1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <linux/fence-array.h> 29 #include <drm/drmP.h> 30 #include <drm/amdgpu_drm.h> 31 #include "amdgpu.h" 32 #include "amdgpu_trace.h" 33 34 /* 35 * GPUVM 36 * GPUVM is similar to the legacy gart on older asics, however 37 * rather than there being a single global gart table 38 * for the entire GPU, there are multiple VM page tables active 39 * at any given time. The VM page tables can contain a mix 40 * vram pages and system memory pages and system memory pages 41 * can be mapped as snooped (cached system pages) or unsnooped 42 * (uncached system pages). 43 * Each VM has an ID associated with it and there is a page table 44 * associated with each VMID. When execting a command buffer, 45 * the kernel tells the the ring what VMID to use for that command 46 * buffer. VMIDs are allocated dynamically as commands are submitted. 47 * The userspace drivers maintain their own address space and the kernel 48 * sets up their pages tables accordingly when they submit their 49 * command buffers and a VMID is assigned. 50 * Cayman/Trinity support up to 8 active VMs at any given time; 51 * SI supports 16. 52 */ 53 54 /* Local structure. Encapsulate some VM table update parameters to reduce 55 * the number of function parameters 56 */ 57 struct amdgpu_pte_update_params { 58 /* amdgpu device we do this update for */ 59 struct amdgpu_device *adev; 60 /* address where to copy page table entries from */ 61 uint64_t src; 62 /* indirect buffer to fill with commands */ 63 struct amdgpu_ib *ib; 64 /* Function which actually does the update */ 65 void (*func)(struct amdgpu_pte_update_params *params, uint64_t pe, 66 uint64_t addr, unsigned count, uint32_t incr, 67 uint32_t flags); 68 /* indicate update pt or its shadow */ 69 bool shadow; 70 }; 71 72 /** 73 * amdgpu_vm_num_pde - return the number of page directory entries 74 * 75 * @adev: amdgpu_device pointer 76 * 77 * Calculate the number of page directory entries. 78 */ 79 static unsigned amdgpu_vm_num_pdes(struct amdgpu_device *adev) 80 { 81 return adev->vm_manager.max_pfn >> amdgpu_vm_block_size; 82 } 83 84 /** 85 * amdgpu_vm_directory_size - returns the size of the page directory in bytes 86 * 87 * @adev: amdgpu_device pointer 88 * 89 * Calculate the size of the page directory in bytes. 90 */ 91 static unsigned amdgpu_vm_directory_size(struct amdgpu_device *adev) 92 { 93 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_pdes(adev) * 8); 94 } 95 96 /** 97 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 98 * 99 * @vm: vm providing the BOs 100 * @validated: head of validation list 101 * @entry: entry to add 102 * 103 * Add the page directory to the list of BOs to 104 * validate for command submission. 105 */ 106 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 107 struct list_head *validated, 108 struct amdgpu_bo_list_entry *entry) 109 { 110 entry->robj = vm->page_directory; 111 entry->priority = 0; 112 entry->tv.bo = &vm->page_directory->tbo; 113 entry->tv.shared = true; 114 entry->user_pages = NULL; 115 list_add(&entry->tv.head, validated); 116 } 117 118 /** 119 * amdgpu_vm_get_bos - add the vm BOs to a duplicates list 120 * 121 * @adev: amdgpu device pointer 122 * @vm: vm providing the BOs 123 * @duplicates: head of duplicates list 124 * 125 * Add the page directory to the BO duplicates list 126 * for command submission. 