1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 29 #include <linux/dma-fence-array.h> 30 #include <linux/interval_tree_generic.h> 31 #include <linux/idr.h> 32 #include <linux/dma-buf.h> 33 34 #include <drm/amdgpu_drm.h> 35 #include <drm/drm_drv.h> 36 #include <drm/ttm/ttm_tt.h> 37 #include <drm/drm_exec.h> 38 #include "amdgpu.h" 39 #include "amdgpu_trace.h" 40 #include "amdgpu_amdkfd.h" 41 #include "amdgpu_gmc.h" 42 #include "amdgpu_xgmi.h" 43 #include "amdgpu_dma_buf.h" 44 #include "amdgpu_res_cursor.h" 45 #include "kfd_svm.h" 46 47 /** 48 * DOC: GPUVM 49 * 50 * GPUVM is the MMU functionality provided on the GPU. 51 * GPUVM is similar to the legacy GART on older asics, however 52 * rather than there being a single global GART table 53 * for the entire GPU, there can be multiple GPUVM page tables active 54 * at any given time. The GPUVM page tables can contain a mix 55 * VRAM pages and system pages (both memory and MMIO) and system pages 56 * can be mapped as snooped (cached system pages) or unsnooped 57 * (uncached system pages). 58 * 59 * Each active GPUVM has an ID associated with it and there is a page table 60 * linked with each VMID. When executing a command buffer, 61 * the kernel tells the engine what VMID to use for that command 62 * buffer. VMIDs are allocated dynamically as commands are submitted. 63 * The userspace drivers maintain their own address space and the kernel 64 * sets up their pages tables accordingly when they submit their 65 * command buffers and a VMID is assigned. 66 * The hardware supports up to 16 active GPUVMs at any given time. 67 * 68 * Each GPUVM is represented by a 1-2 or 1-5 level page table, depending 69 * on the ASIC family. GPUVM supports RWX attributes on each page as well 70 * as other features such as encryption and caching attributes. 71 * 72 * VMID 0 is special. It is the GPUVM used for the kernel driver. In 73 * addition to an aperture managed by a page table, VMID 0 also has 74 * several other apertures. There is an aperture for direct access to VRAM 75 * and there is a legacy AGP aperture which just forwards accesses directly 76 * to the matching system physical addresses (or IOVAs when an IOMMU is 77 * present). These apertures provide direct access to these memories without 78 * incurring the overhead of a page table. VMID 0 is used by the kernel 79 * driver for tasks like memory management. 80 * 81 * GPU clients (i.e., engines on the GPU) use GPUVM VMIDs to access memory. 82 * For user applications, each application can have their own unique GPUVM 83 * address space. The application manages the address space and the kernel 84 * driver manages the GPUVM page tables for each process. If an GPU client 85 * accesses an invalid page, it will generate a GPU page fault, similar to 86 * accessing an invalid page on a CPU. 87 */ 88 89 #define START(node) ((node)->start) 90 #define LAST(node) ((node)->last) 91 92 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 93 START, LAST, static, amdgpu_vm_it) 94 95 #undef START 96 #undef LAST 97 98 /** 99 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 100 */ 101 struct amdgpu_prt_cb { 102 103 /** 104 * @adev: amdgpu device 105 */ 106 struct amdgpu_device *adev; 107 108 /** 109 * @cb: callback 110 */ 111 struct dma_fence_cb cb; 112 }; 113 114 /** 115 * struct amdgpu_vm_tlb_seq_struct - Helper to increment the TLB flush sequence 116 */ 117 struct amdgpu_vm_tlb_seq_struct { 118 /** 119 * @vm: pointer to the amdgpu_vm structure to set the fence sequence on 120 */ 121 struct amdgpu_vm *vm; 122 123 /** 124 * @cb: callback 125 */ 126 struct dma_fence_cb cb; 127 }; 128 129 /** 130 * amdgpu_vm_set_pasid - manage pasid and vm ptr mapping 131 * 132 * @adev: amdgpu_device pointer 133 * @vm: amdgpu_vm pointer 134 * @pasid: the pasid the VM is using on this GPU 135 * 136 * Set the pasid this VM is using on this GPU, can also be used to remove the 137 * pasid by passing in zero. 138 * 139 */ 140 int amdgpu_vm_set_pasid(struct amdgpu_device *adev, struct amdgpu_vm *vm, 141 u32 pasid) 142 { 143 int r; 144 145 if (vm->pasid == pasid) 146 return 0; 147 148 if (vm->pasid) { 149 r = xa_err(xa_erase_irq(&adev->vm_manager.pasids, vm->pasid)); 150 if (r < 0) 151 return r; 152 153 vm->pasid = 0; 154 } 155 156 if (pasid) { 157 r = xa_err(xa_store_irq(&adev->vm_manager.pasids, pasid, vm, 158 GFP_KERNEL)); 159 if (r < 0) 160 return r; 161 162 vm->pasid = pasid; 163 } 164 165 166 return 0; 167 } 168 169 /** 170 * amdgpu_vm_bo_evicted - vm_bo is evicted 171 * 172 * @vm_bo: vm_bo which is evicted 173 * 174 * State for PDs/PTs and per VM BOs which are not at the location they should 175 * be. 176 */ 177 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 178 { 179 struct amdgpu_vm *vm = vm_bo->vm; 180 struct amdgpu_bo *bo = vm_bo->bo; 181 182 vm_bo->moved = true; 183 spin_lock(&vm_bo->vm->status_lock); 184 if (bo->tbo.type == ttm_bo_type_kernel) 185 list_move(&vm_bo->vm_status, &vm->evicted); 186 else 187 list_move_tail(&vm_bo->vm_status, &vm->evicted); 188 spin_unlock(&vm_bo->vm->status_lock); 189 } 190 /** 191 * amdgpu_vm_bo_moved - vm_bo is moved 192 * 193 * @vm_bo: vm_bo which is moved 194 * 195 * State for per VM BOs which are moved, but that change is not yet reflected 196 * in the page tables. 197 */ 198 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 199 { 200 spin_lock(&vm_bo->vm->status_lock); 201 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 202 spin_unlock(&vm_bo->vm->status_lock); 203 } 204 205 /** 206 * amdgpu_vm_bo_idle - vm_bo is idle 207 * 208 * @vm_bo: vm_bo which is now idle 209 * 210 * State for PDs/PTs and per VM BOs which have gone through the state machine 211 * and are now idle. 212 */ 213 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 214 { 215 spin_lock(&vm_bo->vm->status_lock); 216 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 217 spin_unlock(&vm_bo->vm->status_lock); 218 vm_bo->moved = false; 219 } 220 221 /** 222 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 223 * 224 * @vm_bo: vm_bo which is now invalidated 225 * 226 * State for normal BOs which are invalidated and that change not yet reflected 227 * in the PTs. 228 */ 229 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 230 { 231 spin_lock(&vm_bo->vm->status_lock); 232 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 233 spin_unlock(&vm_bo->vm->status_lock); 234 } 235 236 /** 237 * amdgpu_vm_bo_evicted_user - vm_bo is evicted 238 * 239 * @vm_bo: vm_bo which is evicted 240 * 241 * State for BOs used by user mode queues which are not at the location they 242 * should be. 243 */ 244 static void amdgpu_vm_bo_evicted_user(struct amdgpu_vm_bo_base *vm_bo) 245 { 246 vm_bo->moved = true; 247 spin_lock(&vm_bo->vm->status_lock); 248 list_move(&vm_bo->vm_status, &vm_bo->vm->evicted_user); 249 spin_unlock(&vm_bo->vm->status_lock); 250 } 251 252 /** 253 * amdgpu_vm_bo_relocated - vm_bo is reloacted 254 * 255 * @vm_bo: vm_bo which is relocated 256 * 257 * State for PDs/PTs which needs to update their parent PD. 258 * For the root PD, just move to idle state. 259 */ 260 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 261 { 262 if (vm_bo->bo->parent) { 263 spin_lock(&vm_bo->vm->status_lock); 264 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 265 spin_unlock(&vm_bo->vm->status_lock); 266 } else { 267 amdgpu_vm_bo_idle(vm_bo); 268 } 269 } 270 271 /** 272 * amdgpu_vm_bo_done - vm_bo is done 273 * 274 * @vm_bo: vm_bo which is now done 275 * 276 * State for normal BOs which are invalidated and that change has been updated 277 * in the PTs. 278 */ 279 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 280 { 281 spin_lock(&vm_bo->vm->status_lock); 282 list_move(&vm_bo->vm_status, &vm_bo->vm->done); 283 spin_unlock(&vm_bo->vm->status_lock); 284 } 285 286 /** 287 * amdgpu_vm_bo_reset_state_machine - reset the vm_bo state machine 288 * @vm: the VM which state machine to reset 289 * 290 * Move all vm_bo object in the VM into a state where they will be updated 291 * again during validation. 292 */ 293 static void amdgpu_vm_bo_reset_state_machine(struct amdgpu_vm *vm) 294 { 295 struct amdgpu_vm_bo_base *vm_bo, *tmp; 296 297 spin_lock(&vm->status_lock); 298 list_splice_init(&vm->done, &vm->invalidated); 299 list_for_each_entry(vm_bo, &vm->invalidated, vm_status) 300 vm_bo->moved = true; 301 list_for_each_entry_safe(vm_bo, tmp, &vm->idle, vm_status) { 302 struct amdgpu_bo *bo = vm_bo->bo; 303 304 vm_bo->moved = true; 305 if (!bo || bo->tbo.type != ttm_bo_type_kernel) 306 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 307 else if (bo->parent) 308 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 309 } 310 spin_unlock(&vm->status_lock); 311 } 312 313 /** 314 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 315 * 316 * @base: base structure for tracking BO usage in a VM 317 * @vm: vm to which bo is to be added 318 * @bo: amdgpu buffer object 319 * 320 * Initialize a bo_va_base structure and add it to the appropriate lists 321 * 322 */ 323 void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 324 struct amdgpu_vm *vm, struct amdgpu_bo *bo) 325 { 326 base->vm = vm; 327 base->bo = bo; 328 base->next = NULL; 329 INIT_LIST_HEAD(&base->vm_status); 330 331 if (!bo) 332 return; 333 base->next = bo->vm_bo; 334 bo->vm_bo = base; 335 336 if (!amdgpu_vm_is_bo_always_valid(vm, bo)) 337 return; 338 339 dma_resv_assert_held(vm->root.bo->tbo.base.resv); 340 341 ttm_bo_set_bulk_move(&bo->tbo, &vm->lru_bulk_move); 342 if (bo->tbo.type == ttm_bo_type_kernel && bo->parent) 343 amdgpu_vm_bo_relocated(base); 344 else 345 amdgpu_vm_bo_idle(base); 346 347 if (bo->preferred_domains & 348 amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type)) 349 return; 350 351 /* 352 * we checked all the prerequisites, but it looks like this per vm bo 353 * is currently evicted. add the bo to the evicted list to make sure it 354 * is validated on next vm use to avoid fault. 355 * */ 356 amdgpu_vm_bo_evicted(base); 357 } 358 359 /** 360 * amdgpu_vm_lock_pd - lock PD in drm_exec 361 * 362 * @vm: vm providing the BOs 363 * @exec: drm execution context 364 * @num_fences: number of extra fences to reserve 365 * 366 * Lock the VM root PD in the DRM execution context. 367 */ 368 int amdgpu_vm_lock_pd(struct amdgpu_vm *vm, struct drm_exec *exec, 369 unsigned int num_fences) 370 { 371 /* We need at least two fences for the VM PD/PT updates */ 372 return drm_exec_prepare_obj(exec, &vm->root.bo->tbo.base, 373 2 + num_fences); 374 } 375 376 /** 377 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 378 * 379 * @adev: amdgpu device pointer 380 * @vm: vm providing the BOs 381 * 382 * Move all BOs to the end of LRU and remember their positions to put them 383 * together. 