1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <drm/drm_drv.h> 25 26 #include "amdgpu.h" 27 #include "amdgpu_trace.h" 28 #include "amdgpu_vm.h" 29 #include "amdgpu_job.h" 30 31 /* 32 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt 33 */ 34 struct amdgpu_vm_pt_cursor { 35 uint64_t pfn; 36 struct amdgpu_vm_bo_base *parent; 37 struct amdgpu_vm_bo_base *entry; 38 unsigned int level; 39 }; 40 41 /** 42 * amdgpu_vm_pt_level_shift - return the addr shift for each level 43 * 44 * @adev: amdgpu_device pointer 45 * @level: VMPT level 46 * 47 * Returns: 48 * The number of bits the pfn needs to be right shifted for a level. 49 */ 50 static unsigned int amdgpu_vm_pt_level_shift(struct amdgpu_device *adev, 51 unsigned int level) 52 { 53 switch (level) { 54 case AMDGPU_VM_PDB2: 55 case AMDGPU_VM_PDB1: 56 case AMDGPU_VM_PDB0: 57 return 9 * (AMDGPU_VM_PDB0 - level) + 58 adev->vm_manager.block_size; 59 case AMDGPU_VM_PTB: 60 return 0; 61 default: 62 return ~0; 63 } 64 } 65 66 /** 67 * amdgpu_vm_pt_num_entries - return the number of entries in a PD/PT 68 * 69 * @adev: amdgpu_device pointer 70 * @level: VMPT level 71 * 72 * Returns: 73 * The number of entries in a page directory or page table. 74 */ 75 static unsigned int amdgpu_vm_pt_num_entries(struct amdgpu_device *adev, 76 unsigned int level) 77 { 78 unsigned int shift; 79 80 shift = amdgpu_vm_pt_level_shift(adev, adev->vm_manager.root_level); 81 if (level == adev->vm_manager.root_level) 82 /* For the root directory */ 83 return round_up(adev->vm_manager.max_pfn, 1ULL << shift) 84 >> shift; 85 else if (level != AMDGPU_VM_PTB) 86 /* Everything in between */ 87 return 512; 88 89 /* For the page tables on the leaves */ 90 return AMDGPU_VM_PTE_COUNT(adev); 91 } 92 93 /** 94 * amdgpu_vm_pt_entries_mask - the mask to get the entry number of a PD/PT 95 * 96 * @adev: amdgpu_device pointer 97 * @level: VMPT level 98 * 99 * Returns: 100 * The mask to extract the entry number of a PD/PT from an address. 101 */ 102 static uint32_t amdgpu_vm_pt_entries_mask(struct amdgpu_device *adev, 103 unsigned int level) 104 { 105 if (level <= adev->vm_manager.root_level) 106 return 0xffffffff; 107 else if (level != AMDGPU_VM_PTB) 108 return 0x1ff; 109 else 110 return AMDGPU_VM_PTE_COUNT(adev) - 1; 111 } 112 113 /** 114 * amdgpu_vm_pt_size - returns the size of the page table in bytes 115 * 116 * @adev: amdgpu_device pointer 117 * @level: VMPT level 118 * 119 * Returns: 120 * The size of the BO for a page directory or page table in bytes. 121 */ 122 static unsigned int amdgpu_vm_pt_size(struct amdgpu_device *adev, 123 unsigned int level) 124 { 125 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_pt_num_entries(adev, level) * 8); 126 } 127 128 /** 129 * amdgpu_vm_pt_parent - get the parent page directory 130 * 131 * @pt: child page table 132 * 133 * Helper to get the parent entry for the child page table. NULL if we are at 134 * the root page directory. 