1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <linux/dma-fence-array.h> 29 #include <linux/interval_tree_generic.h> 30 #include <linux/idr.h> 31 #include <linux/dma-buf.h> 32 33 #include <drm/amdgpu_drm.h> 34 #include "amdgpu.h" 35 #include "amdgpu_trace.h" 36 #include "amdgpu_amdkfd.h" 37 #include "amdgpu_gmc.h" 38 #include "amdgpu_xgmi.h" 39 #include "amdgpu_dma_buf.h" 40 41 /** 42 * DOC: GPUVM 43 * 44 * GPUVM is similar to the legacy gart on older asics, however 45 * rather than there being a single global gart table 46 * for the entire GPU, there are multiple VM page tables active 47 * at any given time. The VM page tables can contain a mix 48 * vram pages and system memory pages and system memory pages 49 * can be mapped as snooped (cached system pages) or unsnooped 50 * (uncached system pages). 51 * Each VM has an ID associated with it and there is a page table 52 * associated with each VMID. When execting a command buffer, 53 * the kernel tells the the ring what VMID to use for that command 54 * buffer. VMIDs are allocated dynamically as commands are submitted. 55 * The userspace drivers maintain their own address space and the kernel 56 * sets up their pages tables accordingly when they submit their 57 * command buffers and a VMID is assigned. 58 * Cayman/Trinity support up to 8 active VMs at any given time; 59 * SI supports 16. 60 */ 61 62 #define START(node) ((node)->start) 63 #define LAST(node) ((node)->last) 64 65 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 66 START, LAST, static, amdgpu_vm_it) 67 68 #undef START 69 #undef LAST 70 71 /** 72 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 73 */ 74 struct amdgpu_prt_cb { 75 76 /** 77 * @adev: amdgpu device 78 */ 79 struct amdgpu_device *adev; 80 81 /** 82 * @cb: callback 83 */ 84 struct dma_fence_cb cb; 85 }; 86 87 /* 88 * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS 89 * happens while holding this lock anywhere to prevent deadlocks when 90 * an MMU notifier runs in reclaim-FS context. 91 */ 92 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm) 93 { 94 mutex_lock(&vm->eviction_lock); 95 vm->saved_flags = memalloc_nofs_save(); 96 } 97 98 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm) 99 { 100 if (mutex_trylock(&vm->eviction_lock)) { 101 vm->saved_flags = memalloc_nofs_save(); 102 return 1; 103 } 104 return 0; 105 } 106 107 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm) 108 { 109 memalloc_nofs_restore(vm->saved_flags); 110 mutex_unlock(&vm->eviction_lock); 111 } 112 113 /** 114 * amdgpu_vm_level_shift - return the addr shift for each level 115 * 116 * @adev: amdgpu_device pointer 117 * @level: VMPT level 118 * 119 * Returns: 120 * The number of bits the pfn needs to be right shifted for a level. 121 */ 122 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev, 123 unsigned level) 124 { 125 switch (level) { 126 case AMDGPU_VM_PDB2: 127 case AMDGPU_VM_PDB1: 128 case AMDGPU_VM_PDB0: 129 return 9 * (AMDGPU_VM_PDB0 - level) + 130 adev->vm_manager.block_size; 131 case AMDGPU_VM_PTB: 132 return 0; 133 default: 134 return ~0; 135 } 136 } 137 138 /** 139 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 140 * 141 * @adev: amdgpu_device pointer 142 * @level: VMPT level 143 * 144 * Returns: 145 * The number of entries in a page directory or page table. 146 */ 147 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 148 unsigned level) 149 { 150 unsigned shift = amdgpu_vm_level_shift(adev, 151 adev->vm_manager.root_level); 152 153 if (level == adev->vm_manager.root_level) 154 /* For the root directory */ 155 return round_up(adev->vm_manager.max_pfn, 1ULL << shift) 156 >> shift; 157 else if (level != AMDGPU_VM_PTB) 158 /* Everything in between */ 159 return 512; 160 else 161 /* For the page tables on the leaves */ 162 return AMDGPU_VM_PTE_COUNT(adev); 163 } 164 165 /** 166 * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD 167 * 168 * @adev: amdgpu_device pointer 169 * 170 * Returns: 171 * The number of entries in the root page directory which needs the ATS setting. 172 */ 173 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev) 174 { 175 unsigned shift; 176 177 shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level); 178 return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT); 179 } 180 181 /** 182 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT 183 * 184 * @adev: amdgpu_device pointer 185 * @level: VMPT level 186 * 187 * Returns: 188 * The mask to extract the entry number of a PD/PT from an address. 189 */ 190 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev, 191 unsigned int level) 192 { 193 if (level <= adev->vm_manager.root_level) 194 return 0xffffffff; 195 else if (level != AMDGPU_VM_PTB) 196 return 0x1ff; 197 else 198 return AMDGPU_VM_PTE_COUNT(adev) - 1; 199 } 200 201 /** 202 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 203 * 204 * @adev: amdgpu_device pointer 205 * @level: VMPT level 206 * 207 * Returns: 208 * The size of the BO for a page directory or page table in bytes. 209 */ 210 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 211 { 212 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 213 } 214 215 /** 216 * amdgpu_vm_bo_evicted - vm_bo is evicted 217 * 218 * @vm_bo: vm_bo which is evicted 219 * 220 * State for PDs/PTs and per VM BOs which are not at the location they should 221 * be. 222 */ 223 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 224 { 225 struct amdgpu_vm *vm = vm_bo->vm; 226 struct amdgpu_bo *bo = vm_bo->bo; 227 228 vm_bo->moved = true; 229 if (bo->tbo.type == ttm_bo_type_kernel) 230 list_move(&vm_bo->vm_status, &vm->evicted); 231 else 232 list_move_tail(&vm_bo->vm_status, &vm->evicted); 233 } 234 /** 235 * amdgpu_vm_bo_moved - vm_bo is moved 236 * 237 * @vm_bo: vm_bo which is moved 238 * 239 * State for per VM BOs which are moved, but that change is not yet reflected 240 * in the page tables. 241 */ 242 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 243 { 244 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 245 } 246 247 /** 248 * amdgpu_vm_bo_idle - vm_bo is idle 249 * 250 * @vm_bo: vm_bo which is now idle 251 * 252 * State for PDs/PTs and per VM BOs which have gone through the state machine 253 * and are now idle. 254 */ 255 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 256 { 257 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 258 vm_bo->moved = false; 259 } 260 261 /** 262 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 263 * 264 * @vm_bo: vm_bo which is now invalidated 265 * 266 * State for normal BOs which are invalidated and that change not yet reflected 267 * in the PTs. 268 */ 269 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 270 { 271 spin_lock(&vm_bo->vm->invalidated_lock); 272 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 273 spin_unlock(&vm_bo->vm->invalidated_lock); 274 } 275 276 /** 277 * amdgpu_vm_bo_relocated - vm_bo is reloacted 278 * 279 * @vm_bo: vm_bo which is relocated 280 * 281 * State for PDs/PTs which needs to update their parent PD. 282 * For the root PD, just move to idle state. 283 */ 284 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 285 { 286 if (vm_bo->bo->parent) 287 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 288 else 289 amdgpu_vm_bo_idle(vm_bo); 290 } 291 292 /** 293 * amdgpu_vm_bo_done - vm_bo is done 294 * 295 * @vm_bo: vm_bo which is now done 296 * 297 * State for normal BOs which are invalidated and that change has been updated 298 * in the PTs. 299 */ 300 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 301 { 302 spin_lock(&vm_bo->vm->invalidated_lock); 303 list_move(&vm_bo->vm_status, &vm_bo->vm->done); 304 spin_unlock(&vm_bo->vm->invalidated_lock); 305 } 306 307 /** 308 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 309 * 310 * @base: base structure for tracking BO usage in a VM 311 * @vm: vm to which bo is to be added 312 * @bo: amdgpu buffer object 313 * 314 * Initialize a bo_va_base structure and add it to the appropriate lists 315 * 316 */ 317 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 318 struct amdgpu_vm *vm, 319 struct amdgpu_bo *bo) 320 { 321 base->vm = vm; 322 base->bo = bo; 323 base->next = NULL; 324 INIT_LIST_HEAD(&base->vm_status); 325 326 if (!bo) 327 return; 328 base->next = bo->vm_bo; 329 bo->vm_bo = base; 330 331 if (bo->tbo.base.resv != vm->root.base.bo->tbo.base.resv) 332 return; 333 334 vm->bulk_moveable = false; 335 if (bo->tbo.type == ttm_bo_type_kernel && bo->parent) 336 amdgpu_vm_bo_relocated(base); 337 else 338 amdgpu_vm_bo_idle(base); 339 340 if (bo->preferred_domains & 341 amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type)) 342 return; 343 344 /* 345 * we checked all the prerequisites, but it looks like this per vm bo 346 * is currently evicted. add the bo to the evicted list to make sure it 347 * is validated on next vm use to avoid fault. 348 * */ 349 amdgpu_vm_bo_evicted(base); 350 } 351 352 /** 353 * amdgpu_vm_pt_parent - get the parent page directory 354 * 355 * @pt: child page table 356 * 357 * Helper to get the parent entry for the child page table. NULL if we are at 358 * the root page directory. 359 */ 360 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt) 361 { 362 struct amdgpu_bo *parent = pt->base.bo->parent; 363 364 if (!parent) 365 return NULL; 366 367 return container_of(parent->vm_bo, struct amdgpu_vm_pt, base); 368 } 369 370 /* 371 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt 372 */ 373 struct amdgpu_vm_pt_cursor { 374 uint64_t pfn; 375 struct amdgpu_vm_pt *parent; 376 struct amdgpu_vm_pt *entry; 377 unsigned level; 378 }; 379 380 /** 381 * amdgpu_vm_pt_start - start PD/PT walk 382 * 383 * @adev: amdgpu_device pointer 384 * @vm: amdgpu_vm structure 385 * @start: start address of the walk 386 * @cursor: state to initialize 387 * 388 * Initialize a amdgpu_vm_pt_cursor to start a walk. 389 */ 390 static void amdgpu_vm_pt_start(struct amdgpu_device *adev, 391 struct amdgpu_vm *vm, uint64_t start, 392 struct amdgpu_vm_pt_cursor *cursor) 393 { 394 cursor->pfn = start; 395 cursor->parent = NULL; 396 cursor->entry = &vm->root; 397 cursor->level = adev->vm_manager.root_level; 398 } 399 400 /** 401 * amdgpu_vm_pt_descendant - go to child node 402 * 403 * @adev: amdgpu_device pointer 404 * @cursor: current state 405 * 406 * Walk to the child node of the current node. 407 * Returns: 408 * True if the walk was possible, false otherwise. 409 */ 410 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev, 411 struct amdgpu_vm_pt_cursor *cursor) 412 { 413 unsigned mask, shift, idx; 414 415 if (!cursor->entry->entries) 416 return false; 417 418 BUG_ON(!cursor->entry->base.bo); 419 mask = amdgpu_vm_entries_mask(adev, cursor->level); 420 shift = amdgpu_vm_level_shift(adev, cursor->level); 421 422 ++cursor->level; 423 idx = (cursor->pfn >> shift) & mask; 424 cursor->parent = cursor->entry; 425 cursor->entry = &cursor->entry->entries[idx]; 426 return true; 427 } 428 429 /** 430 * amdgpu_vm_pt_sibling - go to sibling node 431 * 432 * @adev: amdgpu_device pointer 433 * @cursor: current state 434 * 435 * Walk to the sibling node of the current node. 436 * Returns: 437 * True if the walk was possible, false otherwise. 438 */ 439 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev, 440 struct amdgpu_vm_pt_cursor *cursor) 441 { 442 unsigned shift, num_entries; 443 444 /* Root doesn't have a sibling */ 445 if (!cursor->parent) 446 return false; 447 448 /* Go to our parents and see if we got a sibling */ 449 shift = amdgpu_vm_level_shift(adev, cursor->level - 1); 450 num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1); 451 452 if (cursor->entry == &cursor->parent->entries[num_entries - 1]) 453 return false; 454 455 cursor->pfn += 1ULL << shift; 456 cursor->pfn &= ~((1ULL << shift) - 1); 457 ++cursor->entry; 458 return true; 459 } 460 461 /** 462 * amdgpu_vm_pt_ancestor - go to parent node 463 * 464 * @cursor: current state 465 * 466 * Walk to the parent node of the current node. 467 * Returns: 468 * True if the walk was possible, false otherwise. 