1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <drm/drm_drv.h> 25 26 #include "amdgpu.h" 27 #include "amdgpu_trace.h" 28 #include "amdgpu_vm.h" 29 30 /* 31 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt 32 */ 33 struct amdgpu_vm_pt_cursor { 34 uint64_t pfn; 35 struct amdgpu_vm_bo_base *parent; 36 struct amdgpu_vm_bo_base *entry; 37 unsigned int level; 38 }; 39 40 /** 41 * amdgpu_vm_pt_level_shift - return the addr shift for each level 42 * 43 * @adev: amdgpu_device pointer 44 * @level: VMPT level 45 * 46 * Returns: 47 * The number of bits the pfn needs to be right shifted for a level. 48 */ 49 static unsigned int amdgpu_vm_pt_level_shift(struct amdgpu_device *adev, 50 unsigned int level) 51 { 52 switch (level) { 53 case AMDGPU_VM_PDB2: 54 case AMDGPU_VM_PDB1: 55 case AMDGPU_VM_PDB0: 56 return 9 * (AMDGPU_VM_PDB0 - level) + 57 adev->vm_manager.block_size; 58 case AMDGPU_VM_PTB: 59 return 0; 60 default: 61 return ~0; 62 } 63 } 64 65 /** 66 * amdgpu_vm_pt_num_entries - return the number of entries in a PD/PT 67 * 68 * @adev: amdgpu_device pointer 69 * @level: VMPT level 70 * 71 * Returns: 72 * The number of entries in a page directory or page table. 73 */ 74 static unsigned int amdgpu_vm_pt_num_entries(struct amdgpu_device *adev, 75 unsigned int level) 76 { 77 unsigned int shift; 78 79 shift = amdgpu_vm_pt_level_shift(adev, adev->vm_manager.root_level); 80 if (level == adev->vm_manager.root_level) 81 /* For the root directory */ 82 return round_up(adev->vm_manager.max_pfn, 1ULL << shift) 83 >> shift; 84 else if (level != AMDGPU_VM_PTB) 85 /* Everything in between */ 86 return 512; 87 88 /* For the page tables on the leaves */ 89 return AMDGPU_VM_PTE_COUNT(adev); 90 } 91 92 /** 93 * amdgpu_vm_pt_entries_mask - the mask to get the entry number of a PD/PT 94 * 95 * @adev: amdgpu_device pointer 96 * @level: VMPT level 97 * 98 * Returns: 99 * The mask to extract the entry number of a PD/PT from an address. 100 */ 101 static uint32_t amdgpu_vm_pt_entries_mask(struct amdgpu_device *adev, 102 unsigned int level) 103 { 104 if (level <= adev->vm_manager.root_level) 105 return 0xffffffff; 106 else if (level != AMDGPU_VM_PTB) 107 return 0x1ff; 108 else 109 return AMDGPU_VM_PTE_COUNT(adev) - 1; 110 } 111 112 /** 113 * amdgpu_vm_pt_size - returns the size of the page table in bytes 114 * 115 * @adev: amdgpu_device pointer 116 * @level: VMPT level 117 * 118 * Returns: 119 * The size of the BO for a page directory or page table in bytes. 120 */ 121 static unsigned int amdgpu_vm_pt_size(struct amdgpu_device *adev, 122 unsigned int level) 123 { 124 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_pt_num_entries(adev, level) * 8); 125 } 126 127 /** 128 * amdgpu_vm_pt_parent - get the parent page directory 129 * 130 * @pt: child page table 131 * 132 * Helper to get the parent entry for the child page table. NULL if we are at 133 * the root page directory. 134 */ 135 static struct amdgpu_vm_bo_base * 136 amdgpu_vm_pt_parent(struct amdgpu_vm_bo_base *pt) 137 { 138 struct amdgpu_bo *parent = pt->bo->parent; 139 140 if (!parent) 141 return NULL; 142 143 return parent->vm_bo; 144 } 145 146 /** 147 * amdgpu_vm_pt_start - start PD/PT walk 148 * 149 * @adev: amdgpu_device pointer 150 * @vm: amdgpu_vm structure 151 * @start: start address of the walk 152 * @cursor: state to initialize 153 * 154 * Initialize a amdgpu_vm_pt_cursor to start a walk. 155 */ 156 static void amdgpu_vm_pt_start(struct amdgpu_device *adev, 157 struct amdgpu_vm *vm, uint64_t start, 158 struct amdgpu_vm_pt_cursor *cursor) 159 { 160 cursor->pfn = start; 161 cursor->parent = NULL; 162 cursor->entry = &vm->root; 163 cursor->level = adev->vm_manager.root_level; 164 } 165 166 /** 167 * amdgpu_vm_pt_descendant - go to child node 168 * 169 * @adev: amdgpu_device pointer 170 * @cursor: current state 171 * 172 * Walk to the child node of the current node. 173 * Returns: 174 * True if the walk was possible, false otherwise. 