1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <drm/drm_drv.h> 25 26 #include "amdgpu.h" 27 #include "amdgpu_trace.h" 28 #include "amdgpu_vm.h" 29 30 /* 31 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt 32 */ 33 struct amdgpu_vm_pt_cursor { 34 uint64_t pfn; 35 struct amdgpu_vm_bo_base *parent; 36 struct amdgpu_vm_bo_base *entry; 37 unsigned int level; 38 }; 39 40 /** 41 * amdgpu_vm_pt_level_shift - return the addr shift for each level 42 * 43 * @adev: amdgpu_device pointer 44 * @level: VMPT level 45 * 46 * Returns: 47 * The number of bits the pfn needs to be right shifted for a level. 48 */ 49 static unsigned int amdgpu_vm_pt_level_shift(struct amdgpu_device *adev, 50 unsigned int level) 51 { 52 switch (level) { 53 case AMDGPU_VM_PDB2: 54 case AMDGPU_VM_PDB1: 55 case AMDGPU_VM_PDB0: 56 return 9 * (AMDGPU_VM_PDB0 - level) + 57 adev->vm_manager.block_size; 58 case AMDGPU_VM_PTB: 59 return 0; 60 default: 61 return ~0; 62 } 63 } 64 65 /** 66 * amdgpu_vm_pt_num_entries - return the number of entries in a PD/PT 67 * 68 * @adev: amdgpu_device pointer 69 * @level: VMPT level 70 * 71 * Returns: 72 * The number of entries in a page directory or page table. 73 */ 74 static unsigned int amdgpu_vm_pt_num_entries(struct amdgpu_device *adev, 75 unsigned int level) 76 { 77 unsigned int shift; 78 79 shift = amdgpu_vm_pt_level_shift(adev, adev->vm_manager.root_level); 80 if (level == adev->vm_manager.root_level) 81 /* For the root directory */ 82 return round_up(adev->vm_manager.max_pfn, 1ULL << shift) 83 >> shift; 84 else if (level != AMDGPU_VM_PTB) 85 /* Everything in between */ 86 return 512; 87 88 /* For the page tables on the leaves */ 89 return AMDGPU_VM_PTE_COUNT(adev); 90 } 91 92 /** 93 * amdgpu_vm_pt_entries_mask - the mask to get the entry number of a PD/PT 94 * 95 * @adev: amdgpu_device pointer 96 * @level: VMPT level 97 * 98 * Returns: 99 * The mask to extract the entry number of a PD/PT from an address. 100 */ 101 static uint32_t amdgpu_vm_pt_entries_mask(struct amdgpu_device *adev, 102 unsigned int level) 103 { 104 if (level <= adev->vm_manager.root_level) 105 return 0xffffffff; 106 else if (level != AMDGPU_VM_PTB) 107 return 0x1ff; 108 else 109 return AMDGPU_VM_PTE_COUNT(adev) - 1; 110 } 111 112 /** 113 * amdgpu_vm_pt_size - returns the size of the page table in bytes 114 * 115 * @adev: amdgpu_device pointer 116 * @level: VMPT level 117 * 118 * Returns: 119 * The size of the BO for a page directory or page table in bytes. 120 */ 121 static unsigned int amdgpu_vm_pt_size(struct amdgpu_device *adev, 122 unsigned int level) 123 { 124 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_pt_num_entries(adev, level) * 8); 125 } 126 127 /** 128 * amdgpu_vm_pt_parent - get the parent page directory 129 * 130 * @pt: child page table 131 * 132 * Helper to get the parent entry for the child page table. NULL if we are at 133 * the root page directory. 134 */ 135 static struct amdgpu_vm_bo_base * 136 amdgpu_vm_pt_parent(struct amdgpu_vm_bo_base *pt) 137 { 138 struct amdgpu_bo *parent = pt->bo->parent; 139 140 if (!parent) 141 return NULL; 142 143 return parent->vm_bo; 144 } 145 146 /** 147 * amdgpu_vm_pt_start - start PD/PT walk 148 * 149 * @adev: amdgpu_device pointer 150 * @vm: amdgpu_vm structure 151 * @start: start address of the walk 152 * @cursor: state to initialize 153 * 154 * Initialize a amdgpu_vm_pt_cursor to start a walk. 155 */ 156 static void amdgpu_vm_pt_start(struct amdgpu_device *adev, 157 struct amdgpu_vm *vm, uint64_t start, 158 struct amdgpu_vm_pt_cursor *cursor) 159 { 160 cursor->pfn = start; 161 cursor->parent = NULL; 162 cursor->entry = &vm->root; 163 cursor->level = adev->vm_manager.root_level; 164 } 165 166 /** 167 * amdgpu_vm_pt_descendant - go to child node 168 * 169 * @adev: amdgpu_device pointer 170 * @cursor: current state 171 * 172 * Walk to the child node of the current node. 173 * Returns: 174 * True if the walk was possible, false otherwise. 