469 */ 470 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor) 471 { 472 if (!cursor->parent) 473 return false; 474 475 --cursor->level; 476 cursor->entry = cursor->parent; 477 cursor->parent = amdgpu_vm_pt_parent(cursor->parent); 478 return true; 479 } 480 481 /** 482 * amdgpu_vm_pt_next - get next PD/PT in hieratchy 483 * 484 * @adev: amdgpu_device pointer 485 * @cursor: current state 486 * 487 * Walk the PD/PT tree to the next node. 488 */ 489 static void amdgpu_vm_pt_next(struct amdgpu_device *adev, 490 struct amdgpu_vm_pt_cursor *cursor) 491 { 492 /* First try a newborn child */ 493 if (amdgpu_vm_pt_descendant(adev, cursor)) 494 return; 495 496 /* If that didn't worked try to find a sibling */ 497 while (!amdgpu_vm_pt_sibling(adev, cursor)) { 498 /* No sibling, go to our parents and grandparents */ 499 if (!amdgpu_vm_pt_ancestor(cursor)) { 500 cursor->pfn = ~0ll; 501 return; 502 } 503 } 504 } 505 506 /** 507 * amdgpu_vm_pt_first_dfs - start a deep first search 508 * 509 * @adev: amdgpu_device structure 510 * @vm: amdgpu_vm structure 511 * @start: optional cursor to start with 512 * @cursor: state to initialize 513 * 514 * Starts a deep first traversal of the PD/PT tree. 515 */ 516 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev, 517 struct amdgpu_vm *vm, 518 struct amdgpu_vm_pt_cursor *start, 519 struct amdgpu_vm_pt_cursor *cursor) 520 { 521 if (start) 522 *cursor = *start; 523 else 524 amdgpu_vm_pt_start(adev, vm, 0, cursor); 525 while (amdgpu_vm_pt_descendant(adev, cursor)); 526 } 527 528 /** 529 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue 530 * 531 * @start: starting point for the search 532 * @entry: current entry 533 * 534 * Returns: 535 * True when the search should continue, false otherwise. 536 */ 537 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start, 538 struct amdgpu_vm_pt *entry) 539 { 540 return entry && (!start || entry != start->entry); 541 } 542 543 /** 544 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search 545 * 546 * @adev: amdgpu_device structure 547 * @cursor: current state 548 * 549 * Move the cursor to the next node in a deep first search. 550 */ 551 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev, 552 struct amdgpu_vm_pt_cursor *cursor) 553 { 554 if (!cursor->entry) 555 return; 556 557 if (!cursor->parent) 558 cursor->entry = NULL; 559 else if (amdgpu_vm_pt_sibling(adev, cursor)) 560 while (amdgpu_vm_pt_descendant(adev, cursor)); 561 else 562 amdgpu_vm_pt_ancestor(cursor); 563 } 564 565 /* 566 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs 567 */ 568 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) \ 569 for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)), \ 570 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\ 571 amdgpu_vm_pt_continue_dfs((start), (entry)); \ 572 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor))) 573 574 /** 575 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 576 * 577 * @vm: vm providing the BOs 578 * @validated: head of validation list 579 * @entry: entry to add 580 * 581 * Add the page directory to the list of BOs to 582 * validate for command submission. 583 */ 584 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 585 struct list_head *validated, 586 struct amdgpu_bo_list_entry *entry) 587 { 588 entry->priority = 0; 589 entry->tv.bo = &vm->root.base.bo->tbo; 590 /* Two for VM updates, one for TTM and one for the CS job */ 591 entry->tv.num_shared = 4; 592 entry->user_pages = NULL; 593 list_add(&entry->tv.head, validated); 594 } 595 596 /** 597 * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag 598 * 599 * @bo: BO which was removed from the LRU 600 * 601 * Make sure the bulk_moveable flag is updated when a BO is removed from the 602 * LRU. 603 */ 604 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo) 605 { 606 struct amdgpu_bo *abo; 607 struct amdgpu_vm_bo_base *bo_base; 608 609 if (!amdgpu_bo_is_amdgpu_bo(bo)) 610 return; 611 612 if (bo->pin_count) 613 return; 614 615 abo = ttm_to_amdgpu_bo(bo); 616 if (!abo->parent) 617 return; 618 for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) { 619 struct amdgpu_vm *vm = bo_base->vm; 620 621 if (abo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) 622 vm->bulk_moveable = false; 623 } 624 625 } 626 /** 627 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 628 * 629 * @adev: amdgpu device pointer 630 * @vm: vm providing the BOs 631 * 632 * Move all BOs to the end of LRU and remember their positions to put them 633 * together. 634 */ 635 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 636 struct amdgpu_vm *vm) 637 { 638 struct amdgpu_vm_bo_base *bo_base; 639 640 if (vm->bulk_moveable) { 641 spin_lock(&ttm_bo_glob.lru_lock); 642 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move); 643 spin_unlock(&ttm_bo_glob.lru_lock); 644 return; 645 } 646 647 memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move)); 648 649 spin_lock(&ttm_bo_glob.lru_lock); 650 list_for_each_entry(bo_base, &vm->idle, vm_status) { 651 struct amdgpu_bo *bo = bo_base->bo; 652 653 if (!bo->parent) 654 continue; 655 656 ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move); 657 if (bo->shadow) 658 ttm_bo_move_to_lru_tail(&bo->shadow->tbo, 659 &vm->lru_bulk_move); 660 } 661 spin_unlock(&ttm_bo_glob.lru_lock); 662 663 vm->bulk_moveable = true; 664 } 665 666 /** 667 * amdgpu_vm_validate_pt_bos - validate the page table BOs 668 * 669 * @adev: amdgpu device pointer 670 * @vm: vm providing the BOs 671 * @validate: callback to do the validation 672 * @param: parameter for the validation callback 673 * 674 * Validate the page table BOs on command submission if neccessary. 675 * 676 * Returns: 677 * Validation result. 678 */ 679 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 680 int (*validate)(void *p, struct amdgpu_bo *bo), 681 void *param) 682 { 683 struct amdgpu_vm_bo_base *bo_base, *tmp; 684 int r; 685 686 vm->bulk_moveable &= list_empty(&vm->evicted); 687 688 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) { 689 struct amdgpu_bo *bo = bo_base->bo; 690 691 r = validate(param, bo); 692 if (r) 693 return r; 694 695 if (bo->tbo.type != ttm_bo_type_kernel) { 696 amdgpu_vm_bo_moved(bo_base); 697 } else { 698 vm->update_funcs->map_table(bo); 699 amdgpu_vm_bo_relocated(bo_base); 700 } 701 } 702 703 amdgpu_vm_eviction_lock(vm); 704 vm->evicting = false; 705 amdgpu_vm_eviction_unlock(vm); 706 707 return 0; 708 } 709 710 /** 711 * amdgpu_vm_ready - check VM is ready for updates 712 * 713 * @vm: VM to check 714 * 715 * Check if all VM PDs/PTs are ready for updates 716 * 717 * Returns: 718 * True if eviction list is empty. 719 */ 720 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 721 { 722 return list_empty(&vm->evicted); 723 } 724 725 /** 726 * amdgpu_vm_clear_bo - initially clear the PDs/PTs 727 * 728 * @adev: amdgpu_device pointer 729 * @vm: VM to clear BO from 730 * @bo: BO to clear 731 * @immediate: use an immediate update 732 * 733 * Root PD needs to be reserved when calling this. 734 * 735 * Returns: 736 * 0 on success, errno otherwise. 737 */ 738 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev, 739 struct amdgpu_vm *vm, 740 struct amdgpu_bo *bo, 741 bool immediate) 742 { 743 struct ttm_operation_ctx ctx = { true, false }; 744 unsigned level = adev->vm_manager.root_level; 745 struct amdgpu_vm_update_params params; 746 struct amdgpu_bo *ancestor = bo; 747 unsigned entries, ats_entries; 748 uint64_t addr; 749 int r; 750 751 /* Figure out our place in the hierarchy */ 752 if (ancestor->parent) { 753 ++level; 754 while (ancestor->parent->parent) { 755 ++level; 756 ancestor = ancestor->parent; 757 } 758 } 759 760 entries = amdgpu_bo_size(bo) / 8; 761 if (!vm->pte_support_ats) { 762 ats_entries = 0; 763 764 } else if (!bo->parent) { 765 ats_entries = amdgpu_vm_num_ats_entries(adev); 766 ats_entries = min(ats_entries, entries); 767 entries -= ats_entries; 768 769 } else { 770 struct amdgpu_vm_pt *pt; 771 772 pt = container_of(ancestor->vm_bo, struct amdgpu_vm_pt, base); 773 ats_entries = amdgpu_vm_num_ats_entries(adev); 774 if ((pt - vm->root.entries) >= ats_entries) { 775 ats_entries = 0; 776 } else { 777 ats_entries = entries; 778 entries = 0; 779 } 780 } 781 782 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 783 if (r) 784 return r; 785 786 if (bo->shadow) { 787 r = ttm_bo_validate(&bo->shadow->tbo, &bo->shadow->placement, 788 &ctx); 789 if (r) 790 return r; 791 } 792 793 r = vm->update_funcs->map_table(bo); 794 if (r) 795 return r; 796 797 memset(¶ms, 0, sizeof(params)); 798 params.adev = adev; 799 params.vm = vm; 800 params.immediate = immediate; 801 802 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); 803 if (r) 804 return r; 805 806 addr = 0; 807 if (ats_entries) { 808 uint64_t value = 0, flags; 809 810 flags = AMDGPU_PTE_DEFAULT_ATC; 811 if (level != AMDGPU_VM_PTB) { 812 /* Handle leaf PDEs as PTEs */ 813 flags |= AMDGPU_PDE_PTE; 814 amdgpu_gmc_get_vm_pde(adev, level, &value, &flags); 815 } 816 817 r = vm->update_funcs->update(¶ms, bo, addr, 0, ats_entries, 818 value, flags); 819 if (r) 820 return r; 821 822 addr += ats_entries * 8; 823 } 824 825 if (entries) { 826 uint64_t value = 0, flags = 0; 827 828 if (adev->asic_type >= CHIP_VEGA10) { 829 if (level != AMDGPU_VM_PTB) { 830 /* Handle leaf PDEs as PTEs */ 831 flags |= AMDGPU_PDE_PTE; 832 amdgpu_gmc_get_vm_pde(adev, level, 833 &value, &flags); 834 } else { 835 /* Workaround for fault priority problem on GMC9 */ 836 flags = AMDGPU_PTE_EXECUTABLE; 837 } 838 } 839 840 r = vm->update_funcs->update(¶ms, bo, addr, 0, entries, 841 value, flags); 842 if (r) 843 return r; 844 } 845 846 return vm->update_funcs->commit(¶ms, NULL); 847 } 848 849 /** 850 * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation 851 * 852 * @adev: amdgpu_device pointer 853 * @vm: requesting vm 854 * @level: the page table level 855 * @immediate: use a immediate update 856 * @bp: resulting BO allocation parameters 857 */ 858 static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm, 859 int level, bool immediate, 860 struct amdgpu_bo_param *bp) 861 { 862 memset(bp, 0, sizeof(*bp)); 863 864 bp->size = amdgpu_vm_bo_size(adev, level); 865 bp->byte_align = AMDGPU_GPU_PAGE_SIZE; 866 bp->domain = AMDGPU_GEM_DOMAIN_VRAM; 867 bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain); 868 bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 869 AMDGPU_GEM_CREATE_CPU_GTT_USWC; 870 if (vm->use_cpu_for_update) 871 bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 872 else if (!vm->root.base.bo || vm->root.base.bo->shadow) 873 bp->flags |= AMDGPU_GEM_CREATE_SHADOW; 874 bp->type = ttm_bo_type_kernel; 875 bp->no_wait_gpu = immediate; 876 if (vm->root.base.bo) 877 bp->resv = vm->root.base.bo->tbo.base.resv; 878 } 879 880 /** 881 * amdgpu_vm_alloc_pts - Allocate a specific page table 882 * 883 * @adev: amdgpu_device pointer 884 * @vm: VM to allocate page tables for 885 * @cursor: Which page table to allocate 886 * @immediate: use an immediate update 887 * 888 * Make sure a specific page table or directory is allocated. 889 * 890 * Returns: 891 * 1 if page table needed to be allocated, 0 if page table was already 892 * allocated, negative errno if an error occurred. 893 */ 894 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 895 struct amdgpu_vm *vm, 896 struct amdgpu_vm_pt_cursor *cursor, 897 bool immediate) 898 { 899 struct amdgpu_vm_pt *entry = cursor->entry; 900 struct amdgpu_bo_param bp; 901 struct amdgpu_bo *pt; 902 int r; 903 904 if (cursor->level < AMDGPU_VM_PTB && !entry->entries) { 905 unsigned num_entries; 906 907 num_entries = amdgpu_vm_num_entries(adev, cursor->level); 908 entry->entries = kvmalloc_array(num_entries, 909 sizeof(*entry->entries), 910 GFP_KERNEL | __GFP_ZERO); 911 if (!entry->entries) 912 return -ENOMEM; 913 } 914 915 if (entry->base.bo) 916 return 0; 917 918 amdgpu_vm_bo_param(adev, vm, cursor->level, immediate, &bp); 919 920 r = amdgpu_bo_create(adev, &bp, &pt); 921 if (r) 922 return r; 923 924 /* Keep a reference to the root directory to avoid 925 * freeing them up in the wrong order. 