xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c (revision ef40b2346563aa11575446c8e3b04af44c31abb5)
1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 #include <linux/dma-fence-array.h>
29 #include <linux/interval_tree_generic.h>
30 #include <linux/idr.h>
31 #include <drm/drmP.h>
32 #include <drm/amdgpu_drm.h>
33 #include "amdgpu.h"
34 #include "amdgpu_trace.h"
35 
36 /*
37  * PASID manager
38  *
39  * PASIDs are global address space identifiers that can be shared
40  * between the GPU, an IOMMU and the driver. VMs on different devices
41  * may use the same PASID if they share the same address
42  * space. Therefore PASIDs are allocated using a global IDA. VMs are
43  * looked up from the PASID per amdgpu_device.
44  */
45 static DEFINE_IDA(amdgpu_vm_pasid_ida);
46 
47 /**
48  * amdgpu_vm_alloc_pasid - Allocate a PASID
49  * @bits: Maximum width of the PASID in bits, must be at least 1
50  *
51  * Allocates a PASID of the given width while keeping smaller PASIDs
52  * available if possible.
53  *
54  * Returns a positive integer on success. Returns %-EINVAL if bits==0.
55  * Returns %-ENOSPC if no PASID was available. Returns %-ENOMEM on
56  * memory allocation failure.
57  */
58 int amdgpu_vm_alloc_pasid(unsigned int bits)
59 {
60 	int pasid = -EINVAL;
61 
62 	for (bits = min(bits, 31U); bits > 0; bits--) {
63 		pasid = ida_simple_get(&amdgpu_vm_pasid_ida,
64 				       1U << (bits - 1), 1U << bits,
65 				       GFP_KERNEL);
66 		if (pasid != -ENOSPC)
67 			break;
68 	}
69 
70 	return pasid;
71 }
72 
73 /**
74  * amdgpu_vm_free_pasid - Free a PASID
75  * @pasid: PASID to free
76  */
77 void amdgpu_vm_free_pasid(unsigned int pasid)
78 {
79 	ida_simple_remove(&amdgpu_vm_pasid_ida, pasid);
80 }
81 
82 /*
83  * GPUVM
84  * GPUVM is similar to the legacy gart on older asics, however
85  * rather than there being a single global gart table
86  * for the entire GPU, there are multiple VM page tables active
87  * at any given time.  The VM page tables can contain a mix
88  * vram pages and system memory pages and system memory pages
89  * can be mapped as snooped (cached system pages) or unsnooped
90  * (uncached system pages).
91  * Each VM has an ID associated with it and there is a page table
92  * associated with each VMID.  When execting a command buffer,
93  * the kernel tells the the ring what VMID to use for that command
94  * buffer.  VMIDs are allocated dynamically as commands are submitted.
95  * The userspace drivers maintain their own address space and the kernel
96  * sets up their pages tables accordingly when they submit their
97  * command buffers and a VMID is assigned.
98  * Cayman/Trinity support up to 8 active VMs at any given time;
99  * SI supports 16.
100  */
101 
102 #define START(node) ((node)->start)
103 #define LAST(node) ((node)->last)
104 
105 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
106 		     START, LAST, static, amdgpu_vm_it)
107 
108 #undef START
109 #undef LAST
110 
111 /* Local structure. Encapsulate some VM table update parameters to reduce
112  * the number of function parameters
113  */
114 struct amdgpu_pte_update_params {
115 	/* amdgpu device we do this update for */
116 	struct amdgpu_device *adev;
117 	/* optional amdgpu_vm we do this update for */
118 	struct amdgpu_vm *vm;
119 	/* address where to copy page table entries from */
120 	uint64_t src;
121 	/* indirect buffer to fill with commands */
122 	struct amdgpu_ib *ib;
123 	/* Function which actually does the update */
124 	void (*func)(struct amdgpu_pte_update_params *params, uint64_t pe,
125 		     uint64_t addr, unsigned count, uint32_t incr,
126 		     uint64_t flags);
127 	/* The next two are used during VM update by CPU
128 	 *  DMA addresses to use for mapping
129 	 *  Kernel pointer of PD/PT BO that needs to be updated
130 	 */
131 	dma_addr_t *pages_addr;
132 	void *kptr;
133 };
134 
135 /* Helper to disable partial resident texture feature from a fence callback */
136 struct amdgpu_prt_cb {
137 	struct amdgpu_device *adev;
138 	struct dma_fence_cb cb;
139 };
140 
141 /**
142  * amdgpu_vm_num_entries - return the number of entries in a PD/PT
143  *
144  * @adev: amdgpu_device pointer
145  *
146  * Calculate the number of entries in a page directory or page table.
147  */
148 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
149 				      unsigned level)
150 {
151 	if (level == 0)
152 		/* For the root directory */
153 		return adev->vm_manager.max_pfn >>
154 			(adev->vm_manager.block_size *
155 			 adev->vm_manager.num_level);
156 	else if (level == adev->vm_manager.num_level)
157 		/* For the page tables on the leaves */
158 		return AMDGPU_VM_PTE_COUNT(adev);
159 	else
160 		/* Everything in between */
161 		return 1 << adev->vm_manager.block_size;
162 }
163 
164 /**
165  * amdgpu_vm_bo_size - returns the size of the BOs in bytes
166  *
167  * @adev: amdgpu_device pointer
168  *
169  * Calculate the size of the BO for a page directory or page table in bytes.
170  */
171 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
172 {
173 	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
174 }
175 
176 /**
177  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
178  *
179  * @vm: vm providing the BOs
180  * @validated: head of validation list
181  * @entry: entry to add
182  *
183  * Add the page directory to the list of BOs to
184  * validate for command submission.
185  */
186 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
187 			 struct list_head *validated,
188 			 struct amdgpu_bo_list_entry *entry)
189 {
190 	entry->robj = vm->root.base.bo;
191 	entry->priority = 0;
192 	entry->tv.bo = &entry->robj->tbo;
193 	entry->tv.shared = true;
194 	entry->user_pages = NULL;
195 	list_add(&entry->tv.head, validated);
196 }
197 
198 /**
199  * amdgpu_vm_validate_pt_bos - validate the page table BOs
200  *
201  * @adev: amdgpu device pointer
202  * @vm: vm providing the BOs
203  * @validate: callback to do the validation
204  * @param: parameter for the validation callback
205  *
206  * Validate the page table BOs on command submission if neccessary.
207  */
208 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
209 			      int (*validate)(void *p, struct amdgpu_bo *bo),
210 			      void *param)
211 {
212 	struct ttm_bo_global *glob = adev->mman.bdev.glob;
213 	int r;
214 
215 	spin_lock(&vm->status_lock);
216 	while (!list_empty(&vm->evicted)) {
217 		struct amdgpu_vm_bo_base *bo_base;
218 		struct amdgpu_bo *bo;
219 
220 		bo_base = list_first_entry(&vm->evicted,
221 					   struct amdgpu_vm_bo_base,
222 					   vm_status);
223 		spin_unlock(&vm->status_lock);
224 
225 		bo = bo_base->bo;
226 		BUG_ON(!bo);
227 		if (bo->parent) {
228 			r = validate(param, bo);
229 			if (r)
230 				return r;
231 
232 			spin_lock(&glob->lru_lock);
233 			ttm_bo_move_to_lru_tail(&bo->tbo);
234 			if (bo->shadow)
235 				ttm_bo_move_to_lru_tail(&bo->shadow->tbo);
236 			spin_unlock(&glob->lru_lock);
237 		}
238 
239 		if (bo->tbo.type == ttm_bo_type_kernel &&
240 		    vm->use_cpu_for_update) {
241 			r = amdgpu_bo_kmap(bo, NULL);
242 			if (r)
243 				return r;
244 		}
245 
246 		spin_lock(&vm->status_lock);
247 		if (bo->tbo.type != ttm_bo_type_kernel)
248 			list_move(&bo_base->vm_status, &vm->moved);
249 		else
250 			list_move(&bo_base->vm_status, &vm->relocated);
251 	}
252 	spin_unlock(&vm->status_lock);
253 
254 	return 0;
255 }
256 
257 /**
258  * amdgpu_vm_ready - check VM is ready for updates
259  *
260  * @vm: VM to check
261  *
262  * Check if all VM PDs/PTs are ready for updates
263  */
264 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
265 {
266 	bool ready;
267 
268 	spin_lock(&vm->status_lock);
269 	ready = list_empty(&vm->evicted);
270 	spin_unlock(&vm->status_lock);
271 
272 	return ready;
273 }
274 
275 /**
276  * amdgpu_vm_alloc_levels - allocate the PD/PT levels
277  *
278  * @adev: amdgpu_device pointer
279  * @vm: requested vm
280  * @saddr: start of the address range
281  * @eaddr: end of the address range
282  *
283  * Make sure the page directories and page tables are allocated
284  */
285 static int amdgpu_vm_alloc_levels(struct amdgpu_device *adev,
286 				  struct amdgpu_vm *vm,
287 				  struct amdgpu_vm_pt *parent,
288 				  uint64_t saddr, uint64_t eaddr,
289 				  unsigned level)
290 {
291 	unsigned shift = (adev->vm_manager.num_level - level) *
292 		adev->vm_manager.block_size;
293 	unsigned pt_idx, from, to;
294 	int r;
295 	u64 flags;
296 	uint64_t init_value = 0;
297 
298 	if (!parent->entries) {
299 		unsigned num_entries = amdgpu_vm_num_entries(adev, level);
300 
301 		parent->entries = kvmalloc_array(num_entries,
302 						   sizeof(struct amdgpu_vm_pt),
303 						   GFP_KERNEL | __GFP_ZERO);
304 		if (!parent->entries)
305 			return -ENOMEM;
306 		memset(parent->entries, 0 , sizeof(struct amdgpu_vm_pt));
307 	}
308 
309 	from = saddr >> shift;
310 	to = eaddr >> shift;
311 	if (from >= amdgpu_vm_num_entries(adev, level) ||
312 	    to >= amdgpu_vm_num_entries(adev, level))
313 		return -EINVAL;
314 
315 	if (to > parent->last_entry_used)
316 		parent->last_entry_used = to;
317 
318 	++level;
319 	saddr = saddr & ((1 << shift) - 1);
320 	eaddr = eaddr & ((1 << shift) - 1);
321 
322 	flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
323 			AMDGPU_GEM_CREATE_VRAM_CLEARED;
324 	if (vm->use_cpu_for_update)
325 		flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
326 	else
327 		flags |= (AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
328 				AMDGPU_GEM_CREATE_SHADOW);
329 
330 	if (vm->pte_support_ats) {
331 		init_value = AMDGPU_PTE_SYSTEM;
332 		if (level != adev->vm_manager.num_level - 1)
333 			init_value |= AMDGPU_PDE_PTE;
334 	}
335 
336 	/* walk over the address space and allocate the page tables */
337 	for (pt_idx = from; pt_idx <= to; ++pt_idx) {
338 		struct reservation_object *resv = vm->root.base.bo->tbo.resv;
339 		struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
340 		struct amdgpu_bo *pt;
341 
342 		if (!entry->base.bo) {
343 			r = amdgpu_bo_create(adev,
344 					     amdgpu_vm_bo_size(adev, level),
345 					     AMDGPU_GPU_PAGE_SIZE, true,
346 					     AMDGPU_GEM_DOMAIN_VRAM,
347 					     flags,
348 					     NULL, resv, init_value, &pt);
349 			if (r)
350 				return r;
351 
352 			if (vm->use_cpu_for_update) {
353 				r = amdgpu_bo_kmap(pt, NULL);
354 				if (r) {
355 					amdgpu_bo_unref(&pt);
356 					return r;
357 				}
358 			}
359 
360 			/* Keep a reference to the root directory to avoid
361 			* freeing them up in the wrong order.
362 			*/
363 			pt->parent = amdgpu_bo_ref(parent->base.bo);
364 
365 			entry->base.vm = vm;
366 			entry->base.bo = pt;
367 			list_add_tail(&entry->base.bo_list, &pt->va);
368 			spin_lock(&vm->status_lock);
369 			list_add(&entry->base.vm_status, &vm->relocated);
370 			spin_unlock(&vm->status_lock);
371 			entry->addr = 0;
372 		}
373 
374 		if (level < adev->vm_manager.num_level) {
375 			uint64_t sub_saddr = (pt_idx == from) ? saddr : 0;
376 			uint64_t sub_eaddr = (pt_idx == to) ? eaddr :
377 				((1 << shift) - 1);
378 			r = amdgpu_vm_alloc_levels(adev, vm, entry, sub_saddr,
379 						   sub_eaddr, level);
380 			if (r)
381 				return r;
382 		}
383 	}
384 
385 	return 0;
386 }
387 
388 /**
389  * amdgpu_vm_alloc_pts - Allocate page tables.