175 */ 176 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev, 177 struct amdgpu_vm_pt_cursor *cursor) 178 { 179 unsigned int mask, shift, idx; 180 181 if ((cursor->level == AMDGPU_VM_PTB) || !cursor->entry || 182 !cursor->entry->bo) 183 return false; 184 185 mask = amdgpu_vm_pt_entries_mask(adev, cursor->level); 186 shift = amdgpu_vm_pt_level_shift(adev, cursor->level); 187 188 ++cursor->level; 189 idx = (cursor->pfn >> shift) & mask; 190 cursor->parent = cursor->entry; 191 cursor->entry = &to_amdgpu_bo_vm(cursor->entry->bo)->entries[idx]; 192 return true; 193 } 194 195 /** 196 * amdgpu_vm_pt_sibling - go to sibling node 197 * 198 * @adev: amdgpu_device pointer 199 * @cursor: current state 200 * 201 * Walk to the sibling node of the current node. 202 * Returns: 203 * True if the walk was possible, false otherwise. 204 */ 205 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev, 206 struct amdgpu_vm_pt_cursor *cursor) 207 { 208 209 unsigned int shift, num_entries; 210 struct amdgpu_bo_vm *parent; 211 212 /* Root doesn't have a sibling */ 213 if (!cursor->parent) 214 return false; 215 216 /* Go to our parents and see if we got a sibling */ 217 shift = amdgpu_vm_pt_level_shift(adev, cursor->level - 1); 218 num_entries = amdgpu_vm_pt_num_entries(adev, cursor->level - 1); 219 parent = to_amdgpu_bo_vm(cursor->parent->bo); 220 221 if (cursor->entry == &parent->entries[num_entries - 1]) 222 return false; 223 224 cursor->pfn += 1ULL << shift; 225 cursor->pfn &= ~((1ULL << shift) - 1); 226 ++cursor->entry; 227 return true; 228 } 229 230 /** 231 * amdgpu_vm_pt_ancestor - go to parent node 232 * 233 * @cursor: current state 234 * 235 * Walk to the parent node of the current node. 236 * Returns: 237 * True if the walk was possible, false otherwise. 238 */ 239 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor) 240 { 241 if (!cursor->parent) 242 return false; 243 244 --cursor->level; 245 cursor->entry = cursor->parent; 246 cursor->parent = amdgpu_vm_pt_parent(cursor->parent); 247 return true; 248 } 249 250 /** 251 * amdgpu_vm_pt_next - get next PD/PT in hieratchy 252 * 253 * @adev: amdgpu_device pointer 254 * @cursor: current state 255 * 256 * Walk the PD/PT tree to the next node. 257 */ 258 static void amdgpu_vm_pt_next(struct amdgpu_device *adev, 259 struct amdgpu_vm_pt_cursor *cursor) 260 { 261 /* First try a newborn child */ 262 if (amdgpu_vm_pt_descendant(adev, cursor)) 263 return; 264 265 /* If that didn't worked try to find a sibling */ 266 while (!amdgpu_vm_pt_sibling(adev, cursor)) { 267 /* No sibling, go to our parents and grandparents */ 268 if (!amdgpu_vm_pt_ancestor(cursor)) { 269 cursor->pfn = ~0ll; 270 return; 271 } 272 } 273 } 274 275 /** 276 * amdgpu_vm_pt_first_dfs - start a deep first search 277 * 278 * @adev: amdgpu_device structure 279 * @vm: amdgpu_vm structure 280 * @start: optional cursor to start with 281 * @cursor: state to initialize 282 * 