175 */ 176 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev, 177 struct amdgpu_vm_pt_cursor *cursor) 178 { 179 unsigned int mask, shift, idx; 180 181 if ((cursor->level == AMDGPU_VM_PTB) || !cursor->entry || 182 !cursor->entry->bo) 183 return false; 184 185 mask = amdgpu_vm_pt_entries_mask(adev, cursor->level); 186 shift = amdgpu_vm_pt_level_shift(adev, cursor->level); 187 188 ++cursor->level; 189 idx = (cursor->pfn >> shift) & mask; 190 cursor->parent = cursor->entry; 191 cursor->entry = &to_amdgpu_bo_vm(cursor->entry->bo)->entries[idx]; 192 return true; 193 } 194 195 /** 196 * amdgpu_vm_pt_sibling - go to sibling node 197 * 198 * @adev: amdgpu_device pointer 199 * @cursor: current state 200 * 201 * Walk to the sibling node of the current node. 202 * Returns: 203 * True if the walk was possible, false otherwise. 204 */ 205 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev, 206 struct amdgpu_vm_pt_cursor *cursor) 207 { 208 209 unsigned int shift, num_entries; 210 struct amdgpu_bo_vm *parent; 211 212 /* Root doesn't have a sibling */ 213 if (!cursor->parent) 214 return false; 215 216 /* Go to our parents and see if we got a sibling */ 217 shift = amdgpu_vm_pt_level_shift(adev, cursor->level - 1); 218 num_entries = amdgpu_vm_pt_num_entries(adev, cursor->level - 1); 219 parent = to_amdgpu_bo_vm(cursor->parent->bo); 220 221 if (cursor->entry == &parent->entries[num_entries - 1]) 222 return false; 223 224 cursor->pfn += 1ULL << shift; 225 cursor->pfn &= ~((1ULL << shift) - 1); 226 ++cursor->entry; 227 return true; 228 } 229 230 /** 231 * amdgpu_vm_pt_ancestor - go to parent node 232 * 233 * @cursor: current state 234 * 235 * Walk to the parent node of the current node. 236 * Returns: 237 * True if the walk was possible, false otherwise. 238 */ 239 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor) 240 { 241 if (!cursor->parent) 242 return false; 243 244 --cursor->level; 245 cursor->entry = cursor->parent; 246 cursor->parent = amdgpu_vm_pt_parent(cursor->parent); 247 return true; 248 } 249 250 /** 251 * amdgpu_vm_pt_next - get next PD/PT in hieratchy 252 * 253 * @adev: amdgpu_device pointer 254 * @cursor: current state 255 * 256 * Walk the PD/PT tree to the next node. 257 */ 258 static void amdgpu_vm_pt_next(struct amdgpu_device *adev, 259 struct amdgpu_vm_pt_cursor *cursor) 260 { 261 /* First try a newborn child */ 262 if (amdgpu_vm_pt_descendant(adev, cursor)) 263 return; 264 265 /* If that didn't worked try to find a sibling */ 266 while (!amdgpu_vm_pt_sibling(adev, cursor)) { 267 /* No sibling, go to our parents and grandparents */ 268 if (!amdgpu_vm_pt_ancestor(cursor)) { 269 cursor->pfn = ~0ll; 270 return; 271 } 272 } 273 } 274 275 /** 276 * amdgpu_vm_pt_first_dfs - start a deep first search 277 * 278 * @adev: amdgpu_device structure 279 * @vm: amdgpu_vm structure 280 * @start: optional cursor to start with 281 * @cursor: state to initialize 282 * 283 * Starts a deep first traversal of the PD/PT tree. 284 */ 285 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev, 286 struct amdgpu_vm *vm, 287 struct amdgpu_vm_pt_cursor *start, 288 struct amdgpu_vm_pt_cursor *cursor) 289 { 290 if (start) 291 *cursor = *start; 292 else 293 amdgpu_vm_pt_start(adev, vm, 0, cursor); 294 295 while (amdgpu_vm_pt_descendant(adev, cursor)) 296 ; 297 } 298 299 /** 300 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue 301 * 302 * @start: starting point for the search 303 * @entry: current entry 304 * 305 * Returns: 306 * True when the search should continue, false otherwise. 