127 */ 128 void amdgpu_vm_get_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 129 struct list_head *duplicates) 130 { 131 uint64_t num_evictions; 132 unsigned i; 133 134 /* We only need to validate the page tables 135 * if they aren't already valid. 136 */ 137 num_evictions = atomic64_read(&adev->num_evictions); 138 if (num_evictions == vm->last_eviction_counter) 139 return; 140 141 /* add the vm page table to the list */ 142 for (i = 0; i <= vm->max_pde_used; ++i) { 143 struct amdgpu_bo_list_entry *entry = &vm->page_tables[i].entry; 144 145 if (!entry->robj) 146 continue; 147 148 list_add(&entry->tv.head, duplicates); 149 } 150 151 } 152 153 /** 154 * amdgpu_vm_move_pt_bos_in_lru - move the PT BOs to the LRU tail 155 * 156 * @adev: amdgpu device instance 157 * @vm: vm providing the BOs 158 * 159 * Move the PT BOs to the tail of the LRU. 160 */ 161 void amdgpu_vm_move_pt_bos_in_lru(struct amdgpu_device *adev, 162 struct amdgpu_vm *vm) 163 { 164 struct ttm_bo_global *glob = adev->mman.bdev.glob; 165 unsigned i; 166 167 spin_lock(&glob->lru_lock); 168 for (i = 0; i <= vm->max_pde_used; ++i) { 169 struct amdgpu_bo_list_entry *entry = &vm->page_tables[i].entry; 170 171 if (!entry->robj) 172 continue; 173 174 ttm_bo_move_to_lru_tail(&entry->robj->tbo); 175 } 176 spin_unlock(&glob->lru_lock); 177 } 178 179 static bool amdgpu_vm_is_gpu_reset(struct amdgpu_device *adev, 180 struct amdgpu_vm_id *id) 181 { 182 return id->current_gpu_reset_count != 183 atomic_read(&adev->gpu_reset_counter) ? true : false; 184 } 185 186 /** 187 * amdgpu_vm_grab_id - allocate the next free VMID 188 * 189 * @vm: vm to allocate id for 190 * @ring: ring we want to submit job to 191 * @sync: sync object where we add dependencies 192 * @fence: fence protecting ID from reuse 193 * 194 * Allocate an id for the vm, adding fences to the sync obj as necessary. 195 */ 196 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring, 197 struct amdgpu_sync *sync, struct fence *fence, 198 struct amdgpu_job *job) 199 { 200 struct amdgpu_device *adev = ring->adev; 201 uint64_t fence_context = adev->fence_context + ring->idx; 202 struct fence *updates = sync->last_vm_update; 203 struct amdgpu_vm_id *id, *idle; 204 struct fence **fences; 205 unsigned i; 206 int r = 0; 207 208 fences = kmalloc_array(sizeof(void *), adev->vm_manager.num_ids, 209 GFP_KERNEL); 210 if (!fences) 211 return -ENOMEM; 212 213 mutex_lock(&adev->vm_manager.lock); 214 215 /* Check if we have an idle VMID */ 216 i = 0; 217 list_for_each_entry(idle, &adev->vm_manager.ids_lru, list) { 218 fences[i] = amdgpu_sync_peek_fence(&idle->active, ring); 219 if (!fences[i]) 220 break; 221 ++i; 222 } 223 224 /* If we can't find a idle VMID to use, wait till one becomes available */ 225 if (&idle->list == &adev->vm_manager.ids_lru) { 226 u64 fence_context = adev->vm_manager.fence_context + ring->idx; 227 unsigned seqno = ++adev->vm_manager.seqno[ring->idx]; 228 struct fence_array *array; 229 unsigned j; 230 231 for (j = 0; j < i; ++j) 232 fence_get(fences[j]); 233 234 array = fence_array_create(i, fences, fence_context, 235 seqno, true); 236 