1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 29 #include <linux/dma-fence-array.h> 30 #include <linux/interval_tree_generic.h> 31 #include <linux/idr.h> 32 #include <linux/dma-buf.h> 33 34 #include <drm/amdgpu_drm.h> 35 #include <drm/drm_drv.h> 36 #include <drm/ttm/ttm_tt.h> 37 #include <drm/drm_exec.h> 38 #include "amdgpu.h" 39 #include "amdgpu_trace.h" 40 #include "amdgpu_amdkfd.h" 41 #include "amdgpu_gmc.h" 42 #include "amdgpu_xgmi.h" 43 #include "amdgpu_dma_buf.h" 44 #include "amdgpu_res_cursor.h" 45 #include "kfd_svm.h" 46 47 /** 48 * DOC: GPUVM 49 * 50 * GPUVM is the MMU functionality provided on the GPU. 51 * GPUVM is similar to the legacy GART on older asics, however 52 * rather than there being a single global GART table 53 * for the entire GPU, there can be multiple GPUVM page tables active 54 * at any given time. The GPUVM page tables can contain a mix 55 * VRAM pages and system pages (both memory and MMIO) and system pages 56 * can be mapped as snooped (cached system pages) or unsnooped 57 * (uncached system pages). 58 * 59 * Each active GPUVM has an ID associated with it and there is a page table 60 * linked with each VMID. When executing a command buffer, 61 * the kernel tells the engine what VMID to use for that command 62 * buffer. VMIDs are allocated dynamically as commands are submitted. 63 * The userspace drivers maintain their own address space and the kernel 64 * sets up their pages tables accordingly when they submit their 65 * command buffers and a VMID is assigned. 66 * The hardware supports up to 16 active GPUVMs at any given time. 67 * 68 * Each GPUVM is represented by a 1-2 or 1-5 level page table, depending 69 * on the ASIC family. GPUVM supports RWX attributes on each page as well 70 * as other features such as encryption and caching attributes. 71 * 72 * VMID 0 is special. It is the GPUVM used for the kernel driver. In 73 * addition to an aperture managed by a page table, VMID 0 also has 74 * several other apertures. There is an aperture for direct access to VRAM 75 * and there is a legacy AGP aperture which just forwards accesses directly 76 * to the matching system physical addresses (or IOVAs when an IOMMU is 77 * present). These apertures provide direct access to these memories without 78 * incurring the overhead of a page table. VMID 0 is used by the kernel 79 * driver for tasks like memory management. 80 * 81 * GPU clients (i.e., engines on the GPU) use GPUVM VMIDs to access memory. 82 * For user applications, each application can have their own unique GPUVM 83 * address space. The application manages the address space and the kernel 84 * driver manages the GPUVM page tables for each process. If an GPU client 85 * accesses an invalid page, it will generate a GPU page fault, similar to 86 * accessing an invalid page on a CPU. 87 */ 88 89 #define START(node) ((node)->start) 90 #define LAST(node) ((node)->last) 91 92 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 93 START, LAST, static, amdgpu_vm_it) 94 95 #undef START 96 #undef LAST 97 98 /** 99 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 100 */ 101 struct amdgpu_prt_cb { 102 103 /** 104 * @adev: amdgpu device 105 */ 106 struct amdgpu_device *adev; 107 108 /** 109 * @cb: callback 110 */ 111 struct dma_fence_cb cb; 112 }; 113 114 /** 115 * struct amdgpu_vm_tlb_seq_struct - Helper to increment the TLB flush sequence 116 */ 117 struct amdgpu_vm_tlb_seq_struct { 118 /** 119 * @vm: pointer to the amdgpu_vm structure to set the fence sequence on 120 */ 121 struct amdgpu_vm *vm; 122 123 /** 124 * @cb: callback 125 */ 126 struct dma_fence_cb cb; 127 }; 128 129 /** 130 * amdgpu_vm_set_pasid - manage pasid and vm ptr mapping 131 * 132 * @adev: amdgpu_device pointer 133 * @vm: amdgpu_vm pointer 134 * @pasid: the pasid the VM is using on this GPU 135 * 136 * Set the pasid this VM is using on this GPU, can also be used to remove the 137 * pasid by passing in zero. 138 * 139 */ 140 int amdgpu_vm_set_pasid(struct amdgpu_device *adev, struct amdgpu_vm *vm, 141 u32 pasid) 142 { 143 int r; 144 145 if (vm->pasid == pasid) 146 return 0; 147 148 if (vm->pasid) { 149 r = xa_err(xa_erase_irq(&adev->vm_manager.pasids, vm->pasid)); 150 if (r < 0) 151 return r; 152 153 vm->pasid = 0; 154 } 155 156 if (pasid) { 157 r = xa_err(xa_store_irq(&adev->vm_manager.pasids, pasid, vm, 158 GFP_KERNEL)); 159 if (r < 0) 160 return r; 161 162 vm->pasid = pasid; 163 } 164 165 166 return 0; 167 } 168 169 /** 170 * amdgpu_vm_bo_evicted - vm_bo is evicted 171 * 172 * @vm_bo: vm_bo which is evicted 173 * 174 * State for PDs/PTs and per VM BOs which are not at the location they should 175 * be. 176 */ 177 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 178 { 179 struct amdgpu_vm *vm = vm_bo->vm; 180 struct amdgpu_bo *bo = vm_bo->bo; 181 182 vm_bo->moved = true; 183 spin_lock(&vm_bo->vm->status_lock); 184 if (bo->tbo.type == ttm_bo_type_kernel) 185 list_move(&vm_bo->vm_status, &vm->evicted); 186 else 187 list_move_tail(&vm_bo->vm_status, &vm->evicted); 188 spin_unlock(&vm_bo->vm->status_lock); 189 } 190 /** 191 * amdgpu_vm_bo_moved - vm_bo is moved 192 * 193 * @vm_bo: vm_bo which is moved 194 * 195 * State for per VM BOs which are moved, but that change is not yet reflected 196 * in the page tables. 197 */ 198 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 199 { 200 spin_lock(&vm_bo->vm->status_lock); 201 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 202 spin_unlock(&vm_bo->vm->status_lock); 203 } 204 205 /** 206 * amdgpu_vm_bo_idle - vm_bo is idle 207 * 208 * @vm_bo: vm_bo which is now idle 209 * 210 * State for PDs/PTs and per VM BOs which have gone through the state machine 211 * and are now idle. 212 */ 213 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 214 { 215 spin_lock(&vm_bo->vm->status_lock); 216 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 217 spin_unlock(&vm_bo->vm->status_lock); 218 vm_bo->moved = false; 219 } 220 221 /** 222 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 223 * 224 * @vm_bo: vm_bo which is now invalidated 225 * 226 * State for normal BOs which are invalidated and that change not yet reflected 227 * in the PTs. 228 */ 229 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 230 { 231 spin_lock(&vm_bo->vm->status_lock); 232 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 233 spin_unlock(&vm_bo->vm->status_lock); 234 } 235 236 /** 237 * amdgpu_vm_bo_evicted_user - vm_bo is evicted 238 * 239 * @vm_bo: vm_bo which is evicted 240 * 241 * State for BOs used by user mode queues which are not at the location they 242 * should be. 243 */ 244 static void amdgpu_vm_bo_evicted_user(struct amdgpu_vm_bo_base *vm_bo) 245 { 246 vm_bo->moved = true; 247 spin_lock(&vm_bo->vm->status_lock); 248 list_move(&vm_bo->vm_status, &vm_bo->vm->evicted_user); 249 spin_unlock(&vm_bo->vm->status_lock); 250 } 251 252 /** 253 * amdgpu_vm_bo_relocated - vm_bo is reloacted 254 * 255 * @vm_bo: vm_bo which is relocated 256 * 257 * State for PDs/PTs which needs to update their parent PD. 258 * For the root PD, just move to idle state. 259 */ 260 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 261 { 262 if (vm_bo->bo->parent) { 263 spin_lock(&vm_bo->vm->status_lock); 264 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 265 spin_unlock(&vm_bo->vm->status_lock); 266 } else { 267 amdgpu_vm_bo_idle(vm_bo); 268 } 269 } 270 271 /** 272 * amdgpu_vm_bo_done - vm_bo is done 273 * 274 * @vm_bo: vm_bo which is now done 275 * 276 * State for normal BOs which are invalidated and that change has been updated 277 * in the PTs. 278 */ 279 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 280 { 281 spin_lock(&vm_bo->vm->status_lock); 282 list_move(&vm_bo->vm_status, &vm_bo->vm->done); 283 spin_unlock(&vm_bo->vm->status_lock); 284 } 285 286 /** 287 * amdgpu_vm_bo_reset_state_machine - reset the vm_bo state machine 288 * @vm: the VM which state machine to reset 289 * 290 * Move all vm_bo object in the VM into a state where they will be updated 291 * again during validation. 292 */ 293 static void amdgpu_vm_bo_reset_state_machine(struct amdgpu_vm *vm) 294 { 295 struct amdgpu_vm_bo_base *vm_bo, *tmp; 296 297 spin_lock(&vm->status_lock); 298 list_splice_init(&vm->done, &vm->invalidated); 299 list_for_each_entry(vm_bo, &vm->invalidated, vm_status) 300 vm_bo->moved = true; 301 list_for_each_entry_safe(vm_bo, tmp, &vm->idle, vm_status) { 302 struct amdgpu_bo *bo = vm_bo->bo; 303 304 vm_bo->moved = true; 305 if (!bo || bo->tbo.type != ttm_bo_type_kernel) 306 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 307 else if (bo->parent) 308 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 309 } 310 spin_unlock(&vm->status_lock); 311 } 312 313 /** 314 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 315 * 316 * @base: base structure for tracking BO usage in a VM 317 * @vm: vm to which bo is to be added 318 * @bo: amdgpu buffer object 319 * 320 * Initialize a bo_va_base structure and add it to the appropriate lists 321 * 322 */ 323 void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 324 struct amdgpu_vm *vm, struct amdgpu_bo *bo) 325 { 326 base->vm = vm; 327 base->bo = bo; 328 base->next = NULL; 329 INIT_LIST_HEAD(&base->vm_status); 330 331 if (!bo) 332 return; 333 base->next = bo->vm_bo; 334 bo->vm_bo = base; 335 336 if (!amdgpu_vm_is_bo_always_valid(vm, bo)) 337 return; 338 339 dma_resv_assert_held(vm->root.bo->tbo.base.resv); 340 341 ttm_bo_set_bulk_move(&bo->tbo, &vm->lru_bulk_move); 342 if (bo->tbo.type == ttm_bo_type_kernel && bo->parent) 343 amdgpu_vm_bo_relocated(base); 344 else 345 amdgpu_vm_bo_idle(base); 346 347 if (bo->preferred_domains & 348 amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type)) 349 return; 350 351 /* 352 * we checked all the prerequisites, but it looks like this per vm bo 353 * is currently evicted. add the bo to the evicted list to make sure it 354 * is validated on next vm use to avoid fault. 355 * */ 356 amdgpu_vm_bo_evicted(base); 357 } 358 359 /** 360 * amdgpu_vm_lock_pd - lock PD in drm_exec 361 * 362 * @vm: vm providing the BOs 363 * @exec: drm execution context 364 * @num_fences: number of extra fences to reserve 365 * 366 * Lock the VM root PD in the DRM execution context. 367 */ 368 int amdgpu_vm_lock_pd(struct amdgpu_vm *vm, struct drm_exec *exec, 369 unsigned int num_fences) 370 { 371 /* We need at least two fences for the VM PD/PT updates */ 372 return drm_exec_prepare_obj(exec, &vm->root.bo->tbo.base, 373 2 + num_fences); 374 } 375 376 /** 377 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 378 * 379 * @adev: amdgpu device pointer 380 * @vm: vm providing the BOs 381 * 382 * Move all BOs to the end of LRU and remember their positions to put them 383 * together. 