1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 29 #include <linux/dma-fence-array.h> 30 #include <linux/interval_tree_generic.h> 31 #include <linux/idr.h> 32 #include <linux/dma-buf.h> 33 34 #include <drm/amdgpu_drm.h> 35 #include <drm/drm_drv.h> 36 #include <drm/ttm/ttm_tt.h> 37 #include <drm/drm_exec.h> 38 #include "amdgpu.h" 39 #include "amdgpu_vm.h" 40 #include "amdgpu_trace.h" 41 #include "amdgpu_amdkfd.h" 42 #include "amdgpu_gmc.h" 43 #include "amdgpu_xgmi.h" 44 #include "amdgpu_dma_buf.h" 45 #include "amdgpu_res_cursor.h" 46 #include "kfd_svm.h" 47 48 /** 49 * DOC: GPUVM 50 * 51 * GPUVM is the MMU functionality provided on the GPU. 52 * GPUVM is similar to the legacy GART on older asics, however 53 * rather than there being a single global GART table 54 * for the entire GPU, there can be multiple GPUVM page tables active 55 * at any given time. The GPUVM page tables can contain a mix 56 * VRAM pages and system pages (both memory and MMIO) and system pages 57 * can be mapped as snooped (cached system pages) or unsnooped 58 * (uncached system pages). 59 * 60 * Each active GPUVM has an ID associated with it and there is a page table 61 * linked with each VMID. When executing a command buffer, 62 * the kernel tells the engine what VMID to use for that command 63 * buffer. VMIDs are allocated dynamically as commands are submitted. 64 * The userspace drivers maintain their own address space and the kernel 65 * sets up their pages tables accordingly when they submit their 66 * command buffers and a VMID is assigned. 67 * The hardware supports up to 16 active GPUVMs at any given time. 68 * 69 * Each GPUVM is represented by a 1-2 or 1-5 level page table, depending 70 * on the ASIC family. GPUVM supports RWX attributes on each page as well 71 * as other features such as encryption and caching attributes. 72 * 73 * VMID 0 is special. It is the GPUVM used for the kernel driver. In 74 * addition to an aperture managed by a page table, VMID 0 also has 75 * several other apertures. There is an aperture for direct access to VRAM 76 * and there is a legacy AGP aperture which just forwards accesses directly 77 * to the matching system physical addresses (or IOVAs when an IOMMU is 78 * present). These apertures provide direct access to these memories without 79 * incurring the overhead of a page table. VMID 0 is used by the kernel 80 * driver for tasks like memory management. 81 * 82 * GPU clients (i.e., engines on the GPU) use GPUVM VMIDs to access memory. 83 * For user applications, each application can have their own unique GPUVM 84 * address space. The application manages the address space and the kernel 85 * driver manages the GPUVM page tables for each process. If an GPU client 86 * accesses an invalid page, it will generate a GPU page fault, similar to 87 * accessing an invalid page on a CPU. 88 */ 89 90 #define START(node) ((node)->start) 91 #define LAST(node) ((node)->last) 92 93 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 94 START, LAST, static, amdgpu_vm_it) 95 96 #undef START 97 #undef LAST 98 99 /** 100 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 101 */ 102 struct amdgpu_prt_cb { 103 104 /** 105 * @adev: amdgpu device 106 */ 107 struct amdgpu_device *adev; 108 109 /** 110 * @cb: callback 111 */ 112 struct dma_fence_cb cb; 113 }; 114 115 /** 116 * struct amdgpu_vm_tlb_seq_struct - Helper to increment the TLB flush sequence 117 */ 118 struct amdgpu_vm_tlb_seq_struct { 119 /** 120 * @vm: pointer to the amdgpu_vm structure to set the fence sequence on 121 */ 122 struct amdgpu_vm *vm; 123 124 /** 125 * @cb: callback 126 */ 127 struct dma_fence_cb cb; 128 }; 129 130 /** 131 * amdgpu_vm_set_pasid - manage pasid and vm ptr mapping 132 * 133 * @adev: amdgpu_device pointer 134 * @vm: amdgpu_vm pointer 135 * @pasid: the pasid the VM is using on this GPU 136 * 137 * Set the pasid this VM is using on this GPU, can also be used to remove the 138 * pasid by passing in zero. 139 * 140 */ 141 int amdgpu_vm_set_pasid(struct amdgpu_device *adev, struct amdgpu_vm *vm, 142 u32 pasid) 143 { 144 int r; 145 146 if (vm->pasid == pasid) 147 return 0; 148 149 if (vm->pasid) { 150 r = xa_err(xa_erase_irq(&adev->vm_manager.pasids, vm->pasid)); 151 if (r < 0) 152 return r; 153 154 vm->pasid = 0; 155 } 156 157 if (pasid) { 158 r = xa_err(xa_store_irq(&adev->vm_manager.pasids, pasid, vm, 159 GFP_KERNEL)); 160 if (r < 0) 161 return r; 162 163 vm->pasid = pasid; 164 } 165 166 167 return 0; 168 } 169 170 /** 171 * amdgpu_vm_bo_evicted - vm_bo is evicted 172 * 173 * @vm_bo: vm_bo which is evicted 174 * 175 * State for PDs/PTs and per VM BOs which are not at the location they should 176 * be. 177 */ 178 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 179 { 180 struct amdgpu_vm *vm = vm_bo->vm; 181 struct amdgpu_bo *bo = vm_bo->bo; 182 183 vm_bo->moved = true; 184 spin_lock(&vm_bo->vm->status_lock); 185 if (bo->tbo.type == ttm_bo_type_kernel) 186 list_move(&vm_bo->vm_status, &vm->evicted); 187 else 188 list_move_tail(&vm_bo->vm_status, &vm->evicted); 189 spin_unlock(&vm_bo->vm->status_lock); 190 } 191 /** 192 * amdgpu_vm_bo_moved - vm_bo is moved 193 * 194 * @vm_bo: vm_bo which is moved 195 * 196 * State for per VM BOs which are moved, but that change is not yet reflected 197 * in the page tables. 198 */ 199 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 200 { 201 spin_lock(&vm_bo->vm->status_lock); 202 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 203 spin_unlock(&vm_bo->vm->status_lock); 204 } 205 206 /** 207 * amdgpu_vm_bo_idle - vm_bo is idle 208 * 209 * @vm_bo: vm_bo which is now idle 210 * 211 * State for PDs/PTs and per VM BOs which have gone through the state machine 212 * and are now idle. 213 */ 214 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 215 { 216 spin_lock(&vm_bo->vm->status_lock); 217 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 218 spin_unlock(&vm_bo->vm->status_lock); 219 vm_bo->moved = false; 220 } 221 222 /** 223 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 224 * 225 * @vm_bo: vm_bo which is now invalidated 226 * 227 * State for normal BOs which are invalidated and that change not yet reflected 228 * in the PTs. 229 */ 230 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 231 { 232 spin_lock(&vm_bo->vm->status_lock); 233 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 234 spin_unlock(&vm_bo->vm->status_lock); 235 } 236 237 /** 238 * amdgpu_vm_bo_evicted_user - vm_bo is evicted 239 * 240 * @vm_bo: vm_bo which is evicted 241 * 242 * State for BOs used by user mode queues which are not at the location they 243 * should be. 244 */ 245 static void amdgpu_vm_bo_evicted_user(struct amdgpu_vm_bo_base *vm_bo) 246 { 247 vm_bo->moved = true; 248 spin_lock(&vm_bo->vm->status_lock); 249 list_move(&vm_bo->vm_status, &vm_bo->vm->evicted_user); 250 spin_unlock(&vm_bo->vm->status_lock); 251 } 252 253 /** 254 * amdgpu_vm_bo_relocated - vm_bo is reloacted 255 * 256 * @vm_bo: vm_bo which is relocated 257 * 258 * State for PDs/PTs which needs to update their parent PD. 259 * For the root PD, just move to idle state. 260 */ 261 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 262 { 263 if (vm_bo->bo->parent) { 264 spin_lock(&vm_bo->vm->status_lock); 265 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 266 spin_unlock(&vm_bo->vm->status_lock); 267 } else { 268 amdgpu_vm_bo_idle(vm_bo); 269 } 270 } 271 272 /** 273 * amdgpu_vm_bo_done - vm_bo is done 274 * 275 * @vm_bo: vm_bo which is now done 276 * 277 * State for normal BOs which are invalidated and that change has been updated 278 * in the PTs. 279 */ 280 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 281 { 282 spin_lock(&vm_bo->vm->status_lock); 283 list_move(&vm_bo->vm_status, &vm_bo->vm->done); 284 spin_unlock(&vm_bo->vm->status_lock); 285 } 286 287 /** 288 * amdgpu_vm_bo_reset_state_machine - reset the vm_bo state machine 289 * @vm: the VM which state machine to reset 290 * 291 * Move all vm_bo object in the VM into a state where they will be updated 292 * again during validation. 293 */ 294 static void amdgpu_vm_bo_reset_state_machine(struct amdgpu_vm *vm) 295 { 296 struct amdgpu_vm_bo_base *vm_bo, *tmp; 297 298 spin_lock(&vm->status_lock); 299 list_splice_init(&vm->done, &vm->invalidated); 300 list_for_each_entry(vm_bo, &vm->invalidated, vm_status) 301 vm_bo->moved = true; 302 list_for_each_entry_safe(vm_bo, tmp, &vm->idle, vm_status) { 303 struct amdgpu_bo *bo = vm_bo->bo; 304 305 vm_bo->moved = true; 306 if (!bo || bo->tbo.type != ttm_bo_type_kernel) 307 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 308 else if (bo->parent) 309 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 310 } 311 spin_unlock(&vm->status_lock); 312 } 313 314 /** 315 * amdgpu_vm_update_shared - helper to update shared memory stat 316 * @base: base structure for tracking BO usage in a VM 317 * 318 * Takes the vm status_lock and updates the shared memory stat. If the basic 319 * stat changed (e.g. buffer was moved) amdgpu_vm_update_stats need to be called 320 * as well. 321 */ 322 static void amdgpu_vm_update_shared(struct amdgpu_vm_bo_base *base) 323 { 324 struct amdgpu_vm *vm = base->vm; 325 struct amdgpu_bo *bo = base->bo; 326 uint64_t size = amdgpu_bo_size(bo); 327 uint32_t bo_memtype = amdgpu_bo_mem_stats_placement(bo); 328 bool shared; 329 330 spin_lock(&vm->status_lock); 331 shared = drm_gem_object_is_shared_for_memory_stats(&bo->tbo.base); 332 if (base->shared != shared) { 333 base->shared = shared; 334 if (shared) { 335 vm->stats[bo_memtype].drm.shared += size; 336 vm->stats[bo_memtype].drm.private -= size; 337 } else { 338 vm->stats[bo_memtype].drm.shared -= size; 339 vm->stats[bo_memtype].drm.private += size; 340 } 341 } 342 spin_unlock(&vm->status_lock); 343 } 344 345 /** 346 * amdgpu_vm_bo_update_shared - callback when bo gets shared/unshared 347 * @bo: amdgpu buffer object 348 * 349 * Update the per VM stats for all the vm if needed from private to shared or 350 * vice versa. 351 */ 352 void amdgpu_vm_bo_update_shared(struct amdgpu_bo *bo) 353 { 354 struct amdgpu_vm_bo_base *base; 355 356 for (base = bo->vm_bo; base; base = base->next) 357 amdgpu_vm_update_shared(base); 358 } 359 360 /** 361 * amdgpu_vm_update_stats_locked - helper to update normal memory stat 362 * @base: base structure for tracking BO usage in a VM 363 * @res: the ttm_resource to use for the purpose of accounting, may or may not 364 * be bo->tbo.resource 365 * @sign: if we should add (+1) or subtract (-1) from the stat 366 * 367 * Caller need to have the vm status_lock held. Useful for when multiple update 368 * need to happen at the same time. 369 */ 370 static void amdgpu_vm_update_stats_locked(struct amdgpu_vm_bo_base *base, 371 struct ttm_resource *res, int sign) 372 { 373 struct amdgpu_vm *vm = base->vm; 374 struct amdgpu_bo *bo = base->bo; 375 int64_t size = sign * amdgpu_bo_size(bo); 376 uint32_t bo_memtype = amdgpu_bo_mem_stats_placement(bo); 377 378 /* For drm-total- and drm-shared-, BO are accounted by their preferred 379 * placement, see also amdgpu_bo_mem_stats_placement. 380 */ 381 if (base->shared) 382 vm->stats[bo_memtype].drm.shared += size; 383 else 384 vm->stats[bo_memtype].drm.private += size; 385 386 if (res && res->mem_type < __AMDGPU_PL_NUM) { 387 uint32_t res_memtype = res->mem_type; 388 389 vm->stats[res_memtype].drm.resident += size; 390 /* BO only count as purgeable if it is resident, 391 * since otherwise there's nothing to purge. 