135 */ 136 static struct amdgpu_vm_bo_base * 137 amdgpu_vm_pt_parent(struct amdgpu_vm_bo_base *pt) 138 { 139 struct amdgpu_bo *parent = pt->bo->parent; 140 141 if (!parent) 142 return NULL; 143 144 return parent->vm_bo; 145 } 146 147 /** 148 * amdgpu_vm_pt_start - start PD/PT walk 149 * 150 * @adev: amdgpu_device pointer 151 * @vm: amdgpu_vm structure 152 * @start: start address of the walk 153 * @cursor: state to initialize 154 * 155 * Initialize a amdgpu_vm_pt_cursor to start a walk. 156 */ 157 static void amdgpu_vm_pt_start(struct amdgpu_device *adev, 158 struct amdgpu_vm *vm, uint64_t start, 159 struct amdgpu_vm_pt_cursor *cursor) 160 { 161 cursor->pfn = start; 162 cursor->parent = NULL; 163 cursor->entry = &vm->root; 164 cursor->level = adev->vm_manager.root_level; 165 } 166 167 /** 168 * amdgpu_vm_pt_descendant - go to child node 169 * 170 * @adev: amdgpu_device pointer 171 * @cursor: current state 172 * 173 * Walk to the child node of the current node. 174 * Returns: 175 * True if the walk was possible, false otherwise. 176 */ 177 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev, 178 struct amdgpu_vm_pt_cursor *cursor) 179 { 180 unsigned int mask, shift, idx; 181 182 if ((cursor->level == AMDGPU_VM_PTB) || !cursor->entry || 183 !cursor->entry->bo) 184 return false; 185 186 mask = amdgpu_vm_pt_entries_mask(adev, cursor->level); 187 shift = amdgpu_vm_pt_level_shift(adev, cursor->level); 188 189 ++cursor->level; 190 idx = (cursor->pfn >> shift) & mask; 191 cursor->parent = cursor->entry; 192 cursor->entry = &to_amdgpu_bo_vm(cursor->entry->bo)->entries[idx]; 193 return true; 194 } 195 196 /** 197 * amdgpu_vm_pt_sibling - go to sibling node 198 * 199 * @adev: amdgpu_device pointer 200 * @cursor: current state 201 * 202 * Walk to the sibling node of the current node. 203 * Returns: 204 * True if the walk was possible, false otherwise. 205 */ 206 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev, 207 struct amdgpu_vm_pt_cursor *cursor) 208 { 209 210 unsigned int shift, num_entries; 211 struct amdgpu_bo_vm *parent; 212 213 /* Root doesn't have a sibling */ 214 if (!cursor->parent) 215 return false; 216 217 /* Go to our parents and see if we got a sibling */ 218 shift = amdgpu_vm_pt_level_shift(adev, cursor->level - 1); 219 num_entries = amdgpu_vm_pt_num_entries(adev, cursor->level - 1); 220 parent = to_amdgpu_bo_vm(cursor->parent->bo); 221 222 if (cursor->entry == &parent->entries[num_entries - 1]) 223 return false; 224 225 cursor->pfn += 1ULL << shift; 226 cursor->pfn &= ~((1ULL << shift) - 1); 227 ++cursor->entry; 228 return true; 229 } 230 231 /** 232 * amdgpu_vm_pt_ancestor - go to parent node 233 * 234 * @cursor: current state 235 * 236 * Walk to the parent node of the current node. 237 * Returns: 238 * True if the walk was possible, false otherwise. 239 */ 240 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor) 241 { 242 if (!cursor->parent) 243 return false; 244 245 --cursor->level; 246 cursor->entry = cursor->parent; 247 cursor->parent = amdgpu_vm_pt_parent(cursor->parent); 248 return true; 249 } 250 251 /** 252 * amdgpu_vm_pt_next - get next PD/PT in hieratchy 253 * 254 * @adev: amdgpu_device pointer 255 * @cursor: current state 256 * 257 * Walk the PD/PT tree to the next node. 258 */ 259 static void amdgpu_vm_pt_next(struct amdgpu_device *adev, 260 struct amdgpu_vm_pt_cursor *cursor) 261 { 262 /* First try a newborn child */ 263 if (amdgpu_vm_pt_descendant(adev, cursor)) 264 return; 265 266 /* If that didn't worked try to find a sibling */ 267 while (!amdgpu_vm_pt_sibling(adev, cursor)) { 268 /* No sibling, go to our parents and grandparents */ 269 if (!amdgpu_vm_pt_ancestor(cursor)) { 270 cursor->pfn = ~0ll; 271 return; 272 } 273 } 274 } 275 276 /** 277 * amdgpu_vm_pt_first_dfs - start a deep first search 278 * 279 * @adev: amdgpu_device structure 280 * @vm: amdgpu_vm structure 281 * @start: optional cursor to