384 */ 385 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 386 struct amdgpu_vm *vm) 387 { 388 spin_lock(&adev->mman.bdev.lru_lock); 389 ttm_lru_bulk_move_tail(&vm->lru_bulk_move); 390 spin_unlock(&adev->mman.bdev.lru_lock); 391 } 392 393 /* Create scheduler entities for page table updates */ 394 static int amdgpu_vm_init_entities(struct amdgpu_device *adev, 395 struct amdgpu_vm *vm) 396 { 397 int r; 398 399 r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL, 400 adev->vm_manager.vm_pte_scheds, 401 adev->vm_manager.vm_pte_num_scheds, NULL); 402 if (r) 403 goto error; 404 405 return drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL, 406 adev->vm_manager.vm_pte_scheds, 407 adev->vm_manager.vm_pte_num_scheds, NULL); 408 409 error: 410 drm_sched_entity_destroy(&vm->immediate); 411 return r; 412 } 413 414 /* Destroy the entities for page table updates again */ 415 static void amdgpu_vm_fini_entities(struct amdgpu_vm *vm) 416 { 417 drm_sched_entity_destroy(&vm->immediate); 418 drm_sched_entity_destroy(&vm->delayed); 419 } 420 421 /** 422 * amdgpu_vm_generation - return the page table re-generation counter 423 * @adev: the amdgpu_device 424 * @vm: optional VM to check, might be NULL 425 * 426 * Returns a page table re-generation token to allow checking if submissions 427 * are still valid to use this VM. The VM parameter might be NULL in which case 428 * just the VRAM lost counter will be used. 429 */ 430 uint64_t amdgpu_vm_generation(struct amdgpu_device *adev, struct amdgpu_vm *vm) 431 { 432 uint64_t result = (u64)atomic_read(&adev->vram_lost_counter) << 32; 433 434 if (!vm) 435 return result; 436 437 result += lower_32_bits(vm->generation); 438 /* Add one if the page tables will be re-generated on next CS */ 439 if (drm_sched_entity_error(&vm->delayed)) 440 ++result; 441 442 return result; 443 } 444 445 /** 446 * amdgpu_vm_validate - validate evicted BOs tracked in the VM 447 * 448 * @adev: amdgpu device pointer 449 * @vm: vm providing the BOs 450 * @ticket: optional reservation ticket used to reserve the VM 451 * @validate: callback to do the validation 452 * @param: parameter for the validation callback 453 * 454 * Validate the page table BOs and per-VM BOs on command submission if 455 * necessary. If a ticket is given, also try to validate evicted user queue 456 * BOs. They must already be reserved with the given ticket. 457 * 458 * Returns: 459 * Validation result. 460 */ 461 int amdgpu_vm_validate(struct amdgpu_device *adev, struct amdgpu_vm *vm, 462 struct ww_acquire_ctx *ticket, 463 int (*validate)(void *p, struct amdgpu_bo *bo), 464 void *param) 465 { 466 uint64_t new_vm_generation = amdgpu_vm_generation(adev, vm); 467 struct amdgpu_vm_bo_base *bo_base; 468 struct amdgpu_bo *bo; 469 int r; 470 471 if (vm->generation != new_vm_generation) { 472 vm->generation = new_vm_generation; 473 amdgpu_vm_bo_reset_state_machine(vm); 474 amdgpu_vm_fini_entities(vm); 475 r = amdgpu_vm_init_entities(adev, vm); 476 if (r) 477 return r; 478 } 479 480 spin_lock(&vm->status_lock); 481 while (!list_empty(&vm->evicted)) { 482 bo_base = list_first_entry(&vm->evicted, 483 struct amdgpu_vm_bo_base, 484 vm_status); 485 spin_unlock(&vm->status_lock); 486 487 bo = bo_base->bo; 488 489 r = validate(param, bo); 490 if (r) 491 return r; 492 493 if (bo->tbo.type != ttm_bo_type_kernel) { 494 amdgpu_vm_bo_moved(bo_base); 495 } else { 496 vm->update_funcs->map_table(to_amdgpu_bo_vm(bo)); 497 amdgpu_vm_bo_relocated(bo_base); 498 } 499 spin_lock(&vm->status_lock); 500 } 501 while (ticket && !list_empty(&vm->evicted_user)) { 502 bo_base = list_first_entry(&vm->evicted_user, 503 struct amdgpu_vm_bo_base, 504 vm_status); 505 spin_unlock(&vm->status_lock); 506 507 bo = bo_base->bo; 508 509 if (dma_resv_locking_ctx(bo->tbo.base.resv) != ticket) { 510 struct amdgpu_task_info *ti = amdgpu_vm_get_task_info_vm(vm); 511 512 pr_warn_ratelimited("Evicted user BO is not reserved\n"); 513 if (ti) { 514 pr_warn_ratelimited("pid %d\n", ti->pid); 515 amdgpu_vm_put_task_info(ti); 516 } 517 518 return -EINVAL; 519 } 520 521 r = validate(param, bo); 522 if (r) 523 return r; 524 525 amdgpu_vm_bo_invalidated(bo_base); 526 527 spin_lock(&vm->status_lock); 528 } 529 spin_unlock(&vm->status_lock); 530 531 amdgpu_vm_eviction_lock(vm); 532 vm->evicting = false; 533 amdgpu_vm_eviction_unlock(vm); 534 535 return 0; 536 } 537 538 /** 539 * amdgpu_vm_ready - check VM is ready for updates 540 * 541 * @vm: VM to check 542 * 543 * Check if all VM PDs/PTs are ready for updates 544 * 545 * Returns: 546 * True if VM is not evicting. 547 */ 548 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 549 { 550 bool empty; 551 bool ret; 552 553 amdgpu_vm_eviction_lock(vm); 554 ret = !vm->evicting; 555 amdgpu_vm_eviction_unlock(vm); 556 557 spin_lock(&vm->status_lock); 558 empty = list_empty(&vm->evicted); 559 spin_unlock(&vm->status_lock); 560 561 return ret && empty; 562 } 563 564 /** 565 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 566 * 567 * @adev: amdgpu_device pointer 568 */ 569 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 570 { 571 const struct amdgpu_ip_block *ip_block; 572 bool has_compute_vm_bug; 573 struct amdgpu_ring *ring; 574 int i; 575 576 has_compute_vm_bug = false; 577 578 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 579 if (ip_block) { 580 /* Compute has a VM bug for GFX version < 7. 581 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 582 if (ip_block->version->major <= 7) 583 has_compute_vm_bug = true; 584 else if (ip_block->version->major == 8) 585 if (adev->gfx.mec_fw_version < 673) 586 has_compute_vm_bug = true; 587 } 588 589 for (i = 0; i < adev->num_rings; i++) { 590 ring = adev->rings[i]; 591 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 592 /* only compute rings */ 593 ring->has_compute_vm_bug = has_compute_vm_bug; 594 else 595 ring->has_compute_vm_bug = false; 596 } 597 } 598 599 /** 600 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 601 * 602 * @ring: ring on which the job will be submitted 603 * @job: job to submit 604 * 605 * Returns: 606 * True if sync is needed. 607 */ 608 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 609 struct amdgpu_job *job) 610 { 611 struct amdgpu_device *adev = ring->adev; 612 unsigned vmhub = ring->vm_hub; 613 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 614 615 if (job->vmid == 0) 616 return false; 617 618 if (job->vm_needs_flush || ring->has_compute_vm_bug) 619 return true; 620 621 if (ring->funcs->emit_gds_switch && job->gds_switch_needed) 622 return true; 623 624 if (amdgpu_vmid_had_gpu_reset(adev, &id_mgr->ids[job->vmid])) 625 return true; 626 627 return false; 628 } 629 630 /** 631 * amdgpu_vm_flush - hardware flush the vm 632 * 633 * @ring: ring to use for flush 634 * @job: related job 635 * @need_pipe_sync: is pipe sync needed 636 * 637 * Emit a VM flush when it is necessary. 638 * 639 * Returns: 640 * 0 on success, errno otherwise. 641 */ 642 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, 643 bool need_pipe_sync) 644 { 645 struct amdgpu_device *adev = ring->adev; 646 unsigned vmhub = ring->vm_hub; 647 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 648 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 649 bool spm_update_needed = job->spm_update_needed; 650 bool gds_switch_needed = ring->funcs->emit_gds_switch && 651 job->gds_switch_needed; 652 bool vm_flush_needed = job->vm_needs_flush; 653 struct dma_fence *fence = NULL; 654 bool pasid_mapping_needed = false; 655 unsigned int patch; 656 int r; 657 658 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 659 gds_switch_needed = true; 660 vm_flush_needed = true; 661 pasid_mapping_needed = true; 662 spm_update_needed = true; 663 } 664 665 mutex_lock(&id_mgr->lock); 666 if (id->pasid != job->pasid || !id->pasid_mapping || 667 !dma_fence_is_signaled(id->pasid_mapping)) 668 pasid_mapping_needed = true; 669 mutex_unlock(&id_mgr->lock); 670 671 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 672 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 673 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 674 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 675 ring->funcs->emit_wreg; 676 677 if (adev->gfx.enable_cleaner_shader && 678 ring->funcs->emit_cleaner_shader && 679 job->enforce_isolation) 680 ring->funcs->emit_cleaner_shader(ring); 681 682 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 683 return 0; 684 685 amdgpu_ring_ib_begin(ring); 686 if (ring->funcs->init_cond_exec) 687 patch = amdgpu_ring_init_cond_exec(ring, 688 ring->cond_exe_gpu_addr); 689 690 if (need_pipe_sync) 691 amdgpu_ring_emit_pipeline_sync(ring); 692 693 if (vm_flush_needed) { 694 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 695 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 696 } 697 698 if (pasid_mapping_needed) 699 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 700 701 if (spm_update_needed && adev->gfx.rlc.funcs->update_spm_vmid) 702 adev->gfx.rlc.funcs->update_spm_vmid(adev, ring, job->vmid); 703 704 if (!ring->is_mes_queue && ring->funcs->emit_gds_switch && 705 gds_switch_needed) { 706 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 707 job->gds_size, job->gws_base, 708 job->gws_size, job->oa_base, 709 job->oa_size); 710 } 711 712 if (vm_flush_needed || pasid_mapping_needed) { 713 r = amdgpu_fence_emit(ring, &fence, NULL, 0); 714 if (r) 715 return r; 716 } 717 718 if (vm_flush_needed) { 719 mutex_lock(&id_mgr->lock); 720 dma_fence_put(id->last_flush); 721 id->last_flush = dma_fence_get(fence); 722 id->current_gpu_reset_count = 723 atomic_read(&adev->gpu_reset_counter); 724 mutex_unlock(&id_mgr->lock); 725 } 726 727 if (pasid_mapping_needed) { 728 mutex_lock(&id_mgr->lock); 729 id->pasid = job->pasid; 730 dma_fence_put(id->pasid_mapping); 731 id->pasid_mapping = dma_fence_get(fence); 732 mutex_unlock(&id_mgr->lock); 733 } 734 dma_fence_put(fence); 735 736 amdgpu_ring_patch_cond_exec(ring, patch); 737 738 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 739 if (ring->funcs->emit_switch_buffer) { 740 amdgpu_ring_emit_switch_buffer(ring); 741 amdgpu_ring_emit_switch_buffer(ring); 742 } 743 744 amdgpu_ring_ib_end(ring); 745 return 0; 746 } 747 748 /** 749 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 750 * 751 * @vm: requested vm 752 * @bo: requested buffer object 753 * 754 * Find @bo inside the requested vm. 755 * Search inside the @bos vm list for the requested vm 756 * Returns the found bo_va or NULL if none is found 757 * 758 * Object has to be reserved! 759 * 760 * Returns: 761 * Found bo_va or NULL. 762 */ 763 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 764 struct amdgpu_bo *bo) 765 { 766 struct amdgpu_vm_bo_base *base; 767 768 for (base = bo->vm_bo; base; base = base->next) { 769 if (base->vm != vm) 770 continue; 771 772 return container_of(base, struct amdgpu_bo_va, base); 773 } 774 return NULL; 775 } 776 777 /** 778 * amdgpu_vm_map_gart - Resolve gart mapping of addr 779 * 780 * @pages_addr: optional DMA address to use for lookup 781 * @addr: the unmapped addr 782 * 783 * Look up the physical address of the page that the pte resolves 784 * to. 785 * 786 * Returns: 787 * The pointer for the page table entry. 