if (!array) { 237 for (j = 0; j < i; ++j) 238 fence_put(fences[j]); 239 kfree(fences); 240 r = -ENOMEM; 241 goto error; 242 } 243 244 245 r = amdgpu_sync_fence(ring->adev, sync, &array->base); 246 fence_put(&array->base); 247 if (r) 248 goto error; 249 250 mutex_unlock(&adev->vm_manager.lock); 251 return 0; 252 253 } 254 kfree(fences); 255 256 job->vm_needs_flush = true; 257 /* Check if we can use a VMID already assigned to this VM */ 258 i = ring->idx; 259 do { 260 struct fence *flushed; 261 262 id = vm->ids[i++]; 263 if (i == AMDGPU_MAX_RINGS) 264 i = 0; 265 266 /* Check all the prerequisites to using this VMID */ 267 if (!id) 268 continue; 269 if (amdgpu_vm_is_gpu_reset(adev, id)) 270 continue; 271 272 if (atomic64_read(&id->owner) != vm->client_id) 273 continue; 274 275 if (job->vm_pd_addr != id->pd_gpu_addr) 276 continue; 277 278 if (!id->last_flush) 279 continue; 280 281 if (id->last_flush->context != fence_context && 282 !fence_is_signaled(id->last_flush)) 283 continue; 284 285 flushed = id->flushed_updates; 286 if (updates && 287 (!flushed || fence_is_later(updates, flushed))) 288 continue; 289 290 /* Good we can use this VMID. Remember this submission as 291 * user of the VMID. 292 */ 293 r = amdgpu_sync_fence(ring->adev, &id->active, fence); 294 if (r) 295 goto error; 296 297 id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter); 298 list_move_tail(&id->list, &adev->vm_manager.ids_lru); 299 vm->ids[ring->idx] = id; 300 301 job->vm_id = id - adev->vm_manager.ids; 302 job->vm_needs_flush = false; 303 trace_amdgpu_vm_grab_id(vm, ring->idx, job); 304 305 mutex_unlock(&adev->vm_manager.lock); 306 return 0; 307 308 } while (i != ring->idx); 309 310 /* Still no ID to use? Then use the idle one found earlier */ 311 id = idle; 312 313 /* Remember this submission as user of the VMID */ 314 r = amdgpu_sync_fence(ring->adev, &id->active, fence); 315 if (r) 316 goto error; 317 318 fence_put(id->first); 319 id->first = fence_get(fence); 320 321 fence_put(id->last_flush); 322 id->last_flush = NULL; 323 324 fence_put(id->flushed_updates); 325 id->flushed_updates = fence_get(updates); 326 327 id->pd_gpu_addr = job->vm_pd_addr; 328 id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter); 329 list_move_tail(&id->list, &adev->vm_manager.ids_lru); 330 atomic64_set(&id->owner, vm->client_id); 331 vm->ids[ring->idx] = id; 332 333 job->vm_id = id - adev->vm_manager.ids; 334 trace_amdgpu_vm_grab_id(vm, ring->idx, job); 335 336 error: 337 mutex_unlock(&adev->vm_manager.lock); 338 return r; 339 } 340 341 static bool amdgpu_vm_ring_has_compute_vm_bug(struct amdgpu_ring *ring) 342 { 343 struct amdgpu_device *adev = ring->adev; 344 const struct amdgpu_ip_block_version *ip_block; 345 346 if (ring->type != AMDGPU_RING_TYPE_COMPUTE) 347 /* only compute rings */ 348 return false; 349 350 ip_block = amdgpu_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 351 if (!ip_block) 352 return false; 353 354 if (ip_block->major <= 7) { 355 /* gfx7 has no workaround */ 356 return true; 357 } else if (ip_block->major == 8) { 358 if (adev->gfx.mec_fw_version >= 673) 359 /* gfx8 is fixed in MEC firmware 673 */ 360 return false; 361 else 362 return true; 363 } 364 return false; 365 } 366 367 /** 368 * amdgpu_vm_flush - hardware flush the vm 369 * 370 * @ring: ring to use for flush 371 * @vm_id: vmid number to use 372 * @pd_addr: address of the page directory 373 * 374 * Emit a VM flush when it is necessary. 