926 */ 927 pt->parent = amdgpu_bo_ref(cursor->parent->base.bo); 928 amdgpu_vm_bo_base_init(&entry->base, vm, pt); 929 930 r = amdgpu_vm_clear_bo(adev, vm, pt, immediate); 931 if (r) 932 goto error_free_pt; 933 934 return 0; 935 936 error_free_pt: 937 amdgpu_bo_unref(&pt->shadow); 938 amdgpu_bo_unref(&pt); 939 return r; 940 } 941 942 /** 943 * amdgpu_vm_free_table - fre one PD/PT 944 * 945 * @entry: PDE to free 946 */ 947 static void amdgpu_vm_free_table(struct amdgpu_vm_pt *entry) 948 { 949 if (entry->base.bo) { 950 entry->base.bo->vm_bo = NULL; 951 list_del(&entry->base.vm_status); 952 amdgpu_bo_unref(&entry->base.bo->shadow); 953 amdgpu_bo_unref(&entry->base.bo); 954 } 955 kvfree(entry->entries); 956 entry->entries = NULL; 957 } 958 959 /** 960 * amdgpu_vm_free_pts - free PD/PT levels 961 * 962 * @adev: amdgpu device structure 963 * @vm: amdgpu vm structure 964 * @start: optional cursor where to start freeing PDs/PTs 965 * 966 * Free the page directory or page table level and all sub levels. 967 */ 968 static void amdgpu_vm_free_pts(struct amdgpu_device *adev, 969 struct amdgpu_vm *vm, 970 struct amdgpu_vm_pt_cursor *start) 971 { 972 struct amdgpu_vm_pt_cursor cursor; 973 struct amdgpu_vm_pt *entry; 974 975 vm->bulk_moveable = false; 976 977 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) 978 amdgpu_vm_free_table(entry); 979 980 if (start) 981 amdgpu_vm_free_table(start->entry); 982 } 983 984 /** 985 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 986 * 987 * @adev: amdgpu_device pointer 988 */ 989 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 990 { 991 const struct amdgpu_ip_block *ip_block; 992 bool has_compute_vm_bug; 993 struct amdgpu_ring *ring; 994 int i; 995 996 has_compute_vm_bug = false; 997 998 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 999 if (ip_block) { 1000 /* Compute has a VM bug for GFX version < 7. 1001 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 1002 if (ip_block->version->major <= 7) 1003 has_compute_vm_bug = true; 1004 else if (ip_block->version->major == 8) 1005 if (adev->gfx.mec_fw_version < 673) 1006 has_compute_vm_bug = true; 1007 } 1008 1009 for (i = 0; i < adev->num_rings; i++) { 1010 ring = adev->rings[i]; 1011 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 1012 /* only compute rings */ 1013 ring->has_compute_vm_bug = has_compute_vm_bug; 1014 else 1015 ring->has_compute_vm_bug = false; 1016 } 1017 } 1018 1019 /** 1020 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 1021 * 1022 * @ring: ring on which the job will be submitted 1023 * @job: job to submit 1024 * 1025 * Returns: 1026 * True if sync is needed. 1027 */ 1028 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 1029 struct amdgpu_job *job) 1030 { 1031 struct amdgpu_device *adev = ring->adev; 1032 unsigned vmhub = ring->funcs->vmhub; 1033 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1034 struct amdgpu_vmid *id; 1035 bool gds_switch_needed; 1036 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; 1037 1038 if (job->vmid == 0) 1039 return false; 1040 id = &id_mgr->ids[job->vmid]; 1041 gds_switch_needed = ring->funcs->emit_gds_switch && ( 1042 id->gds_base != job->gds_base || 1043 id->gds_size != job->gds_size || 1044 id->gws_base != job->gws_base || 1045 id->gws_size != job->gws_size || 1046 id->oa_base != job->oa_base || 1047 id->oa_size != job->oa_size); 1048 1049 if (amdgpu_vmid_had_gpu_reset(adev, id)) 1050 return true; 1051 1052 return vm_flush_needed || gds_switch_needed; 1053 } 1054 1055 /** 1056 * amdgpu_vm_flush - hardware flush the vm 1057 * 1058 * @ring: ring to use for flush 1059 * @job: related job 1060 * @need_pipe_sync: is pipe sync needed 1061 * 1062 * Emit a VM flush when it is necessary. 1063 * 1064 * Returns: 1065 * 0 on success, errno otherwise. 1066 */ 1067 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, 1068 bool need_pipe_sync) 1069 { 1070 struct amdgpu_device *adev = ring->adev; 1071 unsigned vmhub = ring->funcs->vmhub; 1072 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1073 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 1074 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 1075 id->gds_base != job->gds_base || 1076 id->gds_size != job->gds_size || 1077 id->gws_base != job->gws_base || 1078 id->gws_size != job->gws_size || 1079 id->oa_base != job->oa_base || 1080 id->oa_size != job->oa_size); 1081 bool vm_flush_needed = job->vm_needs_flush; 1082 struct dma_fence *fence = NULL; 1083 bool pasid_mapping_needed = false; 1084 unsigned patch_offset = 0; 1085 bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL)); 1086 int r; 1087 1088 if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid) 1089 adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid); 1090 1091 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 1092 gds_switch_needed = true; 1093 vm_flush_needed = true; 1094 pasid_mapping_needed = true; 1095 } 1096 1097 mutex_lock(&id_mgr->lock); 1098 if (id->pasid != job->pasid || !id->pasid_mapping || 1099 !dma_fence_is_signaled(id->pasid_mapping)) 1100 pasid_mapping_needed = true; 1101 mutex_unlock(&id_mgr->lock); 1102 1103 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 1104 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 1105 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 1106 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 1107 ring->funcs->emit_wreg; 1108 1109 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 1110 return 0; 1111 1112 if (ring->funcs->init_cond_exec) 1113 patch_offset = amdgpu_ring_init_cond_exec(ring); 1114 1115 if (need_pipe_sync) 1116 amdgpu_ring_emit_pipeline_sync(ring); 1117 1118 if (vm_flush_needed) { 1119 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 1120 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 1121 } 1122 1123 if (pasid_mapping_needed) 1124 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 1125 1126 if (vm_flush_needed || pasid_mapping_needed) { 1127 r = amdgpu_fence_emit(ring, &fence, 0); 1128 if (r) 1129 return r; 1130 } 1131 1132 if (vm_flush_needed) { 1133 mutex_lock(&id_mgr->lock); 1134 dma_fence_put(id->last_flush); 1135 id->last_flush = dma_fence_get(fence); 1136 id->current_gpu_reset_count = 1137 atomic_read(&adev->gpu_reset_counter); 1138 mutex_unlock(&id_mgr->lock); 1139 } 1140 1141 if (pasid_mapping_needed) { 1142 mutex_lock(&id_mgr->lock); 1143 id->pasid = job->pasid; 1144 dma_fence_put(id->pasid_mapping); 1145 id->pasid_mapping = dma_fence_get(fence); 1146 mutex_unlock(&id_mgr->lock); 1147 } 1148 dma_fence_put(fence); 1149 1150 if (ring->funcs->emit_gds_switch && gds_switch_needed) { 1151 id->gds_base = job->gds_base; 1152 id->gds_size = job->gds_size; 1153 id->gws_base = job->gws_base; 1154 id->gws_size = job->gws_size; 1155 id->oa_base = job->oa_base; 1156 id->oa_size = job->oa_size; 1157 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 1158 job->gds_size, job->gws_base, 1159 job->gws_size, job->oa_base, 1160 job->oa_size); 1161 } 1162 1163 if (ring->funcs->patch_cond_exec) 1164 amdgpu_ring_patch_cond_exec(ring, patch_offset); 1165 1166 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 1167 if (ring->funcs->emit_switch_buffer) { 1168 amdgpu_ring_emit_switch_buffer(ring); 1169 amdgpu_ring_emit_switch_buffer(ring); 1170 } 1171 return 0; 1172 } 1173 1174 /** 1175 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 1176 * 1177 * @vm: requested vm 1178 * @bo: requested buffer object 1179 * 1180 * Find @bo inside the requested vm. 1181 * Search inside the @bos vm list for the requested vm 1182 * Returns the found bo_va or NULL if none is found 1183 * 1184 * Object has to be reserved! 1185 * 1186 * Returns: 1187 * Found bo_va or NULL. 1188 */ 1189 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 1190 struct amdgpu_bo *bo) 1191 { 1192 struct amdgpu_vm_bo_base *base; 1193 1194 for (base = bo->vm_bo; base; base = base->next) { 1195 if (base->vm != vm) 1196 continue; 1197 1198 return container_of(base, struct amdgpu_bo_va, base); 1199 } 1200 return NULL; 1201 } 1202 1203 /** 1204 * amdgpu_vm_map_gart - Resolve gart mapping of addr 1205 * 1206 * @pages_addr: optional DMA address to use for lookup 1207 * @addr: the unmapped addr 1208 * 1209 * Look up the physical address of the page that the pte resolves 1210 * to. 1211 * 1212 * Returns: 1213 * The pointer for the page table entry. 1214 */ 1215 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 1216 { 1217 uint64_t result; 1218 1219 /* page table offset */ 1220 result = pages_addr[addr >> PAGE_SHIFT]; 1221 1222 /* in case cpu page size != gpu page size*/ 1223 result |= addr & (~PAGE_MASK); 1224 1225 result &= 0xFFFFFFFFFFFFF000ULL; 1226 1227 return result; 1228 } 1229 1230 /** 1231 * amdgpu_vm_update_pde - update a single level in the hierarchy 1232 * 1233 * @params: parameters for the update 1234 * @vm: requested vm 1235 * @entry: entry to update 1236 * 1237 * Makes sure the requested entry in parent is up to date. 1238 */ 1239 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params, 1240 struct amdgpu_vm *vm, 1241 struct amdgpu_vm_pt *entry) 1242 { 1243 struct amdgpu_vm_pt *parent = amdgpu_vm_pt_parent(entry); 1244 struct amdgpu_bo *bo = parent->base.bo, *pbo; 1245 uint64_t pde, pt, flags; 1246 unsigned level; 1247 1248 for (level = 0, pbo = bo->parent; pbo; ++level) 1249 pbo = pbo->parent; 1250 1251 level += params->adev->vm_manager.root_level; 1252 amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags); 1253 pde = (entry - parent->entries) * 8; 1254 return vm->update_funcs->update(params, bo, pde, pt, 1, 0, flags); 1255 } 1256 1257 /** 1258 * amdgpu_vm_invalidate_pds - mark all PDs as invalid 1259 * 1260 * @adev: amdgpu_device pointer 1261 * @vm: related vm 1262 * 1263 * Mark all PD level as invalid after an error. 1264 */ 1265 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev, 1266 struct amdgpu_vm *vm) 1267 { 1268 struct amdgpu_vm_pt_cursor cursor; 1269 struct amdgpu_vm_pt *entry; 1270 1271 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry) 1272 if (entry->base.bo && !entry->base.moved) 1273 amdgpu_vm_bo_relocated(&entry->base); 1274 } 1275 1276 /** 1277 * amdgpu_vm_update_pdes - make sure that all directories are valid 1278 * 1279 * @adev: amdgpu_device pointer 1280 * @vm: requested vm 1281 * @immediate: submit immediately to the paging queue 1282 * 1283 * Makes sure all directories are up to date. 1284 * 1285 * Returns: 1286 * 0 for success, error for failure. 1287 */ 1288 int amdgpu_vm_update_pdes(struct amdgpu_device *adev, 1289 struct amdgpu_vm *vm, bool immediate) 1290 { 1291 struct amdgpu_vm_update_params params; 1292 int r; 1293 1294 if (list_empty(&vm->relocated)) 1295 return 0; 1296 1297 memset(¶ms, 0, sizeof(params)); 1298 params.adev = adev; 1299 params.vm = vm; 1300 params.immediate = immediate; 1301 1302 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); 1303 if (r) 1304 return r; 1305 1306 while (!list_empty(&vm->relocated)) { 1307 struct amdgpu_vm_pt *entry; 1308 1309 entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt, 1310 base.vm_status); 1311 amdgpu_vm_bo_idle(&entry->base); 1312 1313 r = amdgpu_vm_update_pde(¶ms, vm, entry); 1314 if (r) 1315 goto error; 1316 } 1317 1318 r = vm->update_funcs->commit(¶ms, &vm->last_update); 1319 if (r) 1320 goto error; 1321 return 0; 1322 1323 error: 1324 amdgpu_vm_invalidate_pds(adev, vm); 1325 return r; 1326 } 1327 1328 /* 1329 * amdgpu_vm_update_flags - figure out flags for PTE updates 1330 * 1331 * Make sure to set the right flags for the PTEs at the desired level. 1332 */ 1333 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params, 1334 struct amdgpu_bo *bo, unsigned level, 1335 uint64_t pe, uint64_t addr, 1336 unsigned count, uint32_t incr, 1337 uint64_t flags) 1338 1339 { 1340 if (level != AMDGPU_VM_PTB) { 1341 flags |= AMDGPU_PDE_PTE; 1342 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags); 1343 1344 } else if (params->adev->asic_type >= CHIP_VEGA10 && 1345 !(flags & AMDGPU_PTE_VALID) && 1346 !(flags & AMDGPU_PTE_PRT)) { 1347 1348 /* Workaround for fault priority problem on GMC9 */ 1349 flags |= AMDGPU_PTE_EXECUTABLE; 1350 } 1351 1352 params->vm->update_funcs->update(params, bo, pe, addr, count, incr, 1353 flags); 1354 } 1355 1356 /** 1357 * amdgpu_vm_fragment - get fragment for PTEs 1358 * 1359 * @params: see amdgpu_vm_update_params definition 1360 * @start: first PTE to handle 1361 * @end: last PTE to handle 1362 * @flags: hw mapping flags 1363 * @frag: resulting fragment size 1364 * @frag_end: end of this fragment 1365 * 1366 * Returns the first possible fragment for the start and end address. 