788 */ 789 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 790 { 791 uint64_t result; 792 793 /* page table offset */ 794 result = pages_addr[addr >> PAGE_SHIFT]; 795 796 /* in case cpu page size != gpu page size*/ 797 result |= addr & (~PAGE_MASK); 798 799 result &= 0xFFFFFFFFFFFFF000ULL; 800 801 return result; 802 } 803 804 /** 805 * amdgpu_vm_update_pdes - make sure that all directories are valid 806 * 807 * @adev: amdgpu_device pointer 808 * @vm: requested vm 809 * @immediate: submit immediately to the paging queue 810 * 811 * Makes sure all directories are up to date. 812 * 813 * Returns: 814 * 0 for success, error for failure. 815 */ 816 int amdgpu_vm_update_pdes(struct amdgpu_device *adev, 817 struct amdgpu_vm *vm, bool immediate) 818 { 819 struct amdgpu_vm_update_params params; 820 struct amdgpu_vm_bo_base *entry; 821 bool flush_tlb_needed = false; 822 LIST_HEAD(relocated); 823 int r, idx; 824 825 spin_lock(&vm->status_lock); 826 list_splice_init(&vm->relocated, &relocated); 827 spin_unlock(&vm->status_lock); 828 829 if (list_empty(&relocated)) 830 return 0; 831 832 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 833 return -ENODEV; 834 835 memset(¶ms, 0, sizeof(params)); 836 params.adev = adev; 837 params.vm = vm; 838 params.immediate = immediate; 839 840 r = vm->update_funcs->prepare(¶ms, NULL); 841 if (r) 842 goto error; 843 844 list_for_each_entry(entry, &relocated, vm_status) { 845 /* vm_flush_needed after updating moved PDEs */ 846 flush_tlb_needed |= entry->moved; 847 848 r = amdgpu_vm_pde_update(¶ms, entry); 849 if (r) 850 goto error; 851 } 852 853 r = vm->update_funcs->commit(¶ms, &vm->last_update); 854 if (r) 855 goto error; 856 857 if (flush_tlb_needed) 858 atomic64_inc(&vm->tlb_seq); 859 860 while (!list_empty(&relocated)) { 861 entry = list_first_entry(&relocated, struct amdgpu_vm_bo_base, 862 vm_status); 863 amdgpu_vm_bo_idle(entry); 864 } 865 866 error: 867 drm_dev_exit(idx); 868 return r; 869 } 870 871 /** 872 * amdgpu_vm_tlb_seq_cb - make sure to increment tlb sequence 873 * @fence: unused 874 * @cb: the callback structure 875 * 876 * Increments the tlb sequence to make sure that future CS execute a VM flush. 877 */ 878 static void amdgpu_vm_tlb_seq_cb(struct dma_fence *fence, 879 struct dma_fence_cb *cb) 880 { 881 struct amdgpu_vm_tlb_seq_struct *tlb_cb; 882 883 tlb_cb = container_of(cb, typeof(*tlb_cb), cb); 884 atomic64_inc(&tlb_cb->vm->tlb_seq); 885 kfree(tlb_cb); 886 } 887 888 /** 889 * amdgpu_vm_tlb_flush - prepare TLB flush 890 * 891 * @params: parameters for update 892 * @fence: input fence to sync TLB flush with 893 * @tlb_cb: the callback structure 894 * 895 * Increments the tlb sequence to make sure that future CS execute a VM flush. 896 */ 897 static void 898 amdgpu_vm_tlb_flush(struct amdgpu_vm_update_params *params, 899 struct dma_fence **fence, 900 struct amdgpu_vm_tlb_seq_struct *tlb_cb) 901 { 902 struct amdgpu_vm *vm = params->vm; 903 904 tlb_cb->vm = vm; 905 if (!fence || !*fence) { 906 amdgpu_vm_tlb_seq_cb(NULL, &tlb_cb->cb); 907 return; 908 } 909 910 if (!dma_fence_add_callback(*fence, &tlb_cb->cb, 911 amdgpu_vm_tlb_seq_cb)) { 912 dma_fence_put(vm->last_tlb_flush); 913 vm->last_tlb_flush = dma_fence_get(*fence); 914 } else { 915 amdgpu_vm_tlb_seq_cb(NULL, &tlb_cb->cb); 916 } 917 918 /* Prepare a TLB flush fence to be attached to PTs */ 919 if (!params->unlocked && vm->is_compute_context) { 920 amdgpu_vm_tlb_fence_create(params->adev, vm, fence); 921 922 /* Makes sure no PD/PT is freed before the flush */ 923 dma_resv_add_fence(vm->root.bo->tbo.base.resv, *fence, 924 DMA_RESV_USAGE_BOOKKEEP); 925 } 926 } 927 928 /** 929 * amdgpu_vm_update_range - update a range in the vm page table 930 * 931 * @adev: amdgpu_device pointer to use for commands 932 * @vm: the VM to update the range 933 * @immediate: immediate submission in a page fault 934 * @unlocked: unlocked invalidation during MM callback 935 * @flush_tlb: trigger tlb invalidation after update completed 936 * @allow_override: change MTYPE for local NUMA nodes 937 * @sync: fences we need to sync to 938 * @start: start of mapped range 939 * @last: last mapped entry 940 * @flags: flags for the entries 941 * @offset: offset into nodes and pages_addr 942 * @vram_base: base for vram mappings 943 * @res: ttm_resource to map 944 * @pages_addr: DMA addresses to use for mapping 945 * @fence: optional resulting fence 946 * 947 * Fill in the page table entries between @start and @last. 948 * 949 * Returns: 950 * 0 for success, negative erro code for failure. 951 */ 952 int amdgpu_vm_update_range(struct amdgpu_device *adev, struct amdgpu_vm *vm, 953 bool immediate, bool unlocked, bool flush_tlb, 954 bool allow_override, struct amdgpu_sync *sync, 955 uint64_t start, uint64_t last, uint64_t flags, 956 uint64_t offset, uint64_t vram_base, 957 struct ttm_resource *res, dma_addr_t *pages_addr, 958 struct dma_fence **fence) 959 { 960 struct amdgpu_vm_tlb_seq_struct *tlb_cb; 961 struct amdgpu_vm_update_params params; 962 struct amdgpu_res_cursor cursor; 963 int r, idx; 964 965 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 966 return -ENODEV; 967 968 tlb_cb = kmalloc(sizeof(*tlb_cb), GFP_KERNEL); 969 if (!tlb_cb) { 970 drm_dev_exit(idx); 971 return -ENOMEM; 972 } 973 974 /* Vega20+XGMI where PTEs get inadvertently cached in L2 texture cache, 975 * heavy-weight flush TLB unconditionally. 976 */ 977 flush_tlb |= adev->gmc.xgmi.num_physical_nodes && 978 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 0); 979 980 /* 981 * On GFX8 and older any 8 PTE block with a valid bit set enters the TLB 982 */ 983 flush_tlb |= amdgpu_ip_version(adev, GC_HWIP, 0) < IP_VERSION(9, 0, 0); 984 985 memset(¶ms, 0, sizeof(params)); 986 params.adev = adev; 987 params.vm = vm; 988 params.immediate = immediate; 989 params.pages_addr = pages_addr; 990 params.unlocked = unlocked; 991 params.needs_flush = flush_tlb; 992 params.allow_override = allow_override; 993 INIT_LIST_HEAD(¶ms.tlb_flush_waitlist); 994 995 amdgpu_vm_eviction_lock(vm); 996 if (vm->evicting) { 997 r = -EBUSY; 998 goto error_free; 999 } 1000 1001 if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) { 1002 struct dma_fence *tmp = dma_fence_get_stub(); 1003 1004 amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true); 1005 swap(vm->last_unlocked, tmp); 1006 dma_fence_put(tmp); 1007 } 1008 1009 r = vm->update_funcs->prepare(¶ms, sync); 1010 if (r) 1011 goto error_free; 1012 1013 amdgpu_res_first(pages_addr ? NULL : res, offset, 1014 (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor); 1015 while (cursor.remaining) { 1016 uint64_t tmp, num_entries, addr; 1017 1018 num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT; 1019 if (pages_addr) { 1020 bool contiguous = true; 1021 1022 if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) { 1023 uint64_t pfn = cursor.start >> PAGE_SHIFT; 1024 uint64_t count; 1025 1026 contiguous = pages_addr[pfn + 1] == 1027 pages_addr[pfn] + PAGE_SIZE; 1028 1029 tmp = num_entries / 1030 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1031 for (count = 2; count < tmp; ++count) { 1032 uint64_t idx = pfn + count; 1033 1034 if (contiguous != (pages_addr[idx] == 1035 pages_addr[idx - 1] + PAGE_SIZE)) 1036 break; 1037 } 1038 if (!contiguous) 1039 count--; 1040 num_entries = count * 1041 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1042 } 1043 1044 if (!contiguous) { 1045 addr = cursor.start; 1046 params.pages_addr = pages_addr; 1047 } else { 1048 addr = pages_addr[cursor.start >> PAGE_SHIFT]; 1049 params.pages_addr = NULL; 1050 } 1051 1052 } else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT_FLAG(adev))) { 1053 addr = vram_base + cursor.start; 1054 } else { 1055 addr = 0; 1056 } 1057 1058 tmp = start + num_entries; 1059 r = amdgpu_vm_ptes_update(¶ms, start, tmp, addr, flags); 1060 if (r) 1061 goto error_free; 1062 1063 amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE); 1064 start = tmp; 1065 } 1066 1067 r = vm->update_funcs->commit(¶ms, fence); 1068 if (r) 1069 goto error_free; 1070 1071 if (params.needs_flush) { 1072 amdgpu_vm_tlb_flush(¶ms, fence, tlb_cb); 1073 tlb_cb = NULL; 1074 } 1075 1076 amdgpu_vm_pt_free_list(adev, ¶ms); 1077 1078 error_free: 1079 kfree(tlb_cb); 1080 amdgpu_vm_eviction_unlock(vm); 1081 drm_dev_exit(idx); 1082 return r; 1083 } 1084 1085 static void amdgpu_vm_bo_get_memory(struct amdgpu_bo_va *bo_va, 1086 struct amdgpu_mem_stats *stats) 1087 { 1088 struct amdgpu_vm *vm = bo_va->base.vm; 1089 struct amdgpu_bo *bo = bo_va->base.bo; 1090 1091 if (!bo) 1092 return; 1093 1094 /* 1095 * For now ignore BOs which are currently locked and potentially 1096 * changing their location. 1097 */ 1098 if (!amdgpu_vm_is_bo_always_valid(vm, bo) && 1099 !dma_resv_trylock(bo->tbo.base.resv)) 1100 return; 1101 1102 amdgpu_bo_get_memory(bo, stats); 1103 if (!amdgpu_vm_is_bo_always_valid(vm, bo)) 1104 dma_resv_unlock(bo->tbo.base.resv); 1105 } 1106 1107 void amdgpu_vm_get_memory(struct amdgpu_vm *vm, 1108 struct amdgpu_mem_stats *stats) 1109 { 1110 struct amdgpu_bo_va *bo_va, *tmp; 1111 1112 spin_lock(&vm->status_lock); 1113 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) 1114 amdgpu_vm_bo_get_memory(bo_va, stats); 1115 1116 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) 1117 amdgpu_vm_bo_get_memory(bo_va, stats); 1118 1119 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) 1120 amdgpu_vm_bo_get_memory(bo_va, stats); 1121 1122 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) 1123 amdgpu_vm_bo_get_memory(bo_va, stats); 1124 1125 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) 1126 amdgpu_vm_bo_get_memory(bo_va, stats); 1127 1128 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) 1129 amdgpu_vm_bo_get_memory(bo_va, stats); 1130 spin_unlock(&vm->status_lock); 1131 } 1132 1133 /** 1134 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1135 * 1136 * @adev: amdgpu_device pointer 1137 * @bo_va: requested BO and VM object 1138 * @clear: if true clear the entries 1139 * 1140 * Fill in the page table entries for @bo_va. 1141 * 1142 * Returns: 1143 * 0 for success, -EINVAL for failure. 1144 */ 1145 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, 1146 bool clear) 1147 { 1148 struct amdgpu_bo *bo = bo_va->base.bo; 1149 struct amdgpu_vm *vm = bo_va->base.vm; 1150 struct amdgpu_bo_va_mapping *mapping; 1151 struct dma_fence **last_update; 1152 dma_addr_t *pages_addr = NULL; 1153 struct ttm_resource *mem; 1154 struct amdgpu_sync sync; 1155 bool flush_tlb = clear; 1156 uint64_t vram_base; 1157 uint64_t flags; 1158 bool uncached; 1159 int r; 1160 1161 amdgpu_sync_create(&sync); 1162 if (clear || !bo) { 1163 mem = NULL; 1164 1165 /* Implicitly sync to command submissions in the same VM before 1166 * unmapping. 