375 */ 376 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job) 377 { 378 struct amdgpu_device *adev = ring->adev; 379 struct amdgpu_vm_id *id = &adev->vm_manager.ids[job->vm_id]; 380 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 381 id->gds_base != job->gds_base || 382 id->gds_size != job->gds_size || 383 id->gws_base != job->gws_base || 384 id->gws_size != job->gws_size || 385 id->oa_base != job->oa_base || 386 id->oa_size != job->oa_size); 387 int r; 388 389 if (ring->funcs->emit_pipeline_sync && ( 390 job->vm_needs_flush || gds_switch_needed || 391 amdgpu_vm_ring_has_compute_vm_bug(ring))) 392 amdgpu_ring_emit_pipeline_sync(ring); 393 394 if (ring->funcs->emit_vm_flush && (job->vm_needs_flush || 395 amdgpu_vm_is_gpu_reset(adev, id))) { 396 struct fence *fence; 397 398 trace_amdgpu_vm_flush(job->vm_pd_addr, ring->idx, job->vm_id); 399 amdgpu_ring_emit_vm_flush(ring, job->vm_id, job->vm_pd_addr); 400 401 r = amdgpu_fence_emit(ring, &fence); 402 if (r) 403 return r; 404 405 mutex_lock(&adev->vm_manager.lock); 406 fence_put(id->last_flush); 407 id->last_flush = fence; 408 mutex_unlock(&adev->vm_manager.lock); 409 } 410 411 if (gds_switch_needed) { 412 id->gds_base = job->gds_base; 413 id->gds_size = job->gds_size; 414 id->gws_base = job->gws_base; 415 id->gws_size = job->gws_size; 416 id->oa_base = job->oa_base; 417 id->oa_size = job->oa_size; 418 amdgpu_ring_emit_gds_switch(ring, job->vm_id, 419 job->gds_base, job->gds_size, 420 job->gws_base, job->gws_size, 421 job->oa_base, job->oa_size); 422 } 423 424 return 0; 425 } 426 427 /** 428 * amdgpu_vm_reset_id - reset VMID to zero 429 * 430 * @adev: amdgpu device structure 431 * @vm_id: vmid number to use 432 * 433 * Reset saved GDW, GWS and OA to force switch on next flush. 434 */ 435 void amdgpu_vm_reset_id(struct amdgpu_device *adev, unsigned vm_id) 436 { 437 struct amdgpu_vm_id *id = &adev->vm_manager.ids[vm_id]; 438 439 id->gds_base = 0; 440 id->gds_size = 0; 441 id->gws_base = 0; 442 id->gws_size = 0; 443 id->oa_base = 0; 444 id->oa_size = 0; 445 } 446 447 /** 448 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 449 * 450 * @vm: requested vm 451 * @bo: requested buffer object 452 * 453 * Find @bo inside the requested vm. 454 * Search inside the @bos vm list for the requested vm 455 * Returns the found bo_va or NULL if none is found 456 * 457 * Object has to be reserved! 458 */ 459 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 460 struct amdgpu_bo *bo) 461 { 462 struct amdgpu_bo_va *bo_va; 463 464 list_for_each_entry(bo_va, &bo->va, bo_list) { 465 if (bo_va->vm == vm) { 466 return bo_va; 467 } 468 } 469 return NULL; 470 } 471 472 /** 473 * amdgpu_vm_do_set_ptes - helper to call the right asic function 474 * 475 * @params: see amdgpu_pte_update_params definition 476 * @pe: addr of the page entry 477 * @addr: dst addr to write into pe 478 * @count: number of page entries to update 479 * @incr: increase next addr by incr bytes 480 * @flags: hw access flags 481 * 482 * Traces the parameters and calls the right