283 * Starts a deep first traversal of the PD/PT tree. 284 */ 285 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev, 286 struct amdgpu_vm *vm, 287 struct amdgpu_vm_pt_cursor *start, 288 struct amdgpu_vm_pt_cursor *cursor) 289 { 290 if (start) 291 *cursor = *start; 292 else 293 amdgpu_vm_pt_start(adev, vm, 0, cursor); 294 295 while (amdgpu_vm_pt_descendant(adev, cursor)) 296 ; 297 } 298 299 /** 300 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue 301 * 302 * @start: starting point for the search 303 * @entry: current entry 304 * 305 * Returns: 306 * True when the search should continue, false otherwise. 307 */ 308 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start, 309 struct amdgpu_vm_bo_base *entry) 310 { 311 return entry && (!start || entry != start->entry); 312 } 313 314 /** 315 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search 316 * 317 * @adev: amdgpu_device structure 318 * @cursor: current state 319 * 320 * Move the cursor to the next node in a deep first search. 321 */ 322 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev, 323 struct amdgpu_vm_pt_cursor *cursor) 324 { 325 if (!cursor->entry) 326 return; 327 328 if (!cursor->parent) 329 cursor->entry = NULL; 330 else if (amdgpu_vm_pt_sibling(adev, cursor)) 331 while (amdgpu_vm_pt_descendant(adev, cursor)) 332 ; 333 else 334 amdgpu_vm_pt_ancestor(cursor); 335 } 336 337 /* 338 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs 339 */ 340 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) \ 341 for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)), \ 342 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\ 343 amdgpu_vm_pt_continue_dfs((start), (entry)); \ 344 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor))) 345 346 /** 347 * amdgpu_vm_pt_clear - initially clear the PDs/PTs 348 * 349 * @adev: amdgpu_device pointer 350 * @vm: VM to clear BO from 351 * @vmbo: BO to clear 352 * @immediate: use an immediate update 353 * 354 * Root PD needs to be reserved when calling this. 355 * 356 * Returns: 357 * 0 on success, errno otherwise. 358 */ 359 int amdgpu_vm_pt_clear(struct amdgpu_device *adev, struct amdgpu_vm *vm, 360 struct amdgpu_bo_vm *vmbo, bool immediate) 361 { 362 unsigned int level = adev->vm_manager.root_level; 363 struct ttm_operation_ctx ctx = { true, false }; 364 struct amdgpu_vm_update_params params; 365 struct amdgpu_bo *ancestor = &vmbo->bo; 366 unsigned int entries; 367 struct amdgpu_bo *bo = &vmbo->bo; 368 uint64_t addr; 369 int r, idx; 370 371 /* Figure out our place in the hierarchy */ 372 if (ancestor->parent) { 373 ++level; 374 while (ancestor->parent->parent) { 375 ++level; 376 ancestor = ancestor->parent; 377 } 378 } 379 380 entries = amdgpu_bo_size(bo) / 8; 381 382 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 383 if (r) 384 return r; 385 386 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 387 return -ENODEV; 388 389 r = vm->update_funcs->map_table(vmbo); 390 if (r) 391 goto exit; 392 393 memset(¶ms, 0, sizeof(params)); 394 params.adev = adev; 395 params.vm = vm; 396 params.immediate = immediate; 397 398 r = vm->update_funcs->prepare(¶ms, NULL); 399 if (r) 400 goto exit; 401 402 addr = 0; 403 404 uint64_t value = 0, flags = 0; 405 if (adev->asic_type >= CHIP_VEGA10) { 406 if (level != AMDGPU_VM_PTB) { 407 /* Handle leaf PDEs as PTEs */ 408 flags |= AMDGPU_PDE_PTE_FLAG(adev); 409 amdgpu_gmc_get_vm_pde(adev, level, 410 &value, &flags); 