307 */ 308 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start, 309 struct amdgpu_vm_bo_base *entry) 310 { 311 return entry && (!start || entry != start->entry); 312 } 313 314 /** 315 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search 316 * 317 * @adev: amdgpu_device structure 318 * @cursor: current state 319 * 320 * Move the cursor to the next node in a deep first search. 321 */ 322 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev, 323 struct amdgpu_vm_pt_cursor *cursor) 324 { 325 if (!cursor->entry) 326 return; 327 328 if (!cursor->parent) 329 cursor->entry = NULL; 330 else if (amdgpu_vm_pt_sibling(adev, cursor)) 331 while (amdgpu_vm_pt_descendant(adev, cursor)) 332 ; 333 else 334 amdgpu_vm_pt_ancestor(cursor); 335 } 336 337 /* 338 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs 339 */ 340 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) \ 341 for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)), \ 342 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\ 343 amdgpu_vm_pt_continue_dfs((start), (entry)); \ 344 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor))) 345 346 /** 347 * amdgpu_vm_pt_clear - initially clear the PDs/PTs 348 * 349 * @adev: amdgpu_device pointer 350 * @vm: VM to clear BO from 351 * @vmbo: BO to clear 352 * @immediate: use an immediate update 353 * 354 * Root PD needs to be reserved when calling this. 355 * 356 * Returns: 357 * 0 on success, errno otherwise. 358 */ 359 int amdgpu_vm_pt_clear(struct amdgpu_device *adev, struct amdgpu_vm *vm, 360 struct amdgpu_bo_vm *vmbo, bool immediate) 361 { 362 unsigned int level = adev->vm_manager.root_level; 363 struct ttm_operation_ctx ctx = { true, false }; 364 struct amdgpu_vm_update_params params; 365 struct amdgpu_bo *ancestor = &vmbo->bo; 366 unsigned int entries; 367 struct amdgpu_bo *bo = &vmbo->bo; 368 uint64_t addr; 369 int r, idx; 370 371 /* Figure out our place in the hierarchy */ 372 if (ancestor->parent) { 373 ++level; 374 while (ancestor->parent->parent) { 375 ++level; 376 ancestor = ancestor->parent; 377 } 378 } 379 380 entries = amdgpu_bo_size(bo) / 8; 381 382 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 383 if (r) 384 return r; 385 386 if (vmbo->shadow) { 387 struct amdgpu_bo *shadow = vmbo->shadow; 388 389 r = ttm_bo_validate(&shadow->tbo, &shadow->placement, &ctx); 390 if (r) 391 return r; 392 } 393 394 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 395 return -ENODEV; 396 397 r = vm->update_funcs->map_table(vmbo); 398 if (r) 399 goto exit; 400 401 memset(¶ms, 0, sizeof(params)); 402 params.adev = adev; 403 params.vm = vm; 404 params.immediate = immediate; 405 406 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); 407 if (r) 408 goto exit; 409 410 addr = 0; 411 412 uint64_t value = 0, flags = 0; 413 if (adev->asic_type >= CHIP_VEGA10) { 414 if (level != AMDGPU_VM_PTB) { 415 /* Handle leaf PDEs as PTEs */ 416 flags |= AMDGPU_PDE_PTE; 417 amdgpu_gmc_get_vm_pde(adev, level, 418 &value, &flags); 419 } else { 420 /* Workaround for fault priority problem on GMC9 */ 421 flags = AMDGPU_PTE_EXECUTABLE; 422 } 423 } 424 425 r = vm->update_funcs->update(¶ms, vmbo, addr, 0, entries, 426 value, flags); 427 if (r) 428 goto exit; 429 430 r = vm->update_funcs->commit(¶ms, NULL); 431 exit: 432 drm_dev_exit(idx); 433 return r; 434 } 435 436 /** 437 * amdgpu_vm_pt_create - create bo for PD/PT 438 * 439 * @adev: amdgpu_device