392 */ 393 if (bo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) 394 vm->stats[res_memtype].drm.purgeable += size; 395 if (!(bo->preferred_domains & amdgpu_mem_type_to_domain(res_memtype))) 396 vm->stats[bo_memtype].evicted += size; 397 } 398 } 399 400 /** 401 * amdgpu_vm_update_stats - helper to update normal memory stat 402 * @base: base structure for tracking BO usage in a VM 403 * @res: the ttm_resource to use for the purpose of accounting, may or may not 404 * be bo->tbo.resource 405 * @sign: if we should add (+1) or subtract (-1) from the stat 406 * 407 * Updates the basic memory stat when bo is added/deleted/moved. 408 */ 409 void amdgpu_vm_update_stats(struct amdgpu_vm_bo_base *base, 410 struct ttm_resource *res, int sign) 411 { 412 struct amdgpu_vm *vm = base->vm; 413 414 spin_lock(&vm->status_lock); 415 amdgpu_vm_update_stats_locked(base, res, sign); 416 spin_unlock(&vm->status_lock); 417 } 418 419 /** 420 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 421 * 422 * @base: base structure for tracking BO usage in a VM 423 * @vm: vm to which bo is to be added 424 * @bo: amdgpu buffer object 425 * 426 * Initialize a bo_va_base structure and add it to the appropriate lists 427 * 428 */ 429 void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 430 struct amdgpu_vm *vm, struct amdgpu_bo *bo) 431 { 432 base->vm = vm; 433 base->bo = bo; 434 base->next = NULL; 435 INIT_LIST_HEAD(&base->vm_status); 436 437 if (!bo) 438 return; 439 base->next = bo->vm_bo; 440 bo->vm_bo = base; 441 442 spin_lock(&vm->status_lock); 443 base->shared = drm_gem_object_is_shared_for_memory_stats(&bo->tbo.base); 444 amdgpu_vm_update_stats_locked(base, bo->tbo.resource, +1); 445 spin_unlock(&vm->status_lock); 446 447 if (!amdgpu_vm_is_bo_always_valid(vm, bo)) 448 return; 449 450 dma_resv_assert_held(vm->root.bo->tbo.base.resv); 451 452 ttm_bo_set_bulk_move(&bo->tbo, &vm->lru_bulk_move); 453 if (bo->tbo.type == ttm_bo_type_kernel && bo->parent) 454 amdgpu_vm_bo_relocated(base); 455 else 456 amdgpu_vm_bo_idle(base); 457 458 if (bo->preferred_domains & 459 amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type)) 460 return; 461 462 /* 463 * we checked all the prerequisites, but it looks like this per vm bo 464 * is currently evicted. add the bo to the evicted list to make sure it 465 * is validated on next vm use to avoid fault. 466 * */ 467 amdgpu_vm_bo_evicted(base); 468 } 469 470 /** 471 * amdgpu_vm_lock_pd - lock PD in drm_exec 472 * 473 * @vm: vm providing the BOs 474 * @exec: drm execution context 475 * @num_fences: number of extra fences to reserve 476 * 477 * Lock the VM root PD in the DRM execution context. 478 */ 479 int amdgpu_vm_lock_pd(struct amdgpu_vm *vm, struct drm_exec *exec, 480 unsigned int num_fences) 481 { 482 /* We need at least two fences for the VM PD/PT updates */ 483 return drm_exec_prepare_obj(exec, &vm->root.bo->tbo.base, 484 2 + num_fences); 485 } 486 487 /** 488 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 489 * 490 * @adev: amdgpu device pointer 491 * @vm: vm providing the BOs 492 * 493 * Move all BOs to the end of LRU and remember their positions to put them 494 * together. 495 */ 496 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 497 struct amdgpu_vm *vm) 498 { 499 spin_lock(&adev->mman.bdev.lru_lock); 500 ttm_lru_bulk_move_tail(&vm->lru_bulk_move); 501 spin_unlock(&adev->mman.bdev.lru_lock); 502 } 503 504 /* Create scheduler entities for page table updates */ 505 static int amdgpu_vm_init_entities(struct amdgpu_device *adev, 506 struct amdgpu_vm *vm) 507 { 508 int r; 509 510 r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL, 511 adev->vm_manager.vm_pte_scheds, 512 adev->vm_manager.vm_pte_num_scheds, NULL); 513 if (r) 514 goto error; 515 516 return drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL, 517 adev->vm_manager.vm_pte_scheds, 518 adev->vm_manager.vm_pte_num_scheds, NULL); 519 520 error: 521 drm_sched_entity_destroy(&vm->immediate); 522 return r; 523 } 524 525 /* Destroy the entities for page table updates again */ 526 static void amdgpu_vm_fini_entities(struct amdgpu_vm *vm) 527 { 528 drm_sched_entity_destroy(&vm->immediate); 529 drm_sched_entity_destroy(&vm->delayed); 530 } 531 532 /** 533 * amdgpu_vm_generation - return the page table re-generation counter 534 * @adev: the amdgpu_device 535 * @vm: optional VM to check, might be NULL 536 * 537 * Returns a page table re-generation token to allow checking if submissions 538 * are still valid to use this VM. The VM parameter might be NULL in which case 539 * just the VRAM lost counter will be used. 540 */ 541 uint64_t amdgpu_vm_generation(struct amdgpu_device *adev, struct amdgpu_vm *vm) 542 { 543 uint64_t result = (u64)atomic_read(&adev->vram_lost_counter) << 32; 544 545 if (!vm) 546 return result; 547 548 result += lower_32_bits(vm->generation); 549 /* Add one if the page tables will be re-generated on next CS */ 550 if (drm_sched_entity_error(&vm->delayed)) 551 ++result; 552 553 return result; 554 } 555 556 /** 557 * amdgpu_vm_validate - validate evicted BOs tracked in the VM 558 * 559 * @adev: amdgpu device pointer 560 * @vm: vm providing the BOs 561 * @ticket: optional reservation ticket used to reserve the VM 562 * @validate: callback to do the validation 563 * @param: parameter for the validation callback 564 * 565 * Validate the page table BOs and per-VM BOs on command submission if 566 * necessary. If a ticket is given, also try to validate evicted user queue 567 * BOs. They must already be reserved with the given ticket. 568 * 569 * Returns: 570 * Validation result. 571 */ 572 int amdgpu_vm_validate(struct amdgpu_device *adev, struct amdgpu_vm *vm, 573 struct ww_acquire_ctx *ticket, 574 int (*validate)(void *p, struct amdgpu_bo *bo), 575 void *param) 576 { 577 uint64_t new_vm_generation = amdgpu_vm_generation(adev, vm); 578 struct amdgpu_vm_bo_base *bo_base; 579 struct amdgpu_bo *bo; 580 int r; 581 582 if (vm->generation != new_vm_generation) { 583 vm->generation = new_vm_generation; 584 amdgpu_vm_bo_reset_state_machine(vm); 585 amdgpu_vm_fini_entities(vm); 586 r = amdgpu_vm_init_entities(adev, vm); 587 if (r) 588 return r; 589 } 590 591 spin_lock(&vm->status_lock); 592 while (!list_empty(&vm->evicted)) { 593 bo_base = list_first_entry(&vm->evicted, 594 struct amdgpu_vm_bo_base, 595 vm_status); 596 spin_unlock(&vm->status_lock); 597 598 bo = bo_base->bo; 599 600 r = validate(param, bo); 601 if (r) 602 return r; 603 604 if (bo->tbo.type != ttm_bo_type_kernel) { 605 amdgpu_vm_bo_moved(bo_base); 606 } else { 607 vm->update_funcs->map_table(to_amdgpu_bo_vm(bo)); 608 amdgpu_vm_bo_relocated(bo_base); 609 } 610 spin_lock(&vm->status_lock); 611 } 612 while (ticket && !list_empty(&vm->evicted_user)) { 613 bo_base = list_first_entry(&vm->evicted_user, 614 struct amdgpu_vm_bo_base, 615 vm_status); 616 spin_unlock(&vm->status_lock); 617 618 bo = bo_base->bo; 619 620 if (dma_resv_locking_ctx(bo->tbo.base.resv) != ticket) { 621 struct amdgpu_task_info *ti = amdgpu_vm_get_task_info_vm(vm); 622 623 pr_warn_ratelimited("Evicted user BO is not reserved\n"); 624 if (ti) { 625 pr_warn_ratelimited("pid %d\n", ti->pid); 626 amdgpu_vm_put_task_info(ti); 627 } 628 629 return -EINVAL; 630 } 631 632 r = validate(param, bo); 633 if (r) 634 return r; 635 636 amdgpu_vm_bo_invalidated(bo_base); 637 638 spin_lock(&vm->status_lock); 639 } 640 spin_unlock(&vm->status_lock); 641 642 amdgpu_vm_eviction_lock(vm); 643 vm->evicting = false; 644 amdgpu_vm_eviction_unlock(vm); 645 646 return 0; 647 } 648 649 /** 650 * amdgpu_vm_ready - check VM is ready for updates 651 * 652 * @vm: VM to check 653 * 654 * Check if all VM PDs/PTs are ready for updates 655 * 656 * Returns: 657 * True if VM is not evicting. 658 */ 659 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 660 { 661 bool empty; 662 bool ret; 663 664 amdgpu_vm_eviction_lock(vm); 665 ret = !vm->evicting; 666 amdgpu_vm_eviction_unlock(vm); 667 668 spin_lock(&vm->status_lock); 669 empty = list_empty(&vm->evicted); 670 spin_unlock(&vm->status_lock); 671 672 return ret && empty; 673 } 674 675 /** 676 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 677 * 678 * @adev: amdgpu_device pointer 679 */ 680 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 681 { 682 const struct amdgpu_ip_block *ip_block; 683 bool has_compute_vm_bug; 684 struct amdgpu_ring *ring; 685 int i; 686 687 has_compute_vm_bug = false; 688 689 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 690 if (ip_block) { 691 /* Compute has a VM bug for GFX version < 7. 692 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 693 if (ip_block->version->major <= 7) 694 has_compute_vm_bug = true; 695 else if (ip_block->version->major == 8) 696 if (adev->gfx.mec_fw_version < 673) 697 has_compute_vm_bug = true; 698 } 699 700 for (i = 0; i < adev->num_rings; i++) { 701 ring = adev->rings[i]; 702 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 703 /* only compute rings */ 704 ring->has_compute_vm_bug = has_compute_vm_bug; 705 else 706 ring->has_compute_vm_bug = false; 707 } 708 } 709 710 /** 711 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 712 * 713 * @ring: ring on which the job will be submitted 714 * @job: job to submit 715 * 716 * Returns: 717 * True if sync is needed. 718 */ 719 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 720 struct amdgpu_job *job) 721 { 722 struct amdgpu_device *adev = ring->adev; 723 unsigned vmhub = ring->vm_hub; 724 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 725 726 if (job->vmid == 0) 727 return false; 728 729 if (job->vm_needs_flush || ring->has_compute_vm_bug) 730 return true; 731 732 if (ring->funcs->emit_gds_switch && job->gds_switch_needed) 733 return true; 734 735 if (amdgpu_vmid_had_gpu_reset(adev, &id_mgr->ids[job->vmid])) 736 return true; 737 738 return false; 739 } 740 741 /** 742 * amdgpu_vm_flush - hardware flush the vm 743 * 744 * @ring: ring to use for flush 745 * @job: related job 746 * @need_pipe_sync: is pipe sync needed 747 * 748 * Emit a VM flush when it is necessary. 749 * 750 * Returns: 751 * 0 on success, errno otherwise. 752 */ 753 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, 754 bool need_pipe_sync) 755 { 756 struct amdgpu_device *adev = ring->adev; 757 unsigned vmhub = ring->vm_hub; 758 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 759 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 760 bool spm_update_needed = job->spm_update_needed; 761 bool gds_switch_needed = ring->funcs->emit_gds_switch && 762 job->gds_switch_needed; 763 bool vm_flush_needed = job->vm_needs_flush; 764 struct dma_fence *fence = NULL; 765 bool pasid_mapping_needed = false; 766 unsigned int patch; 767 int r; 768 769 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 770 gds_switch_needed = true; 771 vm_flush_needed = true; 772 pasid_mapping_needed = true; 773 spm_update_needed = true; 774 } 775 776 mutex_lock(&id_mgr->lock); 777 if (id->pasid != job->pasid || !id->pasid_mapping || 778 !dma_fence_is_signaled(id->pasid_mapping)) 779 pasid_mapping_needed = true; 780 mutex_unlock(&id_mgr->lock); 781 782 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 783 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 784 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 785 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 786 ring->funcs->emit_wreg; 787 788 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync && 789 !