384 */ 385 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 386 struct amdgpu_vm *vm) 387 { 388 spin_lock(&adev->mman.bdev.lru_lock); 389 ttm_lru_bulk_move_tail(&vm->lru_bulk_move); 390 spin_unlock(&adev->mman.bdev.lru_lock); 391 } 392 393 /* Create scheduler entities for page table updates */ 394 static int amdgpu_vm_init_entities(struct amdgpu_device *adev, 395 struct amdgpu_vm *vm) 396 { 397 int r; 398 399 r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL, 400 adev->vm_manager.vm_pte_scheds, 401 adev->vm_manager.vm_pte_num_scheds, NULL); 402 if (r) 403 goto error; 404 405 return drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL, 406 adev->vm_manager.vm_pte_scheds, 407 adev->vm_manager.vm_pte_num_scheds, NULL); 408 409 error: 410 drm_sched_entity_destroy(&vm->immediate); 411 return r; 412 } 413 414 /* Destroy the entities for page table updates again */ 415 static void amdgpu_vm_fini_entities(struct amdgpu_vm *vm) 416 { 417 drm_sched_entity_destroy(&vm->immediate); 418 drm_sched_entity_destroy(&vm->delayed); 419 } 420 421 /** 422 * amdgpu_vm_generation - return the page table re-generation counter 423 * @adev: the amdgpu_device 424 * @vm: optional VM to check, might be NULL 425 * 426 * Returns a page table re-generation token to allow checking if submissions 427 * are still valid to use this VM. The VM parameter might be NULL in which case 428 * just the VRAM lost counter will be used. 429 */ 430 uint64_t amdgpu_vm_generation(struct amdgpu_device *adev, struct amdgpu_vm *vm) 431 { 432 uint64_t result = (u64)atomic_read(&adev->vram_lost_counter) << 32; 433 434 if (!vm) 435 return result; 436 437 result += lower_32_bits(vm->generation); 438 /* Add one if the page tables will be re-generated on next CS */ 439 if (drm_sched_entity_error(&vm->delayed)) 440 ++result; 441 442 return result; 443 } 444 445 /** 446 * amdgpu_vm_validate - validate evicted BOs tracked in the VM 447 * 448 * @adev: amdgpu device pointer 449 * @vm: vm providing the BOs 450 * @ticket: optional reservation ticket used to reserve the VM 451 * @validate: callback to do the validation 452 * @param: parameter for the validation callback 453 * 454 * Validate the page table BOs and per-VM BOs on command submission if 455 * necessary. If a ticket is given, also try to validate evicted user queue 456 * BOs. They must already be reserved with the given ticket. 457 * 458 * Returns: 459 * Validation result. 460 */ 461 int amdgpu_vm_validate(struct amdgpu_device *adev, struct amdgpu_vm *vm, 462 struct ww_acquire_ctx *ticket, 463 int (*validate)(void *p, struct amdgpu_bo *bo), 464 void *param) 465 { 466 uint64_t new_vm_generation = amdgpu_vm_generation(adev, vm); 467 struct amdgpu_vm_bo_base *bo_base; 468 struct amdgpu_bo *shadow; 469 struct amdgpu_bo *bo; 470 int r; 471 472 if (vm->generation != new_vm_generation) { 473 vm->generation = new_vm_generation; 474 amdgpu_vm_bo_reset_state_machine(vm); 475 amdgpu_vm_fini_entities(vm); 476 r = amdgpu_vm_init_entities(adev, vm); 477 if (r) 478 return r; 479 } 480 481 spin_lock(&vm->status_lock); 482 while (!list_empty(&vm->evicted)) { 483 bo_base = list_first_entry(&vm->evicted, 484 struct amdgpu_vm_bo_base, 485 vm_status); 486 spin_unlock(&vm->status_lock); 487 488 bo = bo_base->bo; 489 shadow = amdgpu_bo_shadowed(bo); 490 491 r = validate(param, bo); 492 if (r) 493 return r; 494 if (shadow) { 495 r = validate(param, shadow); 496 if (r) 497 return r; 498 } 499 500 if (bo->tbo.type != ttm_bo_type_kernel) { 501 amdgpu_vm_bo_moved(bo_base); 502 } else { 503 vm->update_funcs->map_table(to_amdgpu_bo_vm(bo)); 504 amdgpu_vm_bo_relocated(bo_base); 505 } 506 spin_lock(&vm->status_lock); 507 } 508 while (ticket && !list_empty(&vm->evicted_user)) { 509 bo_base = list_first_entry(&vm->evicted_user, 510 struct amdgpu_vm_bo_base, 511 vm_status); 512 spin_unlock(&vm->status_lock); 513 514 bo = bo_base->bo; 515 516 if (dma_resv_locking_ctx(bo->tbo.base.resv) != ticket) { 517 struct amdgpu_task_info *ti = amdgpu_vm_get_task_info_vm(vm); 518 519 pr_warn_ratelimited("Evicted user BO is not reserved\n"); 520 if (ti) { 521 pr_warn_ratelimited("pid %d\n", ti->pid); 522 amdgpu_vm_put_task_info(ti); 523 } 524 525 return -EINVAL; 526 } 527 528 r = validate(param, bo); 529 if (r) 530 return r; 531 532 amdgpu_vm_bo_invalidated(bo_base); 533 534 spin_lock(&vm->status_lock); 535 } 536 spin_unlock(&vm->status_lock); 537 538 amdgpu_vm_eviction_lock(vm); 539 vm->evicting = false; 540 amdgpu_vm_eviction_unlock(vm); 541 542 return 0; 543 } 544 545 /** 546 * amdgpu_vm_ready - check VM is ready for updates 547 * 548 * @vm: VM to check 549 * 550 * Check if all VM PDs/PTs are ready for updates 551 * 552 * Returns: 553 * True if VM is not evicting. 554 */ 555 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 556 { 557 bool empty; 558 bool ret; 559 560 amdgpu_vm_eviction_lock(vm); 561 ret = !vm->evicting; 562 amdgpu_vm_eviction_unlock(vm); 563 564 spin_lock(&vm->status_lock); 565 empty = list_empty(&vm->evicted); 566 spin_unlock(&vm->status_lock); 567 568 return ret && empty; 569 } 570 571 /** 572 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 573 * 574 * @adev: amdgpu_device pointer 575 */ 576 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 577 { 578 const struct amdgpu_ip_block *ip_block; 579 bool has_compute_vm_bug; 580 struct amdgpu_ring *ring; 581 int i; 582 583 has_compute_vm_bug = false; 584 585 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 586 if (ip_block) { 587 /* Compute has a VM bug for GFX version < 7. 588 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 589 if (ip_block->version->major <= 7) 590 has_compute_vm_bug = true; 591 else if (ip_block->version->major == 8) 592 if (adev->gfx.mec_fw_version < 673) 593 has_compute_vm_bug = true; 594 } 595 596 for (i = 0; i < adev->num_rings; i++) { 597 ring = adev->rings[i]; 598 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 599 /* only compute rings */ 600 ring->has_compute_vm_bug = has_compute_vm_bug; 601 else 602 ring->has_compute_vm_bug = false; 603 } 604 } 605 606 /** 607 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 608 * 609 * @ring: ring on which the job will be submitted 610 * @job: job to submit 611 * 612 * Returns: 613 * True if sync is needed. 614 */ 615 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 616 struct amdgpu_job *job) 617 { 618 struct amdgpu_device *adev = ring->adev; 619 unsigned vmhub = ring->vm_hub; 620 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 621 622 if (job->vmid == 0) 623 return false; 624 625 if (job->vm_needs_flush || ring->has_compute_vm_bug) 626 return true; 627 628 if (ring->funcs->emit_gds_switch && job->gds_switch_needed) 629 return true; 630 631 if (amdgpu_vmid_had_gpu_reset(adev, &id_mgr->ids[job->vmid])) 632 return true; 633 634 return false; 635 } 636 637 /** 638 * amdgpu_vm_flush - hardware flush the vm 639 * 640 * @ring: ring to use for flush 641 * @job: related job 642 * @need_pipe_sync: is pipe sync needed 643 * 644 * Emit a VM flush when it is necessary. 645 * 646 * Returns: 647 * 0 on success, errno otherwise. 648 */ 649 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, 650 bool need_pipe_sync) 651 { 652 struct amdgpu_device *adev = ring->adev; 653 unsigned vmhub = ring->vm_hub; 654 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 655 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 656 bool spm_update_needed = job->spm_update_needed; 657 bool gds_switch_needed = ring->funcs->emit_gds_switch && 658 job->gds_switch_needed; 659 bool vm_flush_needed = job->vm_needs_flush; 660 struct dma_fence *fence = NULL; 661 bool pasid_mapping_needed = false; 662 unsigned int patch; 663 int r; 664 665 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 666 gds_switch_needed = true; 667 vm_flush_needed = true; 668 pasid_mapping_needed = true; 669 spm_update_needed = true; 670 } 671 672 mutex_lock(&id_mgr->lock); 673 if (id->pasid != job->pasid || !id->pasid_mapping || 674 !dma_fence_is_signaled(id->pasid_mapping)) 675 pasid_mapping_needed = true; 676 mutex_unlock(&id_mgr->lock); 677 678 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 679 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 680 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 681 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 682 ring->funcs->emit_wreg; 683 684 if (adev->gfx.enable_cleaner_shader && 685 ring->funcs->emit_cleaner_shader && 686 job->enforce_isolation) 687 ring->funcs->emit_cleaner_shader(ring); 688 689 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 690 return 0; 691 692 amdgpu_ring_ib_begin(ring); 693 if (ring->funcs->init_cond_exec) 694 patch = amdgpu_ring_init_cond_exec(ring, 695 ring->cond_exe_gpu_addr); 696 697 if (need_pipe_sync) 698 amdgpu_ring_emit_pipeline_sync(ring); 699 700 if (vm_flush_needed) { 701 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 702 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 703 } 704 705 if (pasid_mapping_needed) 706 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 707 708 if (spm_update_needed && adev->gfx.rlc.funcs->update_spm_vmid) 709 adev->gfx.rlc.funcs->update_spm_vmid(adev, ring, job->vmid); 710 711 if (!ring->is_mes_queue && ring->funcs->emit_gds_switch && 712 gds_switch_needed) { 713 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 714 job->gds_size, job->gws_base, 715 job->gws_size, job->oa_base, 716 job->oa_size); 717 } 718 719 if (vm_flush_needed || pasid_mapping_needed) { 720 r = amdgpu_fence_emit(ring, &fence, NULL, 0); 721 if (r) 722 return r; 723 } 724 725 if (vm_flush_needed) { 726 mutex_lock(&id_mgr->lock); 727 dma_fence_put(id->last_flush); 728 id->last_flush = dma_fence_get(fence); 729 id->current_gpu_reset_count = 730 atomic_read(&adev->gpu_reset_counter); 731 mutex_unlock(&id_mgr->lock); 732 } 733 734 if (pasid_mapping_needed) { 735 mutex_lock(&id_mgr->lock); 736 id->pasid = job->pasid; 737 dma_fence_put(id->pasid_mapping); 738 id->pasid_mapping = dma_fence_get(fence); 739 mutex_unlock(&id_mgr->lock); 740 } 741 dma_fence_put(fence); 742 743 amdgpu_ring_patch_cond_exec(ring, patch); 744 745 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 746 if (ring->funcs->emit_switch_buffer) { 747 amdgpu_ring_emit_switch_buffer(ring); 748 amdgpu_ring_emit_switch_buffer(ring); 749 } 750 751 amdgpu_ring_ib_end(ring); 752 return 0; 753 } 754 755 /** 756 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 757 * 758 * @vm: requested vm 759 * @bo: requested buffer object 760 * 761 * Find @bo inside the requested vm. 762 * Search inside the @bos vm list for the requested vm 763 * Returns the found bo_va or NULL if none is found 764 * 765 * Object has to be reserved! 766 * 767 * Returns: 768 * Found bo_va or NULL. 769 */ 770 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 771 struct amdgpu_bo *bo) 772 { 773 struct amdgpu_vm_bo_base *base; 774 775 for (base = bo->vm_bo; base; base = base->next) { 776 if (base->vm != vm) 777 continue; 778 779 return container_of(base, struct amdgpu_bo_va, base); 780 } 781 return NULL; 782 } 783 784 /** 785 * amdgpu_vm_map_gart - Resolve gart mapping of addr 786 * 787 * @pages_addr: optional DMA address to use for lookup 788 * @addr: the unmapped addr 789 * 790 * Look up the physical address of the page that the pte resolves 791 * to. 792 * 793 * Returns: 794 * The pointer for the page table entry. 