390  *
391  * @adev: amdgpu_device pointer
392  * @vm: VM to allocate page tables for
393  * @saddr: Start address which needs to be allocated
394  * @size: Size from start address we need.
395  *
396  * Make sure the page tables are allocated.
397  */
398 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
399 			struct amdgpu_vm *vm,
400 			uint64_t saddr, uint64_t size)
401 {
402 	uint64_t last_pfn;
403 	uint64_t eaddr;
404 
405 	/* validate the parameters */
406 	if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK)
407 		return -EINVAL;
408 
409 	eaddr = saddr + size - 1;
410 	last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE;
411 	if (last_pfn >= adev->vm_manager.max_pfn) {
412 		dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n",
413 			last_pfn, adev->vm_manager.max_pfn);
414 		return -EINVAL;
415 	}
416 
417 	saddr /= AMDGPU_GPU_PAGE_SIZE;
418 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
419 
420 	return amdgpu_vm_alloc_levels(adev, vm, &vm->root, saddr, eaddr, 0);
421 }
422 
423 /**
424  * amdgpu_vm_had_gpu_reset - check if reset occured since last use
425  *
426  * @adev: amdgpu_device pointer
427  * @id: VMID structure
428  *
429  * Check if GPU reset occured since last use of the VMID.
430  */
431 static bool amdgpu_vm_had_gpu_reset(struct amdgpu_device *adev,
432 				    struct amdgpu_vm_id *id)
433 {
434 	return id->current_gpu_reset_count !=
435 		atomic_read(&adev->gpu_reset_counter);
436 }
437 
438 static bool amdgpu_vm_reserved_vmid_ready(struct amdgpu_vm *vm, unsigned vmhub)
439 {
440 	return !!vm->reserved_vmid[vmhub];
441 }
442 
443 /* idr_mgr->lock must be held */
444 static int amdgpu_vm_grab_reserved_vmid_locked(struct amdgpu_vm *vm,
445 					       struct amdgpu_ring *ring,
446 					       struct amdgpu_sync *sync,
447 					       struct dma_fence *fence,
448 					       struct amdgpu_job *job)
449 {
450 	struct amdgpu_device *adev = ring->adev;
451 	unsigned vmhub = ring->funcs->vmhub;
452 	uint64_t fence_context = adev->fence_context + ring->idx;
453 	struct amdgpu_vm_id *id = vm->reserved_vmid[vmhub];
454 	struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
455 	struct dma_fence *updates = sync->last_vm_update;
456 	int r = 0;
457 	struct dma_fence *flushed, *tmp;
458 	bool needs_flush = vm->use_cpu_for_update;
459 
460 	flushed  = id->flushed_updates;
461 	if ((amdgpu_vm_had_gpu_reset(adev, id)) ||
462 	    (atomic64_read(&id->owner) != vm->client_id) ||
463 	    (job->vm_pd_addr != id->pd_gpu_addr) ||
464 	    (updates && (!flushed || updates->context != flushed->context ||
465 			dma_fence_is_later(updates, flushed))) ||
466 	    (!id->last_flush || (id->last_flush->context != fence_context &&
467 				 !dma_fence_is_signaled(id->last_flush)))) {
468 		needs_flush = true;
469 		/* to prevent one context starved by another context */
470 		id->pd_gpu_addr = 0;
471 		tmp = amdgpu_sync_peek_fence(&id->active, ring);
472 		if (tmp) {
473 			r = amdgpu_sync_fence(adev, sync, tmp);
474 			return r;
475 		}
476 	}
477 
478 	/* Good we can use this VMID. Remember this submission as
479 	* user of the VMID.
480 	*/
481 	r = amdgpu_sync_fence(ring->adev, &id->active, fence);
482 	if (r)
483 		goto out;
484 
485 	if (updates && (!flushed || updates->context != flushed->context ||
486 			dma_fence_is_later(updates, flushed))) {
487 		dma_fence_put(id->flushed_updates);
488 		id->flushed_updates = dma_fence_get(updates);
489 	}
490 	id->pd_gpu_addr = job->vm_pd_addr;
491 	atomic64_set(&id->owner, vm->client_id);
492 	job->vm_needs_flush = needs_flush;
493 	if (needs_flush) {
494 		dma_fence_put(id->last_flush);
495 		id->last_flush = NULL;
496 	}
497 	job->vm_id = id - id_mgr->ids;
498 	trace_amdgpu_vm_grab_id(vm, ring, job);
499 out:
500 	return r;
501 }
502 
503 /**
504  * amdgpu_vm_grab_id - allocate the next free VMID
505  *
506  * @vm: vm to allocate id for
507  * @ring: ring we want to submit job to
508  * @sync: sync object where we add dependencies
509  * @fence: fence protecting ID from reuse
510  *
511  * Allocate an id for the vm, adding fences to the sync obj as necessary.
512  */
513 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring,
514 		      struct amdgpu_sync *sync, struct dma_fence *fence,
515 		      struct amdgpu_job *job)
516 {
517 	struct amdgpu_device *adev = ring->adev;
518 	unsigned vmhub = ring->funcs->vmhub;
519 	struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
520 	uint64_t fence_context = adev->fence_context + ring->idx;
521 	struct dma_fence *updates = sync->last_vm_update;
522 	struct amdgpu_vm_id *id, *idle;
523 	struct dma_fence **fences;
524 	unsigned i;
525 	int r = 0;
526 
527 	mutex_lock(&id_mgr->lock);
528 	if (amdgpu_vm_reserved_vmid_ready(vm, vmhub)) {
529 		r = amdgpu_vm_grab_reserved_vmid_locked(vm, ring, sync, fence, job);
530 		mutex_unlock(&id_mgr->lock);
531 		return r;
532 	}
533 	fences = kmalloc_array(sizeof(void *), id_mgr->num_ids, GFP_KERNEL);
534 	if (!fences) {
535 		mutex_unlock(&id_mgr->lock);
536 		return -ENOMEM;
537 	}
538 	/* Check if we have an idle VMID */
539 	i = 0;
540 	list_for_each_entry(idle, &id_mgr->ids_lru, list) {
541 		fences[i] = amdgpu_sync_peek_fence(&idle->active, ring);
542 		if (!fences[i])
543 			break;
544 		++i;
545 	}
546 
547 	/* If we can't find a idle VMID to use, wait till one becomes available */
548 	if (&idle->list == &id_mgr->ids_lru) {
549 		u64 fence_context = adev->vm_manager.fence_context + ring->idx;
550 		unsigned seqno = ++adev->vm_manager.seqno[ring->idx];
551 		struct dma_fence_array *array;
552 		unsigned j;
553 
554 		for (j = 0; j < i; ++j)
555 			dma_fence_get(fences[j]);
556 
557 		array = dma_fence_array_create(i, fences, fence_context,
558 					   seqno, true);
559 		if (!array) {
560 			for (j = 0; j < i; ++j)
561 				dma_fence_put(fences[j]);
562 			kfree(fences);
563 			r = -ENOMEM;
564 			goto error;
565 		}
566 
567 
568 		r = amdgpu_sync_fence(ring->adev, sync, &array->base);
569 		dma_fence_put(&array->base);
570 		if (r)
571 			goto error;
572 
573 		mutex_unlock(&id_mgr->lock);
574 		return 0;
575 
576 	}
577 	kfree(fences);
578 
579 	job->vm_needs_flush = vm->use_cpu_for_update;
580 	/* Check if we can use a VMID already assigned to this VM */
581 	list_for_each_entry_reverse(id, &id_mgr->ids_lru, list) {
582 		struct dma_fence *flushed;
583 		bool needs_flush = vm->use_cpu_for_update;
584 
585 		/* Check all the prerequisites to using this VMID */
586 		if (amdgpu_vm_had_gpu_reset(adev, id))
587 			continue;
588 
589 		if (atomic64_read(&id->owner) != vm->client_id)
590 			continue;
591 
592 		if (job->vm_pd_addr != id->pd_gpu_addr)
593 			continue;
594 
595 		if (!id->last_flush ||
596 		    (id->last_flush->context != fence_context &&
597 		     !dma_fence_is_signaled(id->last_flush)))
598 			needs_flush = true;
599 
600 		flushed  = id->flushed_updates;
601 		if (updates && (!flushed || dma_fence_is_later(updates, flushed)))
602 			needs_flush = true;
603 
604 		/* Concurrent flushes are only possible starting with Vega10 */
605 		if (adev->asic_type < CHIP_VEGA10 && needs_flush)
606 			continue;
607 
608 		/* Good we can use this VMID. Remember this submission as
609 		 * user of the VMID.
610 		 */
611 		r = amdgpu_sync_fence(ring->adev, &id->active, fence);
612 		if (r)
613 			goto error;
614 
615 		if (updates && (!flushed || dma_fence_is_later(updates, flushed))) {
616 			dma_fence_put(id->flushed_updates);
617 			id->flushed_updates = dma_fence_get(updates);
618 		}
619 
620 		if (needs_flush)
621 			goto needs_flush;
622 		else
623 			goto no_flush_needed;
624 
625 	};
626 
627 	/* Still no ID to use? Then use the idle one found earlier */
628 	id = idle;
629 
630 	/* Remember this submission as user of the VMID */
631 	r = amdgpu_sync_fence(ring->adev, &id->active, fence);
632 	if (r)
633 		goto error;
634 
635 	id->pd_gpu_addr = job->vm_pd_addr;
636 	dma_fence_put(id->flushed_updates);
637 	id->flushed_updates = dma_fence_get(updates);
638 	atomic64_set(&id->owner, vm->client_id);
639 
640 needs_flush:
641 	job->vm_needs_flush = true;
642 	dma_fence_put(id->last_flush);
643 	id->last_flush = NULL;
644 
645 no_flush_needed:
646 	list_move_tail(&id->list, &id_mgr->ids_lru);
647 
648 	job->vm_id = id - id_mgr->ids;
649 	trace_amdgpu_vm_grab_id(vm, ring, job);
650 
651 error:
652 	mutex_unlock(&id_mgr->lock);
653 	return r;
654 }
655 
656 static void amdgpu_vm_free_reserved_vmid(struct amdgpu_device *adev,
657 					  struct amdgpu_vm *vm,
658 					  unsigned vmhub)
659 {
660 	struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
661 
662 	mutex_lock(&id_mgr->lock);
663 	if (vm->reserved_vmid[vmhub]) {
664 		list_add(&vm->reserved_vmid[vmhub]->list,
665 			&id_mgr->ids_lru);
666 		vm->reserved_vmid[vmhub] = NULL;
667 		atomic_dec(&id_mgr->reserved_vmid_num);
668 	}
669 	mutex_unlock(&id_mgr->lock);
670 }
671 
672 static int amdgpu_vm_alloc_reserved_vmid(struct amdgpu_device *adev,
673 					 struct amdgpu_vm *vm,
674 					 unsigned vmhub)
675 {
676 	struct amdgpu_vm_id_manager *id_mgr;
677 	struct amdgpu_vm_id *idle;
678 	int r = 0;
679 
680 	id_mgr = &adev->vm_manager.id_mgr[vmhub];
681 	mutex_lock(&id_mgr->lock);
682 	if (vm->reserved_vmid[vmhub])
683 		goto unlock;
684 	if (atomic_inc_return(&id_mgr->reserved_vmid_num) >
685 	    AMDGPU_VM_MAX_RESERVED_VMID) {
686 		DRM_ERROR("Over limitation of reserved vmid\n");
687 		atomic_dec(&id_mgr->reserved_vmid_num);
688 		r = -EINVAL;
689 		goto unlock;
690 	}
691 	/* Select the first entry VMID */
692 	idle = list_first_entry(&id_mgr->ids_lru, struct amdgpu_vm_id, list);
693 	list_del_init(&idle->list);
694 	vm->reserved_vmid[vmhub] = idle;
695 	mutex_unlock(&id_mgr->lock);
696 
697 	return 0;
698 unlock:
699 	mutex_unlock(&id_mgr->lock);
700 	return r;
701 }
702 
703 /**
704  * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
705  *
706  * @adev: amdgpu_device pointer
707  */
708 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
709 {
710 	const struct amdgpu_ip_block *ip_block;
711 	bool has_compute_vm_bug;
712 	struct amdgpu_ring *ring;
713 	int i;
714 
715 	has_compute_vm_bug = false;
716 
717 	ip_block = amdgpu_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
718 	if (ip_block) {
719 		/* Compute has a VM bug for GFX version < 7.