(job->enforce_isolation && !job->vmid)) 790 return 0; 791 792 amdgpu_ring_ib_begin(ring); 793 if (ring->funcs->init_cond_exec) 794 patch = amdgpu_ring_init_cond_exec(ring, 795 ring->cond_exe_gpu_addr); 796 797 if (need_pipe_sync) 798 amdgpu_ring_emit_pipeline_sync(ring); 799 800 if (adev->gfx.enable_cleaner_shader && 801 ring->funcs->emit_cleaner_shader && 802 job->enforce_isolation) 803 ring->funcs->emit_cleaner_shader(ring); 804 805 if (vm_flush_needed) { 806 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 807 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 808 } 809 810 if (pasid_mapping_needed) 811 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 812 813 if (spm_update_needed && adev->gfx.rlc.funcs->update_spm_vmid) 814 adev->gfx.rlc.funcs->update_spm_vmid(adev, ring, job->vmid); 815 816 if (!ring->is_mes_queue && ring->funcs->emit_gds_switch && 817 gds_switch_needed) { 818 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 819 job->gds_size, job->gws_base, 820 job->gws_size, job->oa_base, 821 job->oa_size); 822 } 823 824 if (vm_flush_needed || pasid_mapping_needed) { 825 r = amdgpu_fence_emit(ring, &fence, NULL, 0); 826 if (r) 827 return r; 828 } 829 830 if (vm_flush_needed) { 831 mutex_lock(&id_mgr->lock); 832 dma_fence_put(id->last_flush); 833 id->last_flush = dma_fence_get(fence); 834 id->current_gpu_reset_count = 835 atomic_read(&adev->gpu_reset_counter); 836 mutex_unlock(&id_mgr->lock); 837 } 838 839 if (pasid_mapping_needed) { 840 mutex_lock(&id_mgr->lock); 841 id->pasid = job->pasid; 842 dma_fence_put(id->pasid_mapping); 843 id->pasid_mapping = dma_fence_get(fence); 844 mutex_unlock(&id_mgr->lock); 845 } 846 dma_fence_put(fence); 847 848 amdgpu_ring_patch_cond_exec(ring, patch); 849 850 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 851 if (ring->funcs->emit_switch_buffer) { 852 amdgpu_ring_emit_switch_buffer(ring); 853 amdgpu_ring_emit_switch_buffer(ring); 854 } 855 856 amdgpu_ring_ib_end(ring); 857 return 0; 858 } 859 860 /** 861 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 862 * 863 * @vm: requested vm 864 * @bo: requested buffer object 865 * 866 * Find @bo inside the requested vm. 867 * Search inside the @bos vm list for the requested vm 868 * Returns the found bo_va or NULL if none is found 869 * 870 * Object has to be reserved! 871 * 872 * Returns: 873 * Found bo_va or NULL. 874 */ 875 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 876 struct amdgpu_bo *bo) 877 { 878 struct amdgpu_vm_bo_base *base; 879 880 for (base = bo->vm_bo; base; base = base->next) { 881 if (base->vm != vm) 882 continue; 883 884 return container_of(base, struct amdgpu_bo_va, base); 885 } 886 return NULL; 887 } 888 889 /** 890 * amdgpu_vm_map_gart - Resolve gart mapping of addr 891 * 892 * @pages_addr: optional DMA address to use for lookup 893 * @addr: the unmapped addr 894 * 895 * Look up the physical address of the page that the pte resolves 896 * to. 897 * 898 * Returns: 899 * The pointer for the page table entry. 900 */ 901 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 902 { 903 uint64_t result; 904 905 /* page table offset */ 906 result = pages_addr[addr >> PAGE_SHIFT]; 907 908 /* in case cpu page size != gpu page size*/ 909 result |= addr & (~PAGE_MASK); 910 911 result &= 0xFFFFFFFFFFFFF000ULL; 912 913 return result; 914 } 915 916 /** 917 * amdgpu_vm_update_pdes - make sure that all directories are valid 918 * 919 * @adev: amdgpu_device pointer 920 * @vm: requested vm 921 * @immediate: submit immediately to the paging queue 922 * 923 * Makes sure all directories are up to date. 924 * 925 * Returns: 926 * 0 for success, error for failure. 927 */ 928 int amdgpu_vm_update_pdes(struct amdgpu_device *adev, 929 struct amdgpu_vm *vm, bool immediate) 930 { 931 struct amdgpu_vm_update_params params; 932 struct amdgpu_vm_bo_base *entry; 933 bool flush_tlb_needed = false; 934 LIST_HEAD(relocated); 935 int r, idx; 936 937 spin_lock(&vm->status_lock); 938 list_splice_init(&vm->relocated, &relocated); 939 spin_unlock(&vm->status_lock); 940 941 if (list_empty(&relocated)) 942 return 0; 943 944 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 945 return -ENODEV; 946 947 memset(¶ms, 0, sizeof(params)); 948 params.adev = adev; 949 params.vm = vm; 950 params.immediate = immediate; 951 952 r = vm->update_funcs->prepare(¶ms, NULL); 953 if (r) 954 goto error; 955 956 list_for_each_entry(entry, &relocated, vm_status) { 957 /* vm_flush_needed after updating moved PDEs */ 958 flush_tlb_needed |= entry->moved; 959 960 r = amdgpu_vm_pde_update(¶ms, entry); 961 if (r) 962 goto error; 963 } 964 965 r = vm->update_funcs->commit(¶ms, &vm->last_update); 966 if (r) 967 goto error; 968 969 if (flush_tlb_needed) 970 atomic64_inc(&vm->tlb_seq); 971 972 while (!list_empty(&relocated)) { 973 entry = list_first_entry(&relocated, struct amdgpu_vm_bo_base, 974 vm_status); 975 amdgpu_vm_bo_idle(entry); 976 } 977 978 error: 979 drm_dev_exit(idx); 980 return r; 981 } 982 983 /** 984 * amdgpu_vm_tlb_seq_cb - make sure to increment tlb sequence 985 * @fence: unused 986 * @cb: the callback structure 987 * 988 * Increments the tlb sequence to make sure that future CS execute a VM flush. 989 */ 990 static void amdgpu_vm_tlb_seq_cb(struct dma_fence *fence, 991 struct dma_fence_cb *cb) 992 { 993 struct amdgpu_vm_tlb_seq_struct *tlb_cb; 994 995 tlb_cb = container_of(cb, typeof(*tlb_cb), cb); 996 atomic64_inc(&tlb_cb->vm->tlb_seq); 997 kfree(tlb_cb); 998 } 999 1000 /** 1001 * amdgpu_vm_tlb_flush - prepare TLB flush 1002 * 1003 * @params: parameters for update 1004 * @fence: input fence to sync TLB flush with 1005 * @tlb_cb: the callback structure 1006 * 1007 * Increments the tlb sequence to make sure that future CS execute a VM flush. 1008 */ 1009 static void 1010 amdgpu_vm_tlb_flush(struct amdgpu_vm_update_params *params, 1011 struct dma_fence **fence, 1012 struct amdgpu_vm_tlb_seq_struct *tlb_cb) 1013 { 1014 struct amdgpu_vm *vm = params->vm; 1015 1016 tlb_cb->vm = vm; 1017 if (!fence || !*fence) { 1018 amdgpu_vm_tlb_seq_cb(NULL, &tlb_cb->cb); 1019 return; 1020 } 1021 1022 if (!dma_fence_add_callback(*fence, &tlb_cb->cb, 1023 amdgpu_vm_tlb_seq_cb)) { 1024 dma_fence_put(vm->last_tlb_flush); 1025 vm->last_tlb_flush = dma_fence_get(*fence); 1026 } else { 1027 amdgpu_vm_tlb_seq_cb(NULL, &tlb_cb->cb); 1028 } 1029 1030 /* Prepare a TLB flush fence to be attached to PTs */ 1031 if (!params->unlocked && vm->is_compute_context) { 1032 amdgpu_vm_tlb_fence_create(params->adev, vm, fence); 1033 1034 /* Makes sure no PD/PT is freed before the flush */ 1035 dma_resv_add_fence(vm->root.bo->tbo.base.resv, *fence, 1036 DMA_RESV_USAGE_BOOKKEEP); 1037 } 1038 } 1039 1040 /** 1041 * amdgpu_vm_update_range - update a range in the vm page table 1042 * 1043 * @adev: amdgpu_device pointer to use for commands 1044 * @vm: the VM to update the range 1045 * @immediate: immediate submission in a page fault 1046 * @unlocked: unlocked invalidation during MM callback 1047 * @flush_tlb: trigger tlb invalidation after update completed 1048 * @allow_override: change MTYPE for local NUMA nodes 1049 * @sync: fences we need to sync to 1050 * @start: start of mapped range 1051 * @last: last mapped entry 1052 * @flags: flags for the entries 1053 * @offset: offset into nodes and pages_addr 1054 * @vram_base: base for vram mappings 1055 * @res: ttm_resource to map 1056 * @pages_addr: DMA addresses to use for mapping 1057 * @fence: optional resulting fence 1058 * 1059 * Fill in the page table entries between @start and @last. 1060 * 1061 * Returns: 1062 * 0 for success, negative erro code for failure. 1063 */ 1064 int amdgpu_vm_update_range(struct amdgpu_device *adev, struct amdgpu_vm *vm, 1065 bool immediate, bool unlocked, bool flush_tlb, 1066 bool allow_override, struct amdgpu_sync *sync, 1067 uint64_t start, uint64_t last, uint64_t flags, 1068 uint64_t offset, uint64_t vram_base, 1069 struct ttm_resource *res, dma_addr_t *pages_addr, 1070 struct dma_fence **fence) 1071 { 1072 struct amdgpu_vm_tlb_seq_struct *tlb_cb; 1073 struct amdgpu_vm_update_params params; 1074 struct amdgpu_res_cursor cursor; 1075 int r, idx; 1076 1077 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1078 return -ENODEV; 1079 1080 tlb_cb = kmalloc(sizeof(*tlb_cb), GFP_KERNEL); 1081 if (!tlb_cb) { 1082 drm_dev_exit(idx); 1083 return -ENOMEM; 1084 } 1085 1086 /* Vega20+XGMI where PTEs get inadvertently cached in L2 texture cache, 1087 * heavy-weight flush TLB unconditionally. 1088 */ 1089 flush_tlb |= adev->gmc.xgmi.num_physical_nodes && 1090 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 0); 1091 1092 /* 1093 * On GFX8 and older any 8 PTE block with a valid bit set enters the TLB 1094 */ 1095 flush_tlb |= amdgpu_ip_version(adev, GC_HWIP, 0) < IP_VERSION(9, 0, 0); 1096 1097 memset(¶ms, 0, sizeof(params)); 1098 params.adev = adev; 1099 params.vm = vm; 1100 params.immediate = immediate; 1101 params.pages_addr = pages_addr; 1102 params.unlocked = unlocked; 1103 params.needs_flush = flush_tlb; 1104 params.allow_override = allow_override; 1105 INIT_LIST_HEAD(¶ms.tlb_flush_waitlist); 1106 1107 amdgpu_vm_eviction_lock(vm); 1108 if (vm->evicting) { 1109 r = -EBUSY; 1110 goto error_free; 1111 } 1112 1113 if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) { 1114 struct dma_fence *tmp = dma_fence_get_stub(); 1115 1116 amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true); 1117 swap(vm->last_unlocked, tmp); 1118 dma_fence_put(tmp); 1119 } 1120 1121 r = vm->update_funcs->prepare(¶ms, sync); 1122 if (r) 1123 goto error_free; 1124 1125 amdgpu_res_first(pages_addr ? NULL : res, offset, 1126 (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor); 1127 while (cursor.remaining) { 1128 uint64_t tmp, num_entries, addr; 1129 1130 num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT; 1131 if (pages_addr) { 1132 bool contiguous = true; 1133 1134 if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) { 1135 uint64_t pfn = cursor.start >> PAGE_SHIFT; 1136 uint64_t count; 1137 1138 contiguous = pages_addr[pfn + 1] == 1139 pages_addr[pfn] + PAGE_SIZE; 1140 1141 tmp = num_entries / 1142 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1143 for (count = 2; count < tmp; ++count) { 1144 uint64_t idx = pfn + count; 1145 1146 if (contiguous != (pages_addr[idx] == 1147 pages_addr[idx - 1] + PAGE_SIZE)) 1148 break; 1149 } 1150 if (!contiguous) 1151 count--; 1152 num_entries = count * 1153 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1154 } 1155 1156 if (!contiguous) { 1157 addr = cursor.start; 1158 params.pages_addr = pages_addr; 1159 } else { 1160 addr = pages_addr[cursor.start >> PAGE_SHIFT]; 1161 params.pages_addr = NULL; 1162 } 1163 1164 } else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT_FLAG(adev))) { 1165 addr = vram_base + cursor.start; 1166 } else { 1167 addr = 0; 1168 } 1169 1170 tmp = start + num_entries; 1171 r = amdgpu_vm_ptes_update(¶ms, start, tmp, addr, flags); 1172 if (r) 1173 goto error_free; 1174 1175 amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE); 1176 start = tmp; 1177 } 1178 1179 r = vm->update_funcs->commit(¶ms, fence); 1180 if (r) 1181 goto error_free; 1182 1183 if (params.needs_flush) { 1184 amdgpu_vm_tlb_flush(¶ms, fence, tlb_cb); 1185 tlb_cb = NULL; 1186 } 1187 1188 amdgpu_vm_pt_free_list(adev, ¶ms); 1189 1190 error_free: 1191 kfree(tlb_cb); 1192 amdgpu_vm_eviction_unlock(vm); 1193 drm_dev_exit(idx); 1194 return r; 1195 } 1196 1197 void amdgpu_vm_get_memory(struct amdgpu_vm *vm, 1198 struct amdgpu_mem_stats stats[__AMDGPU_PL_NUM]) 1199 { 1200 spin_lock(&vm->status_lock); 1201 memcpy(stats, vm->stats, sizeof(*stats) * __AMDGPU_PL_NUM); 1202 spin_unlock(&vm->status_lock); 1203 } 1204 1205 /** 1206 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1207 * 1208 * @adev: amdgpu_device pointer 1209 * @bo_va: requested BO and VM object 1210 * @clear: if true clear the entries 1211 * 1212 * Fill in the page table entries for @bo_va. 1213 * 1214 * Returns: 1215 * 0 for success, -EINVAL for failure. 