795 */ 796 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 797 { 798 uint64_t result; 799 800 /* page table offset */ 801 result = pages_addr[addr >> PAGE_SHIFT]; 802 803 /* in case cpu page size != gpu page size*/ 804 result |= addr & (~PAGE_MASK); 805 806 result &= 0xFFFFFFFFFFFFF000ULL; 807 808 return result; 809 } 810 811 /** 812 * amdgpu_vm_update_pdes - make sure that all directories are valid 813 * 814 * @adev: amdgpu_device pointer 815 * @vm: requested vm 816 * @immediate: submit immediately to the paging queue 817 * 818 * Makes sure all directories are up to date. 819 * 820 * Returns: 821 * 0 for success, error for failure. 822 */ 823 int amdgpu_vm_update_pdes(struct amdgpu_device *adev, 824 struct amdgpu_vm *vm, bool immediate) 825 { 826 struct amdgpu_vm_update_params params; 827 struct amdgpu_vm_bo_base *entry; 828 bool flush_tlb_needed = false; 829 LIST_HEAD(relocated); 830 int r, idx; 831 832 spin_lock(&vm->status_lock); 833 list_splice_init(&vm->relocated, &relocated); 834 spin_unlock(&vm->status_lock); 835 836 if (list_empty(&relocated)) 837 return 0; 838 839 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 840 return -ENODEV; 841 842 memset(¶ms, 0, sizeof(params)); 843 params.adev = adev; 844 params.vm = vm; 845 params.immediate = immediate; 846 847 r = vm->update_funcs->prepare(¶ms, NULL); 848 if (r) 849 goto error; 850 851 list_for_each_entry(entry, &relocated, vm_status) { 852 /* vm_flush_needed after updating moved PDEs */ 853 flush_tlb_needed |= entry->moved; 854 855 r = amdgpu_vm_pde_update(¶ms, entry); 856 if (r) 857 goto error; 858 } 859 860 r = vm->update_funcs->commit(¶ms, &vm->last_update); 861 if (r) 862 goto error; 863 864 if (flush_tlb_needed) 865 atomic64_inc(&vm->tlb_seq); 866 867 while (!list_empty(&relocated)) { 868 entry = list_first_entry(&relocated, struct amdgpu_vm_bo_base, 869 vm_status); 870 amdgpu_vm_bo_idle(entry); 871 } 872 873 error: 874 drm_dev_exit(idx); 875 return r; 876 } 877 878 /** 879 * amdgpu_vm_tlb_seq_cb - make sure to increment tlb sequence 880 * @fence: unused 881 * @cb: the callback structure 882 * 883 * Increments the tlb sequence to make sure that future CS execute a VM flush. 884 */ 885 static void amdgpu_vm_tlb_seq_cb(struct dma_fence *fence, 886 struct dma_fence_cb *cb) 887 { 888 struct amdgpu_vm_tlb_seq_struct *tlb_cb; 889 890 tlb_cb = container_of(cb, typeof(*tlb_cb), cb); 891 atomic64_inc(&tlb_cb->vm->tlb_seq); 892 kfree(tlb_cb); 893 } 894 895 /** 896 * amdgpu_vm_tlb_flush - prepare TLB flush 897 * 898 * @params: parameters for update 899 * @fence: input fence to sync TLB flush with 900 * @tlb_cb: the callback structure 901 * 902 * Increments the tlb sequence to make sure that future CS execute a VM flush. 903 */ 904 static void 905 amdgpu_vm_tlb_flush(struct amdgpu_vm_update_params *params, 906 struct dma_fence **fence, 907 struct amdgpu_vm_tlb_seq_struct *tlb_cb) 908 { 909 struct amdgpu_vm *vm = params->vm; 910 911 tlb_cb->vm = vm; 912 if (!fence || !*fence) { 913 amdgpu_vm_tlb_seq_cb(NULL, &tlb_cb->cb); 914 return; 915 } 916 917 if (!dma_fence_add_callback(*fence, &tlb_cb->cb, 918 amdgpu_vm_tlb_seq_cb)) { 919 dma_fence_put(vm->last_tlb_flush); 920 vm->last_tlb_flush = dma_fence_get(*fence); 921 } else { 922 amdgpu_vm_tlb_seq_cb(NULL, &tlb_cb->cb); 923 } 924 925 /* Prepare a TLB flush fence to be attached to PTs */ 926 if (!params->unlocked && vm->is_compute_context) { 927 amdgpu_vm_tlb_fence_create(params->adev, vm, fence); 928 929 /* Makes sure no PD/PT is freed before the flush */ 930 dma_resv_add_fence(vm->root.bo->tbo.base.resv, *fence, 931 DMA_RESV_USAGE_BOOKKEEP); 932 } 933 } 934 935 /** 936 * amdgpu_vm_update_range - update a range in the vm page table 937 * 938 * @adev: amdgpu_device pointer to use for commands 939 * @vm: the VM to update the range 940 * @immediate: immediate submission in a page fault 941 * @unlocked: unlocked invalidation during MM callback 942 * @flush_tlb: trigger tlb invalidation after update completed 943 * @allow_override: change MTYPE for local NUMA nodes 944 * @sync: fences we need to sync to 945 * @start: start of mapped range 946 * @last: last mapped entry 947 * @flags: flags for the entries 948 * @offset: offset into nodes and pages_addr 949 * @vram_base: base for vram mappings 950 * @res: ttm_resource to map 951 * @pages_addr: DMA addresses to use for mapping 952 * @fence: optional resulting fence 953 * 954 * Fill in the page table entries between @start and @last. 955 * 956 * Returns: 957 * 0 for success, negative erro code for failure. 958 */ 959 int amdgpu_vm_update_range(struct amdgpu_device *adev, struct amdgpu_vm *vm, 960 bool immediate, bool unlocked, bool flush_tlb, 961 bool allow_override, struct amdgpu_sync *sync, 962 uint64_t start, uint64_t last, uint64_t flags, 963 uint64_t offset, uint64_t vram_base, 964 struct ttm_resource *res, dma_addr_t *pages_addr, 965 struct dma_fence **fence) 966 { 967 struct amdgpu_vm_tlb_seq_struct *tlb_cb; 968 struct amdgpu_vm_update_params params; 969 struct amdgpu_res_cursor cursor; 970 int r, idx; 971 972 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 973 return -ENODEV; 974 975 tlb_cb = kmalloc(sizeof(*tlb_cb), GFP_KERNEL); 976 if (!tlb_cb) { 977 drm_dev_exit(idx); 978 return -ENOMEM; 979 } 980 981 /* Vega20+XGMI where PTEs get inadvertently cached in L2 texture cache, 982 * heavy-weight flush TLB unconditionally. 983 */ 984 flush_tlb |= adev->gmc.xgmi.num_physical_nodes && 985 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 0); 986 987 /* 988 * On GFX8 and older any 8 PTE block with a valid bit set enters the TLB 989 */ 990 flush_tlb |= amdgpu_ip_version(adev, GC_HWIP, 0) < IP_VERSION(9, 0, 0); 991 992 memset(¶ms, 0, sizeof(params)); 993 params.adev = adev; 994 params.vm = vm; 995 params.immediate = immediate; 996 params.pages_addr = pages_addr; 997 params.unlocked = unlocked; 998 params.needs_flush = flush_tlb; 999 params.allow_override = allow_override; 1000 INIT_LIST_HEAD(¶ms.tlb_flush_waitlist); 1001 1002 amdgpu_vm_eviction_lock(vm); 1003 if (vm->evicting) { 1004 r = -EBUSY; 1005 goto error_free; 1006 } 1007 1008 if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) { 1009 struct dma_fence *tmp = dma_fence_get_stub(); 1010 1011 amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true); 1012 swap(vm->last_unlocked, tmp); 1013 dma_fence_put(tmp); 1014 } 1015 1016 r = vm->update_funcs->prepare(¶ms, sync); 1017 if (r) 1018 goto error_free; 1019 1020 amdgpu_res_first(pages_addr ? NULL : res, offset, 1021 (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor); 1022 while (cursor.remaining) { 1023 uint64_t tmp, num_entries, addr; 1024 1025 num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT; 1026 if (pages_addr) { 1027 bool contiguous = true; 1028 1029 if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) { 1030 uint64_t pfn = cursor.start >> PAGE_SHIFT; 1031 uint64_t count; 1032 1033 contiguous = pages_addr[pfn + 1] == 1034 pages_addr[pfn] + PAGE_SIZE; 1035 1036 tmp = num_entries / 1037 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1038 for (count = 2; count < tmp; ++count) { 1039 uint64_t idx = pfn + count; 1040 1041 if (contiguous != (pages_addr[idx] == 1042 pages_addr[idx - 1] + PAGE_SIZE)) 1043 break; 1044 } 1045 if (!contiguous) 1046 count--; 1047 num_entries = count * 1048 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1049 } 1050 1051 if (!contiguous) { 1052 addr = cursor.start; 1053 params.pages_addr = pages_addr; 1054 } else { 1055 addr = pages_addr[cursor.start >> PAGE_SHIFT]; 1056 params.pages_addr = NULL; 1057 } 1058 1059 } else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT_FLAG(adev))) { 1060 addr = vram_base + cursor.start; 1061 } else { 1062 addr = 0; 1063 } 1064 1065 tmp = start + num_entries; 1066 r = amdgpu_vm_ptes_update(¶ms, start, tmp, addr, flags); 1067 if (r) 1068 goto error_free; 1069 1070 amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE); 1071 start = tmp; 1072 } 1073 1074 r = vm->update_funcs->commit(¶ms, fence); 1075 if (r) 1076 goto error_free; 1077 1078 if (params.needs_flush) { 1079 amdgpu_vm_tlb_flush(¶ms, fence, tlb_cb); 1080 tlb_cb = NULL; 1081 } 1082 1083 amdgpu_vm_pt_free_list(adev, ¶ms); 1084 1085 error_free: 1086 kfree(tlb_cb); 1087 amdgpu_vm_eviction_unlock(vm); 1088 drm_dev_exit(idx); 1089 return r; 1090 } 1091 1092 static void amdgpu_vm_bo_get_memory(struct amdgpu_bo_va *bo_va, 1093 struct amdgpu_mem_stats *stats) 1094 { 1095 struct amdgpu_vm *vm = bo_va->base.vm; 1096 struct amdgpu_bo *bo = bo_va->base.bo; 1097 1098 if (!bo) 1099 return; 1100 1101 /* 1102 * For now ignore BOs which are currently locked and potentially 1103 * changing their location. 1104 */ 1105 if (!amdgpu_vm_is_bo_always_valid(vm, bo) && 1106 !dma_resv_trylock(bo->tbo.base.resv)) 1107 return; 1108 1109 amdgpu_bo_get_memory(bo, stats); 1110 if (!amdgpu_vm_is_bo_always_valid(vm, bo)) 1111 dma_resv_unlock(bo->tbo.base.resv); 1112 } 1113 1114 void amdgpu_vm_get_memory(struct amdgpu_vm *vm, 1115 struct amdgpu_mem_stats *stats) 1116 { 1117 struct amdgpu_bo_va *bo_va, *tmp; 1118 1119 spin_lock(&vm->status_lock); 1120 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) 1121 amdgpu_vm_bo_get_memory(bo_va, stats); 1122 1123 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) 1124 amdgpu_vm_bo_get_memory(bo_va, stats); 1125 1126 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) 1127 amdgpu_vm_bo_get_memory(bo_va, stats); 1128 1129 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) 1130 amdgpu_vm_bo_get_memory(bo_va, stats); 1131 1132 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) 1133 amdgpu_vm_bo_get_memory(bo_va, stats); 1134 1135 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) 1136 amdgpu_vm_bo_get_memory(bo_va, stats); 1137 spin_unlock(&vm->status_lock); 1138 } 1139 1140 /** 1141 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1142 * 1143 * @adev: amdgpu_device pointer 1144 * @bo_va: requested BO and VM object 1145 * @clear: if true clear the entries 1146 * 1147 * Fill in the page table entries for @bo_va. 1148 * 1149 * Returns: 1150 * 0 for success, -EINVAL for failure. 1151 */ 1152 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, 1153 bool clear) 1154 { 1155 struct amdgpu_bo *bo = bo_va->base.bo; 1156 struct amdgpu_vm *vm = bo_va->base.vm; 1157 struct amdgpu_bo_va_mapping *mapping; 1158 struct dma_fence **last_update; 1159 dma_addr_t *pages_addr = NULL; 1160 struct ttm_resource *mem; 1161 struct amdgpu_sync sync; 1162 bool flush_tlb = clear; 1163 uint64_t vram_base; 1164 uint64_t flags; 1165 bool uncached; 1166 int r; 1167 1168 amdgpu_sync_create(&sync); 1169 if (clear || !bo) { 1170 mem = NULL; 1171 1172 /* Implicitly sync to command submissions in the same VM before 1173 * unmapping. 