1167 */ 1168 r = amdgpu_sync_resv(adev, &sync, vm->root.bo->tbo.base.resv, 1169 AMDGPU_SYNC_EQ_OWNER, vm); 1170 if (r) 1171 goto error_free; 1172 } else { 1173 struct drm_gem_object *obj = &bo->tbo.base; 1174 1175 if (obj->import_attach && bo_va->is_xgmi) { 1176 struct dma_buf *dma_buf = obj->import_attach->dmabuf; 1177 struct drm_gem_object *gobj = dma_buf->priv; 1178 struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj); 1179 1180 if (abo->tbo.resource && 1181 abo->tbo.resource->mem_type == TTM_PL_VRAM) 1182 bo = gem_to_amdgpu_bo(gobj); 1183 } 1184 mem = bo->tbo.resource; 1185 if (mem && (mem->mem_type == TTM_PL_TT || 1186 mem->mem_type == AMDGPU_PL_PREEMPT)) 1187 pages_addr = bo->tbo.ttm->dma_address; 1188 1189 /* Implicitly sync to moving fences before mapping anything */ 1190 r = amdgpu_sync_resv(adev, &sync, bo->tbo.base.resv, 1191 AMDGPU_SYNC_EXPLICIT, vm); 1192 if (r) 1193 goto error_free; 1194 } 1195 1196 if (bo) { 1197 struct amdgpu_device *bo_adev; 1198 1199 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1200 1201 if (amdgpu_bo_encrypted(bo)) 1202 flags |= AMDGPU_PTE_TMZ; 1203 1204 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev); 1205 vram_base = bo_adev->vm_manager.vram_base_offset; 1206 uncached = (bo->flags & AMDGPU_GEM_CREATE_UNCACHED) != 0; 1207 } else { 1208 flags = 0x0; 1209 vram_base = 0; 1210 uncached = false; 1211 } 1212 1213 if (clear || amdgpu_vm_is_bo_always_valid(vm, bo)) 1214 last_update = &vm->last_update; 1215 else 1216 last_update = &bo_va->last_pt_update; 1217 1218 if (!clear && bo_va->base.moved) { 1219 flush_tlb = true; 1220 list_splice_init(&bo_va->valids, &bo_va->invalids); 1221 1222 } else if (bo_va->cleared != clear) { 1223 list_splice_init(&bo_va->valids, &bo_va->invalids); 1224 } 1225 1226 list_for_each_entry(mapping, &bo_va->invalids, list) { 1227 uint64_t update_flags = flags; 1228 1229 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1230 * but in case of something, we filter the flags in first place 1231 */ 1232 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1233 update_flags &= ~AMDGPU_PTE_READABLE; 1234 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1235 update_flags &= ~AMDGPU_PTE_WRITEABLE; 1236 1237 /* Apply ASIC specific mapping flags */ 1238 amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags); 1239 1240 trace_amdgpu_vm_bo_update(mapping); 1241 1242 r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, 1243 !uncached, &sync, mapping->start, 1244 mapping->last, update_flags, 1245 mapping->offset, vram_base, mem, 1246 pages_addr, last_update); 1247 if (r) 1248 goto error_free; 1249 } 1250 1251 /* If the BO is not in its preferred location add it back to 1252 * the evicted list so that it gets validated again on the 1253 * next command submission. 1254 */ 1255 if (amdgpu_vm_is_bo_always_valid(vm, bo)) { 1256 uint32_t mem_type = bo->tbo.resource->mem_type; 1257 1258 if (!(bo->preferred_domains & 1259 amdgpu_mem_type_to_domain(mem_type))) 1260 amdgpu_vm_bo_evicted(&bo_va->base); 1261 else 1262 amdgpu_vm_bo_idle(&bo_va->base); 1263 } else { 1264 amdgpu_vm_bo_done(&bo_va->base); 1265 } 1266 1267 list_splice_init(&bo_va->invalids, &bo_va->valids); 1268 bo_va->cleared = clear; 1269 bo_va->base.moved = false; 1270 1271 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1272 list_for_each_entry(mapping, &bo_va->valids, list) 1273 trace_amdgpu_vm_bo_mapping(mapping); 1274 } 1275 1276 error_free: 1277 amdgpu_sync_free(&sync); 1278 return r; 1279 } 1280 1281 /** 1282 * amdgpu_vm_update_prt_state - update the global PRT state 1283 * 1284 * @adev: amdgpu_device pointer 1285 */ 1286 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1287 { 1288 unsigned long flags; 1289 bool enable; 1290 1291 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1292 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1293 adev->gmc.gmc_funcs->set_prt(adev, enable); 1294 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1295 } 1296 1297 /** 1298 * amdgpu_vm_prt_get - add a PRT user 1299 * 1300 * @adev: amdgpu_device pointer 1301 */ 1302 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1303 { 1304 if (!adev->gmc.gmc_funcs->set_prt) 1305 return; 1306 1307 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1308 amdgpu_vm_update_prt_state(adev); 1309 } 1310 1311 /** 1312 * amdgpu_vm_prt_put - drop a PRT user 1313 * 1314 * @adev: amdgpu_device pointer 1315 */ 1316 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1317 { 1318 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1319 amdgpu_vm_update_prt_state(adev); 1320 } 1321 1322 /** 1323 * amdgpu_vm_prt_cb - callback for updating the PRT status 1324 * 1325 * @fence: fence for the callback 1326 * @_cb: the callback function 1327 */ 1328 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1329 { 1330 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1331 1332 amdgpu_vm_prt_put(cb->adev); 1333 kfree(cb); 1334 } 1335 1336 /** 1337 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 1338 * 1339 * @adev: amdgpu_device pointer 1340 * @fence: fence for the callback 1341 */ 1342 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 1343 struct dma_fence *fence) 1344 { 1345 struct amdgpu_prt_cb *cb; 1346 1347 if (!adev->gmc.gmc_funcs->set_prt) 1348 return; 1349 1350 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 1351 if (!cb) { 1352 /* Last resort when we are OOM */ 1353 if (fence) 1354 dma_fence_wait(fence, false); 1355 1356 amdgpu_vm_prt_put(adev); 1357 } else { 1358 cb->adev = adev; 1359 if (!fence || dma_fence_add_callback(fence, &cb->cb, 1360 amdgpu_vm_prt_cb)) 1361 amdgpu_vm_prt_cb(fence, &cb->cb); 1362 } 1363 } 1364 1365 /** 1366 * amdgpu_vm_free_mapping - free a mapping 1367 * 1368 * @adev: amdgpu_device pointer 1369 * @vm: requested vm 1370 * @mapping: mapping to be freed 1371 * @fence: fence of the unmap operation 1372 * 1373 * Free a mapping and make sure we decrease the PRT usage count if applicable. 1374 */ 1375 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 1376 struct amdgpu_vm *vm, 1377 struct amdgpu_bo_va_mapping *mapping, 1378 struct dma_fence *fence) 1379 { 1380 if (mapping->flags & AMDGPU_PTE_PRT_FLAG(adev)) 1381 amdgpu_vm_add_prt_cb(adev, fence); 1382 kfree(mapping); 1383 } 1384 1385 /** 1386 * amdgpu_vm_prt_fini - finish all prt mappings 1387 * 1388 * @adev: amdgpu_device pointer 1389 * @vm: requested vm 1390 * 1391 * Register a cleanup callback to disable PRT support after VM dies. 1392 */ 1393 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1394 { 1395 struct dma_resv *resv = vm->root.bo->tbo.base.resv; 1396 struct dma_resv_iter cursor; 1397 struct dma_fence *fence; 1398 1399 dma_resv_for_each_fence(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP, fence) { 1400 /* Add a callback for each fence in the reservation object */ 1401 amdgpu_vm_prt_get(adev); 1402 amdgpu_vm_add_prt_cb(adev, fence); 1403 } 1404 } 1405 1406 /** 1407 * amdgpu_vm_clear_freed - clear freed BOs in the PT 1408 * 1409 * @adev: amdgpu_device pointer 1410 * @vm: requested vm 1411 * @fence: optional resulting fence (unchanged if no work needed to be done 1412 * or if an error occurred) 1413 * 1414 * Make sure all freed BOs are cleared in the PT. 1415 * PTs have to be reserved and mutex must be locked! 1416 * 1417 * Returns: 1418 * 0 for success. 1419 * 1420 */ 1421 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 1422 struct amdgpu_vm *vm, 1423 struct dma_fence **fence) 1424 { 1425 struct amdgpu_bo_va_mapping *mapping; 1426 struct dma_fence *f = NULL; 1427 struct amdgpu_sync sync; 1428 int r; 1429 1430 1431 /* 1432 * Implicitly sync to command submissions in the same VM before 1433 * unmapping. 1434 */ 1435 amdgpu_sync_create(&sync); 1436 r = amdgpu_sync_resv(adev, &sync, vm->root.bo->tbo.base.resv, 1437 AMDGPU_SYNC_EQ_OWNER, vm); 1438 if (r) 1439 goto error_free; 1440 1441 while (!list_empty(&vm->freed)) { 1442 mapping = list_first_entry(&vm->freed, 1443 struct amdgpu_bo_va_mapping, list); 1444 list_del(&mapping->list); 1445 1446 r = amdgpu_vm_update_range(adev, vm, false, false, true, false, 1447 &sync, mapping->start, mapping->last, 1448 0, 0, 0, NULL, NULL, &f); 1449 amdgpu_vm_free_mapping(adev, vm, mapping, f); 1450 if (r) { 1451 dma_fence_put(f); 1452 goto error_free; 1453 } 1454 } 1455 1456 if (fence && f) { 1457 dma_fence_put(*fence); 1458 *fence = f; 1459 } else { 1460 dma_fence_put(f); 1461 } 1462 1463 error_free: 1464 amdgpu_sync_free(&sync); 1465 return r; 1466 1467 } 1468 1469 /** 1470 * amdgpu_vm_handle_moved - handle moved BOs in the PT 1471 * 1472 * @adev: amdgpu_device pointer 1473 * @vm: requested vm 1474 * @ticket: optional reservation ticket used to reserve the VM 1475 * 1476 * Make sure all BOs which are moved are updated in the PTs. 1477 * 1478 * Returns: 1479 * 0 for success. 1480 * 1481 * PTs have to be reserved! 1482 */ 1483 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 1484 struct amdgpu_vm *vm, 1485 struct ww_acquire_ctx *ticket) 1486 { 1487 struct amdgpu_bo_va *bo_va; 1488 struct dma_resv *resv; 1489 bool clear, unlock; 1490 int r; 1491 1492 spin_lock(&vm->status_lock); 1493 while (!list_empty(&vm->moved)) { 1494 bo_va = list_first_entry(&vm->moved, struct amdgpu_bo_va, 1495 base.vm_status); 1496 spin_unlock(&vm->status_lock); 1497 1498 /* Per VM BOs never need to bo cleared in the page tables */ 1499 r = amdgpu_vm_bo_update(adev, bo_va, false); 1500 if (r) 1501 return r; 1502 spin_lock(&vm->status_lock); 1503 } 1504 1505 while (!list_empty(&vm->invalidated)) { 1506 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 1507 base.vm_status); 1508 resv = bo_va->base.bo->tbo.base.resv; 1509 spin_unlock(&vm->status_lock); 1510 1511 /* Try to reserve the BO to avoid clearing its ptes */ 1512 if (!adev->debug_vm && dma_resv_trylock(resv)) { 1513 clear = false; 1514 unlock = true; 1515 /* The caller is already holding the reservation lock */ 1516 } else if (ticket && dma_resv_locking_ctx(resv) == ticket) { 1517 clear = false; 1518 unlock = false; 1519 /* Somebody else is using the BO right now */ 1520 } else { 1521 clear = true; 1522 unlock = false; 1523 } 1524 1525 r = amdgpu_vm_bo_update(adev, bo_va, clear); 1526 1527 if (unlock) 1528 dma_resv_unlock(resv); 1529 if (r) 1530 return r; 1531 1532 /* Remember evicted DMABuf imports in compute VMs for later 1533 * validation 1534 */ 1535 if (vm->is_compute_context && 1536 bo_va->base.bo->tbo.base.import_attach && 1537 (!bo_va->base.bo->tbo.resource || 1538 bo_va->base.bo->tbo.resource->mem_type == TTM_PL_SYSTEM)) 1539 amdgpu_vm_bo_evicted_user(&bo_va->base); 1540 1541 spin_lock(&vm->status_lock); 1542 } 1543 spin_unlock(&vm->status_lock); 1544 1545 return 0; 1546 } 1547 1548 /** 1549 * amdgpu_vm_flush_compute_tlb - Flush TLB on compute VM 1550 * 1551 * @adev: amdgpu_device pointer 1552 * @vm: requested vm 1553 * @flush_type: flush type 1554 * @xcc_mask: mask of XCCs that belong to the compute partition in need of a TLB flush. 