411 } else { 412 /* Workaround for fault priority problem on GMC9 */ 413 flags = AMDGPU_PTE_EXECUTABLE; 414 } 415 } 416 417 r = vm->update_funcs->update(¶ms, vmbo, addr, 0, entries, 418 value, flags); 419 if (r) 420 goto exit; 421 422 r = vm->update_funcs->commit(¶ms, NULL); 423 exit: 424 drm_dev_exit(idx); 425 return r; 426 } 427 428 /** 429 * amdgpu_vm_pt_create - create bo for PD/PT 430 * 431 * @adev: amdgpu_device pointer 432 * @vm: requesting vm 433 * @level: the page table level 434 * @immediate: use a immediate update 435 * @vmbo: pointer to the buffer object pointer 436 * @xcp_id: GPU partition id 437 */ 438 int amdgpu_vm_pt_create(struct amdgpu_device *adev, struct amdgpu_vm *vm, 439 int level, bool immediate, struct amdgpu_bo_vm **vmbo, 440 int32_t xcp_id) 441 { 442 struct amdgpu_bo_param bp; 443 unsigned int num_entries; 444 445 memset(&bp, 0, sizeof(bp)); 446 447 bp.size = amdgpu_vm_pt_size(adev, level); 448 bp.byte_align = AMDGPU_GPU_PAGE_SIZE; 449 450 if (!adev->gmc.is_app_apu) 451 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 452 else 453 bp.domain = AMDGPU_GEM_DOMAIN_GTT; 454 455 bp.domain = amdgpu_bo_get_preferred_domain(adev, bp.domain); 456 bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 457 AMDGPU_GEM_CREATE_CPU_GTT_USWC; 458 459 if (level < AMDGPU_VM_PTB) 460 num_entries = amdgpu_vm_pt_num_entries(adev, level); 461 else 462 num_entries = 0; 463 464 bp.bo_ptr_size = struct_size((*vmbo), entries, num_entries); 465 466 if (vm->use_cpu_for_update) 467 bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 468 469 bp.type = ttm_bo_type_kernel; 470 bp.no_wait_gpu = immediate; 471 bp.xcp_id_plus1 = xcp_id + 1; 472 473 if (vm->root.bo) 474 bp.resv = vm->root.bo->tbo.base.resv; 475 476 return amdgpu_bo_create_vm(adev, &bp, vmbo); 477 } 478 479 /** 480 * amdgpu_vm_pt_alloc - Allocate a specific page table 481 * 482 * @adev: amdgpu_device pointer 483 * @vm: VM to allocate page tables for 484 * @cursor: Which page table to allocate 485 * @immediate: use an immediate update 486 * 487 * Make sure a specific page table or directory is allocated. 488 * 489 * Returns: 490 * 1 if page table needed to be allocated, 0 if page table was already 491 * allocated, negative errno if an error occurred. 492 */ 493 static int amdgpu_vm_pt_alloc(struct amdgpu_device *adev, 494 struct amdgpu_vm *vm, 495 struct amdgpu_vm_pt_cursor *cursor, 496 bool immediate) 497 { 498 struct amdgpu_vm_bo_base *entry = cursor->entry; 499 struct amdgpu_bo *pt_bo; 500 struct amdgpu_bo_vm *pt; 501 int r; 502 503 if (entry->bo) 504 return 0; 505 506 amdgpu_vm_eviction_unlock(vm); 507 r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt, 508 vm->root.bo->xcp_id); 509 amdgpu_vm_eviction_lock(vm); 510 if (r) 511 return r; 512 513 /* Keep a reference to the root directory to avoid 514 * freeing them up in the wrong order. 515 */ 516 pt_bo = &pt->bo; 517 pt_bo->parent = amdgpu_bo_ref(cursor->parent->bo); 518 amdgpu_vm_bo_base_init(entry, vm, pt_bo); 519 r = amdgpu_vm_pt_clear(adev, vm, pt, immediate); 520 if (r) 521 goto error_free_pt; 522 523 return 0; 524 525 error_free_pt: 526 amdgpu_bo_unref(&pt_bo); 527 return r; 528 } 529 530 /** 531 * amdgpu_vm_pt_free - free one PD/PT 532 * 533 * @entry: PDE to free 534 */ 535 static void amdgpu_vm_pt_free(struct amdgpu_vm_bo_base *entry) 536 { 537 if (!entry->bo) 538 return; 539 540 amdgpu_vm_update_stats(entry, entry->bo->tbo.resource, -1); 