1174 */ 1175 r = amdgpu_sync_resv(adev, &sync, vm->root.bo->tbo.base.resv, 1176 AMDGPU_SYNC_EQ_OWNER, vm); 1177 if (r) 1178 goto error_free; 1179 } else { 1180 struct drm_gem_object *obj = &bo->tbo.base; 1181 1182 if (obj->import_attach && bo_va->is_xgmi) { 1183 struct dma_buf *dma_buf = obj->import_attach->dmabuf; 1184 struct drm_gem_object *gobj = dma_buf->priv; 1185 struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj); 1186 1187 if (abo->tbo.resource && 1188 abo->tbo.resource->mem_type == TTM_PL_VRAM) 1189 bo = gem_to_amdgpu_bo(gobj); 1190 } 1191 mem = bo->tbo.resource; 1192 if (mem && (mem->mem_type == TTM_PL_TT || 1193 mem->mem_type == AMDGPU_PL_PREEMPT)) 1194 pages_addr = bo->tbo.ttm->dma_address; 1195 1196 /* Implicitly sync to moving fences before mapping anything */ 1197 r = amdgpu_sync_resv(adev, &sync, bo->tbo.base.resv, 1198 AMDGPU_SYNC_EXPLICIT, vm); 1199 if (r) 1200 goto error_free; 1201 } 1202 1203 if (bo) { 1204 struct amdgpu_device *bo_adev; 1205 1206 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1207 1208 if (amdgpu_bo_encrypted(bo)) 1209 flags |= AMDGPU_PTE_TMZ; 1210 1211 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev); 1212 vram_base = bo_adev->vm_manager.vram_base_offset; 1213 uncached = (bo->flags & AMDGPU_GEM_CREATE_UNCACHED) != 0; 1214 } else { 1215 flags = 0x0; 1216 vram_base = 0; 1217 uncached = false; 1218 } 1219 1220 if (clear || amdgpu_vm_is_bo_always_valid(vm, bo)) 1221 last_update = &vm->last_update; 1222 else 1223 last_update = &bo_va->last_pt_update; 1224 1225 if (!clear && bo_va->base.moved) { 1226 flush_tlb = true; 1227 list_splice_init(&bo_va->valids, &bo_va->invalids); 1228 1229 } else if (bo_va->cleared != clear) { 1230 list_splice_init(&bo_va->valids, &bo_va->invalids); 1231 } 1232 1233 list_for_each_entry(mapping, &bo_va->invalids, list) { 1234 uint64_t update_flags = flags; 1235 1236 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1237 * but in case of something, we filter the flags in first place 1238 */ 1239 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1240 update_flags &= ~AMDGPU_PTE_READABLE; 1241 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1242 update_flags &= ~AMDGPU_PTE_WRITEABLE; 1243 1244 /* Apply ASIC specific mapping flags */ 1245 amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags); 1246 1247 trace_amdgpu_vm_bo_update(mapping); 1248 1249 r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, 1250 !uncached, &sync, mapping->start, 1251 mapping->last, update_flags, 1252 mapping->offset, vram_base, mem, 1253 pages_addr, last_update); 1254 if (r) 1255 goto error_free; 1256 } 1257 1258 /* If the BO is not in its preferred location add it back to 1259 * the evicted list so that it gets validated again on the 1260 * next command submission. 1261 */ 1262 if (amdgpu_vm_is_bo_always_valid(vm, bo)) { 1263 uint32_t mem_type = bo->tbo.resource->mem_type; 1264 1265 if (!(bo->preferred_domains & 1266 amdgpu_mem_type_to_domain(mem_type))) 1267 amdgpu_vm_bo_evicted(&bo_va->base); 1268 else 1269 amdgpu_vm_bo_idle(&bo_va->base); 1270 } else { 1271 amdgpu_vm_bo_done(&bo_va->base); 1272 } 1273 1274 list_splice_init(&bo_va->invalids, &bo_va->valids); 1275 bo_va->cleared = clear; 1276 bo_va->base.moved = false; 1277 1278 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1279 list_for_each_entry(mapping, &bo_va->valids, list) 1280 trace_amdgpu_vm_bo_mapping(mapping); 1281 } 1282 1283 error_free: 1284 amdgpu_sync_free(&sync); 1285 return r; 1286 } 1287 1288 /** 1289 * amdgpu_vm_update_prt_state - update the global PRT state 1290 * 1291 * @adev: amdgpu_device pointer 1292 */ 1293 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1294 { 1295 unsigned long flags; 1296 bool enable; 1297 1298 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1299 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1300 adev->gmc.gmc_funcs->set_prt(adev, enable); 1301 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1302 } 1303 1304 /** 1305 * amdgpu_vm_prt_get - add a PRT user 1306 * 1307 * @adev: amdgpu_device pointer 1308 */ 1309 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1310 { 1311 if (!adev->gmc.gmc_funcs->set_prt) 1312 return; 1313 1314 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1315 amdgpu_vm_update_prt_state(adev); 1316 } 1317 1318 /** 1319 * amdgpu_vm_prt_put - drop a PRT user 1320 * 1321 * @adev: amdgpu_device pointer 1322 */ 1323 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1324 { 1325 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1326 amdgpu_vm_update_prt_state(adev); 1327 } 1328 1329 /** 1330 * amdgpu_vm_prt_cb - callback for updating the PRT status 1331 * 1332 * @fence: fence for the callback 1333 * @_cb: the callback function 1334 */ 1335 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1336 { 1337 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1338 1339 amdgpu_vm_prt_put(cb->adev); 1340 kfree(cb); 1341 } 1342 1343 /** 1344 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 1345 * 1346 * @adev: amdgpu_device pointer 1347 * @fence: fence for the callback 1348 */ 1349 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 1350 struct dma_fence *fence) 1351 { 1352 struct amdgpu_prt_cb *cb; 1353 1354 if (!adev->gmc.gmc_funcs->set_prt) 1355 return; 1356 1357 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 1358 if (!cb) { 1359 /* Last resort when we are OOM */ 1360 if (fence) 1361 dma_fence_wait(fence, false); 1362 1363 amdgpu_vm_prt_put(adev); 1364 } else { 1365 cb->adev = adev; 1366 if (!fence || dma_fence_add_callback(fence, &cb->cb, 1367 amdgpu_vm_prt_cb)) 1368 amdgpu_vm_prt_cb(fence, &cb->cb); 1369 } 1370 } 1371 1372 /** 1373 * amdgpu_vm_free_mapping - free a mapping 1374 * 1375 * @adev: amdgpu_device pointer 1376 * @vm: requested vm 1377 * @mapping: mapping to be freed 1378 * @fence: fence of the unmap operation 1379 * 1380 * Free a mapping and make sure we decrease the PRT usage count if applicable. 1381 */ 1382 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 1383 struct amdgpu_vm *vm, 1384 struct amdgpu_bo_va_mapping *mapping, 1385 struct dma_fence *fence) 1386 { 1387 if (mapping->flags & AMDGPU_PTE_PRT_FLAG(adev)) 1388 amdgpu_vm_add_prt_cb(adev, fence); 1389 kfree(mapping); 1390 } 1391 1392 /** 1393 * amdgpu_vm_prt_fini - finish all prt mappings 1394 * 1395 * @adev: amdgpu_device pointer 1396 * @vm: requested vm 1397 * 1398 * Register a cleanup callback to disable PRT support after VM dies. 1399 */ 1400 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1401 { 1402 struct dma_resv *resv = vm->root.bo->tbo.base.resv; 1403 struct dma_resv_iter cursor; 1404 struct dma_fence *fence; 1405 1406 dma_resv_for_each_fence(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP, fence) { 1407 /* Add a callback for each fence in the reservation object */ 1408 amdgpu_vm_prt_get(adev); 1409 amdgpu_vm_add_prt_cb(adev, fence); 1410 } 1411 } 1412 1413 /** 1414 * amdgpu_vm_clear_freed - clear freed BOs in the PT 1415 * 1416 * @adev: amdgpu_device pointer 1417 * @vm: requested vm 1418 * @fence: optional resulting fence (unchanged if no work needed to be done 1419 * or if an error occurred) 1420 * 1421 * Make sure all freed BOs are cleared in the PT. 1422 * PTs have to be reserved and mutex must be locked! 1423 * 1424 * Returns: 1425 * 0 for success. 1426 * 1427 */ 1428 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 1429 struct amdgpu_vm *vm, 1430 struct dma_fence **fence) 1431 { 1432 struct amdgpu_bo_va_mapping *mapping; 1433 struct dma_fence *f = NULL; 1434 struct amdgpu_sync sync; 1435 int r; 1436 1437 1438 /* 1439 * Implicitly sync to command submissions in the same VM before 1440 * unmapping. 1441 */ 1442 amdgpu_sync_create(&sync); 1443 r = amdgpu_sync_resv(adev, &sync, vm->root.bo->tbo.base.resv, 1444 AMDGPU_SYNC_EQ_OWNER, vm); 1445 if (r) 1446 goto error_free; 1447 1448 while (!list_empty(&vm->freed)) { 1449 mapping = list_first_entry(&vm->freed, 1450 struct amdgpu_bo_va_mapping, list); 1451 list_del(&mapping->list); 1452 1453 r = amdgpu_vm_update_range(adev, vm, false, false, true, false, 1454 &sync, mapping->start, mapping->last, 1455 0, 0, 0, NULL, NULL, &f); 1456 amdgpu_vm_free_mapping(adev, vm, mapping, f); 1457 if (r) { 1458 dma_fence_put(f); 1459 goto error_free; 1460 } 1461 } 1462 1463 if (fence && f) { 1464 dma_fence_put(*fence); 1465 *fence = f; 1466 } else { 1467 dma_fence_put(f); 1468 } 1469 1470 error_free: 1471 amdgpu_sync_free(&sync); 1472 return r; 1473 1474 } 1475 1476 /** 1477 * amdgpu_vm_handle_moved - handle moved BOs in the PT 1478 * 1479 * @adev: amdgpu_device pointer 1480 * @vm: requested vm 1481 * @ticket: optional reservation ticket used to reserve the VM 1482 * 1483 * Make sure all BOs which are moved are updated in the PTs. 1484 * 1485 * Returns: 1486 * 0 for success. 1487 * 1488 * PTs have to be reserved! 1489 */ 1490 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 1491 struct amdgpu_vm *vm, 1492 struct ww_acquire_ctx *ticket) 1493 { 1494 struct amdgpu_bo_va *bo_va; 1495 struct dma_resv *resv; 1496 bool clear, unlock; 1497 int r; 1498 1499 spin_lock(&vm->status_lock); 1500 while (!list_empty(&vm->moved)) { 1501 bo_va = list_first_entry(&vm->moved, struct amdgpu_bo_va, 1502 base.vm_status); 1503 spin_unlock(&vm->status_lock); 1504 1505 /* Per VM BOs never need to bo cleared in the page tables */ 1506 r = amdgpu_vm_bo_update(adev, bo_va, false); 1507 if (r) 1508 return r; 1509 spin_lock(&vm->status_lock); 1510 } 1511 1512 while (!list_empty(&vm->invalidated)) { 1513 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 1514 base.vm_status); 1515 resv = bo_va->base.bo->tbo.base.resv; 1516 spin_unlock(&vm->status_lock); 1517 1518 /* Try to reserve the BO to avoid clearing its ptes */ 1519 if (!adev->debug_vm && dma_resv_trylock(resv)) { 1520 clear = false; 1521 unlock = true; 1522 /* The caller is already holding the reservation lock */ 1523 } else if (ticket && dma_resv_locking_ctx(resv) == ticket) { 1524 clear = false; 1525 unlock = false; 1526 /* Somebody else is using the BO right now */ 1527 } else { 1528 clear = true; 1529 unlock = false; 1530 } 1531 1532 r = amdgpu_vm_bo_update(adev, bo_va, clear); 1533 1534 if (unlock) 1535 dma_resv_unlock(resv); 1536 if (r) 1537 return r; 1538 1539 /* Remember evicted DMABuf imports in compute VMs for later 1540 * validation 1541 */ 1542 if (vm->is_compute_context && 1543 bo_va->base.bo->tbo.base.import_attach && 1544 (!bo_va->base.bo->tbo.resource || 1545 bo_va->base.bo->tbo.resource->mem_type == TTM_PL_SYSTEM)) 1546 amdgpu_vm_bo_evicted_user(&bo_va->base); 1547 1548 spin_lock(&vm->status_lock); 1549 } 1550 spin_unlock(&vm->status_lock); 1551 1552 return 0; 1553 } 1554 1555 /** 1556 * amdgpu_vm_flush_compute_tlb - Flush TLB on compute VM 1557 * 1558 * @adev: amdgpu_device pointer 1559 * @vm: requested vm 1560 * @flush_type: flush type 1561 * @xcc_mask: mask of XCCs that belong to the compute partition in need of a TLB flush. 