start with 282 * @cursor: state to initialize 283 * 284 * Starts a deep first traversal of the PD/PT tree. 285 */ 286 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev, 287 struct amdgpu_vm *vm, 288 struct amdgpu_vm_pt_cursor *start, 289 struct amdgpu_vm_pt_cursor *cursor) 290 { 291 if (start) 292 *cursor = *start; 293 else 294 amdgpu_vm_pt_start(adev, vm, 0, cursor); 295 296 while (amdgpu_vm_pt_descendant(adev, cursor)) 297 ; 298 } 299 300 /** 301 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue 302 * 303 * @start: starting point for the search 304 * @entry: current entry 305 * 306 * Returns: 307 * True when the search should continue, false otherwise. 308 */ 309 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start, 310 struct amdgpu_vm_bo_base *entry) 311 { 312 return entry && (!start || entry != start->entry); 313 } 314 315 /** 316 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search 317 * 318 * @adev: amdgpu_device structure 319 * @cursor: current state 320 * 321 * Move the cursor to the next node in a deep first search. 322 */ 323 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev, 324 struct amdgpu_vm_pt_cursor *cursor) 325 { 326 if (!cursor->entry) 327 return; 328 329 if (!cursor->parent) 330 cursor->entry = NULL; 331 else if (amdgpu_vm_pt_sibling(adev, cursor)) 332 while (amdgpu_vm_pt_descendant(adev, cursor)) 333 ; 334 else 335 amdgpu_vm_pt_ancestor(cursor); 336 } 337 338 /* 339 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs 340 */ 341 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) \ 342 for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)), \ 343 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\ 344 amdgpu_vm_pt_continue_dfs((start), (entry)); \ 345 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor))) 346 347 /** 348 * amdgpu_vm_pt_clear - initially clear the PDs/PTs 349 * 350 * @adev: amdgpu_device pointer 351 * @vm: VM to clear BO from 352 * @vmbo: BO to clear 353 * @immediate: use an immediate update 354 * 355 * Root PD needs to be reserved when calling this. 356 * 357 * Returns: 358 * 0 on success, errno otherwise. 359 */ 360 int amdgpu_vm_pt_clear(struct amdgpu_device *adev, struct amdgpu_vm *vm, 361 struct amdgpu_bo_vm *vmbo, bool immediate) 362 { 363 unsigned int level = adev->vm_manager.root_level; 364 struct ttm_operation_ctx ctx = { true, false }; 365 struct amdgpu_vm_update_params params; 366 struct amdgpu_bo *ancestor = &vmbo->bo; 367 unsigned int entries; 368 struct amdgpu_bo *bo = &vmbo->bo; 369 uint64_t addr; 370 int r, idx; 371 372 /* Figure out our place in the hierarchy */ 373 if (ancestor->parent) { 374 ++level; 375 while (ancestor->parent->parent) { 376 ++level; 377 ancestor = ancestor->parent; 378 } 379 } 380 381 entries = amdgpu_bo_size(bo) / 8; 382 383 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 384 if (r) 385 return r; 386 387 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 388 return -ENODEV; 389 390 r = vm->update_funcs->map_table(vmbo); 391 if (r) 392 goto exit; 393 394 memset(¶ms, 0, sizeof(params)); 395 params.adev = adev; 396 params.vm = vm; 397 params.immediate = immediate; 398 399 r = vm->update_funcs->prepare(¶ms, NULL, 400 AMDGPU_KERNEL_JOB_ID_VM_PT_CLEAR); 401 if (r) 402 goto exit; 403 404 addr = 0; 405 406 uint64_t value = 0, flags = 0; 407 if (adev->asic_type >= CHIP_VEGA10) { 408 if (level != AMDGPU_VM_PTB) { 409 /* Handle leaf PDEs as