1216 */ 1217 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, 1218 bool clear) 1219 { 1220 struct amdgpu_bo *bo = bo_va->base.bo; 1221 struct amdgpu_vm *vm = bo_va->base.vm; 1222 struct amdgpu_bo_va_mapping *mapping; 1223 struct dma_fence **last_update; 1224 dma_addr_t *pages_addr = NULL; 1225 struct ttm_resource *mem; 1226 struct amdgpu_sync sync; 1227 bool flush_tlb = clear; 1228 uint64_t vram_base; 1229 uint64_t flags; 1230 bool uncached; 1231 int r; 1232 1233 amdgpu_sync_create(&sync); 1234 if (clear) { 1235 mem = NULL; 1236 1237 /* Implicitly sync to command submissions in the same VM before 1238 * unmapping. 1239 */ 1240 r = amdgpu_sync_resv(adev, &sync, vm->root.bo->tbo.base.resv, 1241 AMDGPU_SYNC_EQ_OWNER, vm); 1242 if (r) 1243 goto error_free; 1244 if (bo) { 1245 r = amdgpu_sync_kfd(&sync, bo->tbo.base.resv); 1246 if (r) 1247 goto error_free; 1248 } 1249 } else if (!bo) { 1250 mem = NULL; 1251 1252 /* PRT map operations don't need to sync to anything. */ 1253 1254 } else { 1255 struct drm_gem_object *obj = &bo->tbo.base; 1256 1257 if (obj->import_attach && bo_va->is_xgmi) { 1258 struct dma_buf *dma_buf = obj->import_attach->dmabuf; 1259 struct drm_gem_object *gobj = dma_buf->priv; 1260 struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj); 1261 1262 if (abo->tbo.resource && 1263 abo->tbo.resource->mem_type == TTM_PL_VRAM) 1264 bo = gem_to_amdgpu_bo(gobj); 1265 } 1266 mem = bo->tbo.resource; 1267 if (mem && (mem->mem_type == TTM_PL_TT || 1268 mem->mem_type == AMDGPU_PL_PREEMPT)) 1269 pages_addr = bo->tbo.ttm->dma_address; 1270 1271 /* Implicitly sync to moving fences before mapping anything */ 1272 r = amdgpu_sync_resv(adev, &sync, bo->tbo.base.resv, 1273 AMDGPU_SYNC_EXPLICIT, vm); 1274 if (r) 1275 goto error_free; 1276 } 1277 1278 if (bo) { 1279 struct amdgpu_device *bo_adev; 1280 1281 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1282 1283 if (amdgpu_bo_encrypted(bo)) 1284 flags |= AMDGPU_PTE_TMZ; 1285 1286 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev); 1287 vram_base = bo_adev->vm_manager.vram_base_offset; 1288 uncached = (bo->flags & AMDGPU_GEM_CREATE_UNCACHED) != 0; 1289 } else { 1290 flags = 0x0; 1291 vram_base = 0; 1292 uncached = false; 1293 } 1294 1295 if (clear || amdgpu_vm_is_bo_always_valid(vm, bo)) 1296 last_update = &vm->last_update; 1297 else 1298 last_update = &bo_va->last_pt_update; 1299 1300 if (!clear && bo_va->base.moved) { 1301 flush_tlb = true; 1302 list_splice_init(&bo_va->valids, &bo_va->invalids); 1303 1304 } else if (bo_va->cleared != clear) { 1305 list_splice_init(&bo_va->valids, &bo_va->invalids); 1306 } 1307 1308 list_for_each_entry(mapping, &bo_va->invalids, list) { 1309 uint64_t update_flags = flags; 1310 1311 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1312 * but in case of something, we filter the flags in first place 1313 */ 1314 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1315 update_flags &= ~AMDGPU_PTE_READABLE; 1316 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1317 update_flags &= ~AMDGPU_PTE_WRITEABLE; 1318 1319 /* Apply ASIC specific mapping flags */ 1320 amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags); 1321 1322 trace_amdgpu_vm_bo_update(mapping); 1323 1324 r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, 1325 !uncached, &sync, mapping->start, 1326 mapping->last, update_flags, 1327 mapping->offset, vram_base, mem, 1328 pages_addr, last_update); 1329 if (r) 1330 goto error_free; 1331 } 1332 1333 /* If the BO is not in its preferred location add it back to 1334 * the evicted list so that it gets validated again on the 1335 * next command submission. 1336 */ 1337 if (amdgpu_vm_is_bo_always_valid(vm, bo)) { 1338 if (bo->tbo.resource && 1339 !(bo->preferred_domains & 1340 amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type))) 1341 amdgpu_vm_bo_evicted(&bo_va->base); 1342 else 1343 amdgpu_vm_bo_idle(&bo_va->base); 1344 } else { 1345 amdgpu_vm_bo_done(&bo_va->base); 1346 } 1347 1348 list_splice_init(&bo_va->invalids, &bo_va->valids); 1349 bo_va->cleared = clear; 1350 bo_va->base.moved = false; 1351 1352 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1353 list_for_each_entry(mapping, &bo_va->valids, list) 1354 trace_amdgpu_vm_bo_mapping(mapping); 1355 } 1356 1357 error_free: 1358 amdgpu_sync_free(&sync); 1359 return r; 1360 } 1361 1362 /** 1363 * amdgpu_vm_update_prt_state - update the global PRT state 1364 * 1365 * @adev: amdgpu_device pointer 1366 */ 1367 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1368 { 1369 unsigned long flags; 1370 bool enable; 1371 1372 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1373 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1374 adev->gmc.gmc_funcs->set_prt(adev, enable); 1375 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1376 } 1377 1378 /** 1379 * amdgpu_vm_prt_get - add a PRT user 1380 * 1381 * @adev: amdgpu_device pointer 1382 */ 1383 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1384 { 1385 if (!adev->gmc.gmc_funcs->set_prt) 1386 return; 1387 1388 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1389 amdgpu_vm_update_prt_state(adev); 1390 } 1391 1392 /** 1393 * amdgpu_vm_prt_put - drop a PRT user 1394 * 1395 * @adev: amdgpu_device pointer 1396 */ 1397 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1398 { 1399 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1400 amdgpu_vm_update_prt_state(adev); 1401 } 1402 1403 /** 1404 * amdgpu_vm_prt_cb - callback for updating the PRT status 1405 * 1406 * @fence: fence for the callback 1407 * @_cb: the callback function 1408 */ 1409 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1410 { 1411 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1412 1413 amdgpu_vm_prt_put(cb->adev); 1414 kfree(cb); 1415 } 1416 1417 /** 1418 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 1419 * 1420 * @adev: amdgpu_device pointer 1421 * @fence: fence for the callback 1422 */ 1423 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 1424 struct dma_fence *fence) 1425 { 1426 struct amdgpu_prt_cb *cb; 1427 1428 if (!adev->gmc.gmc_funcs->set_prt) 1429 return; 1430 1431 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 1432 if (!cb) { 1433 /* Last resort when we are OOM */ 1434 if (fence) 1435 dma_fence_wait(fence, false); 1436 1437 amdgpu_vm_prt_put(adev); 1438 } else { 1439 cb->adev = adev; 1440 if (!fence || dma_fence_add_callback(fence, &cb->cb, 1441 amdgpu_vm_prt_cb)) 1442 amdgpu_vm_prt_cb(fence, &cb->cb); 1443 } 1444 } 1445 1446 /** 1447 * amdgpu_vm_free_mapping - free a mapping 1448 * 1449 * @adev: amdgpu_device pointer 1450 * @vm: requested vm 1451 * @mapping: mapping to be freed 1452 * @fence: fence of the unmap operation 1453 * 1454 * Free a mapping and make sure we decrease the PRT usage count if applicable. 1455 */ 1456 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 1457 struct amdgpu_vm *vm, 1458 struct amdgpu_bo_va_mapping *mapping, 1459 struct dma_fence *fence) 1460 { 1461 if (mapping->flags & AMDGPU_PTE_PRT_FLAG(adev)) 1462 amdgpu_vm_add_prt_cb(adev, fence); 1463 kfree(mapping); 1464 } 1465 1466 /** 1467 * amdgpu_vm_prt_fini - finish all prt mappings 1468 * 1469 * @adev: amdgpu_device pointer 1470 * @vm: requested vm 1471 * 1472 * Register a cleanup callback to disable PRT support after VM dies. 1473 */ 1474 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1475 { 1476 struct dma_resv *resv = vm->root.bo->tbo.base.resv; 1477 struct dma_resv_iter cursor; 1478 struct dma_fence *fence; 1479 1480 dma_resv_for_each_fence(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP, fence) { 1481 /* Add a callback for each fence in the reservation object */ 1482 amdgpu_vm_prt_get(adev); 1483 amdgpu_vm_add_prt_cb(adev, fence); 1484 } 1485 } 1486 1487 /** 1488 * amdgpu_vm_clear_freed - clear freed BOs in the PT 1489 * 1490 * @adev: amdgpu_device pointer 1491 * @vm: requested vm 1492 * @fence: optional resulting fence (unchanged if no work needed to be done 1493 * or if an error occurred) 1494 * 1495 * Make sure all freed BOs are cleared in the PT. 1496 * PTs have to be reserved and mutex must be locked! 1497 * 1498 * Returns: 1499 * 0 for success. 1500 * 1501 */ 1502 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 1503 struct amdgpu_vm *vm, 1504 struct dma_fence **fence) 1505 { 1506 struct amdgpu_bo_va_mapping *mapping; 1507 struct dma_fence *f = NULL; 1508 struct amdgpu_sync sync; 1509 int r; 1510 1511 1512 /* 1513 * Implicitly sync to command submissions in the same VM before 1514 * unmapping. 1515 */ 1516 amdgpu_sync_create(&sync); 1517 r = amdgpu_sync_resv(adev, &sync, vm->root.bo->tbo.base.resv, 1518 AMDGPU_SYNC_EQ_OWNER, vm); 1519 if (r) 1520 goto error_free; 1521 1522 while (!list_empty(&vm->freed)) { 1523 mapping = list_first_entry(&vm->freed, 1524 struct amdgpu_bo_va_mapping, list); 1525 list_del(&mapping->list); 1526 1527 r = amdgpu_vm_update_range(adev, vm, false, false, true, false, 1528 &sync, mapping->start, mapping->last, 1529 0, 0, 0, NULL, NULL, &f); 1530 amdgpu_vm_free_mapping(adev, vm, mapping, f); 1531 if (r) { 1532 dma_fence_put(f); 1533 goto error_free; 1534 } 1535 } 1536 1537 if (fence && f) { 1538 dma_fence_put(*fence); 1539 *fence = f; 1540 } else { 1541 dma_fence_put(f); 1542 } 1543 1544 error_free: 1545 amdgpu_sync_free(&sync); 1546 return r; 1547 1548 } 1549 1550 /** 1551 * amdgpu_vm_handle_moved - handle moved BOs in the PT 1552 * 1553 * @adev: amdgpu_device pointer 1554 * @vm: requested vm 1555 * @ticket: optional reservation ticket used to reserve the VM 1556 * 1557 * Make sure all BOs which are moved are updated in the PTs. 1558 * 1559 * Returns: 1560 * 0 for success. 1561 * 1562 * PTs have to be reserved! 1563 */ 1564 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 1565 struct amdgpu_vm *vm, 1566 struct ww_acquire_ctx *ticket) 1567 { 1568 struct amdgpu_bo_va *bo_va; 1569 struct dma_resv *resv; 1570 bool clear, unlock; 1571 int r; 1572 1573 spin_lock(&vm->status_lock); 1574 while (!list_empty(&vm->moved)) { 1575 bo_va = list_first_entry(&vm->moved, struct amdgpu_bo_va, 1576 base.vm_status); 1577 spin_unlock(&vm->status_lock); 1578 1579 /* Per VM BOs never need to bo cleared in the page tables */ 1580 r = amdgpu_vm_bo_update(adev, bo_va, false); 1581 if (r) 1582 return r; 1583 spin_lock(&vm->status_lock); 1584 } 1585 1586 while (!list_empty(&vm->invalidated)) { 1587 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 1588 base.vm_status); 1589 resv = bo_va->base.bo->tbo.base.resv; 1590 spin_unlock(&vm->status_lock); 1591 1592 /* Try to reserve the BO to avoid clearing its ptes */ 1593 if (!adev->debug_vm && dma_resv_trylock(resv)) { 1594 clear = false; 1595 unlock = true; 1596 /* The caller is already holding the reservation lock */ 1597 } else if (ticket && dma_resv_locking_ctx(resv) == ticket) { 1598 clear = false; 1599 unlock = false; 1600 /* Somebody else is using the BO right now */ 1601 } else { 1602 clear = true; 1603 unlock = false; 1604 } 1605 1606 r = amdgpu_vm_bo_update(adev, bo_va, clear); 1607 1608 if (unlock) 1609 dma_resv_unlock(resv); 1610 if (r) 1611 return r; 1612 1613 /* Remember evicted DMABuf imports in compute VMs for later 1614 * validation 1615 */ 1616 if (vm->is_compute_context && 1617 bo_va->base.bo->tbo.base.import_attach && 1618 (!bo_va->base.bo->tbo.resource || 1619 bo_va->base.bo->tbo.resource->mem_type == TTM_PL_SYSTEM)) 1620 amdgpu_vm_bo_evicted_user(&bo_va->base); 1621 1622 spin_lock(&vm->status_lock); 1623 } 1624 spin_unlock(&vm->status_lock); 1625 1626 return 0; 1627 } 1628 1629 /** 1630 * amdgpu_vm_flush_compute_tlb - Flush TLB on compute VM 1631 * 1632 * @adev: amdgpu_device pointer 1633 * @vm: requested vm 1634 * @flush_type: flush type 1635 * @xcc_mask: mask of XCCs that belong to the compute partition in need of a TLB flush. 