1562 * 1563 * Flush TLB if needed for a compute VM. 1564 * 1565 * Returns: 1566 * 0 for success. 1567 */ 1568 int amdgpu_vm_flush_compute_tlb(struct amdgpu_device *adev, 1569 struct amdgpu_vm *vm, 1570 uint32_t flush_type, 1571 uint32_t xcc_mask) 1572 { 1573 uint64_t tlb_seq = amdgpu_vm_tlb_seq(vm); 1574 bool all_hub = false; 1575 int xcc = 0, r = 0; 1576 1577 WARN_ON_ONCE(!vm->is_compute_context); 1578 1579 /* 1580 * It can be that we race and lose here, but that is extremely unlikely 1581 * and the worst thing which could happen is that we flush the changes 1582 * into the TLB once more which is harmless. 1583 */ 1584 if (atomic64_xchg(&vm->kfd_last_flushed_seq, tlb_seq) == tlb_seq) 1585 return 0; 1586 1587 if (adev->family == AMDGPU_FAMILY_AI || 1588 adev->family == AMDGPU_FAMILY_RV) 1589 all_hub = true; 1590 1591 for_each_inst(xcc, xcc_mask) { 1592 r = amdgpu_gmc_flush_gpu_tlb_pasid(adev, vm->pasid, flush_type, 1593 all_hub, xcc); 1594 if (r) 1595 break; 1596 } 1597 return r; 1598 } 1599 1600 /** 1601 * amdgpu_vm_bo_add - add a bo to a specific vm 1602 * 1603 * @adev: amdgpu_device pointer 1604 * @vm: requested vm 1605 * @bo: amdgpu buffer object 1606 * 1607 * Add @bo into the requested vm. 1608 * Add @bo to the list of bos associated with the vm 1609 * 1610 * Returns: 1611 * Newly added bo_va or NULL for failure 1612 * 1613 * Object has to be reserved! 1614 */ 1615 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 1616 struct amdgpu_vm *vm, 1617 struct amdgpu_bo *bo) 1618 { 1619 struct amdgpu_bo_va *bo_va; 1620 1621 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 1622 if (bo_va == NULL) { 1623 return NULL; 1624 } 1625 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 1626 1627 bo_va->ref_count = 1; 1628 bo_va->last_pt_update = dma_fence_get_stub(); 1629 INIT_LIST_HEAD(&bo_va->valids); 1630 INIT_LIST_HEAD(&bo_va->invalids); 1631 1632 if (!bo) 1633 return bo_va; 1634 1635 dma_resv_assert_held(bo->tbo.base.resv); 1636 if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) { 1637 bo_va->is_xgmi = true; 1638 /* Power up XGMI if it can be potentially used */ 1639 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20); 1640 } 1641 1642 return bo_va; 1643 } 1644 1645 1646 /** 1647 * amdgpu_vm_bo_insert_map - insert a new mapping 1648 * 1649 * @adev: amdgpu_device pointer 1650 * @bo_va: bo_va to store the address 1651 * @mapping: the mapping to insert 1652 * 1653 * Insert a new mapping into all structures. 1654 */ 1655 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 1656 struct amdgpu_bo_va *bo_va, 1657 struct amdgpu_bo_va_mapping *mapping) 1658 { 1659 struct amdgpu_vm *vm = bo_va->base.vm; 1660 struct amdgpu_bo *bo = bo_va->base.bo; 1661 1662 mapping->bo_va = bo_va; 1663 list_add(&mapping->list, &bo_va->invalids); 1664 amdgpu_vm_it_insert(mapping, &vm->va); 1665 1666 if (mapping->flags & AMDGPU_PTE_PRT_FLAG(adev)) 1667 amdgpu_vm_prt_get(adev); 1668 1669 if (amdgpu_vm_is_bo_always_valid(vm, bo) && !bo_va->base.moved) 1670 amdgpu_vm_bo_moved(&bo_va->base); 1671 1672 trace_amdgpu_vm_bo_map(bo_va, mapping); 1673 } 1674 1675 /* Validate operation parameters to prevent potential abuse */ 1676 static int amdgpu_vm_verify_parameters(struct amdgpu_device *adev, 1677 struct amdgpu_bo *bo, 1678 uint64_t saddr, 1679 uint64_t offset, 1680 uint64_t size) 1681 { 1682 uint64_t tmp, lpfn; 1683 1684 if (saddr & AMDGPU_GPU_PAGE_MASK 1685 || offset & AMDGPU_GPU_PAGE_MASK 1686 || size & AMDGPU_GPU_PAGE_MASK) 1687 return -EINVAL; 1688 1689 if (check_add_overflow(saddr, size, &tmp) 1690 || check_add_overflow(offset, size, &tmp) 1691 || size == 0 /* which also leads to end < begin */) 1692 return -EINVAL; 1693 1694 /* make sure object fit at this offset */ 1695 if (bo && offset + size > amdgpu_bo_size(bo)) 1696 return -EINVAL; 1697 1698 /* Ensure last pfn not exceed max_pfn */ 1699 lpfn = (saddr + size - 1) >> AMDGPU_GPU_PAGE_SHIFT; 1700 if (lpfn >= adev->vm_manager.max_pfn) 1701 return -EINVAL; 1702 1703 return 0; 1704 } 1705 1706 /** 1707 * amdgpu_vm_bo_map - map bo inside a vm 1708 * 1709 * @adev: amdgpu_device pointer 1710 * @bo_va: bo_va to store the address 1711 * @saddr: where to map the BO 1712 * @offset: requested offset in the BO 1713 * @size: BO size in bytes 1714 * @flags: attributes of pages (read/write/valid/etc.) 1715 * 1716 * Add a mapping of the BO at the specefied addr into the VM. 1717 * 1718 * Returns: 1719 * 0 for success, error for failure. 1720 * 1721 * Object has to be reserved and unreserved outside! 1722 */ 1723 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 1724 struct amdgpu_bo_va *bo_va, 1725 uint64_t saddr, uint64_t offset, 1726 uint64_t size, uint64_t flags) 1727 { 1728 struct amdgpu_bo_va_mapping *mapping, *tmp; 1729 struct amdgpu_bo *bo = bo_va->base.bo; 1730 struct amdgpu_vm *vm = bo_va->base.vm; 1731 uint64_t eaddr; 1732 int r; 1733 1734 r = amdgpu_vm_verify_parameters(adev, bo, saddr, offset, size); 1735 if (r) 1736 return r; 1737 1738 saddr /= AMDGPU_GPU_PAGE_SIZE; 1739 eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE; 1740 1741 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 1742 if (tmp) { 1743 /* bo and tmp overlap, invalid addr */ 1744 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 1745 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 1746 tmp->start, tmp->last + 1); 1747 return -EINVAL; 1748 } 1749 1750 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1751 if (!mapping) 1752 return -ENOMEM; 1753 1754 mapping->start = saddr; 1755 mapping->last = eaddr; 1756 mapping->offset = offset; 1757 mapping->flags = flags; 1758 1759 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 1760 1761 return 0; 1762 } 1763 1764 /** 1765 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 1766 * 1767 * @adev: amdgpu_device pointer 1768 * @bo_va: bo_va to store the address 1769 * @saddr: where to map the BO 1770 * @offset: requested offset in the BO 1771 * @size: BO size in bytes 1772 * @flags: attributes of pages (read/write/valid/etc.) 1773 * 1774 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 1775 * mappings as we do so. 1776 * 1777 * Returns: 1778 * 0 for success, error for failure. 1779 * 1780 * Object has to be reserved and unreserved outside! 1781 */ 1782 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 1783 struct amdgpu_bo_va *bo_va, 1784 uint64_t saddr, uint64_t offset, 1785 uint64_t size, uint64_t flags) 1786 { 1787 struct amdgpu_bo_va_mapping *mapping; 1788 struct amdgpu_bo *bo = bo_va->base.bo; 1789 uint64_t eaddr; 1790 int r; 1791 1792 r = amdgpu_vm_verify_parameters(adev, bo, saddr, offset, size); 1793 if (r) 1794 return r; 1795 1796 /* Allocate all the needed memory */ 1797 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1798 if (!mapping) 1799 return -ENOMEM; 1800 1801 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 1802 if (r) { 1803 kfree(mapping); 1804 return r; 1805 } 1806 1807 saddr /= AMDGPU_GPU_PAGE_SIZE; 1808 eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE; 1809 1810 mapping->start = saddr; 1811 mapping->last = eaddr; 1812 mapping->offset = offset; 1813 mapping->flags = flags; 1814 1815 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 1816 1817 return 0; 1818 } 1819 1820 /** 1821 * amdgpu_vm_bo_unmap - remove bo mapping from vm 1822 * 1823 * @adev: amdgpu_device pointer 1824 * @bo_va: bo_va to remove the address from 1825 * @saddr: where to the BO is mapped 1826 * 1827 * Remove a mapping of the BO at the specefied addr from the VM. 1828 * 1829 * Returns: 1830 * 0 for success, error for failure. 1831 * 1832 * Object has to be reserved and unreserved outside! 1833 */ 1834 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 1835 struct amdgpu_bo_va *bo_va, 1836 uint64_t saddr) 1837 { 1838 struct amdgpu_bo_va_mapping *mapping; 1839 struct amdgpu_vm *vm = bo_va->base.vm; 1840 bool valid = true; 1841 1842 saddr /= AMDGPU_GPU_PAGE_SIZE; 1843 1844 list_for_each_entry(mapping, &bo_va->valids, list) { 1845 if (mapping->start == saddr) 1846 break; 1847 } 1848 1849 if (&mapping->list == &bo_va->valids) { 1850 valid = false; 1851 1852 list_for_each_entry(mapping, &bo_va->invalids, list) { 1853 if (mapping->start == saddr) 1854 break; 1855 } 1856 1857 if (&mapping->list == &bo_va->invalids) 1858 return -ENOENT; 1859 } 1860 1861 list_del(&mapping->list); 1862 amdgpu_vm_it_remove(mapping, &vm->va); 1863 mapping->bo_va = NULL; 1864 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 1865 1866 if (valid) 1867 list_add(&mapping->list, &vm->freed); 1868 else 1869 amdgpu_vm_free_mapping(adev, vm, mapping, 1870 bo_va->last_pt_update); 1871 1872 return 0; 1873 } 1874 1875 /** 1876 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 1877 * 1878 * @adev: amdgpu_device pointer 1879 * @vm: VM structure to use 1880 * @saddr: start of the range 1881 * @size: size of the range 1882 * 1883 * Remove all mappings in a range, split them as appropriate. 1884 * 1885 * Returns: 1886 * 0 for success, error for failure. 1887 */ 1888 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 1889 struct amdgpu_vm *vm, 1890 uint64_t saddr, uint64_t size) 1891 { 1892 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 1893 LIST_HEAD(removed); 1894 uint64_t eaddr; 1895 int r; 1896 1897 r = amdgpu_vm_verify_parameters(adev, NULL, saddr, 0, size); 1898 if (r) 1899 return r; 1900 1901 saddr /= AMDGPU_GPU_PAGE_SIZE; 1902 eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE; 1903 1904 /* Allocate all the needed memory */ 1905 before = kzalloc(sizeof(*before), GFP_KERNEL); 1906 if (!before) 1907 return -ENOMEM; 1908 INIT_LIST_HEAD(&before->list); 1909 1910 after = kzalloc(sizeof(*after), GFP_KERNEL); 1911 if (!after) { 1912 kfree(before); 1913 return -ENOMEM; 1914 } 1915 INIT_LIST_HEAD(&after->list); 1916 1917 /* Now gather all removed mappings */ 1918 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 1919 while (tmp) { 1920 /* Remember mapping split at the start */ 1921 if (tmp->start < saddr) { 1922 before->start = tmp->start; 1923 before->last = saddr - 1; 1924 before->offset = tmp->offset; 1925 before->flags = tmp->flags; 1926 before->bo_va = tmp->bo_va; 1927 list_add(&before->list, &tmp->bo_va->invalids); 1928 } 1929 1930 /* Remember mapping split at the end */ 1931 if (tmp->last > eaddr) { 1932 after->start = eaddr + 1; 1933 after->last = tmp->last; 1934 after->offset = tmp->offset; 1935 after->offset += (after->start - tmp->start) << PAGE_SHIFT; 1936 after->flags = tmp->flags; 1937 after->bo_va = tmp->bo_va; 1938 list_add(&after->list, &tmp->bo_va->invalids); 1939 } 1940 1941 list_del(&tmp->list); 1942 list_add(&tmp->list, &removed); 1943 1944 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 1945 } 1946 1947 /* And free them up */ 1948 list_for_each_entry_safe(tmp, next, &removed, list) { 1949 amdgpu_vm_it_remove(tmp, &vm->va); 1950 list_del(&tmp->list); 1951 1952 if (tmp->start < saddr) 1953 tmp->start = saddr; 1954 if (tmp->last > eaddr) 1955 tmp->last = eaddr; 1956 1957 tmp->bo_va = NULL; 1958 list_add(&tmp->list, &vm->freed); 1959 trace_amdgpu_vm_bo_unmap(NULL, tmp); 1960 } 1961 1962 /* Insert partial mapping before the range */ 1963 if (!list_empty(&before->list)) { 1964 struct amdgpu_bo *bo = before->bo_va->base.bo; 1965 1966 amdgpu_vm_it_insert(before, &vm->va); 1967 if (before->flags & AMDGPU_PTE_PRT_FLAG(adev)) 1968 amdgpu_vm_prt_get(adev); 1969 1970 if (amdgpu_vm_is_bo_always_valid(vm, bo) && 1971 !before->bo_va->base.moved) 1972 amdgpu_vm_bo_moved(&before->bo_va->base); 1973 } else { 1974 kfree(before); 1975 } 1976 1977 /* Insert partial mapping after the range */ 1978 if (!list_empty(&after->list)) { 1979 struct amdgpu_bo *bo = after->bo_va->base.bo; 1980 1981 amdgpu_vm_it_insert(after, &vm->va); 1982 if (after->flags & AMDGPU_PTE_PRT_FLAG(adev)) 1983 amdgpu_vm_prt_get(adev); 1984 1985 if (amdgpu_vm_is_bo_always_valid(vm, bo) && 1986 !after->bo_va->base.moved) 1987 amdgpu_vm_bo_moved(&after->bo_va->base); 1988 } else { 1989 kfree(after); 1990 } 1991 1992 return 0; 1993 } 1994 1995 /** 1996 * amdgpu_vm_bo_lookup_mapping - find mapping by address 1997 * 1998 * @vm: the requested VM 1999 * @addr: the address 2000 * 2001 * Find a mapping by it's address. 