PTEs */ 410 flags |= AMDGPU_PDE_PTE_FLAG(adev); 411 amdgpu_gmc_get_vm_pde(adev, level, 412 &value, &flags); 413 } else { 414 /* Workaround for fault priority problem on GMC9 */ 415 flags = AMDGPU_PTE_EXECUTABLE; 416 } 417 } 418 419 r = vm->update_funcs->update(¶ms, vmbo, addr, 0, entries, 420 value, flags); 421 if (r) 422 goto exit; 423 424 r = vm->update_funcs->commit(¶ms, NULL); 425 exit: 426 drm_dev_exit(idx); 427 return r; 428 } 429 430 /** 431 * amdgpu_vm_pt_create - create bo for PD/PT 432 * 433 * @adev: amdgpu_device pointer 434 * @vm: requesting vm 435 * @level: the page table level 436 * @immediate: use a immediate update 437 * @vmbo: pointer to the buffer object pointer 438 * @xcp_id: GPU partition id 439 */ 440 int amdgpu_vm_pt_create(struct amdgpu_device *adev, struct amdgpu_vm *vm, 441 int level, bool immediate, struct amdgpu_bo_vm **vmbo, 442 int32_t xcp_id) 443 { 444 struct amdgpu_bo_param bp; 445 unsigned int num_entries; 446 447 memset(&bp, 0, sizeof(bp)); 448 449 bp.size = amdgpu_vm_pt_size(adev, level); 450 bp.byte_align = AMDGPU_GPU_PAGE_SIZE; 451 452 if (!adev->gmc.is_app_apu) 453 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 454 else 455 bp.domain = AMDGPU_GEM_DOMAIN_GTT; 456 457 bp.domain = amdgpu_bo_get_preferred_domain(adev, bp.domain); 458 bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 459 AMDGPU_GEM_CREATE_CPU_GTT_USWC; 460 461 if (level < AMDGPU_VM_PTB) 462 num_entries = amdgpu_vm_pt_num_entries(adev, level); 463 else 464 num_entries = 0; 465 466 bp.bo_ptr_size = struct_size((*vmbo), entries, num_entries); 467 468 if (vm->use_cpu_for_update) 469 bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 470 471 bp.type = ttm_bo_type_kernel; 472 bp.no_wait_gpu = immediate; 473 bp.xcp_id_plus1 = xcp_id + 1; 474 475 if (vm->root.bo) 476 bp.resv = vm->root.bo->tbo.base.resv; 477 478 return amdgpu_bo_create_vm(adev, &bp, vmbo); 479 } 480 481 /** 482 * amdgpu_vm_pt_alloc - Allocate a specific page table 483 * 484 * @adev: amdgpu_device pointer 485 * @vm: VM to allocate page tables for 486 * @cursor: Which page table to allocate 487 * @immediate: use an immediate update 488 * 489 * Make sure a specific page table or directory is allocated. 490 * 491 * Returns: 492 * 1 if page table needed to be allocated, 0 if page table was already 493 * allocated, negative errno if an error occurred. 494 */ 495 static int amdgpu_vm_pt_alloc(struct amdgpu_device *adev, 496 struct amdgpu_vm *vm, 497 struct amdgpu_vm_pt_cursor *cursor, 498 bool immediate) 499 { 500 struct amdgpu_vm_bo_base *entry = cursor->entry; 501 struct amdgpu_bo *pt_bo; 502 struct amdgpu_bo_vm *pt; 503 int r; 504 505 if (entry->bo) 506 return 0; 507 508 amdgpu_vm_eviction_unlock(vm); 509 r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt, 510 vm->root.bo->xcp_id); 511 amdgpu_vm_eviction_lock(vm); 512 if (r) 513 return r; 514 515 /* Keep a reference to the root directory to avoid 516 * freeing them up in the wrong order. 