1636 * 1637 * Flush TLB if needed for a compute VM. 1638 * 1639 * Returns: 1640 * 0 for success. 1641 */ 1642 int amdgpu_vm_flush_compute_tlb(struct amdgpu_device *adev, 1643 struct amdgpu_vm *vm, 1644 uint32_t flush_type, 1645 uint32_t xcc_mask) 1646 { 1647 uint64_t tlb_seq = amdgpu_vm_tlb_seq(vm); 1648 bool all_hub = false; 1649 int xcc = 0, r = 0; 1650 1651 WARN_ON_ONCE(!vm->is_compute_context); 1652 1653 /* 1654 * It can be that we race and lose here, but that is extremely unlikely 1655 * and the worst thing which could happen is that we flush the changes 1656 * into the TLB once more which is harmless. 1657 */ 1658 if (atomic64_xchg(&vm->kfd_last_flushed_seq, tlb_seq) == tlb_seq) 1659 return 0; 1660 1661 if (adev->family == AMDGPU_FAMILY_AI || 1662 adev->family == AMDGPU_FAMILY_RV) 1663 all_hub = true; 1664 1665 for_each_inst(xcc, xcc_mask) { 1666 r = amdgpu_gmc_flush_gpu_tlb_pasid(adev, vm->pasid, flush_type, 1667 all_hub, xcc); 1668 if (r) 1669 break; 1670 } 1671 return r; 1672 } 1673 1674 /** 1675 * amdgpu_vm_bo_add - add a bo to a specific vm 1676 * 1677 * @adev: amdgpu_device pointer 1678 * @vm: requested vm 1679 * @bo: amdgpu buffer object 1680 * 1681 * Add @bo into the requested vm. 1682 * Add @bo to the list of bos associated with the vm 1683 * 1684 * Returns: 1685 * Newly added bo_va or NULL for failure 1686 * 1687 * Object has to be reserved! 1688 */ 1689 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 1690 struct amdgpu_vm *vm, 1691 struct amdgpu_bo *bo) 1692 { 1693 struct amdgpu_bo_va *bo_va; 1694 1695 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 1696 if (bo_va == NULL) { 1697 return NULL; 1698 } 1699 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 1700 1701 bo_va->ref_count = 1; 1702 bo_va->last_pt_update = dma_fence_get_stub(); 1703 INIT_LIST_HEAD(&bo_va->valids); 1704 INIT_LIST_HEAD(&bo_va->invalids); 1705 1706 if (!bo) 1707 return bo_va; 1708 1709 dma_resv_assert_held(bo->tbo.base.resv); 1710 if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) { 1711 bo_va->is_xgmi = true; 1712 /* Power up XGMI if it can be potentially used */ 1713 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20); 1714 } 1715 1716 return bo_va; 1717 } 1718 1719 1720 /** 1721 * amdgpu_vm_bo_insert_map - insert a new mapping 1722 * 1723 * @adev: amdgpu_device pointer 1724 * @bo_va: bo_va to store the address 1725 * @mapping: the mapping to insert 1726 * 1727 * Insert a new mapping into all structures. 1728 */ 1729 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 1730 struct amdgpu_bo_va *bo_va, 1731 struct amdgpu_bo_va_mapping *mapping) 1732 { 1733 struct amdgpu_vm *vm = bo_va->base.vm; 1734 struct amdgpu_bo *bo = bo_va->base.bo; 1735 1736 mapping->bo_va = bo_va; 1737 list_add(&mapping->list, &bo_va->invalids); 1738 amdgpu_vm_it_insert(mapping, &vm->va); 1739 1740 if (mapping->flags & AMDGPU_PTE_PRT_FLAG(adev)) 1741 amdgpu_vm_prt_get(adev); 1742 1743 if (amdgpu_vm_is_bo_always_valid(vm, bo) && !bo_va->base.moved) 1744 amdgpu_vm_bo_moved(&bo_va->base); 1745 1746 trace_amdgpu_vm_bo_map(bo_va, mapping); 1747 } 1748 1749 /* Validate operation parameters to prevent potential abuse */ 1750 static int amdgpu_vm_verify_parameters(struct amdgpu_device *adev, 1751 struct amdgpu_bo *bo, 1752 uint64_t saddr, 1753 uint64_t offset, 1754 uint64_t size) 1755 { 1756 uint64_t tmp, lpfn; 1757 1758 if (saddr & AMDGPU_GPU_PAGE_MASK 1759 || offset & AMDGPU_GPU_PAGE_MASK 1760 || size & AMDGPU_GPU_PAGE_MASK) 1761 return -EINVAL; 1762 1763 if (check_add_overflow(saddr, size, &tmp) 1764 || check_add_overflow(offset, size, &tmp) 1765 || size == 0 /* which also leads to end < begin */) 1766 return -EINVAL; 1767 1768 /* make sure object fit at this offset */ 1769 if (bo && offset + size > amdgpu_bo_size(bo)) 1770 return -EINVAL; 1771 1772 /* Ensure last pfn not exceed max_pfn */ 1773 lpfn = (saddr + size - 1) >> AMDGPU_GPU_PAGE_SHIFT; 1774 if (lpfn >= adev->vm_manager.max_pfn) 1775 return -EINVAL; 1776 1777 return 0; 1778 } 1779 1780 /** 1781 * amdgpu_vm_bo_map - map bo inside a vm 1782 * 1783 * @adev: amdgpu_device pointer 1784 * @bo_va: bo_va to store the address 1785 * @saddr: where to map the BO 1786 * @offset: requested offset in the BO 1787 * @size: BO size in bytes 1788 * @flags: attributes of pages (read/write/valid/etc.) 1789 * 1790 * Add a mapping of the BO at the specefied addr into the VM. 1791 * 1792 * Returns: 1793 * 0 for success, error for failure. 1794 * 1795 * Object has to be reserved and unreserved outside! 1796 */ 1797 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 1798 struct amdgpu_bo_va *bo_va, 1799 uint64_t saddr, uint64_t offset, 1800 uint64_t size, uint64_t flags) 1801 { 1802 struct amdgpu_bo_va_mapping *mapping, *tmp; 1803 struct amdgpu_bo *bo = bo_va->base.bo; 1804 struct amdgpu_vm *vm = bo_va->base.vm; 1805 uint64_t eaddr; 1806 int r; 1807 1808 r = amdgpu_vm_verify_parameters(adev, bo, saddr, offset, size); 1809 if (r) 1810 return r; 1811 1812 saddr /= AMDGPU_GPU_PAGE_SIZE; 1813 eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE; 1814 1815 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 1816 if (tmp) { 1817 /* bo and tmp overlap, invalid addr */ 1818 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 1819 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 1820 tmp->start, tmp->last + 1); 1821 return -EINVAL; 1822 } 1823 1824 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1825 if (!mapping) 1826 return -ENOMEM; 1827 1828 mapping->start = saddr; 1829 mapping->last = eaddr; 1830 mapping->offset = offset; 1831 mapping->flags = flags; 1832 1833 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 1834 1835 return 0; 1836 } 1837 1838 /** 1839 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 1840 * 1841 * @adev: amdgpu_device pointer 1842 * @bo_va: bo_va to store the address 1843 * @saddr: where to map the BO 1844 * @offset: requested offset in the BO 1845 * @size: BO size in bytes 1846 * @flags: attributes of pages (read/write/valid/etc.) 1847 * 1848 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 1849 * mappings as we do so. 1850 * 1851 * Returns: 1852 * 0 for success, error for failure. 1853 * 1854 * Object has to be reserved and unreserved outside! 1855 */ 1856 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 1857 struct amdgpu_bo_va *bo_va, 1858 uint64_t saddr, uint64_t offset, 1859 uint64_t size, uint64_t flags) 1860 { 1861 struct amdgpu_bo_va_mapping *mapping; 1862 struct amdgpu_bo *bo = bo_va->base.bo; 1863 uint64_t eaddr; 1864 int r; 1865 1866 r = amdgpu_vm_verify_parameters(adev, bo, saddr, offset, size); 1867 if (r) 1868 return r; 1869 1870 /* Allocate all the needed memory */ 1871 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1872 if (!mapping) 1873 return -ENOMEM; 1874 1875 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 1876 if (r) { 1877 kfree(mapping); 1878 return r; 1879 } 1880 1881 saddr /= AMDGPU_GPU_PAGE_SIZE; 1882 eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE; 1883 1884 mapping->start = saddr; 1885 mapping->last = eaddr; 1886 mapping->offset = offset; 1887 mapping->flags = flags; 1888 1889 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 1890 1891 return 0; 1892 } 1893 1894 /** 1895 * amdgpu_vm_bo_unmap - remove bo mapping from vm 1896 * 1897 * @adev: amdgpu_device pointer 1898 * @bo_va: bo_va to remove the address from 1899 * @saddr: where to the BO is mapped 1900 * 1901 * Remove a mapping of the BO at the specefied addr from the VM. 1902 * 1903 * Returns: 1904 * 0 for success, error for failure. 1905 * 1906 * Object has to be reserved and unreserved outside! 1907 */ 1908 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 1909 struct amdgpu_bo_va *bo_va, 1910 uint64_t saddr) 1911 { 1912 struct amdgpu_bo_va_mapping *mapping; 1913 struct amdgpu_vm *vm = bo_va->base.vm; 1914 bool valid = true; 1915 1916 saddr /= AMDGPU_GPU_PAGE_SIZE; 1917 1918 list_for_each_entry(mapping, &bo_va->valids, list) { 1919 if (mapping->start == saddr) 1920 break; 1921 } 1922 1923 if (&mapping->list == &bo_va->valids) { 1924 valid = false; 1925 1926 list_for_each_entry(mapping, &bo_va->invalids, list) { 1927 if (mapping->start == saddr) 1928 break; 1929 } 1930 1931 if (&mapping->list == &bo_va->invalids) 1932 return -ENOENT; 1933 } 1934 1935 list_del(&mapping->list); 1936 amdgpu_vm_it_remove(mapping, &vm->va); 1937 mapping->bo_va = NULL; 1938 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 1939 1940 if (valid) 1941 list_add(&mapping->list, &vm->freed); 1942 else 1943 amdgpu_vm_free_mapping(adev, vm, mapping, 1944 bo_va->last_pt_update); 1945 1946 return 0; 1947 } 1948 1949 /** 1950 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 1951 * 1952 * @adev: amdgpu_device pointer 1953 * @vm: VM structure to use 1954 * @saddr: start of the range 1955 * @size: size of the range 1956 * 1957 * Remove all mappings in a range, split them as appropriate. 1958 * 1959 * Returns: 1960 * 0 for success, error for failure. 