720 		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
721 		if (ip_block->version->major <= 7)
722 			has_compute_vm_bug = true;
723 		else if (ip_block->version->major == 8)
724 			if (adev->gfx.mec_fw_version < 673)
725 				has_compute_vm_bug = true;
726 	}
727 
728 	for (i = 0; i < adev->num_rings; i++) {
729 		ring = adev->rings[i];
730 		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
731 			/* only compute rings */
732 			ring->has_compute_vm_bug = has_compute_vm_bug;
733 		else
734 			ring->has_compute_vm_bug = false;
735 	}
736 }
737 
738 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
739 				  struct amdgpu_job *job)
740 {
741 	struct amdgpu_device *adev = ring->adev;
742 	unsigned vmhub = ring->funcs->vmhub;
743 	struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
744 	struct amdgpu_vm_id *id;
745 	bool gds_switch_needed;
746 	bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
747 
748 	if (job->vm_id == 0)
749 		return false;
750 	id = &id_mgr->ids[job->vm_id];
751 	gds_switch_needed = ring->funcs->emit_gds_switch && (
752 		id->gds_base != job->gds_base ||
753 		id->gds_size != job->gds_size ||
754 		id->gws_base != job->gws_base ||
755 		id->gws_size != job->gws_size ||
756 		id->oa_base != job->oa_base ||
757 		id->oa_size != job->oa_size);
758 
759 	if (amdgpu_vm_had_gpu_reset(adev, id))
760 		return true;
761 
762 	return vm_flush_needed || gds_switch_needed;
763 }
764 
765 static bool amdgpu_vm_is_large_bar(struct amdgpu_device *adev)
766 {
767 	return (adev->mc.real_vram_size == adev->mc.visible_vram_size);
768 }
769 
770 /**
771  * amdgpu_vm_flush - hardware flush the vm
772  *
773  * @ring: ring to use for flush
774  * @vm_id: vmid number to use
775  * @pd_addr: address of the page directory
776  *
777  * Emit a VM flush when it is necessary.
778  */
779 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync)
780 {
781 	struct amdgpu_device *adev = ring->adev;
782 	unsigned vmhub = ring->funcs->vmhub;
783 	struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
784 	struct amdgpu_vm_id *id = &id_mgr->ids[job->vm_id];
785 	bool gds_switch_needed = ring->funcs->emit_gds_switch && (
786 		id->gds_base != job->gds_base ||
787 		id->gds_size != job->gds_size ||
788 		id->gws_base != job->gws_base ||
789 		id->gws_size != job->gws_size ||
790 		id->oa_base != job->oa_base ||
791 		id->oa_size != job->oa_size);
792 	bool vm_flush_needed = job->vm_needs_flush;
793 	unsigned patch_offset = 0;
794 	int r;
795 
796 	if (amdgpu_vm_had_gpu_reset(adev, id)) {
797 		gds_switch_needed = true;
798 		vm_flush_needed = true;
799 	}
800 
801 	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
802 		return 0;
803 
804 	if (ring->funcs->init_cond_exec)
805 		patch_offset = amdgpu_ring_init_cond_exec(ring);
806 
807 	if (need_pipe_sync)
808 		amdgpu_ring_emit_pipeline_sync(ring);
809 
810 	if (ring->funcs->emit_vm_flush && vm_flush_needed) {
811 		struct dma_fence *fence;
812 
813 		trace_amdgpu_vm_flush(ring, job->vm_id, job->vm_pd_addr);
814 		amdgpu_ring_emit_vm_flush(ring, job->vm_id, job->vm_pd_addr);
815 
816 		r = amdgpu_fence_emit(ring, &fence);
817 		if (r)
818 			return r;
819 
820 		mutex_lock(&id_mgr->lock);
821 		dma_fence_put(id->last_flush);
822 		id->last_flush = fence;
823 		id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter);
824 		mutex_unlock(&id_mgr->lock);
825 	}
826 
827 	if (ring->funcs->emit_gds_switch && gds_switch_needed) {
828 		id->gds_base = job->gds_base;
829 		id->gds_size = job->gds_size;
830 		id->gws_base = job->gws_base;
831 		id->gws_size = job->gws_size;
832 		id->oa_base = job->oa_base;
833 		id->oa_size = job->oa_size;
834 		amdgpu_ring_emit_gds_switch(ring, job->vm_id, job->gds_base,
835 					    job->gds_size, job->gws_base,
836 					    job->gws_size, job->oa_base,
837 					    job->oa_size);
838 	}
839 
840 	if (ring->funcs->patch_cond_exec)
841 		amdgpu_ring_patch_cond_exec(ring, patch_offset);
842 
843 	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
844 	if (ring->funcs->emit_switch_buffer) {
845 		amdgpu_ring_emit_switch_buffer(ring);
846 		amdgpu_ring_emit_switch_buffer(ring);
847 	}
848 	return 0;
849 }
850 
851 /**
852  * amdgpu_vm_reset_id - reset VMID to zero
853  *
854  * @adev: amdgpu device structure
855  * @vm_id: vmid number to use
856  *
857  * Reset saved GDW, GWS and OA to force switch on next flush.
858  */
859 void amdgpu_vm_reset_id(struct amdgpu_device *adev, unsigned vmhub,
860 			unsigned vmid)
861 {
862 	struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
863 	struct amdgpu_vm_id *id = &id_mgr->ids[vmid];
864 
865 	atomic64_set(&id->owner, 0);
866 	id->gds_base = 0;
867 	id->gds_size = 0;
868 	id->gws_base = 0;
869 	id->gws_size = 0;
870 	id->oa_base = 0;
871 	id->oa_size = 0;
872 }
873 
874 /**
875  * amdgpu_vm_reset_all_id - reset VMID to zero
876  *
877  * @adev: amdgpu device structure
878  *
879  * Reset VMID to force flush on next use
880  */
881 void amdgpu_vm_reset_all_ids(struct amdgpu_device *adev)
882 {
883 	unsigned i, j;
884 
885 	for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
886 		struct amdgpu_vm_id_manager *id_mgr =
887 			&adev->vm_manager.id_mgr[i];
888 
889 		for (j = 1; j < id_mgr->num_ids; ++j)
890 			amdgpu_vm_reset_id(adev, i, j);
891 	}
892 }
893 
894 /**
895  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
896  *
897  * @vm: requested vm
898  * @bo: requested buffer object
899  *
900  * Find @bo inside the requested vm.
901  * Search inside the @bos vm list for the requested vm
902  * Returns the found bo_va or NULL if none is found
903  *
904  * Object has to be reserved!
905  */
906 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
907 				       struct amdgpu_bo *bo)
908 {
909 	struct amdgpu_bo_va *bo_va;
910 
911 	list_for_each_entry(bo_va, &bo->va, base.bo_list) {
912 		if (bo_va->base.vm == vm) {
913 			return bo_va;
914 		}
915 	}
916 	return NULL;
917 }
918 
919 /**
920  * amdgpu_vm_do_set_ptes - helper to call the right asic function
921  *
922  * @params: see amdgpu_pte_update_params definition
923  * @pe: addr of the page entry
924  * @addr: dst addr to write into pe
925  * @count: number of page entries to update
926  * @incr: increase next addr by incr bytes
927  * @flags: hw access flags
928  *
929  * Traces the parameters and calls the right asic functions
930  * to setup the page table using the DMA.
931  */
932 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params,
933 				  uint64_t pe, uint64_t addr,
934 				  unsigned count, uint32_t incr,
935 				  uint64_t flags)
936 {
937 	trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
938 
939 	if (count < 3) {
940 		amdgpu_vm_write_pte(params->adev, params->ib, pe,
941 				    addr | flags, count, incr);
942 
943 	} else {
944 		amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr,
945 				      count, incr, flags);
946 	}
947 }
948 
949 /**
950  * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART
951  *
952  * @params: see amdgpu_pte_update_params definition
953  * @pe: addr of the page entry
954  * @addr: dst addr to write into pe
955  * @count: number of page entries to update
956  * @incr: increase next addr by incr bytes
957  * @flags: hw access flags
958  *
959  * Traces the parameters and calls the DMA function to copy the PTEs.
960  */
961 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params,
962 				   uint64_t pe, uint64_t addr,
963 				   unsigned count, uint32_t incr,
964 				   uint64_t flags)
965 {
966 	uint64_t src = (params->src + (addr >> 12) * 8);
967 
968 
969 	trace_amdgpu_vm_copy_ptes(pe, src, count);
970 
971 	amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count);
972 }
973 
974 /**
975  * amdgpu_vm_map_gart - Resolve gart mapping of addr
976  *
977  * @pages_addr: optional DMA address to use for lookup
978  * @addr: the unmapped addr
979  *
980  * Look up the physical address of the page that the pte resolves
981  * to and return the pointer for the page table entry.
982  */
983 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
984 {
985 	uint64_t result;
986 
987 	/* page table offset */
988 	result = pages_addr[addr >> PAGE_SHIFT];
989 
990 	/* in case cpu page size != gpu page size*/
991 	result |= addr & (~PAGE_MASK);
992 
993 	result &= 0xFFFFFFFFFFFFF000ULL;
994 
995 	return result;
996 }
997 
998 /**
999  * amdgpu_vm_cpu_set_ptes - helper to update page tables via CPU
1000  *
1001  * @params: see amdgpu_pte_update_params definition
1002  * @pe: kmap addr of the page entry
1003  * @addr: dst addr to write into pe
1004  * @count: number of page entries to update
1005  * @incr: increase next addr by incr bytes
1006  * @flags: hw access flags
1007  *
1008  * Write count number of PT/PD entries directly.
1009  */
1010 static void amdgpu_vm_cpu_set_ptes(struct amdgpu_pte_update_params *params,
1011 				   uint64_t pe, uint64_t addr,
1012 				   unsigned count, uint32_t incr,
1013 				   uint64_t flags)
1014 {
1015 	unsigned int i;
1016 	uint64_t value;
1017 
1018 	trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
1019 
1020 	for (i = 0; i < count; i++) {
1021 		value = params->pages_addr ?
1022 			amdgpu_vm_map_gart(params->pages_addr, addr) :
1023 			addr;
1024 		amdgpu_gart_set_pte_pde(params->adev, (void *)(uintptr_t)pe,
1025 					i, value, flags);
1026 		addr += incr;
1027 	}
1028 }
1029 
1030 static int amdgpu_vm_wait_pd(struct amdgpu_device *adev, struct amdgpu_vm *vm,
1031 			     void *owner)
1032 {
1033 	struct amdgpu_sync sync;
1034 	int r;
1035 
1036 	amdgpu_sync_create(&sync);
1037 	amdgpu_sync_resv(adev, &sync, vm->root.base.bo->tbo.resv, owner);
1038 	r = amdgpu_sync_wait(&sync, true);
1039 	amdgpu_sync_free(&sync);
1040 
1041 	return r;
1042 }
1043 
1044 /*
1045  * amdgpu_vm_update_level - update a single level in the hierarchy
1046  *
1047  * @adev: amdgpu_device pointer
1048  * @vm: requested vm
1049  * @parent: parent directory
1050  *
1051  * Makes sure all entries in @parent are up to date.
1052  * Returns 0 for success, error for failure.