517 */ 518 pt_bo = &pt->bo; 519 pt_bo->parent = amdgpu_bo_ref(cursor->parent->bo); 520 amdgpu_vm_bo_base_init(entry, vm, pt_bo); 521 r = amdgpu_vm_pt_clear(adev, vm, pt, immediate); 522 if (r) 523 goto error_free_pt; 524 525 return 0; 526 527 error_free_pt: 528 amdgpu_bo_unref(&pt_bo); 529 return r; 530 } 531 532 /** 533 * amdgpu_vm_pt_free - free one PD/PT 534 * 535 * @entry: PDE to free 536 */ 537 static void amdgpu_vm_pt_free(struct amdgpu_vm_bo_base *entry) 538 { 539 if (!entry->bo) 540 return; 541 542 amdgpu_vm_update_stats(entry, entry->bo->tbo.resource, -1); 543 entry->bo->vm_bo = NULL; 544 ttm_bo_set_bulk_move(&entry->bo->tbo, NULL); 545 546 list_del(&entry->vm_status); 547 amdgpu_bo_unref(&entry->bo); 548 } 549 550 /** 551 * amdgpu_vm_pt_free_list - free PD/PT levels 552 * 553 * @adev: amdgpu device structure 554 * @params: see amdgpu_vm_update_params definition 555 * 556 * Free the page directory objects saved in the flush list 557 */ 558 void amdgpu_vm_pt_free_list(struct amdgpu_device *adev, 559 struct amdgpu_vm_update_params *params) 560 { 561 struct amdgpu_vm_bo_base *entry, *next; 562 bool unlocked = params->unlocked; 563 564 if (list_empty(¶ms->tlb_flush_waitlist)) 565 return; 566 567 /* 568 * unlocked unmap clear page table leaves, warning to free the page entry. 569 */ 570 WARN_ON(unlocked); 571 572 list_for_each_entry_safe(entry, next, ¶ms->tlb_flush_waitlist, vm_status) 573 amdgpu_vm_pt_free(entry); 574 } 575 576 /** 577 * amdgpu_vm_pt_add_list - add PD/PT level to the flush list 578 * 579 * @params: parameters for the update 580 * @cursor: first PT entry to start DF search from, non NULL 581 * 582 * This list will be freed after TLB flush. 583 */ 584 static void amdgpu_vm_pt_add_list(struct amdgpu_vm_update_params *params, 585 struct amdgpu_vm_pt_cursor *cursor) 586 { 587 struct amdgpu_vm_pt_cursor seek; 588 struct amdgpu_vm_bo_base *entry; 589 590 for_each_amdgpu_vm_pt_dfs_safe(params->adev, params->vm, cursor, seek, entry) { 591 if (entry && entry->bo) 592 list_move(&entry->vm_status, ¶ms->tlb_flush_waitlist); 593 } 594 595 /* enter start node now */ 596 list_move(&cursor->entry->vm_status, ¶ms->tlb_flush_waitlist); 597 } 598 599 /** 600 * amdgpu_vm_pt_free_root - free root PD 601 * @adev: amdgpu device structure 602 * @vm: amdgpu vm structure 603 * 604 * Free the root page directory and everything below it. 605 */ 606 void amdgpu_vm_pt_free_root(struct amdgpu_device *adev, struct amdgpu_vm *vm) 607 { 608 struct amdgpu_vm_pt_cursor cursor; 609 struct amdgpu_vm_bo_base *entry; 610 611 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry) { 612 if (entry) 613 amdgpu_vm_pt_free(entry); 614 } 615 } 616 617 /** 618 * amdgpu_vm_pde_update - update a single level in the hierarchy 619 * 620 * @params: parameters for the update 621 * @entry: entry to update 622 * 623 * Makes sure the requested entry in parent is up to date. 624 */ 625 int amdgpu_vm_pde_update(struct amdgpu_vm_update_params *params, 626 struct amdgpu_vm_bo_base *entry) 627 { 628 struct amdgpu_vm_bo_base *parent = amdgpu_vm_pt_parent(entry); 629 struct amdgpu_bo *bo, *pbo; 630 struct amdgpu_vm *vm = params->vm; 631 uint64_t pde, pt, flags; 632 unsigned int level; 633 634 if (WARN_ON(!parent)) 635 return -EINVAL; 636 637 bo = parent->bo; 638 for (level = 0, pbo = bo->parent; pbo; ++level) 639 pbo = pbo->parent; 640 641 level += params->adev->vm_manager.root_level; 642 amdgpu_gmc_get_pde_for_bo(entry->bo, level, &pt, &flags); 643 pde = (entry - to_amdgpu_bo_vm(parent->bo)->entries) * 8; 644 return vm->update_funcs->update(params, to_amdgpu_bo_vm(bo), pde, pt, 645 1, 0, flags); 646 } 647 648 /** 649 * amdgpu_vm_pte_update_noretry_flags - Update PTE no-retry flags 650 * 651 * @adev: amdgpu_device pointer 652 * @flags: pointer to PTE flags 653 * 654 * Update PTE no-retry flags when TF is enabled. 