pointer 440 * @vm: requesting vm 441 * @level: the page table level 442 * @immediate: use a immediate update 443 * @vmbo: pointer to the buffer object pointer 444 * @xcp_id: GPU partition id 445 */ 446 int amdgpu_vm_pt_create(struct amdgpu_device *adev, struct amdgpu_vm *vm, 447 int level, bool immediate, struct amdgpu_bo_vm **vmbo, 448 int32_t xcp_id) 449 { 450 struct amdgpu_bo_param bp; 451 struct amdgpu_bo *bo; 452 struct dma_resv *resv; 453 unsigned int num_entries; 454 int r; 455 456 memset(&bp, 0, sizeof(bp)); 457 458 bp.size = amdgpu_vm_pt_size(adev, level); 459 bp.byte_align = AMDGPU_GPU_PAGE_SIZE; 460 461 if (!adev->gmc.is_app_apu) 462 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 463 else 464 bp.domain = AMDGPU_GEM_DOMAIN_GTT; 465 466 bp.domain = amdgpu_bo_get_preferred_domain(adev, bp.domain); 467 bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 468 AMDGPU_GEM_CREATE_CPU_GTT_USWC; 469 470 if (level < AMDGPU_VM_PTB) 471 num_entries = amdgpu_vm_pt_num_entries(adev, level); 472 else 473 num_entries = 0; 474 475 bp.bo_ptr_size = struct_size((*vmbo), entries, num_entries); 476 477 if (vm->use_cpu_for_update) 478 bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 479 480 bp.type = ttm_bo_type_kernel; 481 bp.no_wait_gpu = immediate; 482 bp.xcp_id_plus1 = xcp_id + 1; 483 484 if (vm->root.bo) 485 bp.resv = vm->root.bo->tbo.base.resv; 486 487 r = amdgpu_bo_create_vm(adev, &bp, vmbo); 488 if (r) 489 return r; 490 491 bo = &(*vmbo)->bo; 492 if (vm->is_compute_context || (adev->flags & AMD_IS_APU)) { 493 (*vmbo)->shadow = NULL; 494 return 0; 495 } 496 497 if (!bp.resv) 498 WARN_ON(dma_resv_lock(bo->tbo.base.resv, 499 NULL)); 500 resv = bp.resv; 501 memset(&bp, 0, sizeof(bp)); 502 bp.size = amdgpu_vm_pt_size(adev, level); 503 bp.domain = AMDGPU_GEM_DOMAIN_GTT; 504 bp.flags = AMDGPU_GEM_CREATE_CPU_GTT_USWC; 505 bp.type = ttm_bo_type_kernel; 506 bp.resv = bo->tbo.base.resv; 507 bp.bo_ptr_size = sizeof(struct amdgpu_bo); 508 bp.xcp_id_plus1 = xcp_id + 1; 509 510 r = amdgpu_bo_create(adev, &bp, &(*vmbo)->shadow); 511 512 if (!resv) 513 dma_resv_unlock(bo->tbo.base.resv); 514 515 if (r) { 516 amdgpu_bo_unref(&bo); 517 return r; 518 } 519 520 amdgpu_bo_add_to_shadow_list(*vmbo); 521 522 return 0; 523 } 524 525 /** 526 * amdgpu_vm_pt_alloc - Allocate a specific page table 527 * 528 * @adev: amdgpu_device pointer 529 * @vm: VM to allocate page tables for 530 * @cursor: Which page table to allocate 531 * @immediate: use an immediate update 532 * 533 * Make sure a specific page table or directory is allocated. 534 * 535 * Returns: 536 * 1 if page table needed to be allocated, 0 if page table was already 537 * allocated, negative errno if an error occurred. 538 */ 539 static int amdgpu_vm_pt_alloc(struct amdgpu_device *adev, 540 struct amdgpu_vm *vm, 541 struct amdgpu_vm_pt_cursor *cursor, 542 bool immediate) 543 { 544 struct amdgpu_vm_bo_base *entry = cursor->entry; 545 struct amdgpu_bo *pt_bo; 546 struct amdgpu_bo_vm *pt; 547 int r; 548 549 if (entry->bo) 550 return 0; 551 552 amdgpu_vm_eviction_unlock(vm); 553 r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt, 554 vm->root.bo->xcp_id); 555 amdgpu_vm_eviction_lock(vm); 556 if (r) 557 return r; 558 559 /* Keep a reference to the root directory to avoid 560 * freeing them up in the wrong order. 