1555 * 1556 * Flush TLB if needed for a compute VM. 1557 * 1558 * Returns: 1559 * 0 for success. 1560 */ 1561 int amdgpu_vm_flush_compute_tlb(struct amdgpu_device *adev, 1562 struct amdgpu_vm *vm, 1563 uint32_t flush_type, 1564 uint32_t xcc_mask) 1565 { 1566 uint64_t tlb_seq = amdgpu_vm_tlb_seq(vm); 1567 bool all_hub = false; 1568 int xcc = 0, r = 0; 1569 1570 WARN_ON_ONCE(!vm->is_compute_context); 1571 1572 /* 1573 * It can be that we race and lose here, but that is extremely unlikely 1574 * and the worst thing which could happen is that we flush the changes 1575 * into the TLB once more which is harmless. 1576 */ 1577 if (atomic64_xchg(&vm->kfd_last_flushed_seq, tlb_seq) == tlb_seq) 1578 return 0; 1579 1580 if (adev->family == AMDGPU_FAMILY_AI || 1581 adev->family == AMDGPU_FAMILY_RV) 1582 all_hub = true; 1583 1584 for_each_inst(xcc, xcc_mask) { 1585 r = amdgpu_gmc_flush_gpu_tlb_pasid(adev, vm->pasid, flush_type, 1586 all_hub, xcc); 1587 if (r) 1588 break; 1589 } 1590 return r; 1591 } 1592 1593 /** 1594 * amdgpu_vm_bo_add - add a bo to a specific vm 1595 * 1596 * @adev: amdgpu_device pointer 1597 * @vm: requested vm 1598 * @bo: amdgpu buffer object 1599 * 1600 * Add @bo into the requested vm. 1601 * Add @bo to the list of bos associated with the vm 1602 * 1603 * Returns: 1604 * Newly added bo_va or NULL for failure 1605 * 1606 * Object has to be reserved! 1607 */ 1608 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 1609 struct amdgpu_vm *vm, 1610 struct amdgpu_bo *bo) 1611 { 1612 struct amdgpu_bo_va *bo_va; 1613 1614 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 1615 if (bo_va == NULL) { 1616 return NULL; 1617 } 1618 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 1619 1620 bo_va->ref_count = 1; 1621 bo_va->last_pt_update = dma_fence_get_stub(); 1622 INIT_LIST_HEAD(&bo_va->valids); 1623 INIT_LIST_HEAD(&bo_va->invalids); 1624 1625 if (!bo) 1626 return bo_va; 1627 1628 dma_resv_assert_held(bo->tbo.base.resv); 1629 if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) { 1630 bo_va->is_xgmi = true; 1631 /* Power up XGMI if it can be potentially used */ 1632 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20); 1633 } 1634 1635 return bo_va; 1636 } 1637 1638 1639 /** 1640 * amdgpu_vm_bo_insert_map - insert a new mapping 1641 * 1642 * @adev: amdgpu_device pointer 1643 * @bo_va: bo_va to store the address 1644 * @mapping: the mapping to insert 1645 * 1646 * Insert a new mapping into all structures. 1647 */ 1648 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 1649 struct amdgpu_bo_va *bo_va, 1650 struct amdgpu_bo_va_mapping *mapping) 1651 { 1652 struct amdgpu_vm *vm = bo_va->base.vm; 1653 struct amdgpu_bo *bo = bo_va->base.bo; 1654 1655 mapping->bo_va = bo_va; 1656 list_add(&mapping->list, &bo_va->invalids); 1657 amdgpu_vm_it_insert(mapping, &vm->va); 1658 1659 if (mapping->flags & AMDGPU_PTE_PRT_FLAG(adev)) 1660 amdgpu_vm_prt_get(adev); 1661 1662 if (amdgpu_vm_is_bo_always_valid(vm, bo) && !bo_va->base.moved) 1663 amdgpu_vm_bo_moved(&bo_va->base); 1664 1665 trace_amdgpu_vm_bo_map(bo_va, mapping); 1666 } 1667 1668 /* Validate operation parameters to prevent potential abuse */ 1669 static int amdgpu_vm_verify_parameters(struct amdgpu_device *adev, 1670 struct amdgpu_bo *bo, 1671 uint64_t saddr, 1672 uint64_t offset, 1673 uint64_t size) 1674 { 1675 uint64_t tmp, lpfn; 1676 1677 if (saddr & AMDGPU_GPU_PAGE_MASK 1678 || offset & AMDGPU_GPU_PAGE_MASK 1679 || size & AMDGPU_GPU_PAGE_MASK) 1680 return -EINVAL; 1681 1682 if (check_add_overflow(saddr, size, &tmp) 1683 || check_add_overflow(offset, size, &tmp) 1684 || size == 0 /* which also leads to end < begin */) 1685 return -EINVAL; 1686 1687 /* make sure object fit at this offset */ 1688 if (bo && offset + size > amdgpu_bo_size(bo)) 1689 return -EINVAL; 1690 1691 /* Ensure last pfn not exceed max_pfn */ 1692 lpfn = (saddr + size - 1) >> AMDGPU_GPU_PAGE_SHIFT; 1693 if (lpfn >= adev->vm_manager.max_pfn) 1694 return -EINVAL; 1695 1696 return 0; 1697 } 1698 1699 /** 1700 * amdgpu_vm_bo_map - map bo inside a vm 1701 * 1702 * @adev: amdgpu_device pointer 1703 * @bo_va: bo_va to store the address 1704 * @saddr: where to map the BO 1705 * @offset: requested offset in the BO 1706 * @size: BO size in bytes 1707 * @flags: attributes of pages (read/write/valid/etc.) 1708 * 1709 * Add a mapping of the BO at the specefied addr into the VM. 1710 * 1711 * Returns: 1712 * 0 for success, error for failure. 1713 * 1714 * Object has to be reserved and unreserved outside! 1715 */ 1716 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 1717 struct amdgpu_bo_va *bo_va, 1718 uint64_t saddr, uint64_t offset, 1719 uint64_t size, uint64_t flags) 1720 { 1721 struct amdgpu_bo_va_mapping *mapping, *tmp; 1722 struct amdgpu_bo *bo = bo_va->base.bo; 1723 struct amdgpu_vm *vm = bo_va->base.vm; 1724 uint64_t eaddr; 1725 int r; 1726 1727 r = amdgpu_vm_verify_parameters(adev, bo, saddr, offset, size); 1728 if (r) 1729 return r; 1730 1731 saddr /= AMDGPU_GPU_PAGE_SIZE; 1732 eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE; 1733 1734 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 1735 if (tmp) { 1736 /* bo and tmp overlap, invalid addr */ 1737 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 1738 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 1739 tmp->start, tmp->last + 1); 1740 return -EINVAL; 1741 } 1742 1743 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1744 if (!mapping) 1745 return -ENOMEM; 1746 1747 mapping->start = saddr; 1748 mapping->last = eaddr; 1749 mapping->offset = offset; 1750 mapping->flags = flags; 1751 1752 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 1753 1754 return 0; 1755 } 1756 1757 /** 1758 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 1759 * 1760 * @adev: amdgpu_device pointer 1761 * @bo_va: bo_va to store the address 1762 * @saddr: where to map the BO 1763 * @offset: requested offset in the BO 1764 * @size: BO size in bytes 1765 * @flags: attributes of pages (read/write/valid/etc.) 1766 * 1767 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 1768 * mappings as we do so. 1769 * 1770 * Returns: 1771 * 0 for success, error for failure. 1772 * 1773 * Object has to be reserved and unreserved outside! 1774 */ 1775 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 1776 struct amdgpu_bo_va *bo_va, 1777 uint64_t saddr, uint64_t offset, 1778 uint64_t size, uint64_t flags) 1779 { 1780 struct amdgpu_bo_va_mapping *mapping; 1781 struct amdgpu_bo *bo = bo_va->base.bo; 1782 uint64_t eaddr; 1783 int r; 1784 1785 r = amdgpu_vm_verify_parameters(adev, bo, saddr, offset, size); 1786 if (r) 1787 return r; 1788 1789 /* Allocate all the needed memory */ 1790 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1791 if (!mapping) 1792 return -ENOMEM; 1793 1794 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 1795 if (r) { 1796 kfree(mapping); 1797 return r; 1798 } 1799 1800 saddr /= AMDGPU_GPU_PAGE_SIZE; 1801 eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE; 1802 1803 mapping->start = saddr; 1804 mapping->last = eaddr; 1805 mapping->offset = offset; 1806 mapping->flags = flags; 1807 1808 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 1809 1810 return 0; 1811 } 1812 1813 /** 1814 * amdgpu_vm_bo_unmap - remove bo mapping from vm 1815 * 1816 * @adev: amdgpu_device pointer 1817 * @bo_va: bo_va to remove the address from 1818 * @saddr: where to the BO is mapped 1819 * 1820 * Remove a mapping of the BO at the specefied addr from the VM. 1821 * 1822 * Returns: 1823 * 0 for success, error for failure. 1824 * 1825 * Object has to be reserved and unreserved outside! 1826 */ 1827 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 1828 struct amdgpu_bo_va *bo_va, 1829 uint64_t saddr) 1830 { 1831 struct amdgpu_bo_va_mapping *mapping; 1832 struct amdgpu_vm *vm = bo_va->base.vm; 1833 bool valid = true; 1834 1835 saddr /= AMDGPU_GPU_PAGE_SIZE; 1836 1837 list_for_each_entry(mapping, &bo_va->valids, list) { 1838 if (mapping->start == saddr) 1839 break; 1840 } 1841 1842 if (&mapping->list == &bo_va->valids) { 1843 valid = false; 1844 1845 list_for_each_entry(mapping, &bo_va->invalids, list) { 1846 if (mapping->start == saddr) 1847 break; 1848 } 1849 1850 if (&mapping->list == &bo_va->invalids) 1851 return -ENOENT; 1852 } 1853 1854 list_del(&mapping->list); 1855 amdgpu_vm_it_remove(mapping, &vm->va); 1856 mapping->bo_va = NULL; 1857 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 1858 1859 if (valid) 1860 list_add(&mapping->list, &vm->freed); 1861 else 1862 amdgpu_vm_free_mapping(adev, vm, mapping, 1863 bo_va->last_pt_update); 1864 1865 return 0; 1866 } 1867 1868 /** 1869 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 1870 * 1871 * @adev: amdgpu_device pointer 1872 * @vm: VM structure to use 1873 * @saddr: start of the range 1874 * @size: size of the range 1875 * 1876 * Remove all mappings in a range, split them as appropriate. 1877 * 1878 * Returns: 1879 * 0 for success, error for failure. 1880 */ 1881 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 1882 struct amdgpu_vm *vm, 1883 uint64_t saddr, uint64_t size) 1884 { 1885 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 1886 LIST_HEAD(removed); 1887 uint64_t eaddr; 1888 int r; 1889 1890 r = amdgpu_vm_verify_parameters(adev, NULL, saddr, 0, size); 1891 if (r) 1892 return r; 1893 1894 saddr /= AMDGPU_GPU_PAGE_SIZE; 1895 eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE; 1896 1897 /* Allocate all the needed memory */ 1898 before = kzalloc(sizeof(*before), GFP_KERNEL); 1899 if (!before) 1900 return -ENOMEM; 1901 INIT_LIST_HEAD(&before->list); 1902 1903 after = kzalloc(sizeof(*after), GFP_KERNEL); 1904 if (!after) { 1905 kfree(before); 1906 return -ENOMEM; 1907 } 1908 INIT_LIST_HEAD(&after->list); 1909 1910 /* Now gather all removed mappings */ 1911 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 1912 while (tmp) { 1913 /* Remember mapping split at the start */ 1914 if (tmp->start < saddr) { 1915 before->start = tmp->start; 1916 before->last = saddr - 1; 1917 before->offset = tmp->offset; 1918 before->flags = tmp->flags; 1919 before->bo_va = tmp->bo_va; 1920 list_add(&before->list, &tmp->bo_va->invalids); 1921 } 1922 1923 /* Remember mapping split at the end */ 1924 if (tmp->last > eaddr) { 1925 after->start = eaddr + 1; 1926 after->last = tmp->last; 1927 after->offset = tmp->offset; 1928 after->offset += (after->start - tmp->start) << PAGE_SHIFT; 1929 after->flags = tmp->flags; 1930 after->bo_va = tmp->bo_va; 1931 list_add(&after->list, &tmp->bo_va->invalids); 1932 } 1933 1934 list_del(&tmp->list); 1935 list_add(&tmp->list, &removed); 1936 1937 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 1938 } 1939 1940 /* And free them up */ 1941 list_for_each_entry_safe(tmp, next, &removed, list) { 1942 amdgpu_vm_it_remove(tmp, &vm->va); 1943 list_del(&tmp->list); 1944 1945 if (tmp->start < saddr) 1946 tmp->start = saddr; 1947 if (tmp->last > eaddr) 1948 tmp->last = eaddr; 1949 1950 tmp->bo_va = NULL; 1951 list_add(&tmp->list, &vm->freed); 1952 trace_amdgpu_vm_bo_unmap(NULL, tmp); 1953 } 1954 1955 /* Insert partial mapping before the range */ 1956 if (!list_empty(&before->list)) { 1957 struct amdgpu_bo *bo = before->bo_va->base.bo; 1958 1959 amdgpu_vm_it_insert(before, &vm->va); 1960 if (before->flags & AMDGPU_PTE_PRT_FLAG(adev)) 1961 amdgpu_vm_prt_get(adev); 1962 1963 if (amdgpu_vm_is_bo_always_valid(vm, bo) && 1964 !before->bo_va->base.moved) 1965 amdgpu_vm_bo_moved(&before->bo_va->base); 1966 } else { 1967 kfree(before); 1968 } 1969 1970 /* Insert partial mapping after the range */ 1971 if (!list_empty(&after->list)) { 1972 struct amdgpu_bo *bo = after->bo_va->base.bo; 1973 1974 amdgpu_vm_it_insert(after, &vm->va); 1975 if (after->flags & AMDGPU_PTE_PRT_FLAG(adev)) 1976 amdgpu_vm_prt_get(adev); 1977 1978 if (amdgpu_vm_is_bo_always_valid(vm, bo) && 1979 !after->bo_va->base.moved) 1980 amdgpu_vm_bo_moved(&after->bo_va->base); 1981 } else { 1982 kfree(after); 1983 } 1984 1985 return 0; 1986 } 1987 1988 /** 1989 * amdgpu_vm_bo_lookup_mapping - find mapping by address 1990 * 1991 * @vm: the requested VM 1992 * @addr: the address 1993 * 1994 * Find a mapping by it's address. 