655 */ 656 static void amdgpu_vm_pte_update_noretry_flags(struct amdgpu_device *adev, 657 uint64_t *flags) 658 { 659 /* 660 * Update no-retry flags with the corresponding TF 661 * no-retry combination. 662 */ 663 if ((*flags & AMDGPU_VM_NORETRY_FLAGS) == AMDGPU_VM_NORETRY_FLAGS) { 664 *flags &= ~AMDGPU_VM_NORETRY_FLAGS; 665 *flags |= adev->gmc.noretry_flags; 666 } 667 } 668 669 /* 670 * amdgpu_vm_pte_update_flags - figure out flags for PTE updates 671 * 672 * Make sure to set the right flags for the PTEs at the desired level. 673 */ 674 static void amdgpu_vm_pte_update_flags(struct amdgpu_vm_update_params *params, 675 struct amdgpu_bo_vm *pt, 676 unsigned int level, 677 uint64_t pe, uint64_t addr, 678 unsigned int count, uint32_t incr, 679 uint64_t flags) 680 { 681 struct amdgpu_device *adev = params->adev; 682 683 if (level != AMDGPU_VM_PTB) { 684 flags |= AMDGPU_PDE_PTE_FLAG(params->adev); 685 amdgpu_gmc_get_vm_pde(adev, level, &addr, &flags); 686 687 } else if (adev->asic_type >= CHIP_VEGA10 && 688 !(flags & AMDGPU_PTE_VALID) && 689 !(flags & AMDGPU_PTE_PRT_FLAG(params->adev))) { 690 691 /* Workaround for fault priority problem on GMC9 */ 692 flags |= AMDGPU_PTE_EXECUTABLE; 693 } 694 695 /* 696 * Update no-retry flags to use the no-retry flag combination 697 * with TF enabled. The AMDGPU_VM_NORETRY_FLAGS flag combination 698 * does not work when TF is enabled. So, replace them with 699 * AMDGPU_VM_NORETRY_FLAGS_TF flag combination which works for 700 * all cases. 701 */ 702 if (level == AMDGPU_VM_PTB) 703 amdgpu_vm_pte_update_noretry_flags(adev, &flags); 704 705 /* APUs mapping system memory may need different MTYPEs on different 706 * NUMA nodes. Only do this for contiguous ranges that can be assumed 707 * to be on the same NUMA node. 708 */ 709 if ((flags & AMDGPU_PTE_SYSTEM) && (adev->flags & AMD_IS_APU) && 710 adev->gmc.gmc_funcs->override_vm_pte_flags && 711 num_possible_nodes() > 1 && !params->pages_addr && params->allow_override) 712 amdgpu_gmc_override_vm_pte_flags(adev, params->vm, addr, &flags); 713 714 params->vm->update_funcs->update(params, pt, pe, addr, count, incr, 715 flags); 716 } 717 718 /** 719 * amdgpu_vm_pte_fragment - get fragment for PTEs 720 * 721 * @params: see amdgpu_vm_update_params definition 722 * @start: first PTE to handle 723 * @end: last PTE to handle 724 * @flags: hw mapping flags 725 * @frag: resulting fragment size 726 * @frag_end: end of this fragment 727 * 728 * Returns the first possible fragment for the start and end address. 729 */ 730 static void amdgpu_vm_pte_fragment(struct amdgpu_vm_update_params *params, 731 uint64_t start, uint64_t end, uint64_t flags, 732 unsigned int *frag, uint64_t *frag_end) 733 { 734 /** 735 * The MC L1 TLB supports variable sized pages, based on a fragment 736 * field in the PTE. When this field is set to a non-zero value, page 737 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 738 * flags are considered valid for all PTEs within the fragment range 739 * and corresponding mappings are assumed to be physically contiguous. 740 * 741 * The L1 TLB can store a single PTE for the whole fragment, 742 * significantly increasing the space available for translation 743 * caching. This leads to large improvements in throughput when the 744 * TLB is under pressure. 745 * 746 * The L2 TLB distributes small and large fragments into two 747 * asymmetric partitions. The large fragment cache is significantly 748 * larger. Thus, we try to use large fragments wherever possible. 