1367 */ 1368 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params, 1369 uint64_t start, uint64_t end, uint64_t flags, 1370 unsigned int *frag, uint64_t *frag_end) 1371 { 1372 /** 1373 * The MC L1 TLB supports variable sized pages, based on a fragment 1374 * field in the PTE. When this field is set to a non-zero value, page 1375 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1376 * flags are considered valid for all PTEs within the fragment range 1377 * and corresponding mappings are assumed to be physically contiguous. 1378 * 1379 * The L1 TLB can store a single PTE for the whole fragment, 1380 * significantly increasing the space available for translation 1381 * caching. This leads to large improvements in throughput when the 1382 * TLB is under pressure. 1383 * 1384 * The L2 TLB distributes small and large fragments into two 1385 * asymmetric partitions. The large fragment cache is significantly 1386 * larger. Thus, we try to use large fragments wherever possible. 1387 * Userspace can support this by aligning virtual base address and 1388 * allocation size to the fragment size. 1389 * 1390 * Starting with Vega10 the fragment size only controls the L1. The L2 1391 * is now directly feed with small/huge/giant pages from the walker. 1392 */ 1393 unsigned max_frag; 1394 1395 if (params->adev->asic_type < CHIP_VEGA10) 1396 max_frag = params->adev->vm_manager.fragment_size; 1397 else 1398 max_frag = 31; 1399 1400 /* system pages are non continuously */ 1401 if (params->pages_addr) { 1402 *frag = 0; 1403 *frag_end = end; 1404 return; 1405 } 1406 1407 /* This intentionally wraps around if no bit is set */ 1408 *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1); 1409 if (*frag >= max_frag) { 1410 *frag = max_frag; 1411 *frag_end = end & ~((1ULL << max_frag) - 1); 1412 } else { 1413 *frag_end = start + (1 << *frag); 1414 } 1415 } 1416 1417 /** 1418 * amdgpu_vm_update_ptes - make sure that page tables are valid 1419 * 1420 * @params: see amdgpu_vm_update_params definition 1421 * @start: start of GPU address range 1422 * @end: end of GPU address range 1423 * @dst: destination address to map to, the next dst inside the function 1424 * @flags: mapping flags 1425 * 1426 * Update the page tables in the range @start - @end. 1427 * 1428 * Returns: 1429 * 0 for success, -EINVAL for failure. 1430 */ 1431 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params, 1432 uint64_t start, uint64_t end, 1433 uint64_t dst, uint64_t flags) 1434 { 1435 struct amdgpu_device *adev = params->adev; 1436 struct amdgpu_vm_pt_cursor cursor; 1437 uint64_t frag_start = start, frag_end; 1438 unsigned int frag; 1439 int r; 1440 1441 /* figure out the initial fragment */ 1442 amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end); 1443 1444 /* walk over the address space and update the PTs */ 1445 amdgpu_vm_pt_start(adev, params->vm, start, &cursor); 1446 while (cursor.pfn < end) { 1447 unsigned shift, parent_shift, mask; 1448 uint64_t incr, entry_end, pe_start; 1449 struct amdgpu_bo *pt; 1450 1451 if (!params->unlocked) { 1452 /* make sure that the page tables covering the 1453 * address range are actually allocated 1454 */ 1455 r = amdgpu_vm_alloc_pts(params->adev, params->vm, 1456 &cursor, params->immediate); 1457 if (r) 1458 return r; 1459 } 1460 1461 shift = amdgpu_vm_level_shift(adev, cursor.level); 1462 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1); 1463 if (params->unlocked) { 1464 /* Unlocked updates are only allowed on the leaves */ 1465 if (amdgpu_vm_pt_descendant(adev, &cursor)) 1466 continue; 1467 } else if (adev->asic_type < CHIP_VEGA10 && 1468 (flags & AMDGPU_PTE_VALID)) { 1469 /* No huge page support before GMC v9 */ 1470 if (cursor.level != AMDGPU_VM_PTB) { 1471 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1472 return -ENOENT; 1473 continue; 1474 } 1475 } else if (frag < shift) { 1476 /* We can't use this level when the fragment size is 1477 * smaller than the address shift. Go to the next 1478 * child entry and try again. 1479 */ 1480 if (amdgpu_vm_pt_descendant(adev, &cursor)) 1481 continue; 1482 } else if (frag >= parent_shift) { 1483 /* If the fragment size is even larger than the parent 1484 * shift we should go up one level and check it again. 1485 */ 1486 if (!amdgpu_vm_pt_ancestor(&cursor)) 1487 return -EINVAL; 1488 continue; 1489 } 1490 1491 pt = cursor.entry->base.bo; 1492 if (!pt) { 1493 /* We need all PDs and PTs for mapping something, */ 1494 if (flags & AMDGPU_PTE_VALID) 1495 return -ENOENT; 1496 1497 /* but unmapping something can happen at a higher 1498 * level. 1499 */ 1500 if (!amdgpu_vm_pt_ancestor(&cursor)) 1501 return -EINVAL; 1502 1503 pt = cursor.entry->base.bo; 1504 shift = parent_shift; 1505 frag_end = max(frag_end, ALIGN(frag_start + 1, 1506 1ULL << shift)); 1507 } 1508 1509 /* Looks good so far, calculate parameters for the update */ 1510 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift; 1511 mask = amdgpu_vm_entries_mask(adev, cursor.level); 1512 pe_start = ((cursor.pfn >> shift) & mask) * 8; 1513 entry_end = ((uint64_t)mask + 1) << shift; 1514 entry_end += cursor.pfn & ~(entry_end - 1); 1515 entry_end = min(entry_end, end); 1516 1517 do { 1518 struct amdgpu_vm *vm = params->vm; 1519 uint64_t upd_end = min(entry_end, frag_end); 1520 unsigned nptes = (upd_end - frag_start) >> shift; 1521 uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag); 1522 1523 /* This can happen when we set higher level PDs to 1524 * silent to stop fault floods. 1525 */ 1526 nptes = max(nptes, 1u); 1527 1528 trace_amdgpu_vm_update_ptes(params, frag_start, upd_end, 1529 nptes, dst, incr, upd_flags, 1530 vm->task_info.pid, 1531 vm->immediate.fence_context); 1532 amdgpu_vm_update_flags(params, pt, cursor.level, 1533 pe_start, dst, nptes, incr, 1534 upd_flags); 1535 1536 pe_start += nptes * 8; 1537 dst += nptes * incr; 1538 1539 frag_start = upd_end; 1540 if (frag_start >= frag_end) { 1541 /* figure out the next fragment */ 1542 amdgpu_vm_fragment(params, frag_start, end, 1543 flags, &frag, &frag_end); 1544 if (frag < shift) 1545 break; 1546 } 1547 } while (frag_start < entry_end); 1548 1549 if (amdgpu_vm_pt_descendant(adev, &cursor)) { 1550 /* Free all child entries. 1551 * Update the tables with the flags and addresses and free up subsequent 1552 * tables in the case of huge pages or freed up areas. 1553 * This is the maximum you can free, because all other page tables are not 1554 * completely covered by the range and so potentially still in use. 1555 */ 1556 while (cursor.pfn < frag_start) { 1557 amdgpu_vm_free_pts(adev, params->vm, &cursor); 1558 amdgpu_vm_pt_next(adev, &cursor); 1559 } 1560 1561 } else if (frag >= shift) { 1562 /* or just move on to the next on the same level. */ 1563 amdgpu_vm_pt_next(adev, &cursor); 1564 } 1565 } 1566 1567 return 0; 1568 } 1569 1570 /** 1571 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1572 * 1573 * @adev: amdgpu_device pointer of the VM 1574 * @bo_adev: amdgpu_device pointer of the mapped BO 1575 * @vm: requested vm 1576 * @immediate: immediate submission in a page fault 1577 * @unlocked: unlocked invalidation during MM callback 1578 * @resv: fences we need to sync to 1579 * @start: start of mapped range 1580 * @last: last mapped entry 1581 * @flags: flags for the entries 1582 * @offset: offset into nodes and pages_addr 1583 * @nodes: array of drm_mm_nodes with the MC addresses 1584 * @pages_addr: DMA addresses to use for mapping 1585 * @fence: optional resulting fence 1586 * 1587 * Fill in the page table entries between @start and @last. 1588 * 1589 * Returns: 1590 * 0 for success, -EINVAL for failure. 1591 */ 1592 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1593 struct amdgpu_device *bo_adev, 1594 struct amdgpu_vm *vm, bool immediate, 1595 bool unlocked, struct dma_resv *resv, 1596 uint64_t start, uint64_t last, 1597 uint64_t flags, uint64_t offset, 1598 struct drm_mm_node *nodes, 1599 dma_addr_t *pages_addr, 1600 struct dma_fence **fence) 1601 { 1602 struct amdgpu_vm_update_params params; 1603 enum amdgpu_sync_mode sync_mode; 1604 uint64_t pfn; 1605 int r; 1606 1607 memset(¶ms, 0, sizeof(params)); 1608 params.adev = adev; 1609 params.vm = vm; 1610 params.immediate = immediate; 1611 params.pages_addr = pages_addr; 1612 params.unlocked = unlocked; 1613 1614 /* Implicitly sync to command submissions in the same VM before 1615 * unmapping. Sync to moving fences before mapping. 1616 */ 1617 if (!(flags & AMDGPU_PTE_VALID)) 1618 sync_mode = AMDGPU_SYNC_EQ_OWNER; 1619 else 1620 sync_mode = AMDGPU_SYNC_EXPLICIT; 1621 1622 pfn = offset >> PAGE_SHIFT; 1623 if (nodes) { 1624 while (pfn >= nodes->size) { 1625 pfn -= nodes->size; 1626 ++nodes; 1627 } 1628 } 1629 1630 amdgpu_vm_eviction_lock(vm); 1631 if (vm->evicting) { 1632 r = -EBUSY; 1633 goto error_unlock; 1634 } 1635 1636 if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) { 1637 struct dma_fence *tmp = dma_fence_get_stub(); 1638 1639 amdgpu_bo_fence(vm->root.base.bo, vm->last_unlocked, true); 1640 swap(vm->last_unlocked, tmp); 1641 dma_fence_put(tmp); 1642 } 1643 1644 r = vm->update_funcs->prepare(¶ms, resv, sync_mode); 1645 if (r) 1646 goto error_unlock; 1647 1648 do { 1649 uint64_t tmp, num_entries, addr; 1650 1651 1652 num_entries = last - start + 1; 1653 if (nodes) { 1654 addr = nodes->start << PAGE_SHIFT; 1655 num_entries = min((nodes->size - pfn) * 1656 AMDGPU_GPU_PAGES_IN_CPU_PAGE, num_entries); 1657 } else { 1658 addr = 0; 1659 } 1660 1661 if (pages_addr) { 1662 bool contiguous = true; 1663 1664 if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) { 1665 uint64_t count; 1666 1667 contiguous = pages_addr[pfn + 1] == 1668 pages_addr[pfn] + PAGE_SIZE; 1669 1670 tmp = num_entries / 1671 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1672 for (count = 2; count < tmp; ++count) { 1673 uint64_t idx = pfn + count; 1674 1675 if (contiguous != (pages_addr[idx] == 1676 pages_addr[idx - 1] + PAGE_SIZE)) 1677 break; 1678 } 1679 num_entries = count * 1680 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1681 } 1682 1683 if (!contiguous) { 1684 addr = pfn << PAGE_SHIFT; 1685 params.pages_addr = pages_addr; 1686 } else { 1687 addr = pages_addr[pfn]; 1688 params.pages_addr = NULL; 1689 } 1690 1691 } else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) { 1692 addr += bo_adev->vm_manager.vram_base_offset; 1693 addr += pfn << PAGE_SHIFT; 1694 } 1695 1696 tmp = start + num_entries; 1697 r = amdgpu_vm_update_ptes(¶ms, start, tmp, addr, flags); 1698 if (r) 1699 goto error_unlock; 1700 1701 pfn += num_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1702 if (nodes && nodes->size == pfn) { 1703 pfn = 0; 1704 ++nodes; 1705 } 1706 start = tmp; 1707 1708 } while (unlikely(start != last + 1)); 1709 1710 r = vm->update_funcs->commit(¶ms, fence); 1711 1712 error_unlock: 1713 amdgpu_vm_eviction_unlock(vm); 1714 return r; 1715 } 1716 1717 /** 1718 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1719 * 1720 * @adev: amdgpu_device pointer 1721 * @bo_va: requested BO and VM object 1722 * @clear: if true clear the entries 1723 * 1724 * Fill in the page table entries for @bo_va. 1725 * 1726 * Returns: 1727 * 0 for success, -EINVAL for failure. 