asic functions 483 * to setup the page table using the DMA. 484 */ 485 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params, 486 uint64_t pe, uint64_t addr, 487 unsigned count, uint32_t incr, 488 uint32_t flags) 489 { 490 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 491 492 if (count < 3) { 493 amdgpu_vm_write_pte(params->adev, params->ib, pe, 494 addr | flags, count, incr); 495 496 } else { 497 amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr, 498 count, incr, flags); 499 } 500 } 501 502 /** 503 * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART 504 * 505 * @params: see amdgpu_pte_update_params definition 506 * @pe: addr of the page entry 507 * @addr: dst addr to write into pe 508 * @count: number of page entries to update 509 * @incr: increase next addr by incr bytes 510 * @flags: hw access flags 511 * 512 * Traces the parameters and calls the DMA function to copy the PTEs. 513 */ 514 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params, 515 uint64_t pe, uint64_t addr, 516 unsigned count, uint32_t incr, 517 uint32_t flags) 518 { 519 uint64_t src = (params->src + (addr >> 12) * 8); 520 521 522 trace_amdgpu_vm_copy_ptes(pe, src, count); 523 524 amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count); 525 } 526 527 /** 528 * amdgpu_vm_clear_bo - initially clear the page dir/table 529 * 530 * @adev: amdgpu_device pointer 531 * @bo: bo to clear 532 * 533 * need to reserve bo first before calling it. 534 */ 535 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev, 536 struct amdgpu_vm *vm, 537 struct amdgpu_bo *bo) 538 { 539 struct amdgpu_ring *ring; 540 struct fence *fence = NULL; 541 struct amdgpu_job *job; 542 struct amdgpu_pte_update_params params; 543 unsigned entries; 544 uint64_t addr; 545 int r; 546 547 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched); 548 549 r = reservation_object_reserve_shared(bo->tbo.resv); 550 if (r) 551 return r; 552 553 r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false); 554 if (r) 555 goto error; 556 557 r = amdgpu_ttm_bind(&bo->tbo, &bo->tbo.mem); 558 if (r) 559 goto error; 560 561 addr = amdgpu_bo_gpu_offset(bo); 562 entries = amdgpu_bo_size(bo) / 8; 563 564 r = amdgpu_job_alloc_with_ib(adev, 64, &job); 565 if (r) 566 goto error; 567 568 memset(¶ms, 0, sizeof(params)); 569 params.adev = adev; 570 params.ib = &job->ibs[0]; 571 amdgpu_vm_do_set_ptes(¶ms, addr, 0, entries, 0, 0); 572 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 573 574 WARN_ON(job->ibs[0].length_dw > 64); 575 r = amdgpu_job_submit(job, ring, &vm->entity, 576 AMDGPU_FENCE_OWNER_VM, &fence); 577 if (r) 578 goto error_free; 579 580 amdgpu_bo_fence(bo, fence, true); 581 fence_put(fence); 582 return 0; 583 584 error_free: 585 amdgpu_job_free(job); 586 587 error: 588 return r; 589 } 590 591 /** 592 * amdgpu_vm_map_gart - Resolve gart mapping of addr 593 * 594 * @pages_addr: optional DMA address to use for lookup 595 * @addr: the unmapped addr 596 * 597 * Look up the physical address of the page that the pte resolves 598 * to and return the pointer for the page table entry. 