749 * Userspace can support this by aligning virtual base address and 750 * allocation size to the fragment size. 751 * 752 * Starting with Vega10 the fragment size only controls the L1. The L2 753 * is now directly feed with small/huge/giant pages from the walker. 754 */ 755 unsigned int max_frag; 756 757 if (params->adev->asic_type < CHIP_VEGA10) 758 max_frag = params->adev->vm_manager.fragment_size; 759 else 760 max_frag = 31; 761 762 /* system pages are non continuously */ 763 if (params->pages_addr) { 764 *frag = 0; 765 *frag_end = end; 766 return; 767 } 768 769 /* This intentionally wraps around if no bit is set */ 770 *frag = min_t(unsigned int, ffs(start) - 1, fls64(end - start) - 1); 771 if (*frag >= max_frag) { 772 *frag = max_frag; 773 *frag_end = end & ~((1ULL << max_frag) - 1); 774 } else { 775 *frag_end = start + (1 << *frag); 776 } 777 } 778 779 /** 780 * amdgpu_vm_ptes_update - make sure that page tables are valid 781 * 782 * @params: see amdgpu_vm_update_params definition 783 * @start: start of GPU address range 784 * @end: end of GPU address range 785 * @dst: destination address to map to, the next dst inside the function 786 * @flags: mapping flags 787 * 788 * Update the page tables in the range @start - @end. 789 * 790 * Returns: 791 * 0 for success, -EINVAL for failure. 792 */ 793 int amdgpu_vm_ptes_update(struct amdgpu_vm_update_params *params, 794 uint64_t start, uint64_t end, 795 uint64_t dst, uint64_t flags) 796 { 797 struct amdgpu_device *adev = params->adev; 798 struct amdgpu_vm_pt_cursor cursor; 799 uint64_t frag_start = start, frag_end; 800 unsigned int frag; 801 int r; 802 803 /* figure out the initial fragment */ 804 amdgpu_vm_pte_fragment(params, frag_start, end, flags, &frag, 805 &frag_end); 806 807 /* walk over the address space and update the PTs */ 808 amdgpu_vm_pt_start(adev, params->vm, start, &cursor); 809 while (cursor.pfn < end) { 810 unsigned int shift, parent_shift, mask; 811 uint64_t incr, entry_end, pe_start; 812 struct amdgpu_bo *pt; 813 814 if (!params->unlocked) { 815 /* make sure that the page tables covering the 816 * address range are actually allocated 817 */ 818 r = amdgpu_vm_pt_alloc(params->adev, params->vm, 819 &cursor, params->immediate); 820 if (r) 821 return r; 822 } 823 824 shift = amdgpu_vm_pt_level_shift(adev, cursor.level); 825 parent_shift = amdgpu_vm_pt_level_shift(adev, cursor.level - 1); 826 if (params->unlocked) { 827 /* Unlocked updates are only allowed on the leaves */ 828 if (amdgpu_vm_pt_descendant(adev, &cursor)) 829 continue; 830 } else if (adev->asic_type < CHIP_VEGA10 && 831 (flags & AMDGPU_PTE_VALID)) { 832 /* No huge page support before GMC v9 */ 833 if (cursor.level != AMDGPU_VM_PTB) { 834 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 835 return -ENOENT; 836 continue; 837 } 838 } else if (frag < shift) { 839 /* We can't use this level when the fragment size is 840 * smaller than the address shift. Go to the next 841 * child entry and try again. 842 */ 843 if (amdgpu_vm_pt_descendant(adev, &cursor)) 844 continue; 845 } else if (frag >= parent_shift) { 846 /* If the fragment size is even larger than the parent 847 * shift we should go up one level and check it again. 848 */ 849 if (!amdgpu_vm_pt_ancestor(&cursor)) 850 return -EINVAL; 851 continue; 852 } 853 854 pt = cursor.entry->bo; 855 if (!pt) { 856 /* We need all PDs and PTs for mapping something, */ 857 if (flags & AMDGPU_PTE_VALID) 858 return -ENOENT; 859 860 /* but unmapping something can happen at a higher 861 * level. 