1728 */ 1729 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, 1730 bool clear) 1731 { 1732 struct amdgpu_bo *bo = bo_va->base.bo; 1733 struct amdgpu_vm *vm = bo_va->base.vm; 1734 struct amdgpu_bo_va_mapping *mapping; 1735 dma_addr_t *pages_addr = NULL; 1736 struct ttm_resource *mem; 1737 struct drm_mm_node *nodes; 1738 struct dma_fence **last_update; 1739 struct dma_resv *resv; 1740 uint64_t flags; 1741 struct amdgpu_device *bo_adev = adev; 1742 int r; 1743 1744 if (clear || !bo) { 1745 mem = NULL; 1746 nodes = NULL; 1747 resv = vm->root.base.bo->tbo.base.resv; 1748 } else { 1749 struct drm_gem_object *obj = &bo->tbo.base; 1750 1751 resv = bo->tbo.base.resv; 1752 if (obj->import_attach && bo_va->is_xgmi) { 1753 struct dma_buf *dma_buf = obj->import_attach->dmabuf; 1754 struct drm_gem_object *gobj = dma_buf->priv; 1755 struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj); 1756 1757 if (abo->tbo.mem.mem_type == TTM_PL_VRAM) 1758 bo = gem_to_amdgpu_bo(gobj); 1759 } 1760 mem = &bo->tbo.mem; 1761 nodes = mem->mm_node; 1762 if (mem->mem_type == TTM_PL_TT) 1763 pages_addr = bo->tbo.ttm->dma_address; 1764 } 1765 1766 if (bo) { 1767 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1768 1769 if (amdgpu_bo_encrypted(bo)) 1770 flags |= AMDGPU_PTE_TMZ; 1771 1772 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev); 1773 } else { 1774 flags = 0x0; 1775 } 1776 1777 if (clear || (bo && bo->tbo.base.resv == 1778 vm->root.base.bo->tbo.base.resv)) 1779 last_update = &vm->last_update; 1780 else 1781 last_update = &bo_va->last_pt_update; 1782 1783 if (!clear && bo_va->base.moved) { 1784 bo_va->base.moved = false; 1785 list_splice_init(&bo_va->valids, &bo_va->invalids); 1786 1787 } else if (bo_va->cleared != clear) { 1788 list_splice_init(&bo_va->valids, &bo_va->invalids); 1789 } 1790 1791 list_for_each_entry(mapping, &bo_va->invalids, list) { 1792 uint64_t update_flags = flags; 1793 1794 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1795 * but in case of something, we filter the flags in first place 1796 */ 1797 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1798 update_flags &= ~AMDGPU_PTE_READABLE; 1799 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1800 update_flags &= ~AMDGPU_PTE_WRITEABLE; 1801 1802 /* Apply ASIC specific mapping flags */ 1803 amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags); 1804 1805 trace_amdgpu_vm_bo_update(mapping); 1806 1807 r = amdgpu_vm_bo_update_mapping(adev, bo_adev, vm, false, false, 1808 resv, mapping->start, 1809 mapping->last, update_flags, 1810 mapping->offset, nodes, 1811 pages_addr, last_update); 1812 if (r) 1813 return r; 1814 } 1815 1816 /* If the BO is not in its preferred location add it back to 1817 * the evicted list so that it gets validated again on the 1818 * next command submission. 1819 */ 1820 if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) { 1821 uint32_t mem_type = bo->tbo.mem.mem_type; 1822 1823 if (!(bo->preferred_domains & 1824 amdgpu_mem_type_to_domain(mem_type))) 1825 amdgpu_vm_bo_evicted(&bo_va->base); 1826 else 1827 amdgpu_vm_bo_idle(&bo_va->base); 1828 } else { 1829 amdgpu_vm_bo_done(&bo_va->base); 1830 } 1831 1832 list_splice_init(&bo_va->invalids, &bo_va->valids); 1833 bo_va->cleared = clear; 1834 1835 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1836 list_for_each_entry(mapping, &bo_va->valids, list) 1837 trace_amdgpu_vm_bo_mapping(mapping); 1838 } 1839 1840 return 0; 1841 } 1842 1843 /** 1844 * amdgpu_vm_update_prt_state - update the global PRT state 1845 * 1846 * @adev: amdgpu_device pointer 1847 */ 1848 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1849 { 1850 unsigned long flags; 1851 bool enable; 1852 1853 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1854 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1855 adev->gmc.gmc_funcs->set_prt(adev, enable); 1856 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1857 } 1858 1859 /** 1860 * amdgpu_vm_prt_get - add a PRT user 1861 * 1862 * @adev: amdgpu_device pointer 1863 */ 1864 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1865 { 1866 if (!adev->gmc.gmc_funcs->set_prt) 1867 return; 1868 1869 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1870 amdgpu_vm_update_prt_state(adev); 1871 } 1872 1873 /** 1874 * amdgpu_vm_prt_put - drop a PRT user 1875 * 1876 * @adev: amdgpu_device pointer 1877 */ 1878 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1879 { 1880 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1881 amdgpu_vm_update_prt_state(adev); 1882 } 1883 1884 /** 1885 * amdgpu_vm_prt_cb - callback for updating the PRT status 1886 * 1887 * @fence: fence for the callback 1888 * @_cb: the callback function 1889 */ 1890 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1891 { 1892 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1893 1894 amdgpu_vm_prt_put(cb->adev); 1895 kfree(cb); 1896 } 1897 1898 /** 1899 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 1900 * 1901 * @adev: amdgpu_device pointer 1902 * @fence: fence for the callback 1903 */ 1904 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 1905 struct dma_fence *fence) 1906 { 1907 struct amdgpu_prt_cb *cb; 1908 1909 if (!adev->gmc.gmc_funcs->set_prt) 1910 return; 1911 1912 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 1913 if (!cb) { 1914 /* Last resort when we are OOM */ 1915 if (fence) 1916 dma_fence_wait(fence, false); 1917 1918 amdgpu_vm_prt_put(adev); 1919 } else { 1920 cb->adev = adev; 1921 if (!fence || dma_fence_add_callback(fence, &cb->cb, 1922 amdgpu_vm_prt_cb)) 1923 amdgpu_vm_prt_cb(fence, &cb->cb); 1924 } 1925 } 1926 1927 /** 1928 * amdgpu_vm_free_mapping - free a mapping 1929 * 1930 * @adev: amdgpu_device pointer 1931 * @vm: requested vm 1932 * @mapping: mapping to be freed 1933 * @fence: fence of the unmap operation 1934 * 1935 * Free a mapping and make sure we decrease the PRT usage count if applicable. 1936 */ 1937 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 1938 struct amdgpu_vm *vm, 1939 struct amdgpu_bo_va_mapping *mapping, 1940 struct dma_fence *fence) 1941 { 1942 if (mapping->flags & AMDGPU_PTE_PRT) 1943 amdgpu_vm_add_prt_cb(adev, fence); 1944 kfree(mapping); 1945 } 1946 1947 /** 1948 * amdgpu_vm_prt_fini - finish all prt mappings 1949 * 1950 * @adev: amdgpu_device pointer 1951 * @vm: requested vm 1952 * 1953 * Register a cleanup callback to disable PRT support after VM dies. 1954 */ 1955 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1956 { 1957 struct dma_resv *resv = vm->root.base.bo->tbo.base.resv; 1958 struct dma_fence *excl, **shared; 1959 unsigned i, shared_count; 1960 int r; 1961 1962 r = dma_resv_get_fences_rcu(resv, &excl, 1963 &shared_count, &shared); 1964 if (r) { 1965 /* Not enough memory to grab the fence list, as last resort 1966 * block for all the fences to complete. 1967 */ 1968 dma_resv_wait_timeout_rcu(resv, true, false, 1969 MAX_SCHEDULE_TIMEOUT); 1970 return; 1971 } 1972 1973 /* Add a callback for each fence in the reservation object */ 1974 amdgpu_vm_prt_get(adev); 1975 amdgpu_vm_add_prt_cb(adev, excl); 1976 1977 for (i = 0; i < shared_count; ++i) { 1978 amdgpu_vm_prt_get(adev); 1979 amdgpu_vm_add_prt_cb(adev, shared[i]); 1980 } 1981 1982 kfree(shared); 1983 } 1984 1985 /** 1986 * amdgpu_vm_clear_freed - clear freed BOs in the PT 1987 * 1988 * @adev: amdgpu_device pointer 1989 * @vm: requested vm 1990 * @fence: optional resulting fence (unchanged if no work needed to be done 1991 * or if an error occurred) 1992 * 1993 * Make sure all freed BOs are cleared in the PT. 1994 * PTs have to be reserved and mutex must be locked! 1995 * 1996 * Returns: 1997 * 0 for success. 1998 * 1999 */ 2000 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 2001 struct amdgpu_vm *vm, 2002 struct dma_fence **fence) 2003 { 2004 struct dma_resv *resv = vm->root.base.bo->tbo.base.resv; 2005 struct amdgpu_bo_va_mapping *mapping; 2006 uint64_t init_pte_value = 0; 2007 struct dma_fence *f = NULL; 2008 int r; 2009 2010 while (!list_empty(&vm->freed)) { 2011 mapping = list_first_entry(&vm->freed, 2012 struct amdgpu_bo_va_mapping, list); 2013 list_del(&mapping->list); 2014 2015 if (vm->pte_support_ats && 2016 mapping->start < AMDGPU_GMC_HOLE_START) 2017 init_pte_value = AMDGPU_PTE_DEFAULT_ATC; 2018 2019 r = amdgpu_vm_bo_update_mapping(adev, adev, vm, false, false, 2020 resv, mapping->start, 2021 mapping->last, init_pte_value, 2022 0, NULL, NULL, &f); 2023 amdgpu_vm_free_mapping(adev, vm, mapping, f); 2024 if (r) { 2025 dma_fence_put(f); 2026 return r; 2027 } 2028 } 2029 2030 if (fence && f) { 2031 dma_fence_put(*fence); 2032 *fence = f; 2033 } else { 2034 dma_fence_put(f); 2035 } 2036 2037 return 0; 2038 2039 } 2040 2041 /** 2042 * amdgpu_vm_handle_moved - handle moved BOs in the PT 2043 * 2044 * @adev: amdgpu_device pointer 2045 * @vm: requested vm 2046 * 2047 * Make sure all BOs which are moved are updated in the PTs. 2048 * 2049 * Returns: 2050 * 0 for success. 2051 * 2052 * PTs have to be reserved! 2053 */ 2054 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 2055 struct amdgpu_vm *vm) 2056 { 2057 struct amdgpu_bo_va *bo_va, *tmp; 2058 struct dma_resv *resv; 2059 bool clear; 2060 int r; 2061 2062 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 2063 /* Per VM BOs never need to bo cleared in the page tables */ 2064 r = amdgpu_vm_bo_update(adev, bo_va, false); 2065 if (r) 2066 return r; 2067 } 2068 2069 spin_lock(&vm->invalidated_lock); 2070 while (!list_empty(&vm->invalidated)) { 2071 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 2072 base.vm_status); 2073 resv = bo_va->base.bo->tbo.base.resv; 2074 spin_unlock(&vm->invalidated_lock); 2075 2076 /* Try to reserve the BO to avoid clearing its ptes */ 2077 if (!amdgpu_vm_debug && dma_resv_trylock(resv)) 2078 clear = false; 2079 /* Somebody else is using the BO right now */ 2080 else 2081 clear = true; 2082 2083 r = amdgpu_vm_bo_update(adev, bo_va, clear); 2084 if (r) 2085 return r; 2086 2087 if (!clear) 2088 dma_resv_unlock(resv); 2089 spin_lock(&vm->invalidated_lock); 2090 } 2091 spin_unlock(&vm->invalidated_lock); 2092 2093 return 0; 2094 } 2095 2096 /** 2097 * amdgpu_vm_bo_add - add a bo to a specific vm 2098 * 2099 * @adev: amdgpu_device pointer 2100 * @vm: requested vm 2101 * @bo: amdgpu buffer object 2102 * 2103 * Add @bo into the requested vm. 2104 * Add @bo to the list of bos associated with the vm 2105 * 2106 * Returns: 2107 * Newly added bo_va or NULL for failure 2108 * 2109 * Object has to be reserved! 2110 */ 2111 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 2112 struct amdgpu_vm *vm, 2113 struct amdgpu_bo *bo) 2114 { 2115 struct amdgpu_bo_va *bo_va; 2116 2117 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 2118 if (bo_va == NULL) { 2119 return NULL; 2120 } 2121 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 2122 2123 bo_va->ref_count = 1; 2124 INIT_LIST_HEAD(&bo_va->valids); 2125 INIT_LIST_HEAD(&bo_va->invalids); 2126 2127 if (!bo) 2128 return bo_va; 2129 2130 if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) { 2131 bo_va->is_xgmi = true; 2132 /* Power up XGMI if it can be potentially used */ 2133 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20); 2134 } 2135 2136 return bo_va; 2137 } 2138 2139 2140 /** 2141 * amdgpu_vm_bo_insert_map - insert a new mapping 2142 * 2143 * @adev: amdgpu_device pointer 2144 * @bo_va: bo_va to store the address 2145 * @mapping: the mapping to insert 2146 * 2147 * Insert a new mapping into all structures. 2148 */ 2149 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 2150 struct amdgpu_bo_va *bo_va, 2151 struct amdgpu_bo_va_mapping *mapping) 2152 { 2153 struct amdgpu_vm *vm = bo_va->base.vm; 2154 struct amdgpu_bo *bo = bo_va->base.bo; 2155 2156 mapping->bo_va = bo_va; 2157 list_add(&mapping->list, &bo_va->invalids); 2158 amdgpu_vm_it_insert(mapping, &vm->va); 2159 2160 if (mapping->flags & AMDGPU_PTE_PRT) 2161 amdgpu_vm_prt_get(adev); 2162 2163 if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv && 2164 !bo_va->base.moved) { 2165 list_move(&bo_va->base.vm_status, &vm->moved); 2166 } 2167 trace_amdgpu_vm_bo_map(bo_va, mapping); 2168 } 2169 2170 /** 2171 * amdgpu_vm_bo_map - map bo inside a vm 2172 * 2173 * @adev: amdgpu_device pointer 2174 * @bo_va: bo_va to store the address 2175 * @saddr: where to map the BO 2176 * @offset: requested offset in the BO 2177 * @size: BO size in bytes 2178 * @flags: attributes of pages (read/write/valid/etc.) 2179 * 2180 * Add a mapping of the BO at the specefied addr into the VM. 2181 * 2182 * Returns: 2183 * 0 for success, error for failure. 2184 * 2185 * Object has to be reserved and unreserved outside! 