1053  */
1054 static int amdgpu_vm_update_level(struct amdgpu_device *adev,
1055 				  struct amdgpu_vm *vm,
1056 				  struct amdgpu_vm_pt *parent)
1057 {
1058 	struct amdgpu_bo *shadow;
1059 	struct amdgpu_ring *ring = NULL;
1060 	uint64_t pd_addr, shadow_addr = 0;
1061 	uint64_t last_pde = ~0, last_pt = ~0, last_shadow = ~0;
1062 	unsigned count = 0, pt_idx, ndw = 0;
1063 	struct amdgpu_job *job;
1064 	struct amdgpu_pte_update_params params;
1065 	struct dma_fence *fence = NULL;
1066 	uint32_t incr;
1067 
1068 	int r;
1069 
1070 	if (!parent->entries)
1071 		return 0;
1072 
1073 	memset(&params, 0, sizeof(params));
1074 	params.adev = adev;
1075 	shadow = parent->base.bo->shadow;
1076 
1077 	if (vm->use_cpu_for_update) {
1078 		pd_addr = (unsigned long)amdgpu_bo_kptr(parent->base.bo);
1079 		r = amdgpu_vm_wait_pd(adev, vm, AMDGPU_FENCE_OWNER_VM);
1080 		if (unlikely(r))
1081 			return r;
1082 
1083 		params.func = amdgpu_vm_cpu_set_ptes;
1084 	} else {
1085 		ring = container_of(vm->entity.sched, struct amdgpu_ring,
1086 				    sched);
1087 
1088 		/* padding, etc. */
1089 		ndw = 64;
1090 
1091 		/* assume the worst case */
1092 		ndw += parent->last_entry_used * 6;
1093 
1094 		pd_addr = amdgpu_bo_gpu_offset(parent->base.bo);
1095 
1096 		if (shadow) {
1097 			shadow_addr = amdgpu_bo_gpu_offset(shadow);
1098 			ndw *= 2;
1099 		} else {
1100 			shadow_addr = 0;
1101 		}
1102 
1103 		r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
1104 		if (r)
1105 			return r;
1106 
1107 		params.ib = &job->ibs[0];
1108 		params.func = amdgpu_vm_do_set_ptes;
1109 	}
1110 
1111 
1112 	/* walk over the address space and update the directory */
1113 	for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
1114 		struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
1115 		struct amdgpu_bo *bo = entry->base.bo;
1116 		uint64_t pde, pt;
1117 
1118 		if (bo == NULL)
1119 			continue;
1120 
1121 		spin_lock(&vm->status_lock);
1122 		list_del_init(&entry->base.vm_status);
1123 		spin_unlock(&vm->status_lock);
1124 
1125 		pt = amdgpu_bo_gpu_offset(bo);
1126 		pt = amdgpu_gart_get_vm_pde(adev, pt);
1127 		/* Don't update huge pages here */
1128 		if ((parent->entries[pt_idx].addr & AMDGPU_PDE_PTE) ||
1129 		    parent->entries[pt_idx].addr == (pt | AMDGPU_PTE_VALID))
1130 			continue;
1131 
1132 		parent->entries[pt_idx].addr = pt | AMDGPU_PTE_VALID;
1133 
1134 		pde = pd_addr + pt_idx * 8;
1135 		incr = amdgpu_bo_size(bo);
1136 		if (((last_pde + 8 * count) != pde) ||
1137 		    ((last_pt + incr * count) != pt) ||
1138 		    (count == AMDGPU_VM_MAX_UPDATE_SIZE)) {
1139 
1140 			if (count) {
1141 				if (shadow)
1142 					params.func(&params,
1143 						    last_shadow,
1144 						    last_pt, count,
1145 						    incr,
1146 						    AMDGPU_PTE_VALID);
1147 
1148 				params.func(&params, last_pde,
1149 					    last_pt, count, incr,
1150 					    AMDGPU_PTE_VALID);
1151 			}
1152 
1153 			count = 1;
1154 			last_pde = pde;
1155 			last_shadow = shadow_addr + pt_idx * 8;
1156 			last_pt = pt;
1157 		} else {
1158 			++count;
1159 		}
1160 	}
1161 
1162 	if (count) {
1163 		if (vm->root.base.bo->shadow)
1164 			params.func(&params, last_shadow, last_pt,
1165 				    count, incr, AMDGPU_PTE_VALID);
1166 
1167 		params.func(&params, last_pde, last_pt,
1168 			    count, incr, AMDGPU_PTE_VALID);
1169 	}
1170 
1171 	if (!vm->use_cpu_for_update) {
1172 		if (params.ib->length_dw == 0) {
1173 			amdgpu_job_free(job);
1174 		} else {
1175 			amdgpu_ring_pad_ib(ring, params.ib);
1176 			amdgpu_sync_resv(adev, &job->sync,
1177 					 parent->base.bo->tbo.resv,
1178 					 AMDGPU_FENCE_OWNER_VM);
1179 			if (shadow)
1180 				amdgpu_sync_resv(adev, &job->sync,
1181 						 shadow->tbo.resv,
1182 						 AMDGPU_FENCE_OWNER_VM);
1183 
1184 			WARN_ON(params.ib->length_dw > ndw);
1185 			r = amdgpu_job_submit(job, ring, &vm->entity,
1186 					AMDGPU_FENCE_OWNER_VM, &fence);
1187 			if (r)
1188 				goto error_free;
1189 
1190 			amdgpu_bo_fence(parent->base.bo, fence, true);
1191 			dma_fence_put(vm->last_update);
1192 			vm->last_update = fence;
1193 		}
1194 	}
1195 
1196 	return 0;
1197 
1198 error_free:
1199 	amdgpu_job_free(job);
1200 	return r;
1201 }
1202 
1203 /*
1204  * amdgpu_vm_invalidate_level - mark all PD levels as invalid
1205  *
1206  * @parent: parent PD
1207  *
1208  * Mark all PD level as invalid after an error.
1209  */
1210 static void amdgpu_vm_invalidate_level(struct amdgpu_vm *vm,
1211 				       struct amdgpu_vm_pt *parent)
1212 {
1213 	unsigned pt_idx;
1214 
1215 	/*
1216 	 * Recurse into the subdirectories. This recursion is harmless because
1217 	 * we only have a maximum of 5 layers.
1218 	 */
1219 	for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
1220 		struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
1221 
1222 		if (!entry->base.bo)
1223 			continue;
1224 
1225 		entry->addr = ~0ULL;
1226 		spin_lock(&vm->status_lock);
1227 		if (list_empty(&entry->base.vm_status))
1228 			list_add(&entry->base.vm_status, &vm->relocated);
1229 		spin_unlock(&vm->status_lock);
1230 		amdgpu_vm_invalidate_level(vm, entry);
1231 	}
1232 }
1233 
1234 /*
1235  * amdgpu_vm_update_directories - make sure that all directories are valid
1236  *
1237  * @adev: amdgpu_device pointer
1238  * @vm: requested vm
1239  *
1240  * Makes sure all directories are up to date.
1241  * Returns 0 for success, error for failure.
1242  */
1243 int amdgpu_vm_update_directories(struct amdgpu_device *adev,
1244 				 struct amdgpu_vm *vm)
1245 {
1246 	int r;
1247 
1248 	spin_lock(&vm->status_lock);
1249 	while (!list_empty(&vm->relocated)) {
1250 		struct amdgpu_vm_bo_base *bo_base;
1251 		struct amdgpu_bo *bo;
1252 
1253 		bo_base = list_first_entry(&vm->relocated,
1254 					   struct amdgpu_vm_bo_base,
1255 					   vm_status);
1256 		spin_unlock(&vm->status_lock);
1257 
1258 		bo = bo_base->bo->parent;
1259 		if (bo) {
1260 			struct amdgpu_vm_bo_base *parent;
1261 			struct amdgpu_vm_pt *pt;
1262 
1263 			parent = list_first_entry(&bo->va,
1264 						  struct amdgpu_vm_bo_base,
1265 						  bo_list);
1266 			pt = container_of(parent, struct amdgpu_vm_pt, base);
1267 
1268 			r = amdgpu_vm_update_level(adev, vm, pt);
1269 			if (r) {
1270 				amdgpu_vm_invalidate_level(vm, &vm->root);
1271 				return r;
1272 			}
1273 			spin_lock(&vm->status_lock);
1274 		} else {
1275 			spin_lock(&vm->status_lock);
1276 			list_del_init(&bo_base->vm_status);
1277 		}
1278 	}
1279 	spin_unlock(&vm->status_lock);
1280 
1281 	if (vm->use_cpu_for_update) {
1282 		/* Flush HDP */
1283 		mb();
1284 		amdgpu_gart_flush_gpu_tlb(adev, 0);
1285 	}
1286 
1287 	return r;
1288 }
1289 
1290 /**
1291  * amdgpu_vm_find_entry - find the entry for an address
1292  *
1293  * @p: see amdgpu_pte_update_params definition
1294  * @addr: virtual address in question
1295  * @entry: resulting entry or NULL
1296  * @parent: parent entry
1297  *
1298  * Find the vm_pt entry and it's parent for the given address.
1299  */
1300 void amdgpu_vm_get_entry(struct amdgpu_pte_update_params *p, uint64_t addr,
1301 			 struct amdgpu_vm_pt **entry,
1302 			 struct amdgpu_vm_pt **parent)
1303 {
1304 	unsigned idx, level = p->adev->vm_manager.num_level;
1305 
1306 	*parent = NULL;
1307 	*entry = &p->vm->root;
1308 	while ((*entry)->entries) {
1309 		idx = addr >> (p->adev->vm_manager.block_size * level--);
1310 		idx %= amdgpu_bo_size((*entry)->base.bo) / 8;
1311 		*parent = *entry;
1312 		*entry = &(*entry)->entries[idx];
1313 	}
1314 
1315 	if (level)
1316 		*entry = NULL;
1317 }
1318 
1319 /**
1320  * amdgpu_vm_handle_huge_pages - handle updating the PD with huge pages
1321  *
1322  * @p: see amdgpu_pte_update_params definition
1323  * @entry: vm_pt entry to check
1324  * @parent: parent entry
1325  * @nptes: number of PTEs updated with this operation
1326  * @dst: destination address where the PTEs should point to
1327  * @flags: access flags fro the PTEs
1328  *
1329  * Check if we can update the PD with a huge page.
1330  */
1331 static void amdgpu_vm_handle_huge_pages(struct amdgpu_pte_update_params *p,
1332 					struct amdgpu_vm_pt *entry,
1333 					struct amdgpu_vm_pt *parent,
1334 					unsigned nptes, uint64_t dst,
1335 					uint64_t flags)
1336 {
1337 	bool use_cpu_update = (p->func == amdgpu_vm_cpu_set_ptes);
1338 	uint64_t pd_addr, pde;
1339 
1340 	/* In the case of a mixed PT the PDE must point to it*/
1341 	if (p->adev->asic_type < CHIP_VEGA10 ||
1342 	    nptes != AMDGPU_VM_PTE_COUNT(p->adev) ||
1343 	    p->src ||
1344 	    !(flags & AMDGPU_PTE_VALID)) {
1345 
1346 		dst = amdgpu_bo_gpu_offset(entry->base.bo);
1347 		dst = amdgpu_gart_get_vm_pde(p->adev, dst);
1348 		flags = AMDGPU_PTE_VALID;
1349 	} else {
1350 		/* Set the huge page flag to stop scanning at this PDE */
1351 		flags |= AMDGPU_PDE_PTE;
1352 	}
1353 
1354 	if (entry->addr == (dst | flags))
1355 		return;
1356 
1357 	entry->addr = (dst | flags);
1358 
1359 	if (use_cpu_update) {
1360 		/* In case a huge page is replaced with a system
1361 		 * memory mapping, p->pages_addr != NULL and
1362 		 * amdgpu_vm_cpu_set_ptes would try to translate dst
1363 		 * through amdgpu_vm_map_gart. But dst is already a
1364 		 * GPU address (of the page table). Disable
1365 		 * amdgpu_vm_map_gart temporarily.
1366 		 */
1367 		dma_addr_t *tmp;
1368 
1369 		tmp = p->pages_addr;
1370 		p->pages_addr = NULL;
1371 
1372 		pd_addr = (unsigned long)amdgpu_bo_kptr(parent->base.bo);
1373 		pde = pd_addr + (entry - parent->entries) * 8;
1374 		amdgpu_vm_cpu_set_ptes(p, pde, dst, 1, 0, flags);
1375 
1376 		p->pages_addr = tmp;
1377 	} else {
1378 		if (parent->base.bo->shadow) {
1379 			pd_addr = amdgpu_bo_gpu_offset(parent->base.bo->shadow);
1380 			pde = pd_addr + (entry - parent->entries) * 8;
1381 			amdgpu_vm_do_set_ptes(p, pde, dst, 1, 0, flags);
1382 		}
1383 		pd_addr = amdgpu_bo_gpu_offset(parent->base.bo);
1384 		pde = pd_addr + (entry - parent->entries) * 8;
1385 		amdgpu_vm_do_set_ptes(p, pde, dst, 1, 0, flags);
1386 	}
1387 }
1388 
1389 /**
1390  * amdgpu_vm_update_ptes - make sure that page tables are valid
1391  *
1392  * @params: see amdgpu_pte_update_params definition
1393  * @vm: requested vm
1394  * @start: start of GPU address range
1395  * @end: end of GPU address range
1396  * @dst: destination address to map to, the next dst inside the function
1397  * @flags: mapping flags
1398  *
1399  * Update the page tables in the range @start - @end.
1400  * Returns 0 for success, -EINVAL for failure.