862 */ 863 if (!amdgpu_vm_pt_ancestor(&cursor)) 864 return -EINVAL; 865 866 pt = cursor.entry->bo; 867 shift = parent_shift; 868 frag_end = max(frag_end, ALIGN(frag_start + 1, 869 1ULL << shift)); 870 } 871 872 /* Looks good so far, calculate parameters for the update */ 873 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift; 874 mask = amdgpu_vm_pt_entries_mask(adev, cursor.level); 875 pe_start = ((cursor.pfn >> shift) & mask) * 8; 876 877 if (cursor.level < AMDGPU_VM_PTB && params->unlocked) 878 /* 879 * MMU notifier callback unlocked unmap huge page, leave is PDE entry, 880 * only clear one entry. Next entry search again for PDE or PTE leave. 881 */ 882 entry_end = 1ULL << shift; 883 else 884 entry_end = ((uint64_t)mask + 1) << shift; 885 entry_end += cursor.pfn & ~(entry_end - 1); 886 entry_end = min(entry_end, end); 887 888 do { 889 struct amdgpu_vm *vm = params->vm; 890 uint64_t upd_end = min(entry_end, frag_end); 891 unsigned int nptes = (upd_end - frag_start) >> shift; 892 uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag); 893 894 /* This can happen when we set higher level PDs to 895 * silent to stop fault floods. 896 */ 897 nptes = max(nptes, 1u); 898 899 trace_amdgpu_vm_update_ptes(params, frag_start, upd_end, 900 min(nptes, 32u), dst, incr, 901 upd_flags, 902 vm->task_info ? vm->task_info->tgid : 0, 903 vm->immediate.fence_context); 904 amdgpu_vm_pte_update_flags(params, to_amdgpu_bo_vm(pt), 905 cursor.level, pe_start, dst, 906 nptes, incr, upd_flags); 907 908 pe_start += nptes * 8; 909 dst += nptes * incr; 910 911 frag_start = upd_end; 912 if (frag_start >= frag_end) { 913 /* figure out the next fragment */ 914 amdgpu_vm_pte_fragment(params, frag_start, end, 915 flags, &frag, &frag_end); 916 if (frag < shift) 917 break; 918 } 919 } while (frag_start < entry_end); 920 921 if (amdgpu_vm_pt_descendant(adev, &cursor)) { 922 /* Free all child entries. 923 * Update the tables with the flags and addresses and free up subsequent 924 * tables in the case of huge pages or freed up areas. 925 * This is the maximum you can free, because all other page tables are not 926 * completely covered by the range and so potentially still in use. 927 */ 928 while (cursor.pfn < frag_start) { 929 /* Make sure previous mapping is freed */ 930 if (cursor.entry->bo) { 931 params->needs_flush = true; 932 amdgpu_vm_pt_add_list(params, &cursor); 933 } 934 amdgpu_vm_pt_next(adev, &cursor); 935 } 936 937 } else if (frag >= shift) { 938 /* or just move on to the next on the same level. */ 939 amdgpu_vm_pt_next(adev, &cursor); 940 } 941 } 942 943 return 0; 944 } 945 946 /** 947 * amdgpu_vm_pt_map_tables - have bo of root PD cpu accessible 948 * @adev: amdgpu device structure 949 * @vm: amdgpu vm structure 950 * 951 * make root page directory and everything below it cpu accessible. 952 */ 953 int amdgpu_vm_pt_map_tables(struct amdgpu_device *adev, struct amdgpu_vm *vm) 954 { 955 struct amdgpu_vm_pt_cursor cursor; 956 struct amdgpu_vm_bo_base *entry; 957 958 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry) { 959 960 struct amdgpu_bo_vm *bo; 961 int r; 962 963 if (entry->bo) { 964 bo = to_amdgpu_bo_vm(entry->bo); 965 r = vm->update_funcs->map_table(bo); 966 if (r) 967 return r; 968 } 969 } 970 971 return 0; 972 } 973