2002 * 2003 * Returns: 2004 * The amdgpu_bo_va_mapping matching for addr or NULL 2005 * 2006 */ 2007 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2008 uint64_t addr) 2009 { 2010 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2011 } 2012 2013 /** 2014 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2015 * 2016 * @vm: the requested vm 2017 * @ticket: CS ticket 2018 * 2019 * Trace all mappings of BOs reserved during a command submission. 2020 */ 2021 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2022 { 2023 struct amdgpu_bo_va_mapping *mapping; 2024 2025 if (!trace_amdgpu_vm_bo_cs_enabled()) 2026 return; 2027 2028 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2029 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2030 if (mapping->bo_va && mapping->bo_va->base.bo) { 2031 struct amdgpu_bo *bo; 2032 2033 bo = mapping->bo_va->base.bo; 2034 if (dma_resv_locking_ctx(bo->tbo.base.resv) != 2035 ticket) 2036 continue; 2037 } 2038 2039 trace_amdgpu_vm_bo_cs(mapping); 2040 } 2041 } 2042 2043 /** 2044 * amdgpu_vm_bo_del - remove a bo from a specific vm 2045 * 2046 * @adev: amdgpu_device pointer 2047 * @bo_va: requested bo_va 2048 * 2049 * Remove @bo_va->bo from the requested vm. 2050 * 2051 * Object have to be reserved! 2052 */ 2053 void amdgpu_vm_bo_del(struct amdgpu_device *adev, 2054 struct amdgpu_bo_va *bo_va) 2055 { 2056 struct amdgpu_bo_va_mapping *mapping, *next; 2057 struct amdgpu_bo *bo = bo_va->base.bo; 2058 struct amdgpu_vm *vm = bo_va->base.vm; 2059 struct amdgpu_vm_bo_base **base; 2060 2061 dma_resv_assert_held(vm->root.bo->tbo.base.resv); 2062 2063 if (bo) { 2064 dma_resv_assert_held(bo->tbo.base.resv); 2065 if (amdgpu_vm_is_bo_always_valid(vm, bo)) 2066 ttm_bo_set_bulk_move(&bo->tbo, NULL); 2067 2068 for (base = &bo_va->base.bo->vm_bo; *base; 2069 base = &(*base)->next) { 2070 if (*base != &bo_va->base) 2071 continue; 2072 2073 *base = bo_va->base.next; 2074 break; 2075 } 2076 } 2077 2078 spin_lock(&vm->status_lock); 2079 list_del(&bo_va->base.vm_status); 2080 spin_unlock(&vm->status_lock); 2081 2082 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2083 list_del(&mapping->list); 2084 amdgpu_vm_it_remove(mapping, &vm->va); 2085 mapping->bo_va = NULL; 2086 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2087 list_add(&mapping->list, &vm->freed); 2088 } 2089 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2090 list_del(&mapping->list); 2091 amdgpu_vm_it_remove(mapping, &vm->va); 2092 amdgpu_vm_free_mapping(adev, vm, mapping, 2093 bo_va->last_pt_update); 2094 } 2095 2096 dma_fence_put(bo_va->last_pt_update); 2097 2098 if (bo && bo_va->is_xgmi) 2099 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN); 2100 2101 kfree(bo_va); 2102 } 2103 2104 /** 2105 * amdgpu_vm_evictable - check if we can evict a VM 2106 * 2107 * @bo: A page table of the VM. 2108 * 2109 * Check if it is possible to evict a VM. 2110 */ 2111 bool amdgpu_vm_evictable(struct amdgpu_bo *bo) 2112 { 2113 struct amdgpu_vm_bo_base *bo_base = bo->vm_bo; 2114 2115 /* Page tables of a destroyed VM can go away immediately */ 2116 if (!bo_base || !bo_base->vm) 2117 return true; 2118 2119 /* Don't evict VM page tables while they are busy */ 2120 if (!dma_resv_test_signaled(bo->tbo.base.resv, DMA_RESV_USAGE_BOOKKEEP)) 2121 return false; 2122 2123 /* Try to block ongoing updates */ 2124 if (!amdgpu_vm_eviction_trylock(bo_base->vm)) 2125 return false; 2126 2127 /* Don't evict VM page tables while they are updated */ 2128 if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) { 2129 amdgpu_vm_eviction_unlock(bo_base->vm); 2130 return false; 2131 } 2132 2133 bo_base->vm->evicting = true; 2134 amdgpu_vm_eviction_unlock(bo_base->vm); 2135 return true; 2136 } 2137 2138 /** 2139 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2140 * 2141 * @adev: amdgpu_device pointer 2142 * @bo: amdgpu buffer object 2143 * @evicted: is the BO evicted 2144 * 2145 * Mark @bo as invalid. 2146 */ 2147 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2148 struct amdgpu_bo *bo, bool evicted) 2149 { 2150 struct amdgpu_vm_bo_base *bo_base; 2151 2152 /* shadow bo doesn't have bo base, its validation needs its parent */ 2153 if (bo->parent && (amdgpu_bo_shadowed(bo->parent) == bo)) 2154 bo = bo->parent; 2155 2156 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2157 struct amdgpu_vm *vm = bo_base->vm; 2158 2159 if (evicted && amdgpu_vm_is_bo_always_valid(vm, bo)) { 2160 amdgpu_vm_bo_evicted(bo_base); 2161 continue; 2162 } 2163 2164 if (bo_base->moved) 2165 continue; 2166 bo_base->moved = true; 2167 2168 if (bo->tbo.type == ttm_bo_type_kernel) 2169 amdgpu_vm_bo_relocated(bo_base); 2170 else if (amdgpu_vm_is_bo_always_valid(vm, bo)) 2171 amdgpu_vm_bo_moved(bo_base); 2172 else 2173 amdgpu_vm_bo_invalidated(bo_base); 2174 } 2175 } 2176 2177 /** 2178 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2179 * 2180 * @vm_size: VM size 2181 * 2182 * Returns: 2183 * VM page table as power of two 2184 */ 2185 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2186 { 2187 /* Total bits covered by PD + PTs */ 2188 unsigned bits = ilog2(vm_size) + 18; 2189 2190 /* Make sure the PD is 4K in size up to 8GB address space. 2191 Above that split equal between PD and PTs */ 2192 if (vm_size <= 8) 2193 return (bits - 9); 2194 else 2195 return ((bits + 3) / 2); 2196 } 2197 2198 /** 2199 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2200 * 2201 * @adev: amdgpu_device pointer 2202 * @min_vm_size: the minimum vm size in GB if it's set auto 2203 * @fragment_size_default: Default PTE fragment size 2204 * @max_level: max VMPT level 2205 * @max_bits: max address space size in bits 2206 * 2207 */ 2208 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2209 uint32_t fragment_size_default, unsigned max_level, 2210 unsigned max_bits) 2211 { 2212 unsigned int max_size = 1 << (max_bits - 30); 2213 unsigned int vm_size; 2214 uint64_t tmp; 2215 2216 /* adjust vm size first */ 2217 if (amdgpu_vm_size != -1) { 2218 vm_size = amdgpu_vm_size; 2219 if (vm_size > max_size) { 2220 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2221 amdgpu_vm_size, max_size); 2222 vm_size = max_size; 2223 } 2224 } else { 2225 struct sysinfo si; 2226 unsigned int phys_ram_gb; 2227 2228 /* Optimal VM size depends on the amount of physical 2229 * RAM available. Underlying requirements and 2230 * assumptions: 2231 * 2232 * - Need to map system memory and VRAM from all GPUs 2233 * - VRAM from other GPUs not known here 2234 * - Assume VRAM <= system memory 2235 * - On GFX8 and older, VM space can be segmented for 2236 * different MTYPEs 2237 * - Need to allow room for fragmentation, guard pages etc. 2238 * 2239 * This adds up to a rough guess of system memory x3. 2240 * Round up to power of two to maximize the available 2241 * VM size with the given page table size. 2242 */ 2243 si_meminfo(&si); 2244 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2245 (1 << 30) - 1) >> 30; 2246 vm_size = roundup_pow_of_two( 2247 clamp(phys_ram_gb * 3, min_vm_size, max_size)); 2248 } 2249 2250 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2251 2252 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2253 if (amdgpu_vm_block_size != -1) 2254 tmp >>= amdgpu_vm_block_size - 9; 2255 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2256 adev->vm_manager.num_level = min_t(unsigned int, max_level, tmp); 2257 switch (adev->vm_manager.num_level) { 2258 case 3: 2259 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2260 break; 2261 case 2: 2262 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2263 break; 2264 case 1: 2265 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2266 break; 2267 default: 2268 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2269 } 2270 /* block size depends on vm size and hw setup*/ 2271 if (amdgpu_vm_block_size != -1) 2272 adev->vm_manager.block_size = 2273 min((unsigned)amdgpu_vm_block_size, max_bits 2274 - AMDGPU_GPU_PAGE_SHIFT 2275 - 9 * adev->vm_manager.num_level); 2276 else if (adev->vm_manager.num_level > 1) 2277 adev->vm_manager.block_size = 9; 2278 else 2279 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2280 2281 if (amdgpu_vm_fragment_size == -1) 2282 adev->vm_manager.fragment_size = fragment_size_default; 2283 else 2284 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2285 2286 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2287 vm_size, adev->vm_manager.num_level + 1, 2288 adev->vm_manager.block_size, 2289 adev->vm_manager.fragment_size); 2290 } 2291 2292 /** 2293 * amdgpu_vm_wait_idle - wait for the VM to become idle 2294 * 2295 * @vm: VM object to wait for 2296 * @timeout: timeout to wait for VM to become idle 2297 */ 2298 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout) 2299 { 2300 timeout = dma_resv_wait_timeout(vm->root.bo->tbo.base.resv, 2301 DMA_RESV_USAGE_BOOKKEEP, 2302 true, timeout); 2303 if (timeout <= 0) 2304 return timeout; 2305 2306 return dma_fence_wait_timeout(vm->last_unlocked, true, timeout); 2307 } 2308 2309 static void amdgpu_vm_destroy_task_info(struct kref *kref) 2310 { 2311 struct amdgpu_task_info *ti = container_of(kref, struct amdgpu_task_info, refcount); 2312 2313 kfree(ti); 2314 } 2315 2316 static inline struct amdgpu_vm * 2317 amdgpu_vm_get_vm_from_pasid(struct amdgpu_device *adev, u32 pasid) 2318 { 2319 struct amdgpu_vm *vm; 2320 unsigned long flags; 2321 2322 xa_lock_irqsave(&adev->vm_manager.pasids, flags); 2323 vm = xa_load(&adev->vm_manager.pasids, pasid); 2324 xa_unlock_irqrestore(&adev->vm_manager.pasids, flags); 2325 2326 return vm; 2327 } 2328 2329 /** 2330 * amdgpu_vm_put_task_info - reference down the vm task_info ptr 2331 * 2332 * @task_info: task_info struct under discussion. 