541 entry->bo->vm_bo = NULL; 542 ttm_bo_set_bulk_move(&entry->bo->tbo, NULL); 543 544 spin_lock(&entry->vm->status_lock); 545 list_del(&entry->vm_status); 546 spin_unlock(&entry->vm->status_lock); 547 amdgpu_bo_unref(&entry->bo); 548 } 549 550 /** 551 * amdgpu_vm_pt_free_list - free PD/PT levels 552 * 553 * @adev: amdgpu device structure 554 * @params: see amdgpu_vm_update_params definition 555 * 556 * Free the page directory objects saved in the flush list 557 */ 558 void amdgpu_vm_pt_free_list(struct amdgpu_device *adev, 559 struct amdgpu_vm_update_params *params) 560 { 561 struct amdgpu_vm_bo_base *entry, *next; 562 bool unlocked = params->unlocked; 563 564 if (list_empty(¶ms->tlb_flush_waitlist)) 565 return; 566 567 /* 568 * unlocked unmap clear page table leaves, warning to free the page entry. 569 */ 570 WARN_ON(unlocked); 571 572 list_for_each_entry_safe(entry, next, ¶ms->tlb_flush_waitlist, vm_status) 573 amdgpu_vm_pt_free(entry); 574 } 575 576 /** 577 * amdgpu_vm_pt_add_list - add PD/PT level to the flush list 578 * 579 * @params: parameters for the update 580 * @cursor: first PT entry to start DF search from, non NULL 581 * 582 * This list will be freed after TLB flush. 583 */ 584 static void amdgpu_vm_pt_add_list(struct amdgpu_vm_update_params *params, 585 struct amdgpu_vm_pt_cursor *cursor) 586 { 587 struct amdgpu_vm_pt_cursor seek; 588 struct amdgpu_vm_bo_base *entry; 589 590 spin_lock(¶ms->vm->status_lock); 591 for_each_amdgpu_vm_pt_dfs_safe(params->adev, params->vm, cursor, seek, entry) { 592 if (entry && entry->bo) 593 list_move(&entry->vm_status, ¶ms->tlb_flush_waitlist); 594 } 595 596 /* enter start node now */ 597 list_move(&cursor->entry->vm_status, ¶ms->tlb_flush_waitlist); 598 spin_unlock(¶ms->vm->status_lock); 599 } 600 601 /** 602 * amdgpu_vm_pt_free_root - free root PD 603 * @adev: amdgpu device structure 604 * @vm: amdgpu vm structure 605 * 606 * Free the root page directory and everything below it. 607 */ 608 void amdgpu_vm_pt_free_root(struct amdgpu_device *adev, struct amdgpu_vm *vm) 609 { 610 struct amdgpu_vm_pt_cursor cursor; 611 struct amdgpu_vm_bo_base *entry; 612 613 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry) { 614 if (entry) 615 amdgpu_vm_pt_free(entry); 616 } 617 } 618 619 /** 620 * amdgpu_vm_pde_update - update a single level in the hierarchy 621 * 622 * @params: parameters for the update 623 * @entry: entry to update 624 * 625 * Makes sure the requested entry in parent is up to date. 626 */ 627 int amdgpu_vm_pde_update(struct amdgpu_vm_update_params *params, 628 struct amdgpu_vm_bo_base *entry) 629 { 630 struct amdgpu_vm_bo_base *parent = amdgpu_vm_pt_parent(entry); 631 struct amdgpu_bo *bo, *pbo; 632 struct amdgpu_vm *vm = params->vm; 633 uint64_t pde, pt, flags; 634 unsigned int level; 635 636 if (WARN_ON(!parent)) 637 return -EINVAL; 638 639 bo = parent->bo; 640 for (level = 0, pbo = bo->parent; pbo; ++level) 641 pbo = pbo->parent; 642 643 level += params->adev->vm_manager.root_level; 644 amdgpu_gmc_get_pde_for_bo(entry->bo, level, &pt, &flags); 645 pde = (entry - to_amdgpu_bo_vm(parent->bo)->entries) * 8; 646 return vm->update_funcs->update(params, to_amdgpu_bo_vm(bo), pde, pt, 647 1, 0, flags); 648 } 649 650 /** 651 * amdgpu_vm_pte_update_noretry_flags - Update PTE no-retry flags 652 * 653 * @adev: amdgpu_device pointer 654 * @flags: pointer to PTE flags 655 * 656 * Update PTE no-retry flags when TF is enabled. 