1401  */
1402 static int amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params,
1403 				  uint64_t start, uint64_t end,
1404 				  uint64_t dst, uint64_t flags)
1405 {
1406 	struct amdgpu_device *adev = params->adev;
1407 	const uint64_t mask = AMDGPU_VM_PTE_COUNT(adev) - 1;
1408 
1409 	uint64_t addr, pe_start;
1410 	struct amdgpu_bo *pt;
1411 	unsigned nptes;
1412 	bool use_cpu_update = (params->func == amdgpu_vm_cpu_set_ptes);
1413 
1414 	/* walk over the address space and update the page tables */
1415 	for (addr = start; addr < end; addr += nptes,
1416 	     dst += nptes * AMDGPU_GPU_PAGE_SIZE) {
1417 		struct amdgpu_vm_pt *entry, *parent;
1418 
1419 		amdgpu_vm_get_entry(params, addr, &entry, &parent);
1420 		if (!entry)
1421 			return -ENOENT;
1422 
1423 		if ((addr & ~mask) == (end & ~mask))
1424 			nptes = end - addr;
1425 		else
1426 			nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask);
1427 
1428 		amdgpu_vm_handle_huge_pages(params, entry, parent,
1429 					    nptes, dst, flags);
1430 		/* We don't need to update PTEs for huge pages */
1431 		if (entry->addr & AMDGPU_PDE_PTE)
1432 			continue;
1433 
1434 		pt = entry->base.bo;
1435 		if (use_cpu_update) {
1436 			pe_start = (unsigned long)amdgpu_bo_kptr(pt);
1437 		} else {
1438 			if (pt->shadow) {
1439 				pe_start = amdgpu_bo_gpu_offset(pt->shadow);
1440 				pe_start += (addr & mask) * 8;
1441 				params->func(params, pe_start, dst, nptes,
1442 					     AMDGPU_GPU_PAGE_SIZE, flags);
1443 			}
1444 			pe_start = amdgpu_bo_gpu_offset(pt);
1445 		}
1446 
1447 		pe_start += (addr & mask) * 8;
1448 		params->func(params, pe_start, dst, nptes,
1449 			     AMDGPU_GPU_PAGE_SIZE, flags);
1450 	}
1451 
1452 	return 0;
1453 }
1454 
1455 /*
1456  * amdgpu_vm_frag_ptes - add fragment information to PTEs
1457  *
1458  * @params: see amdgpu_pte_update_params definition
1459  * @vm: requested vm
1460  * @start: first PTE to handle
1461  * @end: last PTE to handle
1462  * @dst: addr those PTEs should point to
1463  * @flags: hw mapping flags
1464  * Returns 0 for success, -EINVAL for failure.
1465  */
1466 static int amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params	*params,
1467 				uint64_t start, uint64_t end,
1468 				uint64_t dst, uint64_t flags)
1469 {
1470 	/**
1471 	 * The MC L1 TLB supports variable sized pages, based on a fragment
1472 	 * field in the PTE. When this field is set to a non-zero value, page
1473 	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1474 	 * flags are considered valid for all PTEs within the fragment range
1475 	 * and corresponding mappings are assumed to be physically contiguous.
1476 	 *
1477 	 * The L1 TLB can store a single PTE for the whole fragment,
1478 	 * significantly increasing the space available for translation
1479 	 * caching. This leads to large improvements in throughput when the
1480 	 * TLB is under pressure.
1481 	 *
1482 	 * The L2 TLB distributes small and large fragments into two
1483 	 * asymmetric partitions. The large fragment cache is significantly
1484 	 * larger. Thus, we try to use large fragments wherever possible.
1485 	 * Userspace can support this by aligning virtual base address and
1486 	 * allocation size to the fragment size.
1487 	 */
1488 	unsigned max_frag = params->adev->vm_manager.fragment_size;
1489 	int r;
1490 
1491 	/* system pages are non continuously */
1492 	if (params->src || !(flags & AMDGPU_PTE_VALID))
1493 		return amdgpu_vm_update_ptes(params, start, end, dst, flags);
1494 
1495 	while (start != end) {
1496 		uint64_t frag_flags, frag_end;
1497 		unsigned frag;
1498 
1499 		/* This intentionally wraps around if no bit is set */
1500 		frag = min((unsigned)ffs(start) - 1,
1501 			   (unsigned)fls64(end - start) - 1);
1502 		if (frag >= max_frag) {
1503 			frag_flags = AMDGPU_PTE_FRAG(max_frag);
1504 			frag_end = end & ~((1ULL << max_frag) - 1);
1505 		} else {
1506 			frag_flags = AMDGPU_PTE_FRAG(frag);
1507 			frag_end = start + (1 << frag);
1508 		}
1509 
1510 		r = amdgpu_vm_update_ptes(params, start, frag_end, dst,
1511 					  flags | frag_flags);
1512 		if (r)
1513 			return r;
1514 
1515 		dst += (frag_end - start) * AMDGPU_GPU_PAGE_SIZE;
1516 		start = frag_end;
1517 	}
1518 
1519 	return 0;
1520 }
1521 
1522 /**
1523  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1524  *
1525  * @adev: amdgpu_device pointer
1526  * @exclusive: fence we need to sync to
1527  * @pages_addr: DMA addresses to use for mapping
1528  * @vm: requested vm
1529  * @start: start of mapped range
1530  * @last: last mapped entry
1531  * @flags: flags for the entries
1532  * @addr: addr to set the area to
1533  * @fence: optional resulting fence
1534  *
1535  * Fill in the page table entries between @start and @last.
1536  * Returns 0 for success, -EINVAL for failure.
1537  */
1538 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1539 				       struct dma_fence *exclusive,
1540 				       dma_addr_t *pages_addr,
1541 				       struct amdgpu_vm *vm,
1542 				       uint64_t start, uint64_t last,
1543 				       uint64_t flags, uint64_t addr,
1544 				       struct dma_fence **fence)
1545 {
1546 	struct amdgpu_ring *ring;
1547 	void *owner = AMDGPU_FENCE_OWNER_VM;
1548 	unsigned nptes, ncmds, ndw;
1549 	struct amdgpu_job *job;
1550 	struct amdgpu_pte_update_params params;
1551 	struct dma_fence *f = NULL;
1552 	int r;
1553 
1554 	memset(&params, 0, sizeof(params));
1555 	params.adev = adev;
1556 	params.vm = vm;
1557 
1558 	/* sync to everything on unmapping */
1559 	if (!(flags & AMDGPU_PTE_VALID))
1560 		owner = AMDGPU_FENCE_OWNER_UNDEFINED;
1561 
1562 	if (vm->use_cpu_for_update) {
1563 		/* params.src is used as flag to indicate system Memory */
1564 		if (pages_addr)
1565 			params.src = ~0;
1566 
1567 		/* Wait for PT BOs to be free. PTs share the same resv. object
1568 		 * as the root PD BO
1569 		 */
1570 		r = amdgpu_vm_wait_pd(adev, vm, owner);
1571 		if (unlikely(r))
1572 			return r;
1573 
1574 		params.func = amdgpu_vm_cpu_set_ptes;
1575 		params.pages_addr = pages_addr;
1576 		return amdgpu_vm_frag_ptes(&params, start, last + 1,
1577 					   addr, flags);
1578 	}
1579 
1580 	ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
1581 
1582 	nptes = last - start + 1;
1583 
1584 	/*
1585 	 * reserve space for two commands every (1 << BLOCK_SIZE)
1586 	 *  entries or 2k dwords (whatever is smaller)
1587          *
1588          * The second command is for the shadow pagetables.
1589 	 */
1590 	ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1) * 2;
1591 
1592 	/* padding, etc. */
1593 	ndw = 64;
1594 
1595 	/* one PDE write for each huge page */
1596 	ndw += ((nptes >> adev->vm_manager.block_size) + 1) * 6;
1597 
1598 	if (pages_addr) {
1599 		/* copy commands needed */
1600 		ndw += ncmds * adev->vm_manager.vm_pte_funcs->copy_pte_num_dw;
1601 
1602 		/* and also PTEs */
1603 		ndw += nptes * 2;
1604 
1605 		params.func = amdgpu_vm_do_copy_ptes;
1606 
1607 	} else {
1608 		/* set page commands needed */
1609 		ndw += ncmds * adev->vm_manager.vm_pte_funcs->set_pte_pde_num_dw;
1610 
1611 		/* extra commands for begin/end fragments */
1612 		ndw += 2 * adev->vm_manager.vm_pte_funcs->set_pte_pde_num_dw
1613 				* adev->vm_manager.fragment_size;
1614 
1615 		params.func = amdgpu_vm_do_set_ptes;
1616 	}
1617 
1618 	r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
1619 	if (r)
1620 		return r;
1621 
1622 	params.ib = &job->ibs[0];
1623 
1624 	if (pages_addr) {
1625 		uint64_t *pte;
1626 		unsigned i;
1627 
1628 		/* Put the PTEs at the end of the IB. */
1629 		i = ndw - nptes * 2;
1630 		pte= (uint64_t *)&(job->ibs->ptr[i]);
1631 		params.src = job->ibs->gpu_addr + i * 4;
1632 
1633 		for (i = 0; i < nptes; ++i) {
1634 			pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i *
1635 						    AMDGPU_GPU_PAGE_SIZE);
1636 			pte[i] |= flags;
1637 		}
1638 		addr = 0;
1639 	}
1640 
1641 	r = amdgpu_sync_fence(adev, &job->sync, exclusive);
1642 	if (r)
1643 		goto error_free;
1644 
1645 	r = amdgpu_sync_resv(adev, &job->sync, vm->root.base.bo->tbo.resv,
1646 			     owner);
1647 	if (r)
1648 		goto error_free;
1649 
1650 	r = reservation_object_reserve_shared(vm->root.base.bo->tbo.resv);
1651 	if (r)
1652 		goto error_free;
1653 
1654 	r = amdgpu_vm_frag_ptes(&params, start, last + 1, addr, flags);
1655 	if (r)
1656 		goto error_free;
1657 
1658 	amdgpu_ring_pad_ib(ring, params.ib);
1659 	WARN_ON(params.ib->length_dw > ndw);
1660 	r = amdgpu_job_submit(job, ring, &vm->entity,
1661 			      AMDGPU_FENCE_OWNER_VM, &f);
1662 	if (r)
1663 		goto error_free;
1664 
1665 	amdgpu_bo_fence(vm->root.base.bo, f, true);
1666 	dma_fence_put(*fence);
1667 	*fence = f;
1668 	return 0;
1669 
1670 error_free:
1671 	amdgpu_job_free(job);
1672 	amdgpu_vm_invalidate_level(vm, &vm->root);
1673 	return r;
1674 }
1675 
1676 /**
1677  * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1678  *
1679  * @adev: amdgpu_device pointer
1680  * @exclusive: fence we need to sync to
1681  * @pages_addr: DMA addresses to use for mapping
1682  * @vm: requested vm
1683  * @mapping: mapped range and flags to use for the update
1684  * @flags: HW flags for the mapping
1685  * @nodes: array of drm_mm_nodes with the MC addresses
1686  * @fence: optional resulting fence
1687  *
1688  * Split the mapping into smaller chunks so that each update fits
1689  * into a SDMA IB.
1690  * Returns 0 for success, -EINVAL for failure.
1691  */
1692 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1693 				      struct dma_fence *exclusive,
1694 				      dma_addr_t *pages_addr,
1695 				      struct amdgpu_vm *vm,
1696 				      struct amdgpu_bo_va_mapping *mapping,
1697 				      uint64_t flags,
1698 				      struct drm_mm_node *nodes,
1699 				      struct dma_fence **fence)
1700 {
1701 	uint64_t pfn, start = mapping->start;
1702 	int r;
1703 
1704 	/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1705 	 * but in case of something, we filter the flags in first place
1706 	 */
1707 	if (!(mapping->flags & AMDGPU_PTE_READABLE))
1708 		flags &= ~AMDGPU_PTE_READABLE;
1709 	if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1710 		flags &= ~AMDGPU_PTE_WRITEABLE;
1711 
1712 	flags &= ~AMDGPU_PTE_EXECUTABLE;
1713 	flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE;
1714 
1715 	flags &= ~AMDGPU_PTE_MTYPE_MASK;
1716 	flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK);
1717 
1718 	if ((mapping->flags & AMDGPU_PTE_PRT) &&
1719 	    (adev->asic_type >= CHIP_VEGA10)) {
1720 		flags |= AMDGPU_PTE_PRT;
1721 		flags &= ~AMDGPU_PTE_VALID;
1722 	}
1723 
1724 	trace_amdgpu_vm_bo_update(mapping);
1725 
1726 	pfn = mapping->offset >> PAGE_SHIFT;
1727 	if (nodes) {
1728 		while (pfn >= nodes->size) {
1729 			pfn -= nodes->size;
1730 			++nodes;
1731 		}
1732 	}
1733 
1734 	do {
1735 		uint64_t max_entries;
1736 		uint64_t addr, last;
1737 
1738 		if (nodes) {
1739 			addr = nodes->start << PAGE_SHIFT;
1740 			max_entries = (nodes->size - pfn) *
1741 				(PAGE_SIZE / AMDGPU_GPU_PAGE_SIZE);
1742 		} else {
1743 			addr = 0;
1744 			max_entries = S64_MAX;
1745 		}
1746 
1747 		if (pages_addr) {
1748 			max_entries = min(max_entries, 16ull * 1024ull);
1749 			addr = 0;
1750 		} else if (flags & AMDGPU_PTE_VALID) {
1751 			addr += adev->vm_manager.vram_base_offset;
1752 		}
1753 		addr += pfn << PAGE_SHIFT;
1754 
1755 		last = min((uint64_t)mapping->last, start + max_entries - 1);
1756 		r = amdgpu_vm_bo_update_mapping(adev, exclusive, pages_addr, vm,
1757 						start, last, flags, addr,
1758 						fence);
1759 		if (r)
1760 			return r;
1761 
1762 		pfn += last - start + 1;
1763 		if (nodes && nodes->size == pfn) {
1764 			pfn = 0;
1765 			++nodes;
1766 		}
1767 		start = last + 1;
1768 
1769 	} while (unlikely(start != mapping->last + 1));
1770 
1771 	return 0;
1772 }
1773 
1774 /**
1775  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1776  *
1777  * @adev: amdgpu_device pointer
1778  * @bo_va: requested BO and VM object
1779  * @clear: if true clear the entries
1780  *
1781  * Fill in the page table entries for @bo_va.