1995 * 1996 * Returns: 1997 * The amdgpu_bo_va_mapping matching for addr or NULL 1998 * 1999 */ 2000 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2001 uint64_t addr) 2002 { 2003 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2004 } 2005 2006 /** 2007 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2008 * 2009 * @vm: the requested vm 2010 * @ticket: CS ticket 2011 * 2012 * Trace all mappings of BOs reserved during a command submission. 2013 */ 2014 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2015 { 2016 struct amdgpu_bo_va_mapping *mapping; 2017 2018 if (!trace_amdgpu_vm_bo_cs_enabled()) 2019 return; 2020 2021 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2022 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2023 if (mapping->bo_va && mapping->bo_va->base.bo) { 2024 struct amdgpu_bo *bo; 2025 2026 bo = mapping->bo_va->base.bo; 2027 if (dma_resv_locking_ctx(bo->tbo.base.resv) != 2028 ticket) 2029 continue; 2030 } 2031 2032 trace_amdgpu_vm_bo_cs(mapping); 2033 } 2034 } 2035 2036 /** 2037 * amdgpu_vm_bo_del - remove a bo from a specific vm 2038 * 2039 * @adev: amdgpu_device pointer 2040 * @bo_va: requested bo_va 2041 * 2042 * Remove @bo_va->bo from the requested vm. 2043 * 2044 * Object have to be reserved! 2045 */ 2046 void amdgpu_vm_bo_del(struct amdgpu_device *adev, 2047 struct amdgpu_bo_va *bo_va) 2048 { 2049 struct amdgpu_bo_va_mapping *mapping, *next; 2050 struct amdgpu_bo *bo = bo_va->base.bo; 2051 struct amdgpu_vm *vm = bo_va->base.vm; 2052 struct amdgpu_vm_bo_base **base; 2053 2054 dma_resv_assert_held(vm->root.bo->tbo.base.resv); 2055 2056 if (bo) { 2057 dma_resv_assert_held(bo->tbo.base.resv); 2058 if (amdgpu_vm_is_bo_always_valid(vm, bo)) 2059 ttm_bo_set_bulk_move(&bo->tbo, NULL); 2060 2061 for (base = &bo_va->base.bo->vm_bo; *base; 2062 base = &(*base)->next) { 2063 if (*base != &bo_va->base) 2064 continue; 2065 2066 *base = bo_va->base.next; 2067 break; 2068 } 2069 } 2070 2071 spin_lock(&vm->status_lock); 2072 list_del(&bo_va->base.vm_status); 2073 spin_unlock(&vm->status_lock); 2074 2075 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2076 list_del(&mapping->list); 2077 amdgpu_vm_it_remove(mapping, &vm->va); 2078 mapping->bo_va = NULL; 2079 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2080 list_add(&mapping->list, &vm->freed); 2081 } 2082 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2083 list_del(&mapping->list); 2084 amdgpu_vm_it_remove(mapping, &vm->va); 2085 amdgpu_vm_free_mapping(adev, vm, mapping, 2086 bo_va->last_pt_update); 2087 } 2088 2089 dma_fence_put(bo_va->last_pt_update); 2090 2091 if (bo && bo_va->is_xgmi) 2092 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN); 2093 2094 kfree(bo_va); 2095 } 2096 2097 /** 2098 * amdgpu_vm_evictable - check if we can evict a VM 2099 * 2100 * @bo: A page table of the VM. 2101 * 2102 * Check if it is possible to evict a VM. 2103 */ 2104 bool amdgpu_vm_evictable(struct amdgpu_bo *bo) 2105 { 2106 struct amdgpu_vm_bo_base *bo_base = bo->vm_bo; 2107 2108 /* Page tables of a destroyed VM can go away immediately */ 2109 if (!bo_base || !bo_base->vm) 2110 return true; 2111 2112 /* Don't evict VM page tables while they are busy */ 2113 if (!dma_resv_test_signaled(bo->tbo.base.resv, DMA_RESV_USAGE_BOOKKEEP)) 2114 return false; 2115 2116 /* Try to block ongoing updates */ 2117 if (!amdgpu_vm_eviction_trylock(bo_base->vm)) 2118 return false; 2119 2120 /* Don't evict VM page tables while they are updated */ 2121 if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) { 2122 amdgpu_vm_eviction_unlock(bo_base->vm); 2123 return false; 2124 } 2125 2126 bo_base->vm->evicting = true; 2127 amdgpu_vm_eviction_unlock(bo_base->vm); 2128 return true; 2129 } 2130 2131 /** 2132 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2133 * 2134 * @adev: amdgpu_device pointer 2135 * @bo: amdgpu buffer object 2136 * @evicted: is the BO evicted 2137 * 2138 * Mark @bo as invalid. 2139 */ 2140 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2141 struct amdgpu_bo *bo, bool evicted) 2142 { 2143 struct amdgpu_vm_bo_base *bo_base; 2144 2145 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2146 struct amdgpu_vm *vm = bo_base->vm; 2147 2148 if (evicted && amdgpu_vm_is_bo_always_valid(vm, bo)) { 2149 amdgpu_vm_bo_evicted(bo_base); 2150 continue; 2151 } 2152 2153 if (bo_base->moved) 2154 continue; 2155 bo_base->moved = true; 2156 2157 if (bo->tbo.type == ttm_bo_type_kernel) 2158 amdgpu_vm_bo_relocated(bo_base); 2159 else if (amdgpu_vm_is_bo_always_valid(vm, bo)) 2160 amdgpu_vm_bo_moved(bo_base); 2161 else 2162 amdgpu_vm_bo_invalidated(bo_base); 2163 } 2164 } 2165 2166 /** 2167 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2168 * 2169 * @vm_size: VM size 2170 * 2171 * Returns: 2172 * VM page table as power of two 2173 */ 2174 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2175 { 2176 /* Total bits covered by PD + PTs */ 2177 unsigned bits = ilog2(vm_size) + 18; 2178 2179 /* Make sure the PD is 4K in size up to 8GB address space. 2180 Above that split equal between PD and PTs */ 2181 if (vm_size <= 8) 2182 return (bits - 9); 2183 else 2184 return ((bits + 3) / 2); 2185 } 2186 2187 /** 2188 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2189 * 2190 * @adev: amdgpu_device pointer 2191 * @min_vm_size: the minimum vm size in GB if it's set auto 2192 * @fragment_size_default: Default PTE fragment size 2193 * @max_level: max VMPT level 2194 * @max_bits: max address space size in bits 2195 * 2196 */ 2197 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2198 uint32_t fragment_size_default, unsigned max_level, 2199 unsigned max_bits) 2200 { 2201 unsigned int max_size = 1 << (max_bits - 30); 2202 unsigned int vm_size; 2203 uint64_t tmp; 2204 2205 /* adjust vm size first */ 2206 if (amdgpu_vm_size != -1) { 2207 vm_size = amdgpu_vm_size; 2208 if (vm_size > max_size) { 2209 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2210 amdgpu_vm_size, max_size); 2211 vm_size = max_size; 2212 } 2213 } else { 2214 struct sysinfo si; 2215 unsigned int phys_ram_gb; 2216 2217 /* Optimal VM size depends on the amount of physical 2218 * RAM available. Underlying requirements and 2219 * assumptions: 2220 * 2221 * - Need to map system memory and VRAM from all GPUs 2222 * - VRAM from other GPUs not known here 2223 * - Assume VRAM <= system memory 2224 * - On GFX8 and older, VM space can be segmented for 2225 * different MTYPEs 2226 * - Need to allow room for fragmentation, guard pages etc. 2227 * 2228 * This adds up to a rough guess of system memory x3. 2229 * Round up to power of two to maximize the available 2230 * VM size with the given page table size. 2231 */ 2232 si_meminfo(&si); 2233 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2234 (1 << 30) - 1) >> 30; 2235 vm_size = roundup_pow_of_two( 2236 clamp(phys_ram_gb * 3, min_vm_size, max_size)); 2237 } 2238 2239 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2240 2241 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2242 if (amdgpu_vm_block_size != -1) 2243 tmp >>= amdgpu_vm_block_size - 9; 2244 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2245 adev->vm_manager.num_level = min_t(unsigned int, max_level, tmp); 2246 switch (adev->vm_manager.num_level) { 2247 case 3: 2248 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2249 break; 2250 case 2: 2251 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2252 break; 2253 case 1: 2254 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2255 break; 2256 default: 2257 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2258 } 2259 /* block size depends on vm size and hw setup*/ 2260 if (amdgpu_vm_block_size != -1) 2261 adev->vm_manager.block_size = 2262 min((unsigned)amdgpu_vm_block_size, max_bits 2263 - AMDGPU_GPU_PAGE_SHIFT 2264 - 9 * adev->vm_manager.num_level); 2265 else if (adev->vm_manager.num_level > 1) 2266 adev->vm_manager.block_size = 9; 2267 else 2268 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2269 2270 if (amdgpu_vm_fragment_size == -1) 2271 adev->vm_manager.fragment_size = fragment_size_default; 2272 else 2273 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2274 2275 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2276 vm_size, adev->vm_manager.num_level + 1, 2277 adev->vm_manager.block_size, 2278 adev->vm_manager.fragment_size); 2279 } 2280 2281 /** 2282 * amdgpu_vm_wait_idle - wait for the VM to become idle 2283 * 2284 * @vm: VM object to wait for 2285 * @timeout: timeout to wait for VM to become idle 2286 */ 2287 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout) 2288 { 2289 timeout = dma_resv_wait_timeout(vm->root.bo->tbo.base.resv, 2290 DMA_RESV_USAGE_BOOKKEEP, 2291 true, timeout); 2292 if (timeout <= 0) 2293 return timeout; 2294 2295 return dma_fence_wait_timeout(vm->last_unlocked, true, timeout); 2296 } 2297 2298 static void amdgpu_vm_destroy_task_info(struct kref *kref) 2299 { 2300 struct amdgpu_task_info *ti = container_of(kref, struct amdgpu_task_info, refcount); 2301 2302 kfree(ti); 2303 } 2304 2305 static inline struct amdgpu_vm * 2306 amdgpu_vm_get_vm_from_pasid(struct amdgpu_device *adev, u32 pasid) 2307 { 2308 struct amdgpu_vm *vm; 2309 unsigned long flags; 2310 2311 xa_lock_irqsave(&adev->vm_manager.pasids, flags); 2312 vm = xa_load(&adev->vm_manager.pasids, pasid); 2313 xa_unlock_irqrestore(&adev->vm_manager.pasids, flags); 2314 2315 return vm; 2316 } 2317 2318 /** 2319 * amdgpu_vm_put_task_info - reference down the vm task_info ptr 2320 * 2321 * @task_info: task_info struct under discussion. 