561 */ 562 pt_bo = &pt->bo; 563 pt_bo->parent = amdgpu_bo_ref(cursor->parent->bo); 564 amdgpu_vm_bo_base_init(entry, vm, pt_bo); 565 r = amdgpu_vm_pt_clear(adev, vm, pt, immediate); 566 if (r) 567 goto error_free_pt; 568 569 return 0; 570 571 error_free_pt: 572 amdgpu_bo_unref(&pt->shadow); 573 amdgpu_bo_unref(&pt_bo); 574 return r; 575 } 576 577 /** 578 * amdgpu_vm_pt_free - free one PD/PT 579 * 580 * @entry: PDE to free 581 */ 582 static void amdgpu_vm_pt_free(struct amdgpu_vm_bo_base *entry) 583 { 584 struct amdgpu_bo *shadow; 585 586 if (!entry->bo) 587 return; 588 589 entry->bo->vm_bo = NULL; 590 shadow = amdgpu_bo_shadowed(entry->bo); 591 if (shadow) { 592 ttm_bo_set_bulk_move(&shadow->tbo, NULL); 593 amdgpu_bo_unref(&shadow); 594 } 595 ttm_bo_set_bulk_move(&entry->bo->tbo, NULL); 596 597 spin_lock(&entry->vm->status_lock); 598 list_del(&entry->vm_status); 599 spin_unlock(&entry->vm->status_lock); 600 amdgpu_bo_unref(&entry->bo); 601 } 602 603 void amdgpu_vm_pt_free_work(struct work_struct *work) 604 { 605 struct amdgpu_vm_bo_base *entry, *next; 606 struct amdgpu_vm *vm; 607 LIST_HEAD(pt_freed); 608 609 vm = container_of(work, struct amdgpu_vm, pt_free_work); 610 611 spin_lock(&vm->status_lock); 612 list_splice_init(&vm->pt_freed, &pt_freed); 613 spin_unlock(&vm->status_lock); 614 615 /* flush_work in amdgpu_vm_fini ensure vm->root.bo is valid. */ 616 amdgpu_bo_reserve(vm->root.bo, true); 617 618 list_for_each_entry_safe(entry, next, &pt_freed, vm_status) 619 amdgpu_vm_pt_free(entry); 620 621 amdgpu_bo_unreserve(vm->root.bo); 622 } 623 624 /** 625 * amdgpu_vm_pt_free_list - free PD/PT levels 626 * 627 * @adev: amdgpu device structure 628 * @params: see amdgpu_vm_update_params definition 629 * 630 * Free the page directory objects saved in the flush list 631 */ 632 void amdgpu_vm_pt_free_list(struct amdgpu_device *adev, 633 struct amdgpu_vm_update_params *params) 634 { 635 struct amdgpu_vm_bo_base *entry, *next; 636 struct amdgpu_vm *vm = params->vm; 637 bool unlocked = params->unlocked; 638 639 if (list_empty(¶ms->tlb_flush_waitlist)) 640 return; 641 642 if (unlocked) { 643 spin_lock(&vm->status_lock); 644 list_splice_init(¶ms->tlb_flush_waitlist, &vm->pt_freed); 645 spin_unlock(&vm->status_lock); 646 schedule_work(&vm->pt_free_work); 647 return; 648 } 649 650 list_for_each_entry_safe(entry, next, ¶ms->tlb_flush_waitlist, vm_status) 651 amdgpu_vm_pt_free(entry); 652 } 653 654 /** 655 * amdgpu_vm_pt_add_list - add PD/PT level to the flush list 656 * 657 * @params: parameters for the update 658 * @cursor: first PT entry to start DF search from, non NULL 659 * 660 * This list will be freed after TLB flush. 661 */ 662 static void amdgpu_vm_pt_add_list(struct amdgpu_vm_update_params *params, 663 struct amdgpu_vm_pt_cursor *cursor) 664 { 665 struct amdgpu_vm_pt_cursor seek; 666 struct amdgpu_vm_bo_base *entry; 667 668 spin_lock(¶ms->vm->status_lock); 669 for_each_amdgpu_vm_pt_dfs_safe(params->adev, params->vm, cursor, seek, entry) { 670 if (entry && entry->bo) 671 list_move(&entry->vm_status, ¶ms->tlb_flush_waitlist); 672 } 673 674 /* enter start node now */ 675 list_move(&cursor->entry->vm_status, ¶ms->tlb_flush_waitlist); 676 spin_unlock(¶ms->vm->status_lock); 677 } 678 679 /** 680 * amdgpu_vm_pt_free_root - free root PD 681 * @adev: amdgpu device structure 682 * @vm: amdgpu vm structure 683 * 684 * Free the root page directory and everything below it. 685 */ 686 void amdgpu_vm_pt_free_root(struct amdgpu_device *adev, struct amdgpu_vm *vm) 687 { 688 struct amdgpu_vm_pt_cursor cursor; 689 struct amdgpu_vm_bo_base *entry; 690 691 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry) 692 amdgpu_vm_pt_free(entry); 693 } 694 695 /** 696 * amdgpu_vm_pde_update - update a single level in the hierarchy 697 * 698 * @params: parameters for the update 699 * @entry: entry to update 700 * 701 * Makes sure the requested entry in parent is up to date. 702 */ 703 int amdgpu_vm_pde_update(struct