1961 */ 1962 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 1963 struct amdgpu_vm *vm, 1964 uint64_t saddr, uint64_t size) 1965 { 1966 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 1967 LIST_HEAD(removed); 1968 uint64_t eaddr; 1969 int r; 1970 1971 r = amdgpu_vm_verify_parameters(adev, NULL, saddr, 0, size); 1972 if (r) 1973 return r; 1974 1975 saddr /= AMDGPU_GPU_PAGE_SIZE; 1976 eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE; 1977 1978 /* Allocate all the needed memory */ 1979 before = kzalloc(sizeof(*before), GFP_KERNEL); 1980 if (!before) 1981 return -ENOMEM; 1982 INIT_LIST_HEAD(&before->list); 1983 1984 after = kzalloc(sizeof(*after), GFP_KERNEL); 1985 if (!after) { 1986 kfree(before); 1987 return -ENOMEM; 1988 } 1989 INIT_LIST_HEAD(&after->list); 1990 1991 /* Now gather all removed mappings */ 1992 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 1993 while (tmp) { 1994 /* Remember mapping split at the start */ 1995 if (tmp->start < saddr) { 1996 before->start = tmp->start; 1997 before->last = saddr - 1; 1998 before->offset = tmp->offset; 1999 before->flags = tmp->flags; 2000 before->bo_va = tmp->bo_va; 2001 list_add(&before->list, &tmp->bo_va->invalids); 2002 } 2003 2004 /* Remember mapping split at the end */ 2005 if (tmp->last > eaddr) { 2006 after->start = eaddr + 1; 2007 after->last = tmp->last; 2008 after->offset = tmp->offset; 2009 after->offset += (after->start - tmp->start) << PAGE_SHIFT; 2010 after->flags = tmp->flags; 2011 after->bo_va = tmp->bo_va; 2012 list_add(&after->list, &tmp->bo_va->invalids); 2013 } 2014 2015 list_del(&tmp->list); 2016 list_add(&tmp->list, &removed); 2017 2018 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2019 } 2020 2021 /* And free them up */ 2022 list_for_each_entry_safe(tmp, next, &removed, list) { 2023 amdgpu_vm_it_remove(tmp, &vm->va); 2024 list_del(&tmp->list); 2025 2026 if (tmp->start < saddr) 2027 tmp->start = saddr; 2028 if (tmp->last > eaddr) 2029 tmp->last = eaddr; 2030 2031 tmp->bo_va = NULL; 2032 list_add(&tmp->list, &vm->freed); 2033 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2034 } 2035 2036 /* Insert partial mapping before the range */ 2037 if (!list_empty(&before->list)) { 2038 struct amdgpu_bo *bo = before->bo_va->base.bo; 2039 2040 amdgpu_vm_it_insert(before, &vm->va); 2041 if (before->flags & AMDGPU_PTE_PRT_FLAG(adev)) 2042 amdgpu_vm_prt_get(adev); 2043 2044 if (amdgpu_vm_is_bo_always_valid(vm, bo) && 2045 !before->bo_va->base.moved) 2046 amdgpu_vm_bo_moved(&before->bo_va->base); 2047 } else { 2048 kfree(before); 2049 } 2050 2051 /* Insert partial mapping after the range */ 2052 if (!list_empty(&after->list)) { 2053 struct amdgpu_bo *bo = after->bo_va->base.bo; 2054 2055 amdgpu_vm_it_insert(after, &vm->va); 2056 if (after->flags & AMDGPU_PTE_PRT_FLAG(adev)) 2057 amdgpu_vm_prt_get(adev); 2058 2059 if (amdgpu_vm_is_bo_always_valid(vm, bo) && 2060 !after->bo_va->base.moved) 2061 amdgpu_vm_bo_moved(&after->bo_va->base); 2062 } else { 2063 kfree(after); 2064 } 2065 2066 return 0; 2067 } 2068 2069 /** 2070 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2071 * 2072 * @vm: the requested VM 2073 * @addr: the address 2074 * 2075 * Find a mapping by it's address. 2076 * 2077 * Returns: 2078 * The amdgpu_bo_va_mapping matching for addr or NULL 2079 * 2080 */ 2081 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2082 uint64_t addr) 2083 { 2084 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2085 } 2086 2087 /** 2088 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2089 * 2090 * @vm: the requested vm 2091 * @ticket: CS ticket 2092 * 2093 * Trace all mappings of BOs reserved during a command submission. 2094 */ 2095 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2096 { 2097 struct amdgpu_bo_va_mapping *mapping; 2098 2099 if (!trace_amdgpu_vm_bo_cs_enabled()) 2100 return; 2101 2102 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2103 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2104 if (mapping->bo_va && mapping->bo_va->base.bo) { 2105 struct amdgpu_bo *bo; 2106 2107 bo = mapping->bo_va->base.bo; 2108 if (dma_resv_locking_ctx(bo->tbo.base.resv) != 2109 ticket) 2110 continue; 2111 } 2112 2113 trace_amdgpu_vm_bo_cs(mapping); 2114 } 2115 } 2116 2117 /** 2118 * amdgpu_vm_bo_del - remove a bo from a specific vm 2119 * 2120 * @adev: amdgpu_device pointer 2121 * @bo_va: requested bo_va 2122 * 2123 * Remove @bo_va->bo from the requested vm. 2124 * 2125 * Object have to be reserved! 2126 */ 2127 void amdgpu_vm_bo_del(struct amdgpu_device *adev, 2128 struct amdgpu_bo_va *bo_va) 2129 { 2130 struct amdgpu_bo_va_mapping *mapping, *next; 2131 struct amdgpu_bo *bo = bo_va->base.bo; 2132 struct amdgpu_vm *vm = bo_va->base.vm; 2133 struct amdgpu_vm_bo_base **base; 2134 2135 dma_resv_assert_held(vm->root.bo->tbo.base.resv); 2136 2137 if (bo) { 2138 dma_resv_assert_held(bo->tbo.base.resv); 2139 if (amdgpu_vm_is_bo_always_valid(vm, bo)) 2140 ttm_bo_set_bulk_move(&bo->tbo, NULL); 2141 2142 for (base = &bo_va->base.bo->vm_bo; *base; 2143 base = &(*base)->next) { 2144 if (*base != &bo_va->base) 2145 continue; 2146 2147 amdgpu_vm_update_stats(*base, bo->tbo.resource, -1); 2148 *base = bo_va->base.next; 2149 break; 2150 } 2151 } 2152 2153 spin_lock(&vm->status_lock); 2154 list_del(&bo_va->base.vm_status); 2155 spin_unlock(&vm->status_lock); 2156 2157 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2158 list_del(&mapping->list); 2159 amdgpu_vm_it_remove(mapping, &vm->va); 2160 mapping->bo_va = NULL; 2161 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2162 list_add(&mapping->list, &vm->freed); 2163 } 2164 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2165 list_del(&mapping->list); 2166 amdgpu_vm_it_remove(mapping, &vm->va); 2167 amdgpu_vm_free_mapping(adev, vm, mapping, 2168 bo_va->last_pt_update); 2169 } 2170 2171 dma_fence_put(bo_va->last_pt_update); 2172 2173 if (bo && bo_va->is_xgmi) 2174 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN); 2175 2176 kfree(bo_va); 2177 } 2178 2179 /** 2180 * amdgpu_vm_evictable - check if we can evict a VM 2181 * 2182 * @bo: A page table of the VM. 2183 * 2184 * Check if it is possible to evict a VM. 2185 */ 2186 bool amdgpu_vm_evictable(struct amdgpu_bo *bo) 2187 { 2188 struct amdgpu_vm_bo_base *bo_base = bo->vm_bo; 2189 2190 /* Page tables of a destroyed VM can go away immediately */ 2191 if (!bo_base || !bo_base->vm) 2192 return true; 2193 2194 /* Don't evict VM page tables while they are busy */ 2195 if (!dma_resv_test_signaled(bo->tbo.base.resv, DMA_RESV_USAGE_BOOKKEEP)) 2196 return false; 2197 2198 /* Try to block ongoing updates */ 2199 if (!amdgpu_vm_eviction_trylock(bo_base->vm)) 2200 return false; 2201 2202 /* Don't evict VM page tables while they are updated */ 2203 if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) { 2204 amdgpu_vm_eviction_unlock(bo_base->vm); 2205 return false; 2206 } 2207 2208 bo_base->vm->evicting = true; 2209 amdgpu_vm_eviction_unlock(bo_base->vm); 2210 return true; 2211 } 2212 2213 /** 2214 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2215 * 2216 * @bo: amdgpu buffer object 2217 * @evicted: is the BO evicted 2218 * 2219 * Mark @bo as invalid. 2220 */ 2221 void amdgpu_vm_bo_invalidate(struct amdgpu_bo *bo, bool evicted) 2222 { 2223 struct amdgpu_vm_bo_base *bo_base; 2224 2225 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2226 struct amdgpu_vm *vm = bo_base->vm; 2227 2228 if (evicted && amdgpu_vm_is_bo_always_valid(vm, bo)) { 2229 amdgpu_vm_bo_evicted(bo_base); 2230 continue; 2231 } 2232 2233 if (bo_base->moved) 2234 continue; 2235 bo_base->moved = true; 2236 2237 if (bo->tbo.type == ttm_bo_type_kernel) 2238 amdgpu_vm_bo_relocated(bo_base); 2239 else if (amdgpu_vm_is_bo_always_valid(vm, bo)) 2240 amdgpu_vm_bo_moved(bo_base); 2241 else 2242 amdgpu_vm_bo_invalidated(bo_base); 2243 } 2244 } 2245 2246 /** 2247 * amdgpu_vm_bo_move - handle BO move 2248 * 2249 * @bo: amdgpu buffer object 2250 * @new_mem: the new placement of the BO move 2251 * @evicted: is the BO evicted 2252 * 2253 * Update the memory stats for the new placement and mark @bo as invalid. 2254 */ 2255 void amdgpu_vm_bo_move(struct amdgpu_bo *bo, struct ttm_resource *new_mem, 2256 bool evicted) 2257 { 2258 struct amdgpu_vm_bo_base *bo_base; 2259 2260 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2261 struct amdgpu_vm *vm = bo_base->vm; 2262 2263 spin_lock(&vm->status_lock); 2264 amdgpu_vm_update_stats_locked(bo_base, bo->tbo.resource, -1); 2265 amdgpu_vm_update_stats_locked(bo_base, new_mem, +1); 2266 spin_unlock(&vm->status_lock); 2267 } 2268 2269 amdgpu_vm_bo_invalidate(bo, evicted); 2270 } 2271 2272 /** 2273 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2274 * 2275 * @vm_size: VM size 2276 * 2277 * Returns: 2278 * VM page table as power of two 2279 */ 2280 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2281 { 2282 /* Total bits covered by PD + PTs */ 2283 unsigned bits = ilog2(vm_size) + 18; 2284 2285 /* Make sure the PD is 4K in size up to 8GB address space. 2286 Above that split equal between PD and PTs */ 2287 if (vm_size <= 8) 2288 return (bits - 9); 2289 else 2290 return ((bits + 3) / 2); 2291 } 2292 2293 /** 2294 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2295 * 2296 * @adev: amdgpu_device pointer 2297 * @min_vm_size: the minimum vm size in GB if it's set auto 2298 * @fragment_size_default: Default PTE fragment size 2299 * @max_level: max VMPT level 2300 * @max_bits: max address space size in bits 2301 * 2302 */ 2303 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2304 uint32_t fragment_size_default, unsigned max_level, 2305 unsigned max_bits) 2306 { 2307 unsigned int max_size = 1 << (max_bits - 30); 2308 unsigned int vm_size; 2309 uint64_t tmp; 2310 2311 /* adjust vm size first */ 2312 if (amdgpu_vm_size != -1) { 2313 vm_size = amdgpu_vm_size; 2314 if (vm_size > max_size) { 2315 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2316 amdgpu_vm_size, max_size); 2317 vm_size = max_size; 2318 } 2319 } else { 2320 struct sysinfo si; 2321 unsigned int phys_ram_gb; 2322 2323 /* Optimal VM size depends on the amount of physical 2324 * RAM available. Underlying requirements and 2325 * assumptions: 2326 * 2327 * - Need to map system memory and VRAM from all GPUs 2328 * - VRAM from other GPUs not known here 2329 * - Assume VRAM <= system memory 2330 * - On GFX8 and older, VM space can be segmented for 2331 * different MTYPEs 2332 * - Need to allow room for fragmentation, guard pages etc. 2333 * 2334 * This adds up to a rough guess of system memory x3. 2335 * Round up to power of two to maximize the available 2336 * VM size with the given page table size. 2337 */ 2338 si_meminfo(&si); 2339 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2340 (1 << 30) - 1) >> 30; 2341 vm_size = roundup_pow_of_two( 2342 clamp(phys_ram_gb * 3, min_vm_size, max_size)); 2343 } 2344 2345 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2346 2347 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2348 if (amdgpu_vm_block_size != -1) 2349 tmp >>= amdgpu_vm_block_size - 9; 2350 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2351 adev->vm_manager.num_level = min_t(unsigned int, max_level, tmp); 2352 switch (adev->vm_manager.num_level) { 2353 case 3: 2354 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2355 break; 2356 case 2: 2357 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2358 break; 2359 case 1: 2360 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2361 break; 2362 default: 2363 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2364 } 2365 /* block size depends on vm size and hw setup*/ 2366 if (amdgpu_vm_block_size != -1) 2367 adev->vm_manager.block_size = 2368 min((unsigned)amdgpu_vm_block_size, max_bits 2369 - AMDGPU_GPU_PAGE_SHIFT 2370 - 9 * adev->vm_manager.num_level); 2371 else if (adev->vm_manager.num_level > 1) 2372 adev->vm_manager.block_size = 9; 2373 else 2374 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2375 2376 if (amdgpu_vm_fragment_size == -1) 2377 adev->vm_manager.fragment_size = fragment_size_default; 2378 else 2379 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2380 2381 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2382 vm_size, adev->vm_manager.num_level + 1, 2383 adev->vm_manager.block_size, 2384 adev->vm_manager.fragment_size); 2385 } 2386 2387 /** 2388 * amdgpu_vm_wait_idle - wait for the VM to become idle 2389 * 2390 * @vm: VM object to wait for 2391 * @timeout: timeout to wait for VM to become idle 2392 */ 2393 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout) 2394 { 2395 timeout = dma_resv_wait_timeout(vm->root.bo->tbo.base.resv, 2396 DMA_RESV_USAGE_BOOKKEEP, 2397 true, timeout); 2398 if (timeout <= 0) 2399 return timeout; 2400 2401 return dma_fence_wait_timeout(vm->last_unlocked, true, timeout); 2402 } 2403 2404 static void amdgpu_vm_destroy_task_info(struct kref *kref) 2405 { 2406 struct amdgpu_task_info *ti = container_of(kref, struct amdgpu_task_info, refcount); 2407 2408 kfree(ti); 2409 } 2410 2411 static inline struct amdgpu_vm * 2412 amdgpu_vm_get_vm_from_pasid(struct amdgpu_device *adev, u32 pasid) 2413 { 2414 struct amdgpu_vm *vm; 2415 unsigned long flags; 2416 2417 xa_lock_irqsave(&adev->vm_manager.pasids, flags); 2418 vm = xa_load(&adev->vm_manager.pasids, pasid); 2419 xa_unlock_irqrestore(&adev->vm_manager.pasids, flags); 2420 2421 return vm; 2422 } 2423 2424 /** 2425 * amdgpu_vm_put_task_info - reference down the vm task_info ptr 2426 * 2427 * @task_info: task_info struct under discussion. 