1782  * Returns 0 for success, -EINVAL for failure.
1783  */
1784 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
1785 			struct amdgpu_bo_va *bo_va,
1786 			bool clear)
1787 {
1788 	struct amdgpu_bo *bo = bo_va->base.bo;
1789 	struct amdgpu_vm *vm = bo_va->base.vm;
1790 	struct amdgpu_bo_va_mapping *mapping;
1791 	dma_addr_t *pages_addr = NULL;
1792 	struct ttm_mem_reg *mem;
1793 	struct drm_mm_node *nodes;
1794 	struct dma_fence *exclusive, **last_update;
1795 	uint64_t flags;
1796 	int r;
1797 
1798 	if (clear || !bo_va->base.bo) {
1799 		mem = NULL;
1800 		nodes = NULL;
1801 		exclusive = NULL;
1802 	} else {
1803 		struct ttm_dma_tt *ttm;
1804 
1805 		mem = &bo_va->base.bo->tbo.mem;
1806 		nodes = mem->mm_node;
1807 		if (mem->mem_type == TTM_PL_TT) {
1808 			ttm = container_of(bo_va->base.bo->tbo.ttm,
1809 					   struct ttm_dma_tt, ttm);
1810 			pages_addr = ttm->dma_address;
1811 		}
1812 		exclusive = reservation_object_get_excl(bo->tbo.resv);
1813 	}
1814 
1815 	if (bo)
1816 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1817 	else
1818 		flags = 0x0;
1819 
1820 	if (clear || (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv))
1821 		last_update = &vm->last_update;
1822 	else
1823 		last_update = &bo_va->last_pt_update;
1824 
1825 	if (!clear && bo_va->base.moved) {
1826 		bo_va->base.moved = false;
1827 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1828 
1829 	} else if (bo_va->cleared != clear) {
1830 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1831 	}
1832 
1833 	list_for_each_entry(mapping, &bo_va->invalids, list) {
1834 		r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm,
1835 					       mapping, flags, nodes,
1836 					       last_update);
1837 		if (r)
1838 			return r;
1839 	}
1840 
1841 	if (vm->use_cpu_for_update) {
1842 		/* Flush HDP */
1843 		mb();
1844 		amdgpu_gart_flush_gpu_tlb(adev, 0);
1845 	}
1846 
1847 	spin_lock(&vm->status_lock);
1848 	list_del_init(&bo_va->base.vm_status);
1849 	spin_unlock(&vm->status_lock);
1850 
1851 	list_splice_init(&bo_va->invalids, &bo_va->valids);
1852 	bo_va->cleared = clear;
1853 
1854 	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1855 		list_for_each_entry(mapping, &bo_va->valids, list)
1856 			trace_amdgpu_vm_bo_mapping(mapping);
1857 	}
1858 
1859 	return 0;
1860 }
1861 
1862 /**
1863  * amdgpu_vm_update_prt_state - update the global PRT state
1864  */
1865 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1866 {
1867 	unsigned long flags;
1868 	bool enable;
1869 
1870 	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1871 	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1872 	adev->gart.gart_funcs->set_prt(adev, enable);
1873 	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1874 }
1875 
1876 /**
1877  * amdgpu_vm_prt_get - add a PRT user
1878  */
1879 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1880 {
1881 	if (!adev->gart.gart_funcs->set_prt)
1882 		return;
1883 
1884 	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1885 		amdgpu_vm_update_prt_state(adev);
1886 }
1887 
1888 /**
1889  * amdgpu_vm_prt_put - drop a PRT user
1890  */
1891 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1892 {
1893 	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1894 		amdgpu_vm_update_prt_state(adev);
1895 }
1896 
1897 /**
1898  * amdgpu_vm_prt_cb - callback for updating the PRT status
1899  */
1900 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1901 {
1902 	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1903 
1904 	amdgpu_vm_prt_put(cb->adev);
1905 	kfree(cb);
1906 }
1907 
1908 /**
1909  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1910  */
1911 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1912 				 struct dma_fence *fence)
1913 {
1914 	struct amdgpu_prt_cb *cb;
1915 
1916 	if (!adev->gart.gart_funcs->set_prt)
1917 		return;
1918 
1919 	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1920 	if (!cb) {
1921 		/* Last resort when we are OOM */
1922 		if (fence)
1923 			dma_fence_wait(fence, false);
1924 
1925 		amdgpu_vm_prt_put(adev);
1926 	} else {
1927 		cb->adev = adev;
1928 		if (!fence || dma_fence_add_callback(fence, &cb->cb,
1929 						     amdgpu_vm_prt_cb))
1930 			amdgpu_vm_prt_cb(fence, &cb->cb);
1931 	}
1932 }
1933 
1934 /**
1935  * amdgpu_vm_free_mapping - free a mapping
1936  *
1937  * @adev: amdgpu_device pointer
1938  * @vm: requested vm
1939  * @mapping: mapping to be freed
1940  * @fence: fence of the unmap operation
1941  *
1942  * Free a mapping and make sure we decrease the PRT usage count if applicable.
1943  */
1944 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1945 				   struct amdgpu_vm *vm,
1946 				   struct amdgpu_bo_va_mapping *mapping,
1947 				   struct dma_fence *fence)
1948 {
1949 	if (mapping->flags & AMDGPU_PTE_PRT)
1950 		amdgpu_vm_add_prt_cb(adev, fence);
1951 	kfree(mapping);
1952 }
1953 
1954 /**
1955  * amdgpu_vm_prt_fini - finish all prt mappings
1956  *
1957  * @adev: amdgpu_device pointer
1958  * @vm: requested vm
1959  *
1960  * Register a cleanup callback to disable PRT support after VM dies.
1961  */
1962 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1963 {
1964 	struct reservation_object *resv = vm->root.base.bo->tbo.resv;
1965 	struct dma_fence *excl, **shared;
1966 	unsigned i, shared_count;
1967 	int r;
1968 
1969 	r = reservation_object_get_fences_rcu(resv, &excl,
1970 					      &shared_count, &shared);
1971 	if (r) {
1972 		/* Not enough memory to grab the fence list, as last resort
1973 		 * block for all the fences to complete.
1974 		 */
1975 		reservation_object_wait_timeout_rcu(resv, true, false,
1976 						    MAX_SCHEDULE_TIMEOUT);
1977 		return;
1978 	}
1979 
1980 	/* Add a callback for each fence in the reservation object */
1981 	amdgpu_vm_prt_get(adev);
1982 	amdgpu_vm_add_prt_cb(adev, excl);
1983 
1984 	for (i = 0; i < shared_count; ++i) {
1985 		amdgpu_vm_prt_get(adev);
1986 		amdgpu_vm_add_prt_cb(adev, shared[i]);
1987 	}
1988 
1989 	kfree(shared);
1990 }
1991 
1992 /**
1993  * amdgpu_vm_clear_freed - clear freed BOs in the PT
1994  *
1995  * @adev: amdgpu_device pointer
1996  * @vm: requested vm
1997  * @fence: optional resulting fence (unchanged if no work needed to be done
1998  * or if an error occurred)
1999  *
2000  * Make sure all freed BOs are cleared in the PT.
2001  * Returns 0 for success.
2002  *
2003  * PTs have to be reserved and mutex must be locked!
2004  */
2005 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
2006 			  struct amdgpu_vm *vm,
2007 			  struct dma_fence **fence)
2008 {
2009 	struct amdgpu_bo_va_mapping *mapping;
2010 	struct dma_fence *f = NULL;
2011 	int r;
2012 	uint64_t init_pte_value = 0;
2013 
2014 	while (!list_empty(&vm->freed)) {
2015 		mapping = list_first_entry(&vm->freed,
2016 			struct amdgpu_bo_va_mapping, list);
2017 		list_del(&mapping->list);
2018 
2019 		if (vm->pte_support_ats)
2020 			init_pte_value = AMDGPU_PTE_SYSTEM;
2021 
2022 		r = amdgpu_vm_bo_update_mapping(adev, NULL, NULL, vm,
2023 						mapping->start, mapping->last,
2024 						init_pte_value, 0, &f);
2025 		amdgpu_vm_free_mapping(adev, vm, mapping, f);
2026 		if (r) {
2027 			dma_fence_put(f);
2028 			return r;
2029 		}
2030 	}
2031 
2032 	if (fence && f) {
2033 		dma_fence_put(*fence);
2034 		*fence = f;
2035 	} else {
2036 		dma_fence_put(f);
2037 	}
2038 
2039 	return 0;
2040 
2041 }
2042 
2043 /**
2044  * amdgpu_vm_handle_moved - handle moved BOs in the PT
2045  *
2046  * @adev: amdgpu_device pointer
2047  * @vm: requested vm
2048  * @sync: sync object to add fences to
2049  *
2050  * Make sure all BOs which are moved are updated in the PTs.
2051  * Returns 0 for success.
2052  *
2053  * PTs have to be reserved!
2054  */
2055 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
2056 			   struct amdgpu_vm *vm)
2057 {
2058 	bool clear;
2059 	int r = 0;
2060 
2061 	spin_lock(&vm->status_lock);
2062 	while (!list_empty(&vm->moved)) {
2063 		struct amdgpu_bo_va *bo_va;
2064 
2065 		bo_va = list_first_entry(&vm->moved,
2066 			struct amdgpu_bo_va, base.vm_status);
2067 		spin_unlock(&vm->status_lock);
2068 
2069 		/* Per VM BOs never need to bo cleared in the page tables */
2070 		clear = bo_va->base.bo->tbo.resv != vm->root.base.bo->tbo.resv;
2071 
2072 		r = amdgpu_vm_bo_update(adev, bo_va, clear);
2073 		if (r)
2074 			return r;
2075 
2076 		spin_lock(&vm->status_lock);
2077 	}
2078 	spin_unlock(&vm->status_lock);
2079 
2080 	return r;
2081 }
2082 
2083 /**
2084  * amdgpu_vm_bo_add - add a bo to a specific vm
2085  *
2086  * @adev: amdgpu_device pointer
2087  * @vm: requested vm
2088  * @bo: amdgpu buffer object
2089  *
2090  * Add @bo into the requested vm.
2091  * Add @bo to the list of bos associated with the vm
2092  * Returns newly added bo_va or NULL for failure
2093  *
2094  * Object has to be reserved!
2095  */
2096 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2097 				      struct amdgpu_vm *vm,
2098 				      struct amdgpu_bo *bo)
2099 {
2100 	struct amdgpu_bo_va *bo_va;
2101 
2102 	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2103 	if (bo_va == NULL) {
2104 		return NULL;
2105 	}
2106 	bo_va->base.vm = vm;
2107 	bo_va->base.bo = bo;
2108 	INIT_LIST_HEAD(&bo_va->base.bo_list);
2109 	INIT_LIST_HEAD(&bo_va->base.vm_status);
2110 
2111 	bo_va->ref_count = 1;
2112 	INIT_LIST_HEAD(&bo_va->valids);
2113 	INIT_LIST_HEAD(&bo_va->invalids);
2114 
2115 	if (bo)
2116 		list_add_tail(&bo_va->base.bo_list, &bo->va);
2117 
2118 	return bo_va;
2119 }
2120 
2121 
2122 /**
2123  * amdgpu_vm_bo_insert_mapping - insert a new mapping
2124  *
2125  * @adev: amdgpu_device pointer
2126  * @bo_va: bo_va to store the address
2127  * @mapping: the mapping to insert
2128  *
2129  * Insert a new mapping into all structures.
2130  */
2131 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2132 				    struct amdgpu_bo_va *bo_va,
2133 				    struct amdgpu_bo_va_mapping *mapping)
2134 {
2135 	struct amdgpu_vm *vm = bo_va->base.vm;
2136 	struct amdgpu_bo *bo = bo_va->base.bo;
2137 
2138 	mapping->bo_va = bo_va;
2139 	list_add(&mapping->list, &bo_va->invalids);
2140 	amdgpu_vm_it_insert(mapping, &vm->va);
2141 
2142 	if (mapping->flags & AMDGPU_PTE_PRT)
2143 		amdgpu_vm_prt_get(adev);
2144 
2145 	if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv) {
2146 		spin_lock(&vm->status_lock);
2147 		if (list_empty(&bo_va->base.vm_status))
2148 			list_add(&bo_va->base.vm_status, &vm->moved);
2149 		spin_unlock(&vm->status_lock);
2150 	}
2151 	trace_amdgpu_vm_bo_map(bo_va, mapping);
2152 }
2153 
2154 /**
2155  * amdgpu_vm_bo_map - map bo inside a vm
2156  *
2157  * @adev: amdgpu_device pointer
2158  * @bo_va: bo_va to store the address
2159  * @saddr: where to map the BO
2160  * @offset: requested offset in the BO
2161  * @flags: attributes of pages (read/write/valid/etc.)