2186 */ 2187 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 2188 struct amdgpu_bo_va *bo_va, 2189 uint64_t saddr, uint64_t offset, 2190 uint64_t size, uint64_t flags) 2191 { 2192 struct amdgpu_bo_va_mapping *mapping, *tmp; 2193 struct amdgpu_bo *bo = bo_va->base.bo; 2194 struct amdgpu_vm *vm = bo_va->base.vm; 2195 uint64_t eaddr; 2196 2197 /* validate the parameters */ 2198 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2199 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2200 return -EINVAL; 2201 2202 /* make sure object fit at this offset */ 2203 eaddr = saddr + size - 1; 2204 if (saddr >= eaddr || 2205 (bo && offset + size > amdgpu_bo_size(bo)) || 2206 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT)) 2207 return -EINVAL; 2208 2209 saddr /= AMDGPU_GPU_PAGE_SIZE; 2210 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2211 2212 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2213 if (tmp) { 2214 /* bo and tmp overlap, invalid addr */ 2215 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 2216 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 2217 tmp->start, tmp->last + 1); 2218 return -EINVAL; 2219 } 2220 2221 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2222 if (!mapping) 2223 return -ENOMEM; 2224 2225 mapping->start = saddr; 2226 mapping->last = eaddr; 2227 mapping->offset = offset; 2228 mapping->flags = flags; 2229 2230 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2231 2232 return 0; 2233 } 2234 2235 /** 2236 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 2237 * 2238 * @adev: amdgpu_device pointer 2239 * @bo_va: bo_va to store the address 2240 * @saddr: where to map the BO 2241 * @offset: requested offset in the BO 2242 * @size: BO size in bytes 2243 * @flags: attributes of pages (read/write/valid/etc.) 2244 * 2245 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 2246 * mappings as we do so. 2247 * 2248 * Returns: 2249 * 0 for success, error for failure. 2250 * 2251 * Object has to be reserved and unreserved outside! 2252 */ 2253 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 2254 struct amdgpu_bo_va *bo_va, 2255 uint64_t saddr, uint64_t offset, 2256 uint64_t size, uint64_t flags) 2257 { 2258 struct amdgpu_bo_va_mapping *mapping; 2259 struct amdgpu_bo *bo = bo_va->base.bo; 2260 uint64_t eaddr; 2261 int r; 2262 2263 /* validate the parameters */ 2264 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2265 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2266 return -EINVAL; 2267 2268 /* make sure object fit at this offset */ 2269 eaddr = saddr + size - 1; 2270 if (saddr >= eaddr || 2271 (bo && offset + size > amdgpu_bo_size(bo)) || 2272 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT)) 2273 return -EINVAL; 2274 2275 /* Allocate all the needed memory */ 2276 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2277 if (!mapping) 2278 return -ENOMEM; 2279 2280 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 2281 if (r) { 2282 kfree(mapping); 2283 return r; 2284 } 2285 2286 saddr /= AMDGPU_GPU_PAGE_SIZE; 2287 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2288 2289 mapping->start = saddr; 2290 mapping->last = eaddr; 2291 mapping->offset = offset; 2292 mapping->flags = flags; 2293 2294 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2295 2296 return 0; 2297 } 2298 2299 /** 2300 * amdgpu_vm_bo_unmap - remove bo mapping from vm 2301 * 2302 * @adev: amdgpu_device pointer 2303 * @bo_va: bo_va to remove the address from 2304 * @saddr: where to the BO is mapped 2305 * 2306 * Remove a mapping of the BO at the specefied addr from the VM. 2307 * 2308 * Returns: 2309 * 0 for success, error for failure. 2310 * 2311 * Object has to be reserved and unreserved outside! 2312 */ 2313 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 2314 struct amdgpu_bo_va *bo_va, 2315 uint64_t saddr) 2316 { 2317 struct amdgpu_bo_va_mapping *mapping; 2318 struct amdgpu_vm *vm = bo_va->base.vm; 2319 bool valid = true; 2320 2321 saddr /= AMDGPU_GPU_PAGE_SIZE; 2322 2323 list_for_each_entry(mapping, &bo_va->valids, list) { 2324 if (mapping->start == saddr) 2325 break; 2326 } 2327 2328 if (&mapping->list == &bo_va->valids) { 2329 valid = false; 2330 2331 list_for_each_entry(mapping, &bo_va->invalids, list) { 2332 if (mapping->start == saddr) 2333 break; 2334 } 2335 2336 if (&mapping->list == &bo_va->invalids) 2337 return -ENOENT; 2338 } 2339 2340 list_del(&mapping->list); 2341 amdgpu_vm_it_remove(mapping, &vm->va); 2342 mapping->bo_va = NULL; 2343 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2344 2345 if (valid) 2346 list_add(&mapping->list, &vm->freed); 2347 else 2348 amdgpu_vm_free_mapping(adev, vm, mapping, 2349 bo_va->last_pt_update); 2350 2351 return 0; 2352 } 2353 2354 /** 2355 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 2356 * 2357 * @adev: amdgpu_device pointer 2358 * @vm: VM structure to use 2359 * @saddr: start of the range 2360 * @size: size of the range 2361 * 2362 * Remove all mappings in a range, split them as appropriate. 2363 * 2364 * Returns: 2365 * 0 for success, error for failure. 2366 */ 2367 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 2368 struct amdgpu_vm *vm, 2369 uint64_t saddr, uint64_t size) 2370 { 2371 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 2372 LIST_HEAD(removed); 2373 uint64_t eaddr; 2374 2375 eaddr = saddr + size - 1; 2376 saddr /= AMDGPU_GPU_PAGE_SIZE; 2377 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2378 2379 /* Allocate all the needed memory */ 2380 before = kzalloc(sizeof(*before), GFP_KERNEL); 2381 if (!before) 2382 return -ENOMEM; 2383 INIT_LIST_HEAD(&before->list); 2384 2385 after = kzalloc(sizeof(*after), GFP_KERNEL); 2386 if (!after) { 2387 kfree(before); 2388 return -ENOMEM; 2389 } 2390 INIT_LIST_HEAD(&after->list); 2391 2392 /* Now gather all removed mappings */ 2393 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2394 while (tmp) { 2395 /* Remember mapping split at the start */ 2396 if (tmp->start < saddr) { 2397 before->start = tmp->start; 2398 before->last = saddr - 1; 2399 before->offset = tmp->offset; 2400 before->flags = tmp->flags; 2401 before->bo_va = tmp->bo_va; 2402 list_add(&before->list, &tmp->bo_va->invalids); 2403 } 2404 2405 /* Remember mapping split at the end */ 2406 if (tmp->last > eaddr) { 2407 after->start = eaddr + 1; 2408 after->last = tmp->last; 2409 after->offset = tmp->offset; 2410 after->offset += after->start - tmp->start; 2411 after->flags = tmp->flags; 2412 after->bo_va = tmp->bo_va; 2413 list_add(&after->list, &tmp->bo_va->invalids); 2414 } 2415 2416 list_del(&tmp->list); 2417 list_add(&tmp->list, &removed); 2418 2419 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2420 } 2421 2422 /* And free them up */ 2423 list_for_each_entry_safe(tmp, next, &removed, list) { 2424 amdgpu_vm_it_remove(tmp, &vm->va); 2425 list_del(&tmp->list); 2426 2427 if (tmp->start < saddr) 2428 tmp->start = saddr; 2429 if (tmp->last > eaddr) 2430 tmp->last = eaddr; 2431 2432 tmp->bo_va = NULL; 2433 list_add(&tmp->list, &vm->freed); 2434 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2435 } 2436 2437 /* Insert partial mapping before the range */ 2438 if (!list_empty(&before->list)) { 2439 amdgpu_vm_it_insert(before, &vm->va); 2440 if (before->flags & AMDGPU_PTE_PRT) 2441 amdgpu_vm_prt_get(adev); 2442 } else { 2443 kfree(before); 2444 } 2445 2446 /* Insert partial mapping after the range */ 2447 if (!list_empty(&after->list)) { 2448 amdgpu_vm_it_insert(after, &vm->va); 2449 if (after->flags & AMDGPU_PTE_PRT) 2450 amdgpu_vm_prt_get(adev); 2451 } else { 2452 kfree(after); 2453 } 2454 2455 return 0; 2456 } 2457 2458 /** 2459 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2460 * 2461 * @vm: the requested VM 2462 * @addr: the address 2463 * 2464 * Find a mapping by it's address. 2465 * 2466 * Returns: 2467 * The amdgpu_bo_va_mapping matching for addr or NULL 2468 * 2469 */ 2470 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2471 uint64_t addr) 2472 { 2473 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2474 } 2475 2476 /** 2477 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2478 * 2479 * @vm: the requested vm 2480 * @ticket: CS ticket 2481 * 2482 * Trace all mappings of BOs reserved during a command submission. 2483 */ 2484 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2485 { 2486 struct amdgpu_bo_va_mapping *mapping; 2487 2488 if (!trace_amdgpu_vm_bo_cs_enabled()) 2489 return; 2490 2491 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2492 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2493 if (mapping->bo_va && mapping->bo_va->base.bo) { 2494 struct amdgpu_bo *bo; 2495 2496 bo = mapping->bo_va->base.bo; 2497 if (dma_resv_locking_ctx(bo->tbo.base.resv) != 2498 ticket) 2499 continue; 2500 } 2501 2502 trace_amdgpu_vm_bo_cs(mapping); 2503 } 2504 } 2505 2506 /** 2507 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 2508 * 2509 * @adev: amdgpu_device pointer 2510 * @bo_va: requested bo_va 2511 * 2512 * Remove @bo_va->bo from the requested vm. 2513 * 2514 * Object have to be reserved! 2515 */ 2516 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 2517 struct amdgpu_bo_va *bo_va) 2518 { 2519 struct amdgpu_bo_va_mapping *mapping, *next; 2520 struct amdgpu_bo *bo = bo_va->base.bo; 2521 struct amdgpu_vm *vm = bo_va->base.vm; 2522 struct amdgpu_vm_bo_base **base; 2523 2524 if (bo) { 2525 if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) 2526 vm->bulk_moveable = false; 2527 2528 for (base = &bo_va->base.bo->vm_bo; *base; 2529 base = &(*base)->next) { 2530 if (*base != &bo_va->base) 2531 continue; 2532 2533 *base = bo_va->base.next; 2534 break; 2535 } 2536 } 2537 2538 spin_lock(&vm->invalidated_lock); 2539 list_del(&bo_va->base.vm_status); 2540 spin_unlock(&vm->invalidated_lock); 2541 2542 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2543 list_del(&mapping->list); 2544 amdgpu_vm_it_remove(mapping, &vm->va); 2545 mapping->bo_va = NULL; 2546 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2547 list_add(&mapping->list, &vm->freed); 2548 } 2549 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2550 list_del(&mapping->list); 2551 amdgpu_vm_it_remove(mapping, &vm->va); 2552 amdgpu_vm_free_mapping(adev, vm, mapping, 2553 bo_va->last_pt_update); 2554 } 2555 2556 dma_fence_put(bo_va->last_pt_update); 2557 2558 if (bo && bo_va->is_xgmi) 2559 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN); 2560 2561 kfree(bo_va); 2562 } 2563 2564 /** 2565 * amdgpu_vm_evictable - check if we can evict a VM 2566 * 2567 * @bo: A page table of the VM. 2568 * 2569 * Check if it is possible to evict a VM. 2570 */ 2571 bool amdgpu_vm_evictable(struct amdgpu_bo *bo) 2572 { 2573 struct amdgpu_vm_bo_base *bo_base = bo->vm_bo; 2574 2575 /* Page tables of a destroyed VM can go away immediately */ 2576 if (!bo_base || !bo_base->vm) 2577 return true; 2578 2579 /* Don't evict VM page tables while they are busy */ 2580 if (!dma_resv_test_signaled_rcu(bo->tbo.base.resv, true)) 2581 return false; 2582 2583 /* Try to block ongoing updates */ 2584 if (!amdgpu_vm_eviction_trylock(bo_base->vm)) 2585 return false; 2586 2587 /* Don't evict VM page tables while they are updated */ 2588 if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) { 2589 amdgpu_vm_eviction_unlock(bo_base->vm); 2590 return false; 2591 } 2592 2593 bo_base->vm->evicting = true; 2594 amdgpu_vm_eviction_unlock(bo_base->vm); 2595 return true; 2596 } 2597 2598 /** 2599 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2600 * 2601 * @adev: amdgpu_device pointer 2602 * @bo: amdgpu buffer object 2603 * @evicted: is the BO evicted 2604 * 2605 * Mark @bo as invalid. 2606 */ 2607 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2608 struct amdgpu_bo *bo, bool evicted) 2609 { 2610 struct amdgpu_vm_bo_base *bo_base; 2611 2612 /* shadow bo doesn't have bo base, its validation needs its parent */ 2613 if (bo->parent && bo->parent->shadow == bo) 2614 bo = bo->parent; 2615 2616 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2617 struct amdgpu_vm *vm = bo_base->vm; 2618 2619 if (evicted && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) { 2620 amdgpu_vm_bo_evicted(bo_base); 2621 continue; 2622 } 2623 2624 if (bo_base->moved) 2625 continue; 2626 bo_base->moved = true; 2627 2628 if (bo->tbo.type == ttm_bo_type_kernel) 2629 amdgpu_vm_bo_relocated(bo_base); 2630 else if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) 2631 amdgpu_vm_bo_moved(bo_base); 2632 else 2633 amdgpu_vm_bo_invalidated(bo_base); 2634 } 2635 } 2636 2637 /** 2638 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2639 * 2640 * @vm_size: VM size 2641 * 2642 * Returns: 2643 * VM page table as power of two 2644 */ 2645 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2646 { 2647 /* Total bits covered by PD + PTs */ 2648 unsigned bits = ilog2(vm_size) + 18; 2649 2650 /* Make sure the PD is 4K in size up to 8GB address space. 