2428 * 2429 * frees the vm task_info ptr at the last put 2430 */ 2431 void amdgpu_vm_put_task_info(struct amdgpu_task_info *task_info) 2432 { 2433 kref_put(&task_info->refcount, amdgpu_vm_destroy_task_info); 2434 } 2435 2436 /** 2437 * amdgpu_vm_get_task_info_vm - Extracts task info for a vm. 2438 * 2439 * @vm: VM to get info from 2440 * 2441 * Returns the reference counted task_info structure, which must be 2442 * referenced down with amdgpu_vm_put_task_info. 2443 */ 2444 struct amdgpu_task_info * 2445 amdgpu_vm_get_task_info_vm(struct amdgpu_vm *vm) 2446 { 2447 struct amdgpu_task_info *ti = NULL; 2448 2449 if (vm) { 2450 ti = vm->task_info; 2451 kref_get(&vm->task_info->refcount); 2452 } 2453 2454 return ti; 2455 } 2456 2457 /** 2458 * amdgpu_vm_get_task_info_pasid - Extracts task info for a PASID. 2459 * 2460 * @adev: drm device pointer 2461 * @pasid: PASID identifier for VM 2462 * 2463 * Returns the reference counted task_info structure, which must be 2464 * referenced down with amdgpu_vm_put_task_info. 2465 */ 2466 struct amdgpu_task_info * 2467 amdgpu_vm_get_task_info_pasid(struct amdgpu_device *adev, u32 pasid) 2468 { 2469 return amdgpu_vm_get_task_info_vm( 2470 amdgpu_vm_get_vm_from_pasid(adev, pasid)); 2471 } 2472 2473 static int amdgpu_vm_create_task_info(struct amdgpu_vm *vm) 2474 { 2475 vm->task_info = kzalloc(sizeof(struct amdgpu_task_info), GFP_KERNEL); 2476 if (!vm->task_info) 2477 return -ENOMEM; 2478 2479 kref_init(&vm->task_info->refcount); 2480 return 0; 2481 } 2482 2483 /** 2484 * amdgpu_vm_set_task_info - Sets VMs task info. 2485 * 2486 * @vm: vm for which to set the info 2487 */ 2488 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 2489 { 2490 if (!vm->task_info) 2491 return; 2492 2493 if (vm->task_info->pid == current->pid) 2494 return; 2495 2496 vm->task_info->pid = current->pid; 2497 get_task_comm(vm->task_info->task_name, current); 2498 2499 if (current->group_leader->mm != current->mm) 2500 return; 2501 2502 vm->task_info->tgid = current->group_leader->pid; 2503 get_task_comm(vm->task_info->process_name, current->group_leader); 2504 } 2505 2506 /** 2507 * amdgpu_vm_init - initialize a vm instance 2508 * 2509 * @adev: amdgpu_device pointer 2510 * @vm: requested vm 2511 * @xcp_id: GPU partition selection id 2512 * 2513 * Init @vm fields. 2514 * 2515 * Returns: 2516 * 0 for success, error for failure. 2517 */ 2518 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2519 int32_t xcp_id) 2520 { 2521 struct amdgpu_bo *root_bo; 2522 struct amdgpu_bo_vm *root; 2523 int r, i; 2524 2525 vm->va = RB_ROOT_CACHED; 2526 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2527 vm->reserved_vmid[i] = NULL; 2528 INIT_LIST_HEAD(&vm->evicted); 2529 INIT_LIST_HEAD(&vm->evicted_user); 2530 INIT_LIST_HEAD(&vm->relocated); 2531 INIT_LIST_HEAD(&vm->moved); 2532 INIT_LIST_HEAD(&vm->idle); 2533 INIT_LIST_HEAD(&vm->invalidated); 2534 spin_lock_init(&vm->status_lock); 2535 INIT_LIST_HEAD(&vm->freed); 2536 INIT_LIST_HEAD(&vm->done); 2537 INIT_LIST_HEAD(&vm->pt_freed); 2538 INIT_WORK(&vm->pt_free_work, amdgpu_vm_pt_free_work); 2539 INIT_KFIFO(vm->faults); 2540 2541 r = amdgpu_vm_init_entities(adev, vm); 2542 if (r) 2543 return r; 2544 2545 ttm_lru_bulk_move_init(&vm->lru_bulk_move); 2546 2547 vm->is_compute_context = false; 2548 2549 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2550 AMDGPU_VM_USE_CPU_FOR_GFX); 2551 2552 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2553 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2554 WARN_ONCE((vm->use_cpu_for_update && 2555 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2556 "CPU update of VM recommended only for large BAR system\n"); 2557 2558 if (vm->use_cpu_for_update) 2559 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2560 else 2561 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2562 2563 vm->last_update = dma_fence_get_stub(); 2564 vm->last_unlocked = dma_fence_get_stub(); 2565 vm->last_tlb_flush = dma_fence_get_stub(); 2566 vm->generation = amdgpu_vm_generation(adev, NULL); 2567 2568 mutex_init(&vm->eviction_lock); 2569 vm->evicting = false; 2570 vm->tlb_fence_context = dma_fence_context_alloc(1); 2571 2572 r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level, 2573 false, &root, xcp_id); 2574 if (r) 2575 goto error_free_delayed; 2576 2577 root_bo = amdgpu_bo_ref(&root->bo); 2578 r = amdgpu_bo_reserve(root_bo, true); 2579 if (r) { 2580 amdgpu_bo_unref(&root_bo); 2581 goto error_free_delayed; 2582 } 2583 2584 amdgpu_vm_bo_base_init(&vm->root, vm, root_bo); 2585 r = dma_resv_reserve_fences(root_bo->tbo.base.resv, 1); 2586 if (r) 2587 goto error_free_root; 2588 2589 r = amdgpu_vm_pt_clear(adev, vm, root, false); 2590 if (r) 2591 goto error_free_root; 2592 2593 r = amdgpu_vm_create_task_info(vm); 2594 if (r) 2595 DRM_DEBUG("Failed to create task info for VM\n"); 2596 2597 amdgpu_bo_unreserve(vm->root.bo); 2598 amdgpu_bo_unref(&root_bo); 2599 2600 return 0; 2601 2602 error_free_root: 2603 amdgpu_vm_pt_free_root(adev, vm); 2604 amdgpu_bo_unreserve(vm->root.bo); 2605 amdgpu_bo_unref(&root_bo); 2606 2607 error_free_delayed: 2608 dma_fence_put(vm->last_tlb_flush); 2609 dma_fence_put(vm->last_unlocked); 2610 ttm_lru_bulk_move_fini(&adev->mman.bdev, &vm->lru_bulk_move); 2611 amdgpu_vm_fini_entities(vm); 2612 2613 return r; 2614 } 2615 2616 /** 2617 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 2618 * 2619 * @adev: amdgpu_device pointer 2620 * @vm: requested vm 2621 * 2622 * This only works on GFX VMs that don't have any BOs added and no 2623 * page tables allocated yet. 2624 * 2625 * Changes the following VM parameters: 2626 * - use_cpu_for_update 2627 * - pte_supports_ats 2628 * 2629 * Reinitializes the page directory to reflect the changed ATS 2630 * setting. 2631 * 2632 * Returns: 2633 * 0 for success, -errno for errors. 2634 */ 2635 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2636 { 2637 int r; 2638 2639 r = amdgpu_bo_reserve(vm->root.bo, true); 2640 if (r) 2641 return r; 2642 2643 /* Update VM state */ 2644 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2645 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2646 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2647 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2648 WARN_ONCE((vm->use_cpu_for_update && 2649 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2650 "CPU update of VM recommended only for large BAR system\n"); 2651 2652 if (vm->use_cpu_for_update) { 2653 /* Sync with last SDMA update/clear before switching to CPU */ 2654 r = amdgpu_bo_sync_wait(vm->root.bo, 2655 AMDGPU_FENCE_OWNER_UNDEFINED, true); 2656 if (r) 2657 goto unreserve_bo; 2658 2659 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2660 r = amdgpu_vm_pt_map_tables(adev, vm); 2661 if (r) 2662 goto unreserve_bo; 2663 2664 } else { 2665 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2666 } 2667 2668 dma_fence_put(vm->last_update); 2669 vm->last_update = dma_fence_get_stub(); 2670 vm->is_compute_context = true; 2671 2672 unreserve_bo: 2673 amdgpu_bo_unreserve(vm->root.bo); 2674 return r; 2675 } 2676 2677 /** 2678 * amdgpu_vm_release_compute - release a compute vm 2679 * @adev: amdgpu_device pointer 2680 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute 2681 * 2682 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute 2683 * pasid from vm. Compute should stop use of vm after this call. 2684 */ 2685 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2686 { 2687 amdgpu_vm_set_pasid(adev, vm, 0); 2688 vm->is_compute_context = false; 2689 } 2690 2691 static int amdgpu_vm_stats_is_zero(struct amdgpu_vm *vm) 2692 { 2693 for (int i = 0; i < __AMDGPU_PL_NUM; ++i) { 2694 if (!(drm_memory_stats_is_zero(&vm->stats[i].drm) && 2695 vm->stats[i].evicted == 0)) 2696 return false; 2697 } 2698 return true; 2699 } 2700 2701 /** 2702 * amdgpu_vm_fini - tear down a vm instance 2703 * 2704 * @adev: amdgpu_device pointer 2705 * @vm: requested vm 2706 * 2707 * Tear down @vm. 2708 * Unbind the VM and remove all bos from the vm bo list 2709 */ 2710 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2711 { 2712 struct amdgpu_bo_va_mapping *mapping, *tmp; 2713 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 2714 struct amdgpu_bo *root; 2715 unsigned long flags; 2716 int i; 2717 2718 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 2719 2720 flush_work(&vm->pt_free_work); 2721 2722 root = amdgpu_bo_ref(vm->root.bo); 2723 amdgpu_bo_reserve(root, true); 2724 amdgpu_vm_set_pasid(adev, vm, 0); 2725 dma_fence_wait(vm->last_unlocked, false); 2726 dma_fence_put(vm->last_unlocked); 2727 dma_fence_wait(vm->last_tlb_flush, false); 2728 /* Make sure that all fence callbacks have completed */ 2729 spin_lock_irqsave(vm->last_tlb_flush->lock, flags); 2730 spin_unlock_irqrestore(vm->last_tlb_flush->lock, flags); 2731 dma_fence_put(vm->last_tlb_flush); 2732 2733 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 2734 if (mapping->flags & AMDGPU_PTE_PRT_FLAG(adev) && prt_fini_needed) { 2735 amdgpu_vm_prt_fini(adev, vm); 2736 prt_fini_needed = false; 2737 } 2738 2739 list_del(&mapping->list); 2740 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 2741 } 2742 2743 amdgpu_vm_pt_free_root(adev, vm); 2744 amdgpu_bo_unreserve(root); 2745 amdgpu_bo_unref(&root); 2746 WARN_ON(vm->root.bo); 2747 2748 amdgpu_vm_fini_entities(vm); 2749 2750 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 2751 dev_err(adev->dev, "still active bo inside vm\n"); 2752 } 2753 rbtree_postorder_for_each_entry_safe(mapping, tmp, 2754 &vm->va.rb_root, rb) { 2755 /* Don't remove the mapping here, we don't want to trigger a 2756 * rebalance and the tree is about to be destroyed anyway. 2757 */ 2758 list_del(&mapping->list); 2759 kfree(mapping); 2760 } 2761 2762 dma_fence_put(vm->last_update); 2763 2764 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) { 2765 if (vm->reserved_vmid[i]) { 2766 amdgpu_vmid_free_reserved(adev, i); 2767 vm->reserved_vmid[i] = false; 2768 } 2769 } 2770 2771 ttm_lru_bulk_move_fini(&adev->mman.bdev, &vm->lru_bulk_move); 2772 2773 if (!amdgpu_vm_stats_is_zero(vm)) { 2774 struct amdgpu_task_info *ti = vm->task_info; 2775 2776 dev_warn(adev->dev, 2777 "VM memory stats for proc %s(%d) task %s(%d) is non-zero when fini\n", 2778 ti->process_name, ti->pid, ti->task_name, ti->tgid); 2779 } 2780 2781 amdgpu_vm_put_task_info(vm->task_info); 2782 } 2783 2784 /** 2785 * amdgpu_vm_manager_init - init the VM manager 2786 * 2787 * @adev: amdgpu_device pointer 2788 * 2789 * Initialize the VM manager structures 2790 */ 2791 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 2792 { 2793 unsigned i; 2794 2795 /* Concurrent flushes are only possible starting with Vega10 and 2796 * are broken on Navi10 and Navi14. 