd_flags); 926 927 pe_start += nptes * 8; 928 dst += nptes * incr; 929 930 frag_start = upd_end; 931 if (frag_start >= frag_end) { 932 /* figure out the next fragment */ 933 amdgpu_vm_pte_fragment(params, frag_start, end, 934 flags, &frag, &frag_end); 935 if (frag < shift) 936 break; 937 } 938 } while (frag_start < entry_end); 939 940 if (amdgpu_vm_pt_descendant(adev, &cursor)) { 941 /* Free all child entries. 942 * Update the tables with the flags and addresses and free up subsequent 943 * tables in the case of huge pages or freed up areas. 944 * This is the maximum you can free, because all other page tables are not 945 * completely covered by the range and so potentially still in use. 946 */ 947 while (cursor.pfn < frag_start) { 948 /* Make sure previous mapping is freed */ 949 if (cursor.entry->bo) { 950 params->needs_flush = true; 951 amdgpu_vm_pt_add_list(params, &cursor); 952 } 953 amdgpu_vm_pt_next(adev, &cursor); 954 } 955 956 } else if (frag >= shift) { 957 /* or just move on to the next on the same level. */ 958 amdgpu_vm_pt_next(adev, &cursor); 959 } 960 } 961 962 return 0; 963 } 964 965 /** 966 * amdgpu_vm_pt_map_tables - have bo of root PD cpu accessible 967 * @adev: amdgpu device structure 968 * @vm: amdgpu vm structure 969 * 970 * make root page directory and everything below it cpu accessible. 971 */ 972 int amdgpu_vm_pt_map_tables(struct amdgpu_device *adev, struct amdgpu_vm *vm) 973 { 974 struct amdgpu_vm_pt_cursor cursor; 975 struct amdgpu_vm_bo_base *entry; 976 977 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry) { 978 979 struct amdgpu_bo_vm *bo; 980 int r; 981 982 if (entry->bo) { 983 bo = to_amdgpu_bo_vm(entry->bo); 984 r = vm->update_funcs->map_table(bo); 985 if (r) 986 return r; 987 } 988 } 989 990 return 0; 991 } 992