657 */ 658 static void amdgpu_vm_pte_update_noretry_flags(struct amdgpu_device *adev, 659 uint64_t *flags) 660 { 661 /* 662 * Update no-retry flags with the corresponding TF 663 * no-retry combination. 664 */ 665 if ((*flags & AMDGPU_VM_NORETRY_FLAGS) == AMDGPU_VM_NORETRY_FLAGS) { 666 *flags &= ~AMDGPU_VM_NORETRY_FLAGS; 667 *flags |= adev->gmc.noretry_flags; 668 } 669 } 670 671 /* 672 * amdgpu_vm_pte_update_flags - figure out flags for PTE updates 673 * 674 * Make sure to set the right flags for the PTEs at the desired level. 675 */ 676 static void amdgpu_vm_pte_update_flags(struct amdgpu_vm_update_params *params, 677 struct amdgpu_bo_vm *pt, 678 unsigned int level, 679 uint64_t pe, uint64_t addr, 680 unsigned int count, uint32_t incr, 681 uint64_t flags) 682 { 683 struct amdgpu_device *adev = params->adev; 684 685 if (level != AMDGPU_VM_PTB) { 686 flags |= AMDGPU_PDE_PTE_FLAG(params->adev); 687 amdgpu_gmc_get_vm_pde(adev, level, &addr, &flags); 688 689 } else if (adev->asic_type >= CHIP_VEGA10 && 690 !(flags & AMDGPU_PTE_VALID) && 691 !(flags & AMDGPU_PTE_PRT_FLAG(params->adev))) { 692 693 /* Workaround for fault priority problem on GMC9 */ 694 flags |= AMDGPU_PTE_EXECUTABLE; 695 } 696 697 /* 698 * Update no-retry flags to use the no-retry flag combination 699 * with TF enabled. The AMDGPU_VM_NORETRY_FLAGS flag combination 700 * does not work when TF is enabled. So, replace them with 701 * AMDGPU_VM_NORETRY_FLAGS_TF flag combination which works for 702 * all cases. 703 */ 704 if (level == AMDGPU_VM_PTB) 705 amdgpu_vm_pte_update_noretry_flags(adev, &flags); 706 707 /* APUs mapping system memory may need different MTYPEs on different 708 * NUMA nodes. Only do this for contiguous ranges that can be assumed 709 * to be on the same NUMA node. 710 */ 711 if ((flags & AMDGPU_PTE_SYSTEM) && (adev->flags & AMD_IS_APU) && 712 adev->gmc.gmc_funcs->override_vm_pte_flags && 713 num_possible_nodes() > 1 && !params->pages_addr && params->allow_override) 714 amdgpu_gmc_override_vm_pte_flags(adev, params->vm, addr, &flags); 715 716 params->vm->update_funcs->update(params, pt, pe, addr, count, incr, 717 flags); 718 } 719 720 /** 721 * amdgpu_vm_pte_fragment - get fragment for PTEs 722 * 723 * @params: see amdgpu_vm_update_params definition 724 * @start: first PTE to handle 725 * @end: last PTE to handle 726 * @flags: hw mapping flags 727 * @frag: resulting fragment size 728 * @frag_end: end of this fragment 729 * 730 * Returns the first possible fragment for the start and end address. 731 */ 732 static void amdgpu_vm_pte_fragment(struct amdgpu_vm_update_params *params, 733 uint64_t start, uint64_t end, uint64_t flags, 734 unsigned int *frag, uint64_t *frag_end) 735 { 736 /** 737 * The MC L1 TLB supports variable sized pages, based on a fragment 738 * field in the PTE. When this field is set to a non-zero value, page 739 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 740 * flags are considered valid for all PTEs within the fragment range 741 * and corresponding mappings are assumed to be physically contiguous. 742 * 743 * The L1 TLB can store a single PTE for the whole fragment, 744 * significantly increasing the space available for translation 745 * caching. This leads to large improvements in throughput when the 746 * TLB is under pressure. 747 * 748 * The L2 TLB distributes small and large fragments into two 749 * asymmetric partitions. The large fragment cache is significantly 750 * larger. Thus, we try to use large fragments wherever possible. 