amdgpu_vm_update_params *params, 704 struct amdgpu_vm_bo_base *entry) 705 { 706 struct amdgpu_vm_bo_base *parent = amdgpu_vm_pt_parent(entry); 707 struct amdgpu_bo *bo = parent->bo, *pbo; 708 struct amdgpu_vm *vm = params->vm; 709 uint64_t pde, pt, flags; 710 unsigned int level; 711 712 for (level = 0, pbo = bo->parent; pbo; ++level) 713 pbo = pbo->parent; 714 715 level += params->adev->vm_manager.root_level; 716 amdgpu_gmc_get_pde_for_bo(entry->bo, level, &pt, &flags); 717 pde = (entry - to_amdgpu_bo_vm(parent->bo)->entries) * 8; 718 return vm->update_funcs->update(params, to_amdgpu_bo_vm(bo), pde, pt, 719 1, 0, flags); 720 } 721 722 /** 723 * amdgpu_vm_pte_update_noretry_flags - Update PTE no-retry flags 724 * 725 * @adev: amdgpu_device pointer 726 * @flags: pointer to PTE flags 727 * 728 * Update PTE no-retry flags when TF is enabled. 729 */ 730 static void amdgpu_vm_pte_update_noretry_flags(struct amdgpu_device *adev, 731 uint64_t *flags) 732 { 733 /* 734 * Update no-retry flags with the corresponding TF 735 * no-retry combination. 736 */ 737 if ((*flags & AMDGPU_VM_NORETRY_FLAGS) == AMDGPU_VM_NORETRY_FLAGS) { 738 *flags &= ~AMDGPU_VM_NORETRY_FLAGS; 739 *flags |= adev->gmc.noretry_flags; 740 } 741 } 742 743 /* 744 * amdgpu_vm_pte_update_flags - figure out flags for PTE updates 745 * 746 * Make sure to set the right flags for the PTEs at the desired level. 747 */ 748 static void amdgpu_vm_pte_update_flags(struct amdgpu_vm_update_params *params, 749 struct amdgpu_bo_vm *pt, 750 unsigned int level, 751 uint64_t pe, uint64_t addr, 752 unsigned int count, uint32_t incr, 753 uint64_t flags) 754 { 755 struct amdgpu_device *adev = params->adev; 756 757 if (level != AMDGPU_VM_PTB) { 758 flags |= AMDGPU_PDE_PTE; 759 amdgpu_gmc_get_vm_pde(adev, level, &addr, &flags); 760 761 } else if (adev->asic_type >= CHIP_VEGA10 && 762 !(flags & AMDGPU_PTE_VALID) && 763 !(flags & AMDGPU_PTE_PRT)) { 764 765 /* Workaround for fault priority problem on GMC9 */ 766 flags |= AMDGPU_PTE_EXECUTABLE; 767 } 768 769 /* 770 * Update no-retry flags to use the no-retry flag combination 771 * with TF enabled. The AMDGPU_VM_NORETRY_FLAGS flag combination 772 * does not work when TF is enabled. So, replace them with 773 * AMDGPU_VM_NORETRY_FLAGS_TF flag combination which works for 774 * all cases. 775 */ 776 if (level == AMDGPU_VM_PTB) 777 amdgpu_vm_pte_update_noretry_flags(adev, &flags); 778 779 /* APUs mapping system memory may need different MTYPEs on different 780 * NUMA nodes. Only do this for contiguous ranges that can be assumed 781 * to be on the same NUMA node. 782 */ 783 if ((flags & AMDGPU_PTE_SYSTEM) && (adev->flags & AMD_IS_APU) && 784 adev->gmc.gmc_funcs->override_vm_pte_flags && 785 num_possible_nodes() > 1 && !params->pages_addr && params->allow_override) 786 amdgpu_gmc_override_vm_pte_flags(adev, params->vm, addr, &flags); 787 788 params->vm->update_funcs->update(params, pt, pe, addr, count, incr, 789 flags); 790 } 791 792 /** 793 * amdgpu_vm_pte_fragment - get fragment for PTEs 794 * 795 * @params: see amdgpu_vm_update_params definition 796 * @start: first PTE to handle 797 * @end: last PTE to handle 798 * @flags: hw mapping flags 799 * @frag: resulting fragment size 800 * @frag_end: end of this fragment 801 * 802 * Returns the first possible fragment for the start and end address. 803 */ 804 static void amdgpu_vm_pte_fragment(struct amdgpu_vm_update_params *params, 805 uint64_t start, uint64_t end, uint64_t flags, 806 unsigned int *frag, uint64_t *frag_end) 807 { 808 /** 809 * The MC L1 TLB supports variable sized pages, based on a fragment 810 * field in the PTE. When this field is set to a non-zero value, page 811 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 812 * flags are considered valid for all PTEs within the fragment range 813 * and corresponding mappings are assumed to be physically contiguous. 