599 */ 600 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 601 { 602 uint64_t result; 603 604 /* page table offset */ 605 result = pages_addr[addr >> PAGE_SHIFT]; 606 607 /* in case cpu page size != gpu page size*/ 608 result |= addr & (~PAGE_MASK); 609 610 result &= 0xFFFFFFFFFFFFF000ULL; 611 612 return result; 613 } 614 615 static int amdgpu_vm_update_pd_or_shadow(struct amdgpu_device *adev, 616 struct amdgpu_vm *vm, 617 bool shadow) 618 { 619 struct amdgpu_ring *ring; 620 struct amdgpu_bo *pd = shadow ? vm->page_directory->shadow : 621 vm->page_directory; 622 uint64_t pd_addr; 623 uint32_t incr = AMDGPU_VM_PTE_COUNT * 8; 624 uint64_t last_pde = ~0, last_pt = ~0; 625 unsigned count = 0, pt_idx, ndw; 626 struct amdgpu_job *job; 627 struct amdgpu_pte_update_params params; 628 struct fence *fence = NULL; 629 630 int r; 631 632 if (!pd) 633 return 0; 634 635 r = amdgpu_ttm_bind(&pd->tbo, &pd->tbo.mem); 636 if (r) 637 return r; 638 639 pd_addr = amdgpu_bo_gpu_offset(pd); 640 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched); 641 642 /* padding, etc. */ 643 ndw = 64; 644 645 /* assume the worst case */ 646 ndw += vm->max_pde_used * 6; 647 648 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 649 if (r) 650 return r; 651 652 memset(¶ms, 0, sizeof(params)); 653 params.adev = adev; 654 params.ib = &job->ibs[0]; 655 656 /* walk over the address space and update the page directory */ 657 for (pt_idx = 0; pt_idx <= vm->max_pde_used; ++pt_idx) { 658 struct amdgpu_bo *bo = vm->page_tables[pt_idx].entry.robj; 659 uint64_t pde, pt; 660 661 if (bo == NULL) 662 continue; 663 664 if (bo->shadow) { 665 struct amdgpu_bo *shadow = bo->shadow; 666 667 r = amdgpu_ttm_bind(&shadow->tbo, &shadow->tbo.mem); 668 if (r) 669 return r; 670 } 671 672 pt = amdgpu_bo_gpu_offset(bo); 673 if (!shadow) { 674 if (vm->page_tables[pt_idx].addr == pt) 675 continue; 676 vm->page_tables[pt_idx].addr = pt; 677 } else { 678 if (vm->page_tables[pt_idx].shadow_addr == pt) 679 continue; 680 vm->page_tables[pt_idx].shadow_addr = pt; 681 } 682 683 pde = pd_addr + pt_idx * 8; 684 if (((last_pde + 8 * count) != pde) || 685 ((last_pt + incr * count) != pt) || 686 (count == AMDGPU_VM_MAX_UPDATE_SIZE)) { 687 688 if (count) { 689 amdgpu_vm_do_set_ptes(¶ms, last_pde, 690 last_pt, count, incr, 691 AMDGPU_PTE_VALID); 692 } 693 694 count = 1; 695 last_pde = pde; 696 last_pt = pt; 697 } else { 698 ++count; 699 } 700 } 701 702 if (count) 703 amdgpu_vm_do_set_ptes(¶ms, last_pde, last_pt, 704 count, incr, AMDGPU_PTE_VALID); 705 706 if (params.ib->length_dw != 0) { 707 amdgpu_ring_pad_ib(ring, params.ib); 708 amdgpu_sync_resv(adev, &job->sync, pd->tbo.resv, 709 AMDGPU_FENCE_OWNER_VM); 710 WARN_ON(params.ib->length_dw > ndw); 711 r = amdgpu_job_submit(job, ring, &vm->entity, 712 AMDGPU_FENCE_OWNER_VM, &fence); 713 if (r) 714 goto error_free; 715 716 amdgpu_bo_fence(pd, fence, true); 717 fence_put(vm->page_directory_fence); 718 vm->page_directory_fence = fence_get(fence); 719 fence_put(fence); 720 721 } else { 722 amdgpu_job_free(job); 723 } 724 725 return 0; 726 727 error_free: 728 amdgpu_job_free(job); 729 return r; 730 } 731 732 /* 733 * amdgpu_vm_update_pdes - make sure that page directory is valid 734 * 735 * @adev: amdgpu_device pointer 736 * @vm: requested vm 737 * @start: start of GPU address range 738 * @end: end of GPU address range 739 * 740 * Allocates new page tables if necessary 741 * and updates the page directory. 