751 * Userspace can support this by aligning virtual base address and 752 * allocation size to the fragment size. 753 * 754 * Starting with Vega10 the fragment size only controls the L1. The L2 755 * is now directly feed with small/huge/giant pages from the walker. 756 */ 757 unsigned int max_frag; 758 759 if (params->adev->asic_type < CHIP_VEGA10) 760 max_frag = params->adev->vm_manager.fragment_size; 761 else 762 max_frag = 31; 763 764 /* system pages are non continuously */ 765 if (params->pages_addr) { 766 *frag = 0; 767 *frag_end = end; 768 return; 769 } 770 771 /* This intentionally wraps around if no bit is set */ 772 *frag = min_t(unsigned int, ffs(start) - 1, fls64(end - start) - 1); 773 if (*frag >= max_frag) { 774 *frag = max_frag; 775 *frag_end = end & ~((1ULL << max_frag) - 1); 776 } else { 777 *frag_end = start + (1 << *frag); 778 } 779 } 780 781 /** 782 * amdgpu_vm_ptes_update - make sure that page tables are valid 783 * 784 * @params: see amdgpu_vm_update_params definition 785 * @start: start of GPU address range 786 * @end: end of GPU address range 787 * @dst: destination address to map to, the next dst inside the function 788 * @flags: mapping flags 789 * 790 * Update the page tables in the range @start - @end. 791 * 792 * Returns: 793 * 0 for success, -EINVAL for failure. 794 */ 795 int amdgpu_vm_ptes_update(struct amdgpu_vm_update_params *params, 796 uint64_t start, uint64_t end, 797 uint64_t dst, uint64_t flags) 798 { 799 struct amdgpu_device *adev = params->adev; 800 struct amdgpu_vm_pt_cursor cursor; 801 uint64_t frag_start = start, frag_end; 802 unsigned int frag; 803 int r; 804 805 /* figure out the initial fragment */ 806 amdgpu_vm_pte_fragment(params, frag_start, end, flags, &frag, 807 &frag_end); 808 809 /* walk over the address space and update the PTs */ 810 amdgpu_vm_pt_start(adev, params->vm, start, &cursor); 811 while (cursor.pfn < end) { 812 unsigned int shift, parent_shift, mask; 813 uint64_t incr, entry_end, pe_start; 814 struct amdgpu_bo *pt; 815 816 if (!params->unlocked) { 817 /* make sure that the page tables covering the 818 * address range are actually allocated 819 */ 820 r = amdgpu_vm_pt_alloc(params->adev, params->vm, 821 &cursor, params->immediate); 822 if (r) 823 return r; 824 } 825 826 shift = amdgpu_vm_pt_level_shift(adev, cursor.level); 827 parent_shift = amdgpu_vm_pt_level_shift(adev, cursor.level - 1); 828 if (params->unlocked) { 829 /* Unlocked updates are only allowed on the leaves */ 830 if (amdgpu_vm_pt_descendant(adev, &cursor)) 831 continue; 832 } else if (adev->asic_type < CHIP_VEGA10 && 833 (flags & AMDGPU_PTE_VALID)) { 834 /* No huge page support before GMC v9 */ 835 if (cursor.level != AMDGPU_VM_PTB) { 836 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 837 return -ENOENT; 838 continue; 839 } 840 } else if (frag < shift) { 841 /* We can't use this level when the fragment size is 842 * smaller than the address shift. Go to the next 843 * child entry and try again. 844 */ 845 if (amdgpu_vm_pt_descendant(adev, &cursor)) 846 continue; 847 } else if (frag >= parent_shift) { 848 /* If the fragment size is even larger than the parent 849 * shift we should go up one level and check it again. 