2333 * 2334 * frees the vm task_info ptr at the last put 2335 */ 2336 void amdgpu_vm_put_task_info(struct amdgpu_task_info *task_info) 2337 { 2338 kref_put(&task_info->refcount, amdgpu_vm_destroy_task_info); 2339 } 2340 2341 /** 2342 * amdgpu_vm_get_task_info_vm - Extracts task info for a vm. 2343 * 2344 * @vm: VM to get info from 2345 * 2346 * Returns the reference counted task_info structure, which must be 2347 * referenced down with amdgpu_vm_put_task_info. 2348 */ 2349 struct amdgpu_task_info * 2350 amdgpu_vm_get_task_info_vm(struct amdgpu_vm *vm) 2351 { 2352 struct amdgpu_task_info *ti = NULL; 2353 2354 if (vm) { 2355 ti = vm->task_info; 2356 kref_get(&vm->task_info->refcount); 2357 } 2358 2359 return ti; 2360 } 2361 2362 /** 2363 * amdgpu_vm_get_task_info_pasid - Extracts task info for a PASID. 2364 * 2365 * @adev: drm device pointer 2366 * @pasid: PASID identifier for VM 2367 * 2368 * Returns the reference counted task_info structure, which must be 2369 * referenced down with amdgpu_vm_put_task_info. 2370 */ 2371 struct amdgpu_task_info * 2372 amdgpu_vm_get_task_info_pasid(struct amdgpu_device *adev, u32 pasid) 2373 { 2374 return amdgpu_vm_get_task_info_vm( 2375 amdgpu_vm_get_vm_from_pasid(adev, pasid)); 2376 } 2377 2378 static int amdgpu_vm_create_task_info(struct amdgpu_vm *vm) 2379 { 2380 vm->task_info = kzalloc(sizeof(struct amdgpu_task_info), GFP_KERNEL); 2381 if (!vm->task_info) 2382 return -ENOMEM; 2383 2384 kref_init(&vm->task_info->refcount); 2385 return 0; 2386 } 2387 2388 /** 2389 * amdgpu_vm_set_task_info - Sets VMs task info. 2390 * 2391 * @vm: vm for which to set the info 2392 */ 2393 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 2394 { 2395 if (!vm->task_info) 2396 return; 2397 2398 if (vm->task_info->pid == current->pid) 2399 return; 2400 2401 vm->task_info->pid = current->pid; 2402 get_task_comm(vm->task_info->task_name, current); 2403 2404 if (current->group_leader->mm != current->mm) 2405 return; 2406 2407 vm->task_info->tgid = current->group_leader->pid; 2408 get_task_comm(vm->task_info->process_name, current->group_leader); 2409 } 2410 2411 /** 2412 * amdgpu_vm_init - initialize a vm instance 2413 * 2414 * @adev: amdgpu_device pointer 2415 * @vm: requested vm 2416 * @xcp_id: GPU partition selection id 2417 * 2418 * Init @vm fields. 2419 * 2420 * Returns: 2421 * 0 for success, error for failure. 2422 */ 2423 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2424 int32_t xcp_id) 2425 { 2426 struct amdgpu_bo *root_bo; 2427 struct amdgpu_bo_vm *root; 2428 int r, i; 2429 2430 vm->va = RB_ROOT_CACHED; 2431 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2432 vm->reserved_vmid[i] = NULL; 2433 INIT_LIST_HEAD(&vm->evicted); 2434 INIT_LIST_HEAD(&vm->evicted_user); 2435 INIT_LIST_HEAD(&vm->relocated); 2436 INIT_LIST_HEAD(&vm->moved); 2437 INIT_LIST_HEAD(&vm->idle); 2438 INIT_LIST_HEAD(&vm->invalidated); 2439 spin_lock_init(&vm->status_lock); 2440 INIT_LIST_HEAD(&vm->freed); 2441 INIT_LIST_HEAD(&vm->done); 2442 INIT_LIST_HEAD(&vm->pt_freed); 2443 INIT_WORK(&vm->pt_free_work, amdgpu_vm_pt_free_work); 2444 INIT_KFIFO(vm->faults); 2445 2446 r = amdgpu_vm_init_entities(adev, vm); 2447 if (r) 2448 return r; 2449 2450 ttm_lru_bulk_move_init(&vm->lru_bulk_move); 2451 2452 vm->is_compute_context = false; 2453 2454 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2455 AMDGPU_VM_USE_CPU_FOR_GFX); 2456 2457 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2458 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2459 WARN_ONCE((vm->use_cpu_for_update && 2460 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2461 "CPU update of VM recommended only for large BAR system\n"); 2462 2463 if (vm->use_cpu_for_update) 2464 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2465 else 2466 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2467 2468 vm->last_update = dma_fence_get_stub(); 2469 vm->last_unlocked = dma_fence_get_stub(); 2470 vm->last_tlb_flush = dma_fence_get_stub(); 2471 vm->generation = amdgpu_vm_generation(adev, NULL); 2472 2473 mutex_init(&vm->eviction_lock); 2474 vm->evicting = false; 2475 vm->tlb_fence_context = dma_fence_context_alloc(1); 2476 2477 r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level, 2478 false, &root, xcp_id); 2479 if (r) 2480 goto error_free_delayed; 2481 2482 root_bo = amdgpu_bo_ref(&root->bo); 2483 r = amdgpu_bo_reserve(root_bo, true); 2484 if (r) { 2485 amdgpu_bo_unref(&root->shadow); 2486 amdgpu_bo_unref(&root_bo); 2487 goto error_free_delayed; 2488 } 2489 2490 amdgpu_vm_bo_base_init(&vm->root, vm, root_bo); 2491 r = dma_resv_reserve_fences(root_bo->tbo.base.resv, 1); 2492 if (r) 2493 goto error_free_root; 2494 2495 r = amdgpu_vm_pt_clear(adev, vm, root, false); 2496 if (r) 2497 goto error_free_root; 2498 2499 r = amdgpu_vm_create_task_info(vm); 2500 if (r) 2501 DRM_DEBUG("Failed to create task info for VM\n"); 2502 2503 amdgpu_bo_unreserve(vm->root.bo); 2504 amdgpu_bo_unref(&root_bo); 2505 2506 return 0; 2507 2508 error_free_root: 2509 amdgpu_vm_pt_free_root(adev, vm); 2510 amdgpu_bo_unreserve(vm->root.bo); 2511 amdgpu_bo_unref(&root_bo); 2512 2513 error_free_delayed: 2514 dma_fence_put(vm->last_tlb_flush); 2515 dma_fence_put(vm->last_unlocked); 2516 ttm_lru_bulk_move_fini(&adev->mman.bdev, &vm->lru_bulk_move); 2517 amdgpu_vm_fini_entities(vm); 2518 2519 return r; 2520 } 2521 2522 /** 2523 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 2524 * 2525 * @adev: amdgpu_device pointer 2526 * @vm: requested vm 2527 * 2528 * This only works on GFX VMs that don't have any BOs added and no 2529 * page tables allocated yet. 2530 * 2531 * Changes the following VM parameters: 2532 * - use_cpu_for_update 2533 * - pte_supports_ats 2534 * 2535 * Reinitializes the page directory to reflect the changed ATS 2536 * setting. 2537 * 2538 * Returns: 2539 * 0 for success, -errno for errors. 2540 */ 2541 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2542 { 2543 int r; 2544 2545 r = amdgpu_bo_reserve(vm->root.bo, true); 2546 if (r) 2547 return r; 2548 2549 /* Update VM state */ 2550 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2551 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2552 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2553 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2554 WARN_ONCE((vm->use_cpu_for_update && 2555 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2556 "CPU update of VM recommended only for large BAR system\n"); 2557 2558 if (vm->use_cpu_for_update) { 2559 /* Sync with last SDMA update/clear before switching to CPU */ 2560 r = amdgpu_bo_sync_wait(vm->root.bo, 2561 AMDGPU_FENCE_OWNER_UNDEFINED, true); 2562 if (r) 2563 goto unreserve_bo; 2564 2565 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2566 r = amdgpu_vm_pt_map_tables(adev, vm); 2567 if (r) 2568 goto unreserve_bo; 2569 2570 } else { 2571 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2572 } 2573 2574 dma_fence_put(vm->last_update); 2575 vm->last_update = dma_fence_get_stub(); 2576 vm->is_compute_context = true; 2577 2578 /* Free the shadow bo for compute VM */ 2579 amdgpu_bo_unref(&to_amdgpu_bo_vm(vm->root.bo)->shadow); 2580 2581 goto unreserve_bo; 2582 2583 unreserve_bo: 2584 amdgpu_bo_unreserve(vm->root.bo); 2585 return r; 2586 } 2587 2588 /** 2589 * amdgpu_vm_release_compute - release a compute vm 2590 * @adev: amdgpu_device pointer 2591 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute 2592 * 2593 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute 2594 * pasid from vm. Compute should stop use of vm after this call. 2595 */ 2596 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2597 { 2598 amdgpu_vm_set_pasid(adev, vm, 0); 2599 vm->is_compute_context = false; 2600 } 2601 2602 /** 2603 * amdgpu_vm_fini - tear down a vm instance 2604 * 2605 * @adev: amdgpu_device pointer 2606 * @vm: requested vm 2607 * 2608 * Tear down @vm. 2609 * Unbind the VM and remove all bos from the vm bo list 2610 */ 2611 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2612 { 2613 struct amdgpu_bo_va_mapping *mapping, *tmp; 2614 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 2615 struct amdgpu_bo *root; 2616 unsigned long flags; 2617 int i; 2618 2619 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 2620 2621 flush_work(&vm->pt_free_work); 2622 2623 root = amdgpu_bo_ref(vm->root.bo); 2624 amdgpu_bo_reserve(root, true); 2625 amdgpu_vm_put_task_info(vm->task_info); 2626 amdgpu_vm_set_pasid(adev, vm, 0); 2627 dma_fence_wait(vm->last_unlocked, false); 2628 dma_fence_put(vm->last_unlocked); 2629 dma_fence_wait(vm->last_tlb_flush, false); 2630 /* Make sure that all fence callbacks have completed */ 2631 spin_lock_irqsave(vm->last_tlb_flush->lock, flags); 2632 spin_unlock_irqrestore(vm->last_tlb_flush->lock, flags); 2633 dma_fence_put(vm->last_tlb_flush); 2634 2635 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 2636 if (mapping->flags & AMDGPU_PTE_PRT_FLAG(adev) && prt_fini_needed) { 2637 amdgpu_vm_prt_fini(adev, vm); 2638 prt_fini_needed = false; 2639 } 2640 2641 list_del(&mapping->list); 2642 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 2643 } 2644 2645 amdgpu_vm_pt_free_root(adev, vm); 2646 amdgpu_bo_unreserve(root); 2647 amdgpu_bo_unref(&root); 2648 WARN_ON(vm->root.bo); 2649 2650 amdgpu_vm_fini_entities(vm); 2651 2652 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 2653 dev_err(adev->dev, "still active bo inside vm\n"); 2654 } 2655 rbtree_postorder_for_each_entry_safe(mapping, tmp, 2656 &vm->va.rb_root, rb) { 2657 /* Don't remove the mapping here, we don't want to trigger a 2658 * rebalance and the tree is about to be destroyed anyway. 2659 */ 2660 list_del(&mapping->list); 2661 kfree(mapping); 2662 } 2663 2664 dma_fence_put(vm->last_update); 2665 2666 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) { 2667 if (vm->reserved_vmid[i]) { 2668 amdgpu_vmid_free_reserved(adev, i); 2669 vm->reserved_vmid[i] = false; 2670 } 2671 } 2672 2673 ttm_lru_bulk_move_fini(&adev->mman.bdev, &vm->lru_bulk_move); 2674 } 2675 2676 /** 2677 * amdgpu_vm_manager_init - init the VM manager 2678 * 2679 * @adev: amdgpu_device pointer 2680 * 2681 * Initialize the VM manager structures 2682 */ 2683 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 2684 { 2685 unsigned i; 2686 2687 /* Concurrent flushes are only possible starting with Vega10 and 2688 * are broken on Navi10 and Navi14. 