2322 * 2323 * frees the vm task_info ptr at the last put 2324 */ 2325 void amdgpu_vm_put_task_info(struct amdgpu_task_info *task_info) 2326 { 2327 kref_put(&task_info->refcount, amdgpu_vm_destroy_task_info); 2328 } 2329 2330 /** 2331 * amdgpu_vm_get_task_info_vm - Extracts task info for a vm. 2332 * 2333 * @vm: VM to get info from 2334 * 2335 * Returns the reference counted task_info structure, which must be 2336 * referenced down with amdgpu_vm_put_task_info. 2337 */ 2338 struct amdgpu_task_info * 2339 amdgpu_vm_get_task_info_vm(struct amdgpu_vm *vm) 2340 { 2341 struct amdgpu_task_info *ti = NULL; 2342 2343 if (vm) { 2344 ti = vm->task_info; 2345 kref_get(&vm->task_info->refcount); 2346 } 2347 2348 return ti; 2349 } 2350 2351 /** 2352 * amdgpu_vm_get_task_info_pasid - Extracts task info for a PASID. 2353 * 2354 * @adev: drm device pointer 2355 * @pasid: PASID identifier for VM 2356 * 2357 * Returns the reference counted task_info structure, which must be 2358 * referenced down with amdgpu_vm_put_task_info. 2359 */ 2360 struct amdgpu_task_info * 2361 amdgpu_vm_get_task_info_pasid(struct amdgpu_device *adev, u32 pasid) 2362 { 2363 return amdgpu_vm_get_task_info_vm( 2364 amdgpu_vm_get_vm_from_pasid(adev, pasid)); 2365 } 2366 2367 static int amdgpu_vm_create_task_info(struct amdgpu_vm *vm) 2368 { 2369 vm->task_info = kzalloc(sizeof(struct amdgpu_task_info), GFP_KERNEL); 2370 if (!vm->task_info) 2371 return -ENOMEM; 2372 2373 kref_init(&vm->task_info->refcount); 2374 return 0; 2375 } 2376 2377 /** 2378 * amdgpu_vm_set_task_info - Sets VMs task info. 2379 * 2380 * @vm: vm for which to set the info 2381 */ 2382 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 2383 { 2384 if (!vm->task_info) 2385 return; 2386 2387 if (vm->task_info->pid == current->pid) 2388 return; 2389 2390 vm->task_info->pid = current->pid; 2391 get_task_comm(vm->task_info->task_name, current); 2392 2393 if (current->group_leader->mm != current->mm) 2394 return; 2395 2396 vm->task_info->tgid = current->group_leader->pid; 2397 get_task_comm(vm->task_info->process_name, current->group_leader); 2398 } 2399 2400 /** 2401 * amdgpu_vm_init - initialize a vm instance 2402 * 2403 * @adev: amdgpu_device pointer 2404 * @vm: requested vm 2405 * @xcp_id: GPU partition selection id 2406 * 2407 * Init @vm fields. 2408 * 2409 * Returns: 2410 * 0 for success, error for failure. 2411 */ 2412 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2413 int32_t xcp_id) 2414 { 2415 struct amdgpu_bo *root_bo; 2416 struct amdgpu_bo_vm *root; 2417 int r, i; 2418 2419 vm->va = RB_ROOT_CACHED; 2420 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2421 vm->reserved_vmid[i] = NULL; 2422 INIT_LIST_HEAD(&vm->evicted); 2423 INIT_LIST_HEAD(&vm->evicted_user); 2424 INIT_LIST_HEAD(&vm->relocated); 2425 INIT_LIST_HEAD(&vm->moved); 2426 INIT_LIST_HEAD(&vm->idle); 2427 INIT_LIST_HEAD(&vm->invalidated); 2428 spin_lock_init(&vm->status_lock); 2429 INIT_LIST_HEAD(&vm->freed); 2430 INIT_LIST_HEAD(&vm->done); 2431 INIT_LIST_HEAD(&vm->pt_freed); 2432 INIT_WORK(&vm->pt_free_work, amdgpu_vm_pt_free_work); 2433 INIT_KFIFO(vm->faults); 2434 2435 r = amdgpu_vm_init_entities(adev, vm); 2436 if (r) 2437 return r; 2438 2439 ttm_lru_bulk_move_init(&vm->lru_bulk_move); 2440 2441 vm->is_compute_context = false; 2442 2443 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2444 AMDGPU_VM_USE_CPU_FOR_GFX); 2445 2446 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2447 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2448 WARN_ONCE((vm->use_cpu_for_update && 2449 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2450 "CPU update of VM recommended only for large BAR system\n"); 2451 2452 if (vm->use_cpu_for_update) 2453 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2454 else 2455 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2456 2457 vm->last_update = dma_fence_get_stub(); 2458 vm->last_unlocked = dma_fence_get_stub(); 2459 vm->last_tlb_flush = dma_fence_get_stub(); 2460 vm->generation = amdgpu_vm_generation(adev, NULL); 2461 2462 mutex_init(&vm->eviction_lock); 2463 vm->evicting = false; 2464 vm->tlb_fence_context = dma_fence_context_alloc(1); 2465 2466 r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level, 2467 false, &root, xcp_id); 2468 if (r) 2469 goto error_free_delayed; 2470 2471 root_bo = amdgpu_bo_ref(&root->bo); 2472 r = amdgpu_bo_reserve(root_bo, true); 2473 if (r) { 2474 amdgpu_bo_unref(&root_bo); 2475 goto error_free_delayed; 2476 } 2477 2478 amdgpu_vm_bo_base_init(&vm->root, vm, root_bo); 2479 r = dma_resv_reserve_fences(root_bo->tbo.base.resv, 1); 2480 if (r) 2481 goto error_free_root; 2482 2483 r = amdgpu_vm_pt_clear(adev, vm, root, false); 2484 if (r) 2485 goto error_free_root; 2486 2487 r = amdgpu_vm_create_task_info(vm); 2488 if (r) 2489 DRM_DEBUG("Failed to create task info for VM\n"); 2490 2491 amdgpu_bo_unreserve(vm->root.bo); 2492 amdgpu_bo_unref(&root_bo); 2493 2494 return 0; 2495 2496 error_free_root: 2497 amdgpu_vm_pt_free_root(adev, vm); 2498 amdgpu_bo_unreserve(vm->root.bo); 2499 amdgpu_bo_unref(&root_bo); 2500 2501 error_free_delayed: 2502 dma_fence_put(vm->last_tlb_flush); 2503 dma_fence_put(vm->last_unlocked); 2504 ttm_lru_bulk_move_fini(&adev->mman.bdev, &vm->lru_bulk_move); 2505 amdgpu_vm_fini_entities(vm); 2506 2507 return r; 2508 } 2509 2510 /** 2511 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 2512 * 2513 * @adev: amdgpu_device pointer 2514 * @vm: requested vm 2515 * 2516 * This only works on GFX VMs that don't have any BOs added and no 2517 * page tables allocated yet. 2518 * 2519 * Changes the following VM parameters: 2520 * - use_cpu_for_update 2521 * - pte_supports_ats 2522 * 2523 * Reinitializes the page directory to reflect the changed ATS 2524 * setting. 2525 * 2526 * Returns: 2527 * 0 for success, -errno for errors. 2528 */ 2529 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2530 { 2531 int r; 2532 2533 r = amdgpu_bo_reserve(vm->root.bo, true); 2534 if (r) 2535 return r; 2536 2537 /* Update VM state */ 2538 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2539 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2540 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2541 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2542 WARN_ONCE((vm->use_cpu_for_update && 2543 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2544 "CPU update of VM recommended only for large BAR system\n"); 2545 2546 if (vm->use_cpu_for_update) { 2547 /* Sync with last SDMA update/clear before switching to CPU */ 2548 r = amdgpu_bo_sync_wait(vm->root.bo, 2549 AMDGPU_FENCE_OWNER_UNDEFINED, true); 2550 if (r) 2551 goto unreserve_bo; 2552 2553 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2554 r = amdgpu_vm_pt_map_tables(adev, vm); 2555 if (r) 2556 goto unreserve_bo; 2557 2558 } else { 2559 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2560 } 2561 2562 dma_fence_put(vm->last_update); 2563 vm->last_update = dma_fence_get_stub(); 2564 vm->is_compute_context = true; 2565 2566 unreserve_bo: 2567 amdgpu_bo_unreserve(vm->root.bo); 2568 return r; 2569 } 2570 2571 /** 2572 * amdgpu_vm_release_compute - release a compute vm 2573 * @adev: amdgpu_device pointer 2574 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute 2575 * 2576 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute 2577 * pasid from vm. Compute should stop use of vm after this call. 2578 */ 2579 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2580 { 2581 amdgpu_vm_set_pasid(adev, vm, 0); 2582 vm->is_compute_context = false; 2583 } 2584 2585 /** 2586 * amdgpu_vm_fini - tear down a vm instance 2587 * 2588 * @adev: amdgpu_device pointer 2589 * @vm: requested vm 2590 * 2591 * Tear down @vm. 2592 * Unbind the VM and remove all bos from the vm bo list 2593 */ 2594 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2595 { 2596 struct amdgpu_bo_va_mapping *mapping, *tmp; 2597 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 2598 struct amdgpu_bo *root; 2599 unsigned long flags; 2600 int i; 2601 2602 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 2603 2604 flush_work(&vm->pt_free_work); 2605 2606 root = amdgpu_bo_ref(vm->root.bo); 2607 amdgpu_bo_reserve(root, true); 2608 amdgpu_vm_put_task_info(vm->task_info); 2609 amdgpu_vm_set_pasid(adev, vm, 0); 2610 dma_fence_wait(vm->last_unlocked, false); 2611 dma_fence_put(vm->last_unlocked); 2612 dma_fence_wait(vm->last_tlb_flush, false); 2613 /* Make sure that all fence callbacks have completed */ 2614 spin_lock_irqsave(vm->last_tlb_flush->lock, flags); 2615 spin_unlock_irqrestore(vm->last_tlb_flush->lock, flags); 2616 dma_fence_put(vm->last_tlb_flush); 2617 2618 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 2619 if (mapping->flags & AMDGPU_PTE_PRT_FLAG(adev) && prt_fini_needed) { 2620 amdgpu_vm_prt_fini(adev, vm); 2621 prt_fini_needed = false; 2622 } 2623 2624 list_del(&mapping->list); 2625 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 2626 } 2627 2628 amdgpu_vm_pt_free_root(adev, vm); 2629 amdgpu_bo_unreserve(root); 2630 amdgpu_bo_unref(&root); 2631 WARN_ON(vm->root.bo); 2632 2633 amdgpu_vm_fini_entities(vm); 2634 2635 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 2636 dev_err(adev->dev, "still active bo inside vm\n"); 2637 } 2638 rbtree_postorder_for_each_entry_safe(mapping, tmp, 2639 &vm->va.rb_root, rb) { 2640 /* Don't remove the mapping here, we don't want to trigger a 2641 * rebalance and the tree is about to be destroyed anyway. 2642 */ 2643 list_del(&mapping->list); 2644 kfree(mapping); 2645 } 2646 2647 dma_fence_put(vm->last_update); 2648 2649 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) { 2650 if (vm->reserved_vmid[i]) { 2651 amdgpu_vmid_free_reserved(adev, i); 2652 vm->reserved_vmid[i] = false; 2653 } 2654 } 2655 2656 ttm_lru_bulk_move_fini(&adev->mman.bdev, &vm->lru_bulk_move); 2657 } 2658 2659 /** 2660 * amdgpu_vm_manager_init - init the VM manager 2661 * 2662 * @adev: amdgpu_device pointer 2663 * 2664 * Initialize the VM manager structures 2665 */ 2666 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 2667 { 2668 unsigned i; 2669 2670 /* Concurrent flushes are only possible starting with Vega10 and 2671 * are broken on Navi10 and Navi14. 