2162  *
2163  * Add a mapping of the BO at the specefied addr into the VM.
2164  * Returns 0 for success, error for failure.
2165  *
2166  * Object has to be reserved and unreserved outside!
2167  */
2168 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2169 		     struct amdgpu_bo_va *bo_va,
2170 		     uint64_t saddr, uint64_t offset,
2171 		     uint64_t size, uint64_t flags)
2172 {
2173 	struct amdgpu_bo_va_mapping *mapping, *tmp;
2174 	struct amdgpu_bo *bo = bo_va->base.bo;
2175 	struct amdgpu_vm *vm = bo_va->base.vm;
2176 	uint64_t eaddr;
2177 
2178 	/* validate the parameters */
2179 	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2180 	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2181 		return -EINVAL;
2182 
2183 	/* make sure object fit at this offset */
2184 	eaddr = saddr + size - 1;
2185 	if (saddr >= eaddr ||
2186 	    (bo && offset + size > amdgpu_bo_size(bo)))
2187 		return -EINVAL;
2188 
2189 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2190 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2191 
2192 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2193 	if (tmp) {
2194 		/* bo and tmp overlap, invalid addr */
2195 		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2196 			"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2197 			tmp->start, tmp->last + 1);
2198 		return -EINVAL;
2199 	}
2200 
2201 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2202 	if (!mapping)
2203 		return -ENOMEM;
2204 
2205 	mapping->start = saddr;
2206 	mapping->last = eaddr;
2207 	mapping->offset = offset;
2208 	mapping->flags = flags;
2209 
2210 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2211 
2212 	return 0;
2213 }
2214 
2215 /**
2216  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2217  *
2218  * @adev: amdgpu_device pointer
2219  * @bo_va: bo_va to store the address
2220  * @saddr: where to map the BO
2221  * @offset: requested offset in the BO
2222  * @flags: attributes of pages (read/write/valid/etc.)
2223  *
2224  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2225  * mappings as we do so.
2226  * Returns 0 for success, error for failure.
2227  *
2228  * Object has to be reserved and unreserved outside!
2229  */
2230 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2231 			     struct amdgpu_bo_va *bo_va,
2232 			     uint64_t saddr, uint64_t offset,
2233 			     uint64_t size, uint64_t flags)
2234 {
2235 	struct amdgpu_bo_va_mapping *mapping;
2236 	struct amdgpu_bo *bo = bo_va->base.bo;
2237 	uint64_t eaddr;
2238 	int r;
2239 
2240 	/* validate the parameters */
2241 	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2242 	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2243 		return -EINVAL;
2244 
2245 	/* make sure object fit at this offset */
2246 	eaddr = saddr + size - 1;
2247 	if (saddr >= eaddr ||
2248 	    (bo && offset + size > amdgpu_bo_size(bo)))
2249 		return -EINVAL;
2250 
2251 	/* Allocate all the needed memory */
2252 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2253 	if (!mapping)
2254 		return -ENOMEM;
2255 
2256 	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2257 	if (r) {
2258 		kfree(mapping);
2259 		return r;
2260 	}
2261 
2262 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2263 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2264 
2265 	mapping->start = saddr;
2266 	mapping->last = eaddr;
2267 	mapping->offset = offset;
2268 	mapping->flags = flags;
2269 
2270 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2271 
2272 	return 0;
2273 }
2274 
2275 /**
2276  * amdgpu_vm_bo_unmap - remove bo mapping from vm
2277  *
2278  * @adev: amdgpu_device pointer
2279  * @bo_va: bo_va to remove the address from
2280  * @saddr: where to the BO is mapped
2281  *
2282  * Remove a mapping of the BO at the specefied addr from the VM.
2283  * Returns 0 for success, error for failure.
2284  *
2285  * Object has to be reserved and unreserved outside!
2286  */
2287 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2288 		       struct amdgpu_bo_va *bo_va,
2289 		       uint64_t saddr)
2290 {
2291 	struct amdgpu_bo_va_mapping *mapping;
2292 	struct amdgpu_vm *vm = bo_va->base.vm;
2293 	bool valid = true;
2294 
2295 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2296 
2297 	list_for_each_entry(mapping, &bo_va->valids, list) {
2298 		if (mapping->start == saddr)
2299 			break;
2300 	}
2301 
2302 	if (&mapping->list == &bo_va->valids) {
2303 		valid = false;
2304 
2305 		list_for_each_entry(mapping, &bo_va->invalids, list) {
2306 			if (mapping->start == saddr)
2307 				break;
2308 		}
2309 
2310 		if (&mapping->list == &bo_va->invalids)
2311 			return -ENOENT;
2312 	}
2313 
2314 	list_del(&mapping->list);
2315 	amdgpu_vm_it_remove(mapping, &vm->va);
2316 	mapping->bo_va = NULL;
2317 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2318 
2319 	if (valid)
2320 		list_add(&mapping->list, &vm->freed);
2321 	else
2322 		amdgpu_vm_free_mapping(adev, vm, mapping,
2323 				       bo_va->last_pt_update);
2324 
2325 	return 0;
2326 }
2327 
2328 /**
2329  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2330  *
2331  * @adev: amdgpu_device pointer
2332  * @vm: VM structure to use
2333  * @saddr: start of the range
2334  * @size: size of the range
2335  *
2336  * Remove all mappings in a range, split them as appropriate.
2337  * Returns 0 for success, error for failure.
2338  */
2339 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2340 				struct amdgpu_vm *vm,
2341 				uint64_t saddr, uint64_t size)
2342 {
2343 	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2344 	LIST_HEAD(removed);
2345 	uint64_t eaddr;
2346 
2347 	eaddr = saddr + size - 1;
2348 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2349 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2350 
2351 	/* Allocate all the needed memory */
2352 	before = kzalloc(sizeof(*before), GFP_KERNEL);
2353 	if (!before)
2354 		return -ENOMEM;
2355 	INIT_LIST_HEAD(&before->list);
2356 
2357 	after = kzalloc(sizeof(*after), GFP_KERNEL);
2358 	if (!after) {
2359 		kfree(before);
2360 		return -ENOMEM;
2361 	}
2362 	INIT_LIST_HEAD(&after->list);
2363 
2364 	/* Now gather all removed mappings */
2365 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2366 	while (tmp) {
2367 		/* Remember mapping split at the start */
2368 		if (tmp->start < saddr) {
2369 			before->start = tmp->start;
2370 			before->last = saddr - 1;
2371 			before->offset = tmp->offset;
2372 			before->flags = tmp->flags;
2373 			list_add(&before->list, &tmp->list);
2374 		}
2375 
2376 		/* Remember mapping split at the end */
2377 		if (tmp->last > eaddr) {
2378 			after->start = eaddr + 1;
2379 			after->last = tmp->last;
2380 			after->offset = tmp->offset;
2381 			after->offset += after->start - tmp->start;
2382 			after->flags = tmp->flags;
2383 			list_add(&after->list, &tmp->list);
2384 		}
2385 
2386 		list_del(&tmp->list);
2387 		list_add(&tmp->list, &removed);
2388 
2389 		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2390 	}
2391 
2392 	/* And free them up */
2393 	list_for_each_entry_safe(tmp, next, &removed, list) {
2394 		amdgpu_vm_it_remove(tmp, &vm->va);
2395 		list_del(&tmp->list);
2396 
2397 		if (tmp->start < saddr)
2398 		    tmp->start = saddr;
2399 		if (tmp->last > eaddr)
2400 		    tmp->last = eaddr;
2401 
2402 		tmp->bo_va = NULL;
2403 		list_add(&tmp->list, &vm->freed);
2404 		trace_amdgpu_vm_bo_unmap(NULL, tmp);
2405 	}
2406 
2407 	/* Insert partial mapping before the range */
2408 	if (!list_empty(&before->list)) {
2409 		amdgpu_vm_it_insert(before, &vm->va);
2410 		if (before->flags & AMDGPU_PTE_PRT)
2411 			amdgpu_vm_prt_get(adev);
2412 	} else {
2413 		kfree(before);
2414 	}
2415 
2416 	/* Insert partial mapping after the range */
2417 	if (!list_empty(&after->list)) {
2418 		amdgpu_vm_it_insert(after, &vm->va);
2419 		if (after->flags & AMDGPU_PTE_PRT)
2420 			amdgpu_vm_prt_get(adev);
2421 	} else {
2422 		kfree(after);
2423 	}
2424 
2425 	return 0;
2426 }
2427 
2428 /**
2429  * amdgpu_vm_bo_lookup_mapping - find mapping by address
2430  *
2431  * @vm: the requested VM
2432  *
2433  * Find a mapping by it's address.
2434  */
2435 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2436 							 uint64_t addr)
2437 {
2438 	return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2439 }
2440 
2441 /**
2442  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2443  *
2444  * @adev: amdgpu_device pointer
2445  * @bo_va: requested bo_va
2446  *
2447  * Remove @bo_va->bo from the requested vm.
2448  *
2449  * Object have to be reserved!
2450  */
2451 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2452 		      struct amdgpu_bo_va *bo_va)
2453 {
2454 	struct amdgpu_bo_va_mapping *mapping, *next;
2455 	struct amdgpu_vm *vm = bo_va->base.vm;
2456 
2457 	list_del(&bo_va->base.bo_list);
2458 
2459 	spin_lock(&vm->status_lock);
2460 	list_del(&bo_va->base.vm_status);
2461 	spin_unlock(&vm->status_lock);
2462 
2463 	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2464 		list_del(&mapping->list);
2465 		amdgpu_vm_it_remove(mapping, &vm->va);
2466 		mapping->bo_va = NULL;
2467 		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2468 		list_add(&mapping->list, &vm->freed);
2469 	}
2470 	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2471 		list_del(&mapping->list);
2472 		amdgpu_vm_it_remove(mapping, &vm->va);
2473 		amdgpu_vm_free_mapping(adev, vm, mapping,
2474 				       bo_va->last_pt_update);
2475 	}
2476 
2477 	dma_fence_put(bo_va->last_pt_update);
2478 	kfree(bo_va);
2479 }
2480 
2481 /**
2482  * amdgpu_vm_bo_invalidate - mark the bo as invalid
2483  *
2484  * @adev: amdgpu_device pointer
2485  * @vm: requested vm
2486  * @bo: amdgpu buffer object
2487  *
2488  * Mark @bo as invalid.
2489  */
2490 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2491 			     struct amdgpu_bo *bo, bool evicted)
2492 {
2493 	struct amdgpu_vm_bo_base *bo_base;
2494 
2495 	list_for_each_entry(bo_base, &bo->va, bo_list) {
2496 		struct amdgpu_vm *vm = bo_base->vm;
2497 
2498 		bo_base->moved = true;
2499 		if (evicted && bo->tbo.resv == vm->root.base.bo->tbo.resv) {
2500 			spin_lock(&bo_base->vm->status_lock);
2501 			if (bo->tbo.type == ttm_bo_type_kernel)
2502 				list_move(&bo_base->vm_status, &vm->evicted);
2503 			else
2504 				list_move_tail(&bo_base->vm_status,
2505 					       &vm->evicted);
2506 			spin_unlock(&bo_base->vm->status_lock);
2507 			continue;
2508 		}
2509 
2510 		if (bo->tbo.type == ttm_bo_type_kernel) {
2511 			spin_lock(&bo_base->vm->status_lock);
2512 			if (list_empty(&bo_base->vm_status))
2513 				list_add(&bo_base->vm_status, &vm->relocated);
2514 			spin_unlock(&bo_base->vm->status_lock);
2515 			continue;
2516 		}
2517 
2518 		spin_lock(&bo_base->vm->status_lock);
2519 		if (list_empty(&bo_base->vm_status))
2520 			list_add(&bo_base->vm_status, &vm->moved);
2521 		spin_unlock(&bo_base->vm->status_lock);
2522 	}
2523 }
2524 
2525 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2526 {
2527 	/* Total bits covered by PD + PTs */
2528 	unsigned bits = ilog2(vm_size) + 18;
2529 
2530 	/* Make sure the PD is 4K in size up to 8GB address space.