814 * 815 * The L1 TLB can store a single PTE for the whole fragment, 816 * significantly increasing the space available for translation 817 * caching. This leads to large improvements in throughput when the 818 * TLB is under pressure. 819 * 820 * The L2 TLB distributes small and large fragments into two 821 * asymmetric partitions. The large fragment cache is significantly 822 * larger. Thus, we try to use large fragments wherever possible. 823 * Userspace can support this by aligning virtual base address and 824 * allocation size to the fragment size. 825 * 826 * Starting with Vega10 the fragment size only controls the L1. The L2 827 * is now directly feed with small/huge/giant pages from the walker. 828 */ 829 unsigned int max_frag; 830 831 if (params->adev->asic_type < CHIP_VEGA10) 832 max_frag = params->adev->vm_manager.fragment_size; 833 else 834 max_frag = 31; 835 836 /* system pages are non continuously */ 837 if (params->pages_addr) { 838 *frag = 0; 839 *frag_end = end; 840 return; 841 } 842 843 /* This intentionally wraps around if no bit is set */ 844 *frag = min_t(unsigned int, ffs(start) - 1, fls64(end - start) - 1); 845 if (*frag >= max_frag) { 846 *frag = max_frag; 847 *frag_end = end & ~((1ULL << max_frag) - 1); 848 } else { 849 *frag_end = start + (1 << *frag); 850 } 851 } 852 853 /** 854 * amdgpu_vm_ptes_update - make sure that page tables are valid 855 * 856 * @params: see amdgpu_vm_update_params definition 857 * @start: start of GPU address range 858 * @end: end of GPU address range 859 * @dst: destination address to map to, the next dst inside the function 860 * @flags: mapping flags 861 * 862 * Update the page tables in the range @start - @end. 863 * 864 * Returns: 865 * 0 for success, -EINVAL for failure. 866 */ 867 int amdgpu_vm_ptes_update(struct amdgpu_vm_update_params *params, 868 uint64_t start, uint64_t end, 869 uint64_t dst, uint64_t flags) 870 { 871 struct amdgpu_device *adev = params->adev; 872 struct amdgpu_vm_pt_cursor cursor; 873 uint64_t frag_start = start, frag_end; 874 unsigned int frag; 875 int r; 876 877 /* figure out the initial fragment */ 878 amdgpu_vm_pte_fragment(params, frag_start, end, flags, &frag, 879 &frag_end); 880 881 /* walk over the address space and update the PTs */ 882 amdgpu_vm_pt_start(adev, params->vm, start, &cursor); 883 while (cursor.pfn < end) { 884 unsigned int shift, parent_shift, mask; 885 uint64_t incr, entry_end, pe_start; 886 struct amdgpu_bo *pt; 887 888 if (!params->unlocked) { 889 /* make sure that the page tables covering the 890 * address range are actually allocated 891 */ 892 r = amdgpu_vm_pt_alloc(params->adev, params->vm, 893 &cursor, params->immediate); 894 if (r) 895 return r; 896 } 897 898 shift = amdgpu_vm_pt_level_shift(adev, cursor.level); 899 parent_shift = amdgpu_vm_pt_level_shift(adev, cursor.level - 1); 900 if (params->unlocked) { 901 /* Unlocked updates are only allowed on the leaves */ 902 if (amdgpu_vm_pt_descendant(adev, &cursor)) 903 continue; 904 } else if (adev->asic_type < CHIP_VEGA10 && 905 (flags & AMDGPU_PTE_VALID)) { 906 /* No huge page support before GMC v9 */ 907 if (cursor.level != AMDGPU_VM_PTB) { 908 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 909 return -ENOENT; 910 continue; 911 } 912 } else if (frag < shift) { 913 /* We can't use this level when the fragment size is 914 * smaller than the address shift. Go to the next 915 * child entry and try again. 