2651 Above that split equal between PD and PTs */ 2652 if (vm_size <= 8) 2653 return (bits - 9); 2654 else 2655 return ((bits + 3) / 2); 2656 } 2657 2658 /** 2659 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2660 * 2661 * @adev: amdgpu_device pointer 2662 * @min_vm_size: the minimum vm size in GB if it's set auto 2663 * @fragment_size_default: Default PTE fragment size 2664 * @max_level: max VMPT level 2665 * @max_bits: max address space size in bits 2666 * 2667 */ 2668 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2669 uint32_t fragment_size_default, unsigned max_level, 2670 unsigned max_bits) 2671 { 2672 unsigned int max_size = 1 << (max_bits - 30); 2673 unsigned int vm_size; 2674 uint64_t tmp; 2675 2676 /* adjust vm size first */ 2677 if (amdgpu_vm_size != -1) { 2678 vm_size = amdgpu_vm_size; 2679 if (vm_size > max_size) { 2680 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2681 amdgpu_vm_size, max_size); 2682 vm_size = max_size; 2683 } 2684 } else { 2685 struct sysinfo si; 2686 unsigned int phys_ram_gb; 2687 2688 /* Optimal VM size depends on the amount of physical 2689 * RAM available. Underlying requirements and 2690 * assumptions: 2691 * 2692 * - Need to map system memory and VRAM from all GPUs 2693 * - VRAM from other GPUs not known here 2694 * - Assume VRAM <= system memory 2695 * - On GFX8 and older, VM space can be segmented for 2696 * different MTYPEs 2697 * - Need to allow room for fragmentation, guard pages etc. 2698 * 2699 * This adds up to a rough guess of system memory x3. 2700 * Round up to power of two to maximize the available 2701 * VM size with the given page table size. 2702 */ 2703 si_meminfo(&si); 2704 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2705 (1 << 30) - 1) >> 30; 2706 vm_size = roundup_pow_of_two( 2707 min(max(phys_ram_gb * 3, min_vm_size), max_size)); 2708 } 2709 2710 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2711 2712 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2713 if (amdgpu_vm_block_size != -1) 2714 tmp >>= amdgpu_vm_block_size - 9; 2715 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2716 adev->vm_manager.num_level = min(max_level, (unsigned)tmp); 2717 switch (adev->vm_manager.num_level) { 2718 case 3: 2719 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2720 break; 2721 case 2: 2722 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2723 break; 2724 case 1: 2725 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2726 break; 2727 default: 2728 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2729 } 2730 /* block size depends on vm size and hw setup*/ 2731 if (amdgpu_vm_block_size != -1) 2732 adev->vm_manager.block_size = 2733 min((unsigned)amdgpu_vm_block_size, max_bits 2734 - AMDGPU_GPU_PAGE_SHIFT 2735 - 9 * adev->vm_manager.num_level); 2736 else if (adev->vm_manager.num_level > 1) 2737 adev->vm_manager.block_size = 9; 2738 else 2739 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2740 2741 if (amdgpu_vm_fragment_size == -1) 2742 adev->vm_manager.fragment_size = fragment_size_default; 2743 else 2744 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2745 2746 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2747 vm_size, adev->vm_manager.num_level + 1, 2748 adev->vm_manager.block_size, 2749 adev->vm_manager.fragment_size); 2750 } 2751 2752 /** 2753 * amdgpu_vm_wait_idle - wait for the VM to become idle 2754 * 2755 * @vm: VM object to wait for 2756 * @timeout: timeout to wait for VM to become idle 2757 */ 2758 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout) 2759 { 2760 timeout = dma_resv_wait_timeout_rcu(vm->root.base.bo->tbo.base.resv, 2761 true, true, timeout); 2762 if (timeout <= 0) 2763 return timeout; 2764 2765 return dma_fence_wait_timeout(vm->last_unlocked, true, timeout); 2766 } 2767 2768 /** 2769 * amdgpu_vm_init - initialize a vm instance 2770 * 2771 * @adev: amdgpu_device pointer 2772 * @vm: requested vm 2773 * @vm_context: Indicates if it GFX or Compute context 2774 * @pasid: Process address space identifier 2775 * 2776 * Init @vm fields. 2777 * 2778 * Returns: 2779 * 0 for success, error for failure. 2780 */ 2781 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2782 int vm_context, u32 pasid) 2783 { 2784 struct amdgpu_bo_param bp; 2785 struct amdgpu_bo *root; 2786 int r, i; 2787 2788 vm->va = RB_ROOT_CACHED; 2789 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2790 vm->reserved_vmid[i] = NULL; 2791 INIT_LIST_HEAD(&vm->evicted); 2792 INIT_LIST_HEAD(&vm->relocated); 2793 INIT_LIST_HEAD(&vm->moved); 2794 INIT_LIST_HEAD(&vm->idle); 2795 INIT_LIST_HEAD(&vm->invalidated); 2796 spin_lock_init(&vm->invalidated_lock); 2797 INIT_LIST_HEAD(&vm->freed); 2798 INIT_LIST_HEAD(&vm->done); 2799 2800 /* create scheduler entities for page table updates */ 2801 r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL, 2802 adev->vm_manager.vm_pte_scheds, 2803 adev->vm_manager.vm_pte_num_scheds, NULL); 2804 if (r) 2805 return r; 2806 2807 r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL, 2808 adev->vm_manager.vm_pte_scheds, 2809 adev->vm_manager.vm_pte_num_scheds, NULL); 2810 if (r) 2811 goto error_free_immediate; 2812 2813 vm->pte_support_ats = false; 2814 vm->is_compute_context = false; 2815 2816 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) { 2817 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2818 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2819 2820 if (adev->asic_type == CHIP_RAVEN) 2821 vm->pte_support_ats = true; 2822 } else { 2823 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2824 AMDGPU_VM_USE_CPU_FOR_GFX); 2825 } 2826 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2827 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2828 WARN_ONCE((vm->use_cpu_for_update && 2829 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2830 "CPU update of VM recommended only for large BAR system\n"); 2831 2832 if (vm->use_cpu_for_update) 2833 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2834 else 2835 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2836 vm->last_update = NULL; 2837 vm->last_unlocked = dma_fence_get_stub(); 2838 2839 mutex_init(&vm->eviction_lock); 2840 vm->evicting = false; 2841 2842 amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, false, &bp); 2843 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) 2844 bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW; 2845 r = amdgpu_bo_create(adev, &bp, &root); 2846 if (r) 2847 goto error_free_delayed; 2848 2849 r = amdgpu_bo_reserve(root, true); 2850 if (r) 2851 goto error_free_root; 2852 2853 r = dma_resv_reserve_shared(root->tbo.base.resv, 1); 2854 if (r) 2855 goto error_unreserve; 2856 2857 amdgpu_vm_bo_base_init(&vm->root.base, vm, root); 2858 2859 r = amdgpu_vm_clear_bo(adev, vm, root, false); 2860 if (r) 2861 goto error_unreserve; 2862 2863 amdgpu_bo_unreserve(vm->root.base.bo); 2864 2865 if (pasid) { 2866 unsigned long flags; 2867 2868 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2869 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 2870 GFP_ATOMIC); 2871 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2872 if (r < 0) 2873 goto error_free_root; 2874 2875 vm->pasid = pasid; 2876 } 2877 2878 INIT_KFIFO(vm->faults); 2879 2880 return 0; 2881 2882 error_unreserve: 2883 amdgpu_bo_unreserve(vm->root.base.bo); 2884 2885 error_free_root: 2886 amdgpu_bo_unref(&vm->root.base.bo->shadow); 2887 amdgpu_bo_unref(&vm->root.base.bo); 2888 vm->root.base.bo = NULL; 2889 2890 error_free_delayed: 2891 dma_fence_put(vm->last_unlocked); 2892 drm_sched_entity_destroy(&vm->delayed); 2893 2894 error_free_immediate: 2895 drm_sched_entity_destroy(&vm->immediate); 2896 2897 return r; 2898 } 2899 2900 /** 2901 * amdgpu_vm_check_clean_reserved - check if a VM is clean 2902 * 2903 * @adev: amdgpu_device pointer 2904 * @vm: the VM to check 2905 * 2906 * check all entries of the root PD, if any subsequent PDs are allocated, 2907 * it means there are page table creating and filling, and is no a clean 2908 * VM 2909 * 2910 * Returns: 2911 * 0 if this VM is clean 2912 */ 2913 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev, 2914 struct amdgpu_vm *vm) 2915 { 2916 enum amdgpu_vm_level root = adev->vm_manager.root_level; 2917 unsigned int entries = amdgpu_vm_num_entries(adev, root); 2918 unsigned int i = 0; 2919 2920 if (!(vm->root.entries)) 2921 return 0; 2922 2923 for (i = 0; i < entries; i++) { 2924 if (vm->root.entries[i].base.bo) 2925 return -EINVAL; 2926 } 2927 2928 return 0; 2929 } 2930 2931 /** 2932 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 2933 * 2934 * @adev: amdgpu_device pointer 2935 * @vm: requested vm 2936 * @pasid: pasid to use 2937 * 2938 * This only works on GFX VMs that don't have any BOs added and no 2939 * page tables allocated yet. 2940 * 2941 * Changes the following VM parameters: 2942 * - use_cpu_for_update 2943 * - pte_supports_ats 2944 * - pasid (old PASID is released, because compute manages its own PASIDs) 2945 * 2946 * Reinitializes the page directory to reflect the changed ATS 2947 * setting. 2948 * 2949 * Returns: 2950 * 0 for success, -errno for errors. 2951 */ 2952 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2953 u32 pasid) 2954 { 2955 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN); 2956 int r; 2957 2958 r = amdgpu_bo_reserve(vm->root.base.bo, true); 2959 if (r) 2960 return r; 2961 2962 /* Sanity checks */ 2963 r = amdgpu_vm_check_clean_reserved(adev, vm); 2964 if (r) 2965 goto unreserve_bo; 2966 2967 if (pasid) { 2968 unsigned long flags; 2969 2970 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2971 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 2972 GFP_ATOMIC); 2973 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2974 2975 if (r == -ENOSPC) 2976 goto unreserve_bo; 2977 r = 0; 2978 } 2979 2980 /* Check if PD needs to be reinitialized and do it before 2981 * changing any other state, in case it fails. 2982 */ 2983 if (pte_support_ats != vm->pte_support_ats) { 2984 vm->pte_support_ats = pte_support_ats; 2985 r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, false); 2986 if (r) 2987 goto free_idr; 2988 } 2989 2990 /* Update VM state */ 2991 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2992 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2993 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2994 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2995 WARN_ONCE((vm->use_cpu_for_update && 2996 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2997 "CPU update of VM recommended only for large BAR system\n"); 2998 2999 if (vm->use_cpu_for_update) { 3000 /* Sync with last SDMA update/clear before switching to CPU */ 3001 r = amdgpu_bo_sync_wait(vm->root.base.bo, 3002 AMDGPU_FENCE_OWNER_UNDEFINED, true); 3003 if (r) 3004 goto free_idr; 3005 3006 vm->update_funcs = &amdgpu_vm_cpu_funcs; 3007 } else { 3008 vm->update_funcs = &amdgpu_vm_sdma_funcs; 3009 } 3010 dma_fence_put(vm->last_update); 3011 vm->last_update = NULL; 3012 vm->is_compute_context = true; 3013 3014 if (vm->pasid) { 3015 unsigned long flags; 3016 3017 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3018 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3019 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3020 3021 /* Free the original amdgpu allocated pasid 3022 * Will be replaced with kfd allocated pasid 3023 */ 3024 amdgpu_pasid_free(vm->pasid); 3025 vm->pasid = 0; 3026 } 3027 3028 /* Free the shadow bo for compute VM */ 3029 amdgpu_bo_unref(&vm->root.base.bo->shadow); 3030 3031 if (pasid) 3032 vm->pasid = pasid; 3033 3034 goto unreserve_bo; 3035 3036 free_idr: 3037 if (pasid) { 3038 unsigned long flags; 3039 3040 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3041 idr_remove(&adev->vm_manager.pasid_idr, pasid); 3042 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3043 } 3044 unreserve_bo: 3045 amdgpu_bo_unreserve(vm->root.base.bo); 3046 return