2531 	   Above that split equal between PD and PTs */
2532 	if (vm_size <= 8)
2533 		return (bits - 9);
2534 	else
2535 		return ((bits + 3) / 2);
2536 }
2537 
2538 /**
2539  * amdgpu_vm_set_fragment_size - adjust fragment size in PTE
2540  *
2541  * @adev: amdgpu_device pointer
2542  * @fragment_size_default: the default fragment size if it's set auto
2543  */
2544 void amdgpu_vm_set_fragment_size(struct amdgpu_device *adev, uint32_t fragment_size_default)
2545 {
2546 	if (amdgpu_vm_fragment_size == -1)
2547 		adev->vm_manager.fragment_size = fragment_size_default;
2548 	else
2549 		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2550 }
2551 
2552 /**
2553  * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2554  *
2555  * @adev: amdgpu_device pointer
2556  * @vm_size: the default vm size if it's set auto
2557  */
2558 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint64_t vm_size, uint32_t fragment_size_default)
2559 {
2560 	/* adjust vm size firstly */
2561 	if (amdgpu_vm_size == -1)
2562 		adev->vm_manager.vm_size = vm_size;
2563 	else
2564 		adev->vm_manager.vm_size = amdgpu_vm_size;
2565 
2566 	/* block size depends on vm size */
2567 	if (amdgpu_vm_block_size == -1)
2568 		adev->vm_manager.block_size =
2569 			amdgpu_vm_get_block_size(adev->vm_manager.vm_size);
2570 	else
2571 		adev->vm_manager.block_size = amdgpu_vm_block_size;
2572 
2573 	amdgpu_vm_set_fragment_size(adev, fragment_size_default);
2574 
2575 	DRM_INFO("vm size is %llu GB, block size is %u-bit, fragment size is %u-bit\n",
2576 		adev->vm_manager.vm_size, adev->vm_manager.block_size,
2577 		adev->vm_manager.fragment_size);
2578 }
2579 
2580 /**
2581  * amdgpu_vm_init - initialize a vm instance
2582  *
2583  * @adev: amdgpu_device pointer
2584  * @vm: requested vm
2585  * @vm_context: Indicates if it GFX or Compute context
2586  *
2587  * Init @vm fields.
2588  */
2589 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2590 		   int vm_context, unsigned int pasid)
2591 {
2592 	const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
2593 		AMDGPU_VM_PTE_COUNT(adev) * 8);
2594 	unsigned ring_instance;
2595 	struct amdgpu_ring *ring;
2596 	struct amd_sched_rq *rq;
2597 	int r, i;
2598 	u64 flags;
2599 	uint64_t init_pde_value = 0;
2600 
2601 	vm->va = RB_ROOT;
2602 	vm->client_id = atomic64_inc_return(&adev->vm_manager.client_counter);
2603 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2604 		vm->reserved_vmid[i] = NULL;
2605 	spin_lock_init(&vm->status_lock);
2606 	INIT_LIST_HEAD(&vm->evicted);
2607 	INIT_LIST_HEAD(&vm->relocated);
2608 	INIT_LIST_HEAD(&vm->moved);
2609 	INIT_LIST_HEAD(&vm->freed);
2610 
2611 	/* create scheduler entity for page table updates */
2612 
2613 	ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring);
2614 	ring_instance %= adev->vm_manager.vm_pte_num_rings;
2615 	ring = adev->vm_manager.vm_pte_rings[ring_instance];
2616 	rq = &ring->sched.sched_rq[AMD_SCHED_PRIORITY_KERNEL];
2617 	r = amd_sched_entity_init(&ring->sched, &vm->entity,
2618 				  rq, amdgpu_sched_jobs);
2619 	if (r)
2620 		return r;
2621 
2622 	vm->pte_support_ats = false;
2623 
2624 	if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) {
2625 		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2626 						AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2627 
2628 		if (adev->asic_type == CHIP_RAVEN) {
2629 			vm->pte_support_ats = true;
2630 			init_pde_value = AMDGPU_PTE_SYSTEM | AMDGPU_PDE_PTE;
2631 		}
2632 	} else
2633 		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2634 						AMDGPU_VM_USE_CPU_FOR_GFX);
2635 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2636 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2637 	WARN_ONCE((vm->use_cpu_for_update & !amdgpu_vm_is_large_bar(adev)),
2638 		  "CPU update of VM recommended only for large BAR system\n");
2639 	vm->last_update = NULL;
2640 
2641 	flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
2642 			AMDGPU_GEM_CREATE_VRAM_CLEARED;
2643 	if (vm->use_cpu_for_update)
2644 		flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
2645 	else
2646 		flags |= (AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
2647 				AMDGPU_GEM_CREATE_SHADOW);
2648 
2649 	r = amdgpu_bo_create(adev, amdgpu_vm_bo_size(adev, 0), align, true,
2650 			     AMDGPU_GEM_DOMAIN_VRAM,
2651 			     flags,
2652 			     NULL, NULL, init_pde_value, &vm->root.base.bo);
2653 	if (r)
2654 		goto error_free_sched_entity;
2655 
2656 	vm->root.base.vm = vm;
2657 	list_add_tail(&vm->root.base.bo_list, &vm->root.base.bo->va);
2658 	INIT_LIST_HEAD(&vm->root.base.vm_status);
2659 
2660 	if (vm->use_cpu_for_update) {
2661 		r = amdgpu_bo_reserve(vm->root.base.bo, false);
2662 		if (r)
2663 			goto error_free_root;
2664 
2665 		r = amdgpu_bo_kmap(vm->root.base.bo, NULL);
2666 		amdgpu_bo_unreserve(vm->root.base.bo);
2667 		if (r)
2668 			goto error_free_root;
2669 	}
2670 
2671 	if (pasid) {
2672 		unsigned long flags;
2673 
2674 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2675 		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2676 			      GFP_ATOMIC);
2677 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2678 		if (r < 0)
2679 			goto error_free_root;
2680 
2681 		vm->pasid = pasid;
2682 	}
2683 
2684 	INIT_KFIFO(vm->faults);
2685 
2686 	return 0;
2687 
2688 error_free_root:
2689 	amdgpu_bo_unref(&vm->root.base.bo->shadow);
2690 	amdgpu_bo_unref(&vm->root.base.bo);
2691 	vm->root.base.bo = NULL;
2692 
2693 error_free_sched_entity:
2694 	amd_sched_entity_fini(&ring->sched, &vm->entity);
2695 
2696 	return r;
2697 }
2698 
2699 /**
2700  * amdgpu_vm_free_levels - free PD/PT levels
2701  *
2702  * @level: PD/PT starting level to free
2703  *
2704  * Free the page directory or page table level and all sub levels.
2705  */
2706 static void amdgpu_vm_free_levels(struct amdgpu_vm_pt *level)
2707 {
2708 	unsigned i;
2709 
2710 	if (level->base.bo) {
2711 		list_del(&level->base.bo_list);
2712 		list_del(&level->base.vm_status);
2713 		amdgpu_bo_unref(&level->base.bo->shadow);
2714 		amdgpu_bo_unref(&level->base.bo);
2715 	}
2716 
2717 	if (level->entries)
2718 		for (i = 0; i <= level->last_entry_used; i++)
2719 			amdgpu_vm_free_levels(&level->entries[i]);
2720 
2721 	kvfree(level->entries);
2722 }
2723 
2724 /**
2725  * amdgpu_vm_fini - tear down a vm instance
2726  *
2727  * @adev: amdgpu_device pointer
2728  * @vm: requested vm
2729  *
2730  * Tear down @vm.
2731  * Unbind the VM and remove all bos from the vm bo list
2732  */
2733 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2734 {
2735 	struct amdgpu_bo_va_mapping *mapping, *tmp;
2736 	bool prt_fini_needed = !!adev->gart.gart_funcs->set_prt;
2737 	u64 fault;
2738 	int i;
2739 
2740 	/* Clear pending page faults from IH when the VM is destroyed */
2741 	while (kfifo_get(&vm->faults, &fault))
2742 		amdgpu_ih_clear_fault(adev, fault);
2743 
2744 	if (vm->pasid) {
2745 		unsigned long flags;
2746 
2747 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2748 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
2749 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2750 	}
2751 
2752 	amd_sched_entity_fini(vm->entity.sched, &vm->entity);
2753 
2754 	if (!RB_EMPTY_ROOT(&vm->va)) {
2755 		dev_err(adev->dev, "still active bo inside vm\n");
2756 	}
2757 	rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, rb) {
2758 		list_del(&mapping->list);
2759 		amdgpu_vm_it_remove(mapping, &vm->va);
2760 		kfree(mapping);
2761 	}
2762 	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
2763 		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
2764 			amdgpu_vm_prt_fini(adev, vm);
2765 			prt_fini_needed = false;
2766 		}
2767 
2768 		list_del(&mapping->list);
2769 		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
2770 	}
2771 
2772 	amdgpu_vm_free_levels(&vm->root);
2773 	dma_fence_put(vm->last_update);
2774 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2775 		amdgpu_vm_free_reserved_vmid(adev, vm, i);
2776 }
2777 
2778 /**
2779  * amdgpu_vm_manager_init - init the VM manager
2780  *
2781  * @adev: amdgpu_device pointer
2782  *
2783  * Initialize the VM manager structures
2784  */
2785 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
2786 {
2787 	unsigned i, j;
2788 
2789 	for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
2790 		struct amdgpu_vm_id_manager *id_mgr =
2791 			&adev->vm_manager.id_mgr[i];
2792 
2793 		mutex_init(&id_mgr->lock);
2794 		INIT_LIST_HEAD(&id_mgr->ids_lru);
2795 		atomic_set(&id_mgr->reserved_vmid_num, 0);
2796 
2797 		/* skip over VMID 0, since it is the system VM */
2798 		for (j = 1; j < id_mgr->num_ids; ++j) {
2799 			amdgpu_vm_reset_id(adev, i, j);
2800 			amdgpu_sync_create(&id_mgr->ids[i].active);
2801 			list_add_tail(&id_mgr->ids[j].list, &id_mgr->ids_lru);
2802 		}
2803 	}
2804 
2805 	adev->vm_manager.fence_context =
2806 		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
2807 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
2808 		adev->vm_manager.seqno[i] = 0;
2809 
2810 	atomic_set(&adev->vm_manager.vm_pte_next_ring, 0);
2811 	atomic64_set(&adev->vm_manager.client_counter, 0);
2812 	spin_lock_init(&adev->vm_manager.prt_lock);
2813 	atomic_set(&adev->vm_manager.num_prt_users, 0);
2814 
2815 	/* If not overridden by the user, by default, only in large BAR systems
2816 	 * Compute VM tables will be updated by CPU
2817 	 */
2818 #ifdef CONFIG_X86_64
2819 	if (amdgpu_vm_update_mode == -1) {
2820 		if (amdgpu_vm_is_large_bar(adev))
2821 			adev->vm_manager.vm_update_mode =
2822 				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
2823 		else
2824 			adev->vm_manager.vm_update_mode = 0;
2825 	} else
2826 		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
2827 #else
2828 	adev->vm_manager.vm_update_mode = 0;
2829 #endif
2830 
2831 	idr_init(&adev->vm_manager.pasid_idr);
2832 	spin_lock_init(&adev->vm_manager.pasid_lock);
2833 }
2834 
2835 /**
2836  * amdgpu_vm_manager_fini - cleanup VM manager
2837  *
2838  * @adev: amdgpu_device pointer
2839  *
2840  * Cleanup the VM manager and free resources.
2841  */
2842 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
2843 {
2844 	unsigned i, j;
2845 
2846 	WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
2847 	idr_destroy(&adev->vm_manager.pasid_idr);
2848 
2849 	for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
2850 		struct amdgpu_vm_id_manager *id_mgr =
2851 			&adev->vm_manager.id_mgr[i];
2852 
2853 		mutex_destroy(&id_mgr->lock);
2854 		for (j = 0; j < AMDGPU_NUM_VM; ++j) {
2855 			struct amdgpu_vm_id *id = &id_mgr->ids[j];
2856 
2857 			amdgpu_sync_free(&id->active);
2858 			dma_fence_put(id->flushed_updates);
2859 			dma_fence_put(id->last_flush);
2860 		}
2861 	}
2862 }
2863 
2864 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
2865 {
2866 	union drm_amdgpu_vm *args = data;
2867 	struct amdgpu_device *adev = dev->dev_private;
2868 	struct amdgpu_fpriv *fpriv = filp->driver_priv;
2869 	int r;
2870 
2871 	switch (args->in.op) {
2872 	case AMDGPU_VM_OP_RESERVE_VMID:
2873 		/* current, we only have requirement to reserve vmid from gfxhub */
2874 		r = amdgpu_vm_alloc_reserved_vmid(adev, &fpriv->vm,
2875 						  AMDGPU_GFXHUB);
2876 		if (r)
2877 			return r;
2878 		break;
2879 	case AMDGPU_VM_OP_UNRESERVE_VMID:
2880 		amdgpu_vm_free_reserved_vmid(adev, &fpriv->vm, AMDGPU_GFXHUB);
2881 		break;
2882 	default:
2883 		return -EINVAL;
2884 	}
2885 
2886 	return 0;
2887 }
2888