916 */ 917 if (amdgpu_vm_pt_descendant(adev, &cursor)) 918 continue; 919 } else if (frag >= parent_shift) { 920 /* If the fragment size is even larger than the parent 921 * shift we should go up one level and check it again. 922 */ 923 if (!amdgpu_vm_pt_ancestor(&cursor)) 924 return -EINVAL; 925 continue; 926 } 927 928 pt = cursor.entry->bo; 929 if (!pt) { 930 /* We need all PDs and PTs for mapping something, */ 931 if (flags & AMDGPU_PTE_VALID) 932 return -ENOENT; 933 934 /* but unmapping something can happen at a higher 935 * level. 936 */ 937 if (!amdgpu_vm_pt_ancestor(&cursor)) 938 return -EINVAL; 939 940 pt = cursor.entry->bo; 941 shift = parent_shift; 942 frag_end = max(frag_end, ALIGN(frag_start + 1, 943 1ULL << shift)); 944 } 945 946 /* Looks good so far, calculate parameters for the update */ 947 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift; 948 mask = amdgpu_vm_pt_entries_mask(adev, cursor.level); 949 pe_start = ((cursor.pfn >> shift) & mask) * 8; 950 entry_end = ((uint64_t)mask + 1) << shift; 951 entry_end += cursor.pfn & ~(entry_end - 1); 952 entry_end = min(entry_end, end); 953 954 do { 955 struct amdgpu_vm *vm = params->vm; 956 uint64_t upd_end = min(entry_end, frag_end); 957 unsigned int nptes = (upd_end - frag_start) >> shift; 958 uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag); 959 960 /* This can happen when we set higher level PDs to 961 * silent to stop fault floods. 962 */ 963 nptes = max(nptes, 1u); 964 965 trace_amdgpu_vm_update_ptes(params, frag_start, upd_end, 966 min(nptes, 32u), dst, incr, 967 upd_flags, 968 vm->task_info ? vm->task_info->tgid : 0, 969 vm->immediate.fence_context); 970 amdgpu_vm_pte_update_flags(params, to_amdgpu_bo_vm(pt), 971 cursor.level, pe_start, dst, 972 nptes, incr, upd_flags); 973 974 pe_start += nptes * 8; 975 dst += nptes * incr; 976 977 frag_start = upd_end; 978 if (frag_start >= frag_end) { 979 /* figure out the next fragment */ 980 amdgpu_vm_pte_fragment(params, frag_start, end, 981 flags, &frag, &frag_end); 982 if (frag < shift) 983 break; 984 } 985 } while (frag_start < entry_end); 986 987 if (amdgpu_vm_pt_descendant(adev, &cursor)) { 988 /* Free all child entries. 989 * Update the tables with the flags and addresses and free up subsequent 990 * tables in the case of huge pages or freed up areas. 991 * This is the maximum you can free, because all other page tables are not 992 * completely covered by the range and so potentially still in use. 993 */ 994 while (cursor.pfn < frag_start) { 995 /* Make sure previous mapping is freed */ 996 if (cursor.entry->bo) { 997 params->needs_flush = true; 998 amdgpu_vm_pt_add_list(params, &cursor); 999 } 1000 amdgpu_vm_pt_next(adev, &cursor); 1001 } 1002 1003 } else if (frag >= shift) { 1004 /* or just move on to the next on the same level. */ 1005 amdgpu_vm_pt_next(adev, &cursor); 1006 } 1007 } 1008 1009 return 0; 1010 } 1011 1012 /** 1013 * amdgpu_vm_pt_map_tables - have bo of root PD cpu accessible 1014 * @adev: amdgpu device structure 1015 * @vm: amdgpu vm structure 1016 * 1017 * make root page directory and everything below it cpu accessible. 1018 */ 1019 int amdgpu_vm_pt_map_tables(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1020 { 1021 struct amdgpu_vm_pt_cursor cursor; 1022 struct amdgpu_vm_bo_base *entry; 1023 1024 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry) { 1025 1026 struct amdgpu_bo_vm *bo; 1027 int r; 1028 1029 if (entry->bo) { 1030 bo = to_amdgpu_bo_vm(entry->bo); 1031 r = vm->update_funcs->map_table(bo); 1032 if (r) 1033 return r; 1034 } 1035 } 1036 1037 return 0; 1038 } 1039