r; 3047 } 3048 3049 /** 3050 * amdgpu_vm_release_compute - release a compute vm 3051 * @adev: amdgpu_device pointer 3052 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute 3053 * 3054 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute 3055 * pasid from vm. Compute should stop use of vm after this call. 3056 */ 3057 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3058 { 3059 if (vm->pasid) { 3060 unsigned long flags; 3061 3062 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3063 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3064 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3065 } 3066 vm->pasid = 0; 3067 vm->is_compute_context = false; 3068 } 3069 3070 /** 3071 * amdgpu_vm_fini - tear down a vm instance 3072 * 3073 * @adev: amdgpu_device pointer 3074 * @vm: requested vm 3075 * 3076 * Tear down @vm. 3077 * Unbind the VM and remove all bos from the vm bo list 3078 */ 3079 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3080 { 3081 struct amdgpu_bo_va_mapping *mapping, *tmp; 3082 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 3083 struct amdgpu_bo *root; 3084 int i; 3085 3086 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 3087 3088 root = amdgpu_bo_ref(vm->root.base.bo); 3089 amdgpu_bo_reserve(root, true); 3090 if (vm->pasid) { 3091 unsigned long flags; 3092 3093 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3094 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3095 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3096 vm->pasid = 0; 3097 } 3098 3099 dma_fence_wait(vm->last_unlocked, false); 3100 dma_fence_put(vm->last_unlocked); 3101 3102 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 3103 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 3104 amdgpu_vm_prt_fini(adev, vm); 3105 prt_fini_needed = false; 3106 } 3107 3108 list_del(&mapping->list); 3109 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 3110 } 3111 3112 amdgpu_vm_free_pts(adev, vm, NULL); 3113 amdgpu_bo_unreserve(root); 3114 amdgpu_bo_unref(&root); 3115 WARN_ON(vm->root.base.bo); 3116 3117 drm_sched_entity_destroy(&vm->immediate); 3118 drm_sched_entity_destroy(&vm->delayed); 3119 3120 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 3121 dev_err(adev->dev, "still active bo inside vm\n"); 3122 } 3123 rbtree_postorder_for_each_entry_safe(mapping, tmp, 3124 &vm->va.rb_root, rb) { 3125 /* Don't remove the mapping here, we don't want to trigger a 3126 * rebalance and the tree is about to be destroyed anyway. 3127 */ 3128 list_del(&mapping->list); 3129 kfree(mapping); 3130 } 3131 3132 dma_fence_put(vm->last_update); 3133 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 3134 amdgpu_vmid_free_reserved(adev, vm, i); 3135 } 3136 3137 /** 3138 * amdgpu_vm_manager_init - init the VM manager 3139 * 3140 * @adev: amdgpu_device pointer 3141 * 3142 * Initialize the VM manager structures 3143 */ 3144 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 3145 { 3146 unsigned i; 3147 3148 amdgpu_vmid_mgr_init(adev); 3149 3150 adev->vm_manager.fence_context = 3151 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 3152 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 3153 adev->vm_manager.seqno[i] = 0; 3154 3155 spin_lock_init(&adev->vm_manager.prt_lock); 3156 atomic_set(&adev->vm_manager.num_prt_users, 0); 3157 3158 /* If not overridden by the user, by default, only in large BAR systems 3159 * Compute VM tables will be updated by CPU 3160 */ 3161 #ifdef CONFIG_X86_64 3162 if (amdgpu_vm_update_mode == -1) { 3163 if (amdgpu_gmc_vram_full_visible(&adev->gmc)) 3164 adev->vm_manager.vm_update_mode = 3165 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 3166 else 3167 adev->vm_manager.vm_update_mode = 0; 3168 } else 3169 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 3170 #else 3171 adev->vm_manager.vm_update_mode = 0; 3172 #endif 3173 3174 idr_init(&adev->vm_manager.pasid_idr); 3175 spin_lock_init(&adev->vm_manager.pasid_lock); 3176 } 3177 3178 /** 3179 * amdgpu_vm_manager_fini - cleanup VM manager 3180 * 3181 * @adev: amdgpu_device pointer 3182 * 3183 * Cleanup the VM manager and free resources. 3184 */ 3185 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 3186 { 3187 WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr)); 3188 idr_destroy(&adev->vm_manager.pasid_idr); 3189 3190 amdgpu_vmid_mgr_fini(adev); 3191 } 3192 3193 /** 3194 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 3195 * 3196 * @dev: drm device pointer 3197 * @data: drm_amdgpu_vm 3198 * @filp: drm file pointer 3199 * 3200 * Returns: 3201 * 0 for success, -errno for errors. 3202 */ 3203 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 3204 { 3205 union drm_amdgpu_vm *args = data; 3206 struct amdgpu_device *adev = drm_to_adev(dev); 3207 struct amdgpu_fpriv *fpriv = filp->driver_priv; 3208 long timeout = msecs_to_jiffies(2000); 3209 int r; 3210 3211 switch (args->in.op) { 3212 case AMDGPU_VM_OP_RESERVE_VMID: 3213 /* We only have requirement to reserve vmid from gfxhub */ 3214 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, 3215 AMDGPU_GFXHUB_0); 3216 if (r) 3217 return r; 3218 break; 3219 case AMDGPU_VM_OP_UNRESERVE_VMID: 3220 if (amdgpu_sriov_runtime(adev)) 3221 timeout = 8 * timeout; 3222 3223 /* Wait vm idle to make sure the vmid set in SPM_VMID is 3224 * not referenced anymore. 3225 */ 3226 r = amdgpu_bo_reserve(fpriv->vm.root.base.bo, true); 3227 if (r) 3228 return r; 3229 3230 r = amdgpu_vm_wait_idle(&fpriv->vm, timeout); 3231 if (r < 0) 3232 return r; 3233 3234 amdgpu_bo_unreserve(fpriv->vm.root.base.bo); 3235 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0); 3236 break; 3237 default: 3238 return -EINVAL; 3239 } 3240 3241 return 0; 3242 } 3243 3244 /** 3245 * amdgpu_vm_get_task_info - Extracts task info for a PASID. 3246 * 3247 * @adev: drm device pointer 3248 * @pasid: PASID identifier for VM 3249 * @task_info: task_info to fill. 3250 */ 3251 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid, 3252 struct amdgpu_task_info *task_info) 3253 { 3254 struct amdgpu_vm *vm; 3255 unsigned long flags; 3256 3257 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3258 3259 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3260 if (vm) 3261 *task_info = vm->task_info; 3262 3263 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3264 } 3265 3266 /** 3267 * amdgpu_vm_set_task_info - Sets VMs task info. 3268 * 3269 * @vm: vm for which to set the info 3270 */ 3271 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 3272 { 3273 if (vm->task_info.pid) 3274 return; 3275 3276 vm->task_info.pid = current->pid; 3277 get_task_comm(vm->task_info.task_name, current); 3278 3279 if (current->group_leader->mm != current->mm) 3280 return; 3281 3282 vm->task_info.tgid = current->group_leader->pid; 3283 get_task_comm(vm->task_info.process_name, current->group_leader); 3284 } 3285 3286 /** 3287 * amdgpu_vm_handle_fault - graceful handling of VM faults. 3288 * @adev: amdgpu device pointer 3289 * @pasid: PASID of the VM 3290 * @addr: Address of the fault 3291 * 3292 * Try to gracefully handle a VM fault. Return true if the fault was handled and 3293 * shouldn't be reported any more. 3294 */ 3295 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid, 3296 uint64_t addr) 3297 { 3298 struct amdgpu_bo *root; 3299 uint64_t value, flags; 3300 struct amdgpu_vm *vm; 3301 long r; 3302 3303 spin_lock(&adev->vm_manager.pasid_lock); 3304 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3305 if (vm) 3306 root = amdgpu_bo_ref(vm->root.base.bo); 3307 else 3308 root = NULL; 3309 spin_unlock(&adev->vm_manager.pasid_lock); 3310 3311 if (!root) 3312 return false; 3313 3314 r = amdgpu_bo_reserve(root, true); 3315 if (r) 3316 goto error_unref; 3317 3318 /* Double check that the VM still exists */ 3319 spin_lock(&adev->vm_manager.pasid_lock); 3320 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3321 if (vm && vm->root.base.bo != root) 3322 vm = NULL; 3323 spin_unlock(&adev->vm_manager.pasid_lock); 3324 if (!vm) 3325 goto error_unlock; 3326 3327 addr /= AMDGPU_GPU_PAGE_SIZE; 3328 flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED | 3329 AMDGPU_PTE_SYSTEM; 3330 3331 if (vm->is_compute_context) { 3332 /* Intentionally setting invalid PTE flag 3333 * combination to force a no-retry-fault 3334 */ 3335 flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE | 3336 AMDGPU_PTE_TF; 3337 value = 0; 3338 3339 } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) { 3340 /* Redirect the access to the dummy page */ 3341 value = adev->dummy_page_addr; 3342 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE | 3343 AMDGPU_PTE_WRITEABLE; 3344 3345 } else { 3346 /* Let the hw retry silently on the PTE */ 3347 value = 0; 3348 } 3349 3350 r = amdgpu_vm_bo_update_mapping(adev, adev, vm, true, false, NULL, addr, 3351 addr, flags, value, NULL, NULL, 3352 NULL); 3353 if (r) 3354 goto error_unlock; 3355 3356 r = amdgpu_vm_update_pdes(adev, vm, true); 3357 3358 error_unlock: 3359 amdgpu_bo_unreserve(root); 3360 if (r < 0) 3361 DRM_ERROR("Can't handle page fault (%ld)\n", r); 3362 3363 error_unref: 3364 amdgpu_bo_unref(&root); 3365 3366 return false; 3367 } 3368 3369 #if defined(CONFIG_DEBUG_FS) 3370 /** 3371 * amdgpu_debugfs_vm_bo_info - print BO info for the VM 3372 * 3373 * @vm: Requested VM for printing BO info 3374 * @m: debugfs file 3375 * 3376 * Print BO information in debugfs file for the VM 3377 */ 3378 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m) 3379 { 3380 struct amdgpu_bo_va *bo_va, *tmp; 3381 u64 total_idle = 0; 3382 u64 total_evicted = 0; 3383 u64 total_relocated = 0; 3384 u64 total_moved = 0; 3385 u64 total_invalidated = 0; 3386 u64 total_done = 0; 3387 unsigned int total_idle_objs = 0; 3388 unsigned int total_evicted_objs = 0; 3389 unsigned int total_relocated_objs = 0; 3390 unsigned int total_moved_objs = 0; 3391 unsigned int total_invalidated_objs = 0; 3392 unsigned int total_done_objs = 0; 3393 unsigned int id = 0; 3394 3395 seq_puts(m, "\tIdle BOs:\n"); 3396 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) { 3397 if (!bo_va->base.bo) 3398 continue; 3399 total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3400 } 3401 total_idle_objs = id; 3402 id = 0; 3403 3404 seq_puts(m, "\tEvicted BOs:\n"); 3405 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) { 3406 if (!bo_va->base.bo) 3407 continue; 3408 total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3409 } 3410 total_evicted_objs = id; 3411 id = 0; 3412 3413 seq_puts(m, "\tRelocated BOs:\n"); 3414 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) { 3415 if (!bo_va->base.bo) 3416 continue; 3417 total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3418 } 3419 total_relocated_objs = id; 3420 id = 0; 3421 3422 seq_puts(m, "\tMoved BOs:\n"); 3423 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 3424 if (!bo_va->base.bo) 3425 continue; 3426 total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3427 } 3428 total_moved_objs = id; 3429 id = 0; 3430 3431 seq_puts(m, "\tInvalidated BOs:\n"); 3432 spin_lock(&vm->invalidated_lock); 3433 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) { 3434 if (!bo_va->base.bo) 3435 continue; 3436 total_invalidated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3437 } 3438 total_invalidated_objs = id; 3439 id = 0; 3440 3441 seq_puts(m, "\tDone BOs:\n"); 3442 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) { 3443 if (!bo_va->base.bo) 3444 continue; 3445 total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3446 } 3447 spin_unlock(&vm->invalidated_lock); 3448 total_done_objs = id; 3449 3450 seq_printf(m, "\tTotal idle size: %12lld\tobjs:\t%d\n", total_idle, 3451 total_idle_objs); 3452 seq_printf(m, "\tTotal evicted size: %12lld\tobjs:\t%d\n", total_evicted, 3453 total_evicted_objs); 3454 seq_printf(m, "\tTotal relocated size: %12lld\tobjs:\t%d\n", total_relocated, 3455 total_relocated_objs); 3456 seq_printf(m, "\tTotal moved size: %12lld\tobjs:\t%d\n", total_moved, 3457 total_moved_objs); 3458 seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated, 3459 total_invalidated_objs); 3460 seq_printf(m, "\tTotal done size: %12lld\tobjs:\t%d\n", total_done, 3461 total_done_objs); 3462 } 3463 #endif 3464