850 */ 851 if (!amdgpu_vm_pt_ancestor(&cursor)) 852 return -EINVAL; 853 continue; 854 } 855 856 pt = cursor.entry->bo; 857 if (!pt) { 858 /* We need all PDs and PTs for mapping something, */ 859 if (flags & AMDGPU_PTE_VALID) 860 return -ENOENT; 861 862 /* but unmapping something can happen at a higher 863 * level. 864 */ 865 if (!amdgpu_vm_pt_ancestor(&cursor)) 866 return -EINVAL; 867 868 pt = cursor.entry->bo; 869 shift = parent_shift; 870 frag_end = max(frag_end, ALIGN(frag_start + 1, 871 1ULL << shift)); 872 } 873 874 /* Looks good so far, calculate parameters for the update */ 875 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift; 876 mask = amdgpu_vm_pt_entries_mask(adev, cursor.level); 877 pe_start = ((cursor.pfn >> shift) & mask) * 8; 878 879 if (cursor.level < AMDGPU_VM_PTB && params->unlocked) 880 /* 881 * MMU notifier callback unlocked unmap huge page, leave is PDE entry, 882 * only clear one entry. Next entry search again for PDE or PTE leave. 883 */ 884 entry_end = 1ULL << shift; 885 else 886 entry_end = ((uint64_t)mask + 1) << shift; 887 entry_end += cursor.pfn & ~(entry_end - 1); 888 entry_end = min(entry_end, end); 889 890 do { 891 struct amdgpu_vm *vm = params->vm; 892 uint64_t upd_end = min(entry_end, frag_end); 893 unsigned int nptes = (upd_end - frag_start) >> shift; 894 uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag); 895 896 /* This can happen when we set higher level PDs to 897 * silent to stop fault floods. 898 */ 899 nptes = max(nptes, 1u); 900 901 trace_amdgpu_vm_update_ptes(params, frag_start, upd_end, 902 min(nptes, 32u), dst, incr, 903 upd_flags, 904 vm->task_info ? vm->task_info->tgid : 0, 905 vm->immediate.fence_context); 906 amdgpu_vm_pte_update_flags(params, to_amdgpu_bo_vm(pt), 907 cursor.level, pe_start, dst, 908 nptes, incr, upd_flags); 909 910 pe_start += nptes * 8; 911 dst += nptes * incr; 912 913 frag_start = upd_end; 914 if (frag_start >= frag_end) { 915 /* figure out the next fragment */ 916 amdgpu_vm_pte_fragment(params, frag_start, end, 917 flags, &frag, &frag_end); 918 if (frag < shift) 919 break; 920 } 921 } while (frag_start < entry_end); 922 923 if (amdgpu_vm_pt_descendant(adev, &cursor)) { 924 /* Free all child entries. 925 * Update the tables with the flags and addresses and free up subsequent 926 * tables in the case of huge pages or freed up areas. 927 * This is the maximum you can free, because all other page tables are not 928 * completely covered by the range and so potentially still in use. 929 */ 930 while (cursor.pfn < frag_start) { 931 /* Make sure previous mapping is freed */ 932 if (cursor.entry->bo) { 933 params->needs_flush = true; 934 amdgpu_vm_pt_add_list(params, &cursor); 935 } 936 amdgpu_vm_pt_next(adev, &cursor); 937 } 938 939 } else if (frag >= shift) { 940 /* or just move on to the next on the same level. */ 941 amdgpu_vm_pt_next(adev, &cursor); 942 } 943 } 944 945 return 0; 946 } 947 948 /** 949 * amdgpu_vm_pt_map_tables - have bo of root PD cpu accessible 950 * @adev: amdgpu device structure 951 * @vm: amdgpu vm structure 952 * 953 * make root page directory and everything below it cpu accessible. 954 */ 955 int amdgpu_vm_pt_map_tables(struct amdgpu_device *adev, struct amdgpu_vm *vm) 956 { 957 struct amdgpu_vm_pt_cursor cursor; 958 struct amdgpu_vm_bo_base *entry; 959 960 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry) { 961 962 struct amdgpu_bo_vm *bo; 963 int r; 964 965 if (entry->bo) { 966 bo = to_amdgpu_bo_vm(entry->bo); 967 r = vm->update_funcs->map_table(bo); 968 if (r) 969 return r; 970 } 971 } 972 973 return 0; 974 } 975