2797 */ 2798 adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 || 2799 adev->asic_type == CHIP_NAVI10 || 2800 adev->asic_type == CHIP_NAVI14); 2801 amdgpu_vmid_mgr_init(adev); 2802 2803 adev->vm_manager.fence_context = 2804 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 2805 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 2806 adev->vm_manager.seqno[i] = 0; 2807 2808 spin_lock_init(&adev->vm_manager.prt_lock); 2809 atomic_set(&adev->vm_manager.num_prt_users, 0); 2810 2811 /* If not overridden by the user, by default, only in large BAR systems 2812 * Compute VM tables will be updated by CPU 2813 */ 2814 #ifdef CONFIG_X86_64 2815 if (amdgpu_vm_update_mode == -1) { 2816 /* For asic with VF MMIO access protection 2817 * avoid using CPU for VM table updates 2818 */ 2819 if (amdgpu_gmc_vram_full_visible(&adev->gmc) && 2820 !amdgpu_sriov_vf_mmio_access_protection(adev)) 2821 adev->vm_manager.vm_update_mode = 2822 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 2823 else 2824 adev->vm_manager.vm_update_mode = 0; 2825 } else 2826 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 2827 #else 2828 adev->vm_manager.vm_update_mode = 0; 2829 #endif 2830 2831 xa_init_flags(&adev->vm_manager.pasids, XA_FLAGS_LOCK_IRQ); 2832 } 2833 2834 /** 2835 * amdgpu_vm_manager_fini - cleanup VM manager 2836 * 2837 * @adev: amdgpu_device pointer 2838 * 2839 * Cleanup the VM manager and free resources. 2840 */ 2841 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 2842 { 2843 WARN_ON(!xa_empty(&adev->vm_manager.pasids)); 2844 xa_destroy(&adev->vm_manager.pasids); 2845 2846 amdgpu_vmid_mgr_fini(adev); 2847 } 2848 2849 /** 2850 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 2851 * 2852 * @dev: drm device pointer 2853 * @data: drm_amdgpu_vm 2854 * @filp: drm file pointer 2855 * 2856 * Returns: 2857 * 0 for success, -errno for errors. 2858 */ 2859 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 2860 { 2861 union drm_amdgpu_vm *args = data; 2862 struct amdgpu_device *adev = drm_to_adev(dev); 2863 struct amdgpu_fpriv *fpriv = filp->driver_priv; 2864 2865 /* No valid flags defined yet */ 2866 if (args->in.flags) 2867 return -EINVAL; 2868 2869 switch (args->in.op) { 2870 case AMDGPU_VM_OP_RESERVE_VMID: 2871 /* We only have requirement to reserve vmid from gfxhub */ 2872 if (!fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) { 2873 amdgpu_vmid_alloc_reserved(adev, AMDGPU_GFXHUB(0)); 2874 fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = true; 2875 } 2876 2877 break; 2878 case AMDGPU_VM_OP_UNRESERVE_VMID: 2879 if (fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) { 2880 amdgpu_vmid_free_reserved(adev, AMDGPU_GFXHUB(0)); 2881 fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = false; 2882 } 2883 break; 2884 default: 2885 return -EINVAL; 2886 } 2887 2888 return 0; 2889 } 2890 2891 /** 2892 * amdgpu_vm_handle_fault - graceful handling of VM faults. 2893 * @adev: amdgpu device pointer 2894 * @pasid: PASID of the VM 2895 * @ts: Timestamp of the fault 2896 * @vmid: VMID, only used for GFX 9.4.3. 2897 * @node_id: Node_id received in IH cookie. Only applicable for 2898 * GFX 9.4.3. 2899 * @addr: Address of the fault 2900 * @write_fault: true is write fault, false is read fault 2901 * 2902 * Try to gracefully handle a VM fault. Return true if the fault was handled and 2903 * shouldn't be reported any more. 2904 */ 2905 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid, 2906 u32 vmid, u32 node_id, uint64_t addr, uint64_t ts, 2907 bool write_fault) 2908 { 2909 bool is_compute_context = false; 2910 struct amdgpu_bo *root; 2911 unsigned long irqflags; 2912 uint64_t value, flags; 2913 struct amdgpu_vm *vm; 2914 int r; 2915 2916 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 2917 vm = xa_load(&adev->vm_manager.pasids, pasid); 2918 if (vm) { 2919 root = amdgpu_bo_ref(vm->root.bo); 2920 is_compute_context = vm->is_compute_context; 2921 } else { 2922 root = NULL; 2923 } 2924 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 2925 2926 if (!root) 2927 return false; 2928 2929 addr /= AMDGPU_GPU_PAGE_SIZE; 2930 2931 if (is_compute_context && !svm_range_restore_pages(adev, pasid, vmid, 2932 node_id, addr, ts, write_fault)) { 2933 amdgpu_bo_unref(&root); 2934 return true; 2935 } 2936 2937 r = amdgpu_bo_reserve(root, true); 2938 if (r) 2939 goto error_unref; 2940 2941 /* Double check that the VM still exists */ 2942 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 2943 vm = xa_load(&adev->vm_manager.pasids, pasid); 2944 if (vm && vm->root.bo != root) 2945 vm = NULL; 2946 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 2947 if (!vm) 2948 goto error_unlock; 2949 2950 flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED | 2951 AMDGPU_PTE_SYSTEM; 2952 2953 if (is_compute_context) { 2954 /* Intentionally setting invalid PTE flag 2955 * combination to force a no-retry-fault 2956 */ 2957 flags = AMDGPU_VM_NORETRY_FLAGS; 2958 value = 0; 2959 } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) { 2960 /* Redirect the access to the dummy page */ 2961 value = adev->dummy_page_addr; 2962 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE | 2963 AMDGPU_PTE_WRITEABLE; 2964 2965 } else { 2966 /* Let the hw retry silently on the PTE */ 2967 value = 0; 2968 } 2969 2970 r = dma_resv_reserve_fences(root->tbo.base.resv, 1); 2971 if (r) { 2972 pr_debug("failed %d to reserve fence slot\n", r); 2973 goto error_unlock; 2974 } 2975 2976 r = amdgpu_vm_update_range(adev, vm, true, false, false, false, 2977 NULL, addr, addr, flags, value, 0, NULL, NULL, NULL); 2978 if (r) 2979 goto error_unlock; 2980 2981 r = amdgpu_vm_update_pdes(adev, vm, true); 2982 2983 error_unlock: 2984 amdgpu_bo_unreserve(root); 2985 if (r < 0) 2986 DRM_ERROR("Can't handle page fault (%d)\n", r); 2987 2988 error_unref: 2989 amdgpu_bo_unref(&root); 2990 2991 return false; 2992 } 2993 2994 #if defined(CONFIG_DEBUG_FS) 2995 /** 2996 * amdgpu_debugfs_vm_bo_info - print BO info for the VM 2997 * 2998 * @vm: Requested VM for printing BO info 2999 * @m: debugfs file 3000 * 3001 * Print BO information in debugfs file for the VM 3002 */ 3003 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m) 3004 { 3005 struct amdgpu_bo_va *bo_va, *tmp; 3006 u64 total_idle = 0; 3007 u64 total_evicted = 0; 3008 u64 total_relocated = 0; 3009 u64 total_moved = 0; 3010 u64 total_invalidated = 0; 3011 u64 total_done = 0; 3012 unsigned int total_idle_objs = 0; 3013 unsigned int total_evicted_objs = 0; 3014 unsigned int total_relocated_objs = 0; 3015 unsigned int total_moved_objs = 0; 3016 unsigned int total_invalidated_objs = 0; 3017 unsigned int total_done_objs = 0; 3018 unsigned int id = 0; 3019 3020 spin_lock(&vm->status_lock); 3021 seq_puts(m, "\tIdle BOs:\n"); 3022 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) { 3023 if (!bo_va->base.bo) 3024 continue; 3025 total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3026 } 3027 total_idle_objs = id; 3028 id = 0; 3029 3030 seq_puts(m, "\tEvicted BOs:\n"); 3031 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) { 3032 if (!bo_va->base.bo) 3033 continue; 3034 total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3035 } 3036 total_evicted_objs = id; 3037 id = 0; 3038 3039 seq_puts(m, "\tRelocated BOs:\n"); 3040 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) { 3041 if (!bo_va->base.bo) 3042 continue; 3043 total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3044 } 3045 total_relocated_objs = id; 3046 id = 0; 3047 3048 seq_puts(m, "\tMoved BOs:\n"); 3049 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 3050 if (!bo_va->base.bo) 3051 continue; 3052 total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3053 } 3054 total_moved_objs = id; 3055 id = 0; 3056 3057 seq_puts(m, "\tInvalidated BOs:\n"); 3058 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) { 3059 if (!bo_va->base.bo) 3060 continue; 3061 total_invalidated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3062 } 3063 total_invalidated_objs = id; 3064 id = 0; 3065 3066 seq_puts(m, "\tDone BOs:\n"); 3067 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) { 3068 if (!bo_va->base.bo) 3069 continue; 3070 total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3071 } 3072 spin_unlock(&vm->status_lock); 3073 total_done_objs = id; 3074 3075 seq_printf(m, "\tTotal idle size: %12lld\tobjs:\t%d\n", total_idle, 3076 total_idle_objs); 3077 seq_printf(m, "\tTotal evicted size: %12lld\tobjs:\t%d\n", total_evicted, 3078 total_evicted_objs); 3079 seq_printf(m, "\tTotal relocated size: %12lld\tobjs:\t%d\n", total_relocated, 3080 total_relocated_objs); 3081 seq_printf(m, "\tTotal moved size: %12lld\tobjs:\t%d\n", total_moved, 3082 total_moved_objs); 3083 seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated, 3084 total_invalidated_objs); 3085 seq_printf(m, "\tTotal done size: %12lld\tobjs:\t%d\n", total_done, 3086 total_done_objs); 3087 } 3088 #endif 3089 3090 /** 3091 * amdgpu_vm_update_fault_cache - update cached fault into. 3092 * @adev: amdgpu device pointer 3093 * @pasid: PASID of the VM 3094 * @addr: Address of the fault 3095 * @status: GPUVM fault status register 3096 * @vmhub: which vmhub got the fault 3097 * 3098 * Cache the fault info for later use by userspace in debugging. 3099 */ 3100 void amdgpu_vm_update_fault_cache(struct amdgpu_device *adev, 3101 unsigned int pasid, 3102 uint64_t addr, 3103 uint32_t status, 3104 unsigned int vmhub) 3105 { 3106 struct amdgpu_vm *vm; 3107 unsigned long flags; 3108 3109 xa_lock_irqsave(&adev->vm_manager.pasids, flags); 3110 3111 vm = xa_load(&adev->vm_manager.pasids, pasid); 3112 /* Don't update the fault cache if status is 0. In the multiple 3113 * fault case, subsequent faults will return a 0 status which is 3114 * useless for userspace and replaces the useful fault status, so 3115 * only update if status is non-0. 3116 */ 3117 if (vm && status) { 3118 vm->fault_info.addr = addr; 3119 vm->fault_info.status = status; 3120 /* 3121 * Update the fault information globally for later usage 3122 * when vm could be stale or freed. 3123 */ 3124 adev->vm_manager.fault_info.addr = addr; 3125 adev->vm_manager.fault_info.vmhub = vmhub; 3126 adev->vm_manager.fault_info.status = status; 3127 3128 if (AMDGPU_IS_GFXHUB(vmhub)) { 3129 vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_GFX; 3130 vm->fault_info.vmhub |= 3131 (vmhub - AMDGPU_GFXHUB_START) << AMDGPU_VMHUB_IDX_SHIFT; 3132 } else if (AMDGPU_IS_MMHUB0(vmhub)) { 3133 vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_MM0; 3134 vm->fault_info.vmhub |= 3135 (vmhub - AMDGPU_MMHUB0_START) << AMDGPU_VMHUB_IDX_SHIFT; 3136 } else if (AMDGPU_IS_MMHUB1(vmhub)) { 3137 vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_MM1; 3138 vm->fault_info.vmhub |= 3139 (vmhub - AMDGPU_MMHUB1_START) << AMDGPU_VMHUB_IDX_SHIFT; 3140 } else { 3141 WARN_ONCE(1, "Invalid vmhub %u\n", vmhub); 3142 } 3143 } 3144 xa_unlock_irqrestore(&adev->vm_manager.pasids, flags); 3145 } 3146 3147 /** 3148 * amdgpu_vm_is_bo_always_valid - check if the BO is VM always valid 3149 * 3150 * @vm: VM to test against. 3151 * @bo: BO to be tested. 3152 * 3153 * Returns true if the BO shares the dma_resv object with the root PD and is 3154 * always guaranteed to be valid inside the VM. 3155 */ 3156 bool amdgpu_vm_is_bo_always_valid(struct amdgpu_vm *vm, struct amdgpu_bo *bo) 3157 { 3158 return bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv; 3159 } 3160