2689 */ 2690 adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 || 2691 adev->asic_type == CHIP_NAVI10 || 2692 adev->asic_type == CHIP_NAVI14); 2693 amdgpu_vmid_mgr_init(adev); 2694 2695 adev->vm_manager.fence_context = 2696 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 2697 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 2698 adev->vm_manager.seqno[i] = 0; 2699 2700 spin_lock_init(&adev->vm_manager.prt_lock); 2701 atomic_set(&adev->vm_manager.num_prt_users, 0); 2702 2703 /* If not overridden by the user, by default, only in large BAR systems 2704 * Compute VM tables will be updated by CPU 2705 */ 2706 #ifdef CONFIG_X86_64 2707 if (amdgpu_vm_update_mode == -1) { 2708 /* For asic with VF MMIO access protection 2709 * avoid using CPU for VM table updates 2710 */ 2711 if (amdgpu_gmc_vram_full_visible(&adev->gmc) && 2712 !amdgpu_sriov_vf_mmio_access_protection(adev)) 2713 adev->vm_manager.vm_update_mode = 2714 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 2715 else 2716 adev->vm_manager.vm_update_mode = 0; 2717 } else 2718 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 2719 #else 2720 adev->vm_manager.vm_update_mode = 0; 2721 #endif 2722 2723 xa_init_flags(&adev->vm_manager.pasids, XA_FLAGS_LOCK_IRQ); 2724 } 2725 2726 /** 2727 * amdgpu_vm_manager_fini - cleanup VM manager 2728 * 2729 * @adev: amdgpu_device pointer 2730 * 2731 * Cleanup the VM manager and free resources. 2732 */ 2733 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 2734 { 2735 WARN_ON(!xa_empty(&adev->vm_manager.pasids)); 2736 xa_destroy(&adev->vm_manager.pasids); 2737 2738 amdgpu_vmid_mgr_fini(adev); 2739 } 2740 2741 /** 2742 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 2743 * 2744 * @dev: drm device pointer 2745 * @data: drm_amdgpu_vm 2746 * @filp: drm file pointer 2747 * 2748 * Returns: 2749 * 0 for success, -errno for errors. 2750 */ 2751 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 2752 { 2753 union drm_amdgpu_vm *args = data; 2754 struct amdgpu_device *adev = drm_to_adev(dev); 2755 struct amdgpu_fpriv *fpriv = filp->driver_priv; 2756 2757 /* No valid flags defined yet */ 2758 if (args->in.flags) 2759 return -EINVAL; 2760 2761 switch (args->in.op) { 2762 case AMDGPU_VM_OP_RESERVE_VMID: 2763 /* We only have requirement to reserve vmid from gfxhub */ 2764 if (!fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) { 2765 amdgpu_vmid_alloc_reserved(adev, AMDGPU_GFXHUB(0)); 2766 fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = true; 2767 } 2768 2769 break; 2770 case AMDGPU_VM_OP_UNRESERVE_VMID: 2771 if (fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) { 2772 amdgpu_vmid_free_reserved(adev, AMDGPU_GFXHUB(0)); 2773 fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = false; 2774 } 2775 break; 2776 default: 2777 return -EINVAL; 2778 } 2779 2780 return 0; 2781 } 2782 2783 /** 2784 * amdgpu_vm_handle_fault - graceful handling of VM faults. 2785 * @adev: amdgpu device pointer 2786 * @pasid: PASID of the VM 2787 * @ts: Timestamp of the fault 2788 * @vmid: VMID, only used for GFX 9.4.3. 2789 * @node_id: Node_id received in IH cookie. Only applicable for 2790 * GFX 9.4.3. 2791 * @addr: Address of the fault 2792 * @write_fault: true is write fault, false is read fault 2793 * 2794 * Try to gracefully handle a VM fault. Return true if the fault was handled and 2795 * shouldn't be reported any more. 2796 */ 2797 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid, 2798 u32 vmid, u32 node_id, uint64_t addr, uint64_t ts, 2799 bool write_fault) 2800 { 2801 bool is_compute_context = false; 2802 struct amdgpu_bo *root; 2803 unsigned long irqflags; 2804 uint64_t value, flags; 2805 struct amdgpu_vm *vm; 2806 int r; 2807 2808 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 2809 vm = xa_load(&adev->vm_manager.pasids, pasid); 2810 if (vm) { 2811 root = amdgpu_bo_ref(vm->root.bo); 2812 is_compute_context = vm->is_compute_context; 2813 } else { 2814 root = NULL; 2815 } 2816 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 2817 2818 if (!root) 2819 return false; 2820 2821 addr /= AMDGPU_GPU_PAGE_SIZE; 2822 2823 if (is_compute_context && !svm_range_restore_pages(adev, pasid, vmid, 2824 node_id, addr, ts, write_fault)) { 2825 amdgpu_bo_unref(&root); 2826 return true; 2827 } 2828 2829 r = amdgpu_bo_reserve(root, true); 2830 if (r) 2831 goto error_unref; 2832 2833 /* Double check that the VM still exists */ 2834 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 2835 vm = xa_load(&adev->vm_manager.pasids, pasid); 2836 if (vm && vm->root.bo != root) 2837 vm = NULL; 2838 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 2839 if (!vm) 2840 goto error_unlock; 2841 2842 flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED | 2843 AMDGPU_PTE_SYSTEM; 2844 2845 if (is_compute_context) { 2846 /* Intentionally setting invalid PTE flag 2847 * combination to force a no-retry-fault 2848 */ 2849 flags = AMDGPU_VM_NORETRY_FLAGS; 2850 value = 0; 2851 } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) { 2852 /* Redirect the access to the dummy page */ 2853 value = adev->dummy_page_addr; 2854 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE | 2855 AMDGPU_PTE_WRITEABLE; 2856 2857 } else { 2858 /* Let the hw retry silently on the PTE */ 2859 value = 0; 2860 } 2861 2862 r = dma_resv_reserve_fences(root->tbo.base.resv, 1); 2863 if (r) { 2864 pr_debug("failed %d to reserve fence slot\n", r); 2865 goto error_unlock; 2866 } 2867 2868 r = amdgpu_vm_update_range(adev, vm, true, false, false, false, 2869 NULL, addr, addr, flags, value, 0, NULL, NULL, NULL); 2870 if (r) 2871 goto error_unlock; 2872 2873 r = amdgpu_vm_update_pdes(adev, vm, true); 2874 2875 error_unlock: 2876 amdgpu_bo_unreserve(root); 2877 if (r < 0) 2878 DRM_ERROR("Can't handle page fault (%d)\n", r); 2879 2880 error_unref: 2881 amdgpu_bo_unref(&root); 2882 2883 return false; 2884 } 2885 2886 #if defined(CONFIG_DEBUG_FS) 2887 /** 2888 * amdgpu_debugfs_vm_bo_info - print BO info for the VM 2889 * 2890 * @vm: Requested VM for printing BO info 2891 * @m: debugfs file 2892 * 2893 * Print BO information in debugfs file for the VM 2894 */ 2895 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m) 2896 { 2897 struct amdgpu_bo_va *bo_va, *tmp; 2898 u64 total_idle = 0; 2899 u64 total_evicted = 0; 2900 u64 total_relocated = 0; 2901 u64 total_moved = 0; 2902 u64 total_invalidated = 0; 2903 u64 total_done = 0; 2904 unsigned int total_idle_objs = 0; 2905 unsigned int total_evicted_objs = 0; 2906 unsigned int total_relocated_objs = 0; 2907 unsigned int total_moved_objs = 0; 2908 unsigned int total_invalidated_objs = 0; 2909 unsigned int total_done_objs = 0; 2910 unsigned int id = 0; 2911 2912 spin_lock(&vm->status_lock); 2913 seq_puts(m, "\tIdle BOs:\n"); 2914 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) { 2915 if (!bo_va->base.bo) 2916 continue; 2917 total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2918 } 2919 total_idle_objs = id; 2920 id = 0; 2921 2922 seq_puts(m, "\tEvicted BOs:\n"); 2923 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) { 2924 if (!bo_va->base.bo) 2925 continue; 2926 total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2927 } 2928 total_evicted_objs = id; 2929 id = 0; 2930 2931 seq_puts(m, "\tRelocated BOs:\n"); 2932 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) { 2933 if (!bo_va->base.bo) 2934 continue; 2935 total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2936 } 2937 total_relocated_objs = id; 2938 id = 0; 2939 2940 seq_puts(m, "\tMoved BOs:\n"); 2941 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 2942 if (!bo_va->base.bo) 2943 continue; 2944 total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2945 } 2946 total_moved_objs = id; 2947 id = 0; 2948 2949 seq_puts(m, "\tInvalidated BOs:\n"); 2950 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) { 2951 if (!bo_va->base.bo) 2952 continue; 2953 total_invalidated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2954 } 2955 total_invalidated_objs = id; 2956 id = 0; 2957 2958 seq_puts(m, "\tDone BOs:\n"); 2959 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) { 2960 if (!bo_va->base.bo) 2961 continue; 2962 total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2963 } 2964 spin_unlock(&vm->status_lock); 2965 total_done_objs = id; 2966 2967 seq_printf(m, "\tTotal idle size: %12lld\tobjs:\t%d\n", total_idle, 2968 total_idle_objs); 2969 seq_printf(m, "\tTotal evicted size: %12lld\tobjs:\t%d\n", total_evicted, 2970 total_evicted_objs); 2971 seq_printf(m, "\tTotal relocated size: %12lld\tobjs:\t%d\n", total_relocated, 2972 total_relocated_objs); 2973 seq_printf(m, "\tTotal moved size: %12lld\tobjs:\t%d\n", total_moved, 2974 total_moved_objs); 2975 seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated, 2976 total_invalidated_objs); 2977 seq_printf(m, "\tTotal done size: %12lld\tobjs:\t%d\n", total_done, 2978 total_done_objs); 2979 } 2980 #endif 2981 2982 /** 2983 * amdgpu_vm_update_fault_cache - update cached fault into. 2984 * @adev: amdgpu device pointer 2985 * @pasid: PASID of the VM 2986 * @addr: Address of the fault 2987 * @status: GPUVM fault status register 2988 * @vmhub: which vmhub got the fault 2989 * 2990 * Cache the fault info for later use by userspace in debugging. 2991 */ 2992 void amdgpu_vm_update_fault_cache(struct amdgpu_device *adev, 2993 unsigned int pasid, 2994 uint64_t addr, 2995 uint32_t status, 2996 unsigned int vmhub) 2997 { 2998 struct amdgpu_vm *vm; 2999 unsigned long flags; 3000 3001 xa_lock_irqsave(&adev->vm_manager.pasids, flags); 3002 3003 vm = xa_load(&adev->vm_manager.pasids, pasid); 3004 /* Don't update the fault cache if status is 0. In the multiple 3005 * fault case, subsequent faults will return a 0 status which is 3006 * useless for userspace and replaces the useful fault status, so 3007 * only update if status is non-0. 3008 */ 3009 if (vm && status) { 3010 vm->fault_info.addr = addr; 3011 vm->fault_info.status = status; 3012 /* 3013 * Update the fault information globally for later usage 3014 * when vm could be stale or freed. 3015 */ 3016 adev->vm_manager.fault_info.addr = addr; 3017 adev->vm_manager.fault_info.vmhub = vmhub; 3018 adev->vm_manager.fault_info.status = status; 3019 3020 if (AMDGPU_IS_GFXHUB(vmhub)) { 3021 vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_GFX; 3022 vm->fault_info.vmhub |= 3023 (vmhub - AMDGPU_GFXHUB_START) << AMDGPU_VMHUB_IDX_SHIFT; 3024 } else if (AMDGPU_IS_MMHUB0(vmhub)) { 3025 vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_MM0; 3026 vm->fault_info.vmhub |= 3027 (vmhub - AMDGPU_MMHUB0_START) << AMDGPU_VMHUB_IDX_SHIFT; 3028 } else if (AMDGPU_IS_MMHUB1(vmhub)) { 3029 vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_MM1; 3030 vm->fault_info.vmhub |= 3031 (vmhub - AMDGPU_MMHUB1_START) << AMDGPU_VMHUB_IDX_SHIFT; 3032 } else { 3033 WARN_ONCE(1, "Invalid vmhub %u\n", vmhub); 3034 } 3035 } 3036 xa_unlock_irqrestore(&adev->vm_manager.pasids, flags); 3037 } 3038 3039 /** 3040 * amdgpu_vm_is_bo_always_valid - check if the BO is VM always valid 3041 * 3042 * @vm: VM to test against. 3043 * @bo: BO to be tested. 3044 * 3045 * Returns true if the BO shares the dma_resv object with the root PD and is 3046 * always guaranteed to be valid inside the VM. 3047 */ 3048 bool amdgpu_vm_is_bo_always_valid(struct amdgpu_vm *vm, struct amdgpu_bo *bo) 3049 { 3050 return bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv; 3051 } 3052