2672 */ 2673 adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 || 2674 adev->asic_type == CHIP_NAVI10 || 2675 adev->asic_type == CHIP_NAVI14); 2676 amdgpu_vmid_mgr_init(adev); 2677 2678 adev->vm_manager.fence_context = 2679 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 2680 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 2681 adev->vm_manager.seqno[i] = 0; 2682 2683 spin_lock_init(&adev->vm_manager.prt_lock); 2684 atomic_set(&adev->vm_manager.num_prt_users, 0); 2685 2686 /* If not overridden by the user, by default, only in large BAR systems 2687 * Compute VM tables will be updated by CPU 2688 */ 2689 #ifdef CONFIG_X86_64 2690 if (amdgpu_vm_update_mode == -1) { 2691 /* For asic with VF MMIO access protection 2692 * avoid using CPU for VM table updates 2693 */ 2694 if (amdgpu_gmc_vram_full_visible(&adev->gmc) && 2695 !amdgpu_sriov_vf_mmio_access_protection(adev)) 2696 adev->vm_manager.vm_update_mode = 2697 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 2698 else 2699 adev->vm_manager.vm_update_mode = 0; 2700 } else 2701 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 2702 #else 2703 adev->vm_manager.vm_update_mode = 0; 2704 #endif 2705 2706 xa_init_flags(&adev->vm_manager.pasids, XA_FLAGS_LOCK_IRQ); 2707 } 2708 2709 /** 2710 * amdgpu_vm_manager_fini - cleanup VM manager 2711 * 2712 * @adev: amdgpu_device pointer 2713 * 2714 * Cleanup the VM manager and free resources. 2715 */ 2716 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 2717 { 2718 WARN_ON(!xa_empty(&adev->vm_manager.pasids)); 2719 xa_destroy(&adev->vm_manager.pasids); 2720 2721 amdgpu_vmid_mgr_fini(adev); 2722 } 2723 2724 /** 2725 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 2726 * 2727 * @dev: drm device pointer 2728 * @data: drm_amdgpu_vm 2729 * @filp: drm file pointer 2730 * 2731 * Returns: 2732 * 0 for success, -errno for errors. 2733 */ 2734 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 2735 { 2736 union drm_amdgpu_vm *args = data; 2737 struct amdgpu_device *adev = drm_to_adev(dev); 2738 struct amdgpu_fpriv *fpriv = filp->driver_priv; 2739 2740 /* No valid flags defined yet */ 2741 if (args->in.flags) 2742 return -EINVAL; 2743 2744 switch (args->in.op) { 2745 case AMDGPU_VM_OP_RESERVE_VMID: 2746 /* We only have requirement to reserve vmid from gfxhub */ 2747 if (!fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) { 2748 amdgpu_vmid_alloc_reserved(adev, AMDGPU_GFXHUB(0)); 2749 fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = true; 2750 } 2751 2752 break; 2753 case AMDGPU_VM_OP_UNRESERVE_VMID: 2754 if (fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) { 2755 amdgpu_vmid_free_reserved(adev, AMDGPU_GFXHUB(0)); 2756 fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = false; 2757 } 2758 break; 2759 default: 2760 return -EINVAL; 2761 } 2762 2763 return 0; 2764 } 2765 2766 /** 2767 * amdgpu_vm_handle_fault - graceful handling of VM faults. 2768 * @adev: amdgpu device pointer 2769 * @pasid: PASID of the VM 2770 * @ts: Timestamp of the fault 2771 * @vmid: VMID, only used for GFX 9.4.3. 2772 * @node_id: Node_id received in IH cookie. Only applicable for 2773 * GFX 9.4.3. 2774 * @addr: Address of the fault 2775 * @write_fault: true is write fault, false is read fault 2776 * 2777 * Try to gracefully handle a VM fault. Return true if the fault was handled and 2778 * shouldn't be reported any more. 2779 */ 2780 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid, 2781 u32 vmid, u32 node_id, uint64_t addr, uint64_t ts, 2782 bool write_fault) 2783 { 2784 bool is_compute_context = false; 2785 struct amdgpu_bo *root; 2786 unsigned long irqflags; 2787 uint64_t value, flags; 2788 struct amdgpu_vm *vm; 2789 int r; 2790 2791 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 2792 vm = xa_load(&adev->vm_manager.pasids, pasid); 2793 if (vm) { 2794 root = amdgpu_bo_ref(vm->root.bo); 2795 is_compute_context = vm->is_compute_context; 2796 } else { 2797 root = NULL; 2798 } 2799 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 2800 2801 if (!root) 2802 return false; 2803 2804 addr /= AMDGPU_GPU_PAGE_SIZE; 2805 2806 if (is_compute_context && !svm_range_restore_pages(adev, pasid, vmid, 2807 node_id, addr, ts, write_fault)) { 2808 amdgpu_bo_unref(&root); 2809 return true; 2810 } 2811 2812 r = amdgpu_bo_reserve(root, true); 2813 if (r) 2814 goto error_unref; 2815 2816 /* Double check that the VM still exists */ 2817 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 2818 vm = xa_load(&adev->vm_manager.pasids, pasid); 2819 if (vm && vm->root.bo != root) 2820 vm = NULL; 2821 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 2822 if (!vm) 2823 goto error_unlock; 2824 2825 flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED | 2826 AMDGPU_PTE_SYSTEM; 2827 2828 if (is_compute_context) { 2829 /* Intentionally setting invalid PTE flag 2830 * combination to force a no-retry-fault 2831 */ 2832 flags = AMDGPU_VM_NORETRY_FLAGS; 2833 value = 0; 2834 } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) { 2835 /* Redirect the access to the dummy page */ 2836 value = adev->dummy_page_addr; 2837 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE | 2838 AMDGPU_PTE_WRITEABLE; 2839 2840 } else { 2841 /* Let the hw retry silently on the PTE */ 2842 value = 0; 2843 } 2844 2845 r = dma_resv_reserve_fences(root->tbo.base.resv, 1); 2846 if (r) { 2847 pr_debug("failed %d to reserve fence slot\n", r); 2848 goto error_unlock; 2849 } 2850 2851 r = amdgpu_vm_update_range(adev, vm, true, false, false, false, 2852 NULL, addr, addr, flags, value, 0, NULL, NULL, NULL); 2853 if (r) 2854 goto error_unlock; 2855 2856 r = amdgpu_vm_update_pdes(adev, vm, true); 2857 2858 error_unlock: 2859 amdgpu_bo_unreserve(root); 2860 if (r < 0) 2861 DRM_ERROR("Can't handle page fault (%d)\n", r); 2862 2863 error_unref: 2864 amdgpu_bo_unref(&root); 2865 2866 return false; 2867 } 2868 2869 #if defined(CONFIG_DEBUG_FS) 2870 /** 2871 * amdgpu_debugfs_vm_bo_info - print BO info for the VM 2872 * 2873 * @vm: Requested VM for printing BO info 2874 * @m: debugfs file 2875 * 2876 * Print BO information in debugfs file for the VM 2877 */ 2878 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m) 2879 { 2880 struct amdgpu_bo_va *bo_va, *tmp; 2881 u64 total_idle = 0; 2882 u64 total_evicted = 0; 2883 u64 total_relocated = 0; 2884 u64 total_moved = 0; 2885 u64 total_invalidated = 0; 2886 u64 total_done = 0; 2887 unsigned int total_idle_objs = 0; 2888 unsigned int total_evicted_objs = 0; 2889 unsigned int total_relocated_objs = 0; 2890 unsigned int total_moved_objs = 0; 2891 unsigned int total_invalidated_objs = 0; 2892 unsigned int total_done_objs = 0; 2893 unsigned int id = 0; 2894 2895 spin_lock(&vm->status_lock); 2896 seq_puts(m, "\tIdle BOs:\n"); 2897 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) { 2898 if (!bo_va->base.bo) 2899 continue; 2900 total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2901 } 2902 total_idle_objs = id; 2903 id = 0; 2904 2905 seq_puts(m, "\tEvicted BOs:\n"); 2906 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) { 2907 if (!bo_va->base.bo) 2908 continue; 2909 total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2910 } 2911 total_evicted_objs = id; 2912 id = 0; 2913 2914 seq_puts(m, "\tRelocated BOs:\n"); 2915 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) { 2916 if (!bo_va->base.bo) 2917 continue; 2918 total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2919 } 2920 total_relocated_objs = id; 2921 id = 0; 2922 2923 seq_puts(m, "\tMoved BOs:\n"); 2924 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 2925 if (!bo_va->base.bo) 2926 continue; 2927 total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2928 } 2929 total_moved_objs = id; 2930 id = 0; 2931 2932 seq_puts(m, "\tInvalidated BOs:\n"); 2933 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) { 2934 if (!bo_va->base.bo) 2935 continue; 2936 total_invalidated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2937 } 2938 total_invalidated_objs = id; 2939 id = 0; 2940 2941 seq_puts(m, "\tDone BOs:\n"); 2942 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) { 2943 if (!bo_va->base.bo) 2944 continue; 2945 total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2946 } 2947 spin_unlock(&vm->status_lock); 2948 total_done_objs = id; 2949 2950 seq_printf(m, "\tTotal idle size: %12lld\tobjs:\t%d\n", total_idle, 2951 total_idle_objs); 2952 seq_printf(m, "\tTotal evicted size: %12lld\tobjs:\t%d\n", total_evicted, 2953 total_evicted_objs); 2954 seq_printf(m, "\tTotal relocated size: %12lld\tobjs:\t%d\n", total_relocated, 2955 total_relocated_objs); 2956 seq_printf(m, "\tTotal moved size: %12lld\tobjs:\t%d\n", total_moved, 2957 total_moved_objs); 2958 seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated, 2959 total_invalidated_objs); 2960 seq_printf(m, "\tTotal done size: %12lld\tobjs:\t%d\n", total_done, 2961 total_done_objs); 2962 } 2963 #endif 2964 2965 /** 2966 * amdgpu_vm_update_fault_cache - update cached fault into. 2967 * @adev: amdgpu device pointer 2968 * @pasid: PASID of the VM 2969 * @addr: Address of the fault 2970 * @status: GPUVM fault status register 2971 * @vmhub: which vmhub got the fault 2972 * 2973 * Cache the fault info for later use by userspace in debugging. 2974 */ 2975 void amdgpu_vm_update_fault_cache(struct amdgpu_device *adev, 2976 unsigned int pasid, 2977 uint64_t addr, 2978 uint32_t status, 2979 unsigned int vmhub) 2980 { 2981 struct amdgpu_vm *vm; 2982 unsigned long flags; 2983 2984 xa_lock_irqsave(&adev->vm_manager.pasids, flags); 2985 2986 vm = xa_load(&adev->vm_manager.pasids, pasid); 2987 /* Don't update the fault cache if status is 0. In the multiple 2988 * fault case, subsequent faults will return a 0 status which is 2989 * useless for userspace and replaces the useful fault status, so 2990 * only update if status is non-0. 2991 */ 2992 if (vm && status) { 2993 vm->fault_info.addr = addr; 2994 vm->fault_info.status = status; 2995 /* 2996 * Update the fault information globally for later usage 2997 * when vm could be stale or freed. 2998 */ 2999 adev->vm_manager.fault_info.addr = addr; 3000 adev->vm_manager.fault_info.vmhub = vmhub; 3001 adev->vm_manager.fault_info.status = status; 3002 3003 if (AMDGPU_IS_GFXHUB(vmhub)) { 3004 vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_GFX; 3005 vm->fault_info.vmhub |= 3006 (vmhub - AMDGPU_GFXHUB_START) << AMDGPU_VMHUB_IDX_SHIFT; 3007 } else if (AMDGPU_IS_MMHUB0(vmhub)) { 3008 vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_MM0; 3009 vm->fault_info.vmhub |= 3010 (vmhub - AMDGPU_MMHUB0_START) << AMDGPU_VMHUB_IDX_SHIFT; 3011 } else if (AMDGPU_IS_MMHUB1(vmhub)) { 3012 vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_MM1; 3013 vm->fault_info.vmhub |= 3014 (vmhub - AMDGPU_MMHUB1_START) << AMDGPU_VMHUB_IDX_SHIFT; 3015 } else { 3016 WARN_ONCE(1, "Invalid vmhub %u\n", vmhub); 3017 } 3018 } 3019 xa_unlock_irqrestore(&adev->vm_manager.pasids, flags); 3020 } 3021 3022 /** 3023 * amdgpu_vm_is_bo_always_valid - check if the BO is VM always valid 3024 * 3025 * @vm: VM to test against. 3026 * @bo: BO to be tested. 3027 * 3028 * Returns true if the BO shares the dma_resv object with the root PD and is 3029 * always guaranteed to be valid inside the VM. 3030 */ 3031 bool amdgpu_vm_is_bo_always_valid(struct amdgpu_vm *vm, struct amdgpu_bo *bo) 3032 { 3033 return bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv; 3034 } 3035