742 * Returns 0 for success, error for failure. 743 */ 744 int amdgpu_vm_update_page_directory(struct amdgpu_device *adev, 745 struct amdgpu_vm *vm) 746 { 747 int r; 748 749 r = amdgpu_vm_update_pd_or_shadow(adev, vm, true); 750 if (r) 751 return r; 752 return amdgpu_vm_update_pd_or_shadow(adev, vm, false); 753 } 754 755 /** 756 * amdgpu_vm_update_ptes - make sure that page tables are valid 757 * 758 * @params: see amdgpu_pte_update_params definition 759 * @vm: requested vm 760 * @start: start of GPU address range 761 * @end: end of GPU address range 762 * @dst: destination address to map to, the next dst inside the function 763 * @flags: mapping flags 764 * 765 * Update the page tables in the range @start - @end. 766 */ 767 static void amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params, 768 struct amdgpu_vm *vm, 769 uint64_t start, uint64_t end, 770 uint64_t dst, uint32_t flags) 771 { 772 const uint64_t mask = AMDGPU_VM_PTE_COUNT - 1; 773 774 uint64_t cur_pe_start, cur_nptes, cur_dst; 775 uint64_t addr; /* next GPU address to be updated */ 776 uint64_t pt_idx; 777 struct amdgpu_bo *pt; 778 unsigned nptes; /* next number of ptes to be updated */ 779 uint64_t next_pe_start; 780 781 /* initialize the variables */ 782 addr = start; 783 pt_idx = addr >> amdgpu_vm_block_size; 784 pt = vm->page_tables[pt_idx].entry.robj; 785 if (params->shadow) { 786 if (!pt->shadow) 787 return; 788 pt = vm->page_tables[pt_idx].entry.robj->shadow; 789 } 790 if ((addr & ~mask) == (end & ~mask)) 791 nptes = end - addr; 792 else 793 nptes = AMDGPU_VM_PTE_COUNT - (addr & mask); 794 795 cur_pe_start = amdgpu_bo_gpu_offset(pt); 796 cur_pe_start += (addr & mask) * 8; 797 cur_nptes = nptes; 798 cur_dst = dst; 799 800 /* for next ptb*/ 801 addr += nptes; 802 dst += nptes * AMDGPU_GPU_PAGE_SIZE; 803 804 /* walk over the address space and update the page tables */ 805 while (addr < end) { 806 pt_idx = addr >> amdgpu_vm_block_size; 807 pt = vm->page_tables[pt_idx].entry.robj; 808 if (params->shadow) { 809 if (!pt->shadow) 810 return; 811 pt = vm->page_tables[pt_idx].entry.robj->shadow; 812 } 813 814 if ((addr & ~mask) == (end & ~mask)) 815 nptes = end - addr; 816 else 817 nptes = AMDGPU_VM_PTE_COUNT - (addr & mask); 818 819 next_pe_start = amdgpu_bo_gpu_offset(pt); 820 next_pe_start += (addr & mask) * 8; 821 822 if ((cur_pe_start + 8 * cur_nptes) == next_pe_start && 823 ((cur_nptes + nptes) <= AMDGPU_VM_MAX_UPDATE_SIZE)) { 824 /* The next ptb is consecutive to current ptb. 825 * Don't call the update function now. 826 * Will update two ptbs together in future. 827 */ 828 cur_nptes += nptes; 829 } else { 830 params->func(params, cur_pe_start, cur_dst, cur_nptes, 831 AMDGPU_GPU_PAGE_SIZE, flags); 832 833 cur_pe_start = next_pe_start; 834 cur_nptes = nptes; 835 cur_dst = dst; 836 } 837 838 /* for next ptb*/ 839 addr += nptes; 840 dst += nptes * AMDGPU_GPU_PAGE_SIZE; 841 } 842 843 params->func(params, cur_pe_start, cur_dst, cur_nptes, 844 AMDGPU_GPU_PAGE_SIZE, flags); 845 } 846 847 /* 848 * amdgpu_vm_frag_ptes - add fragment information to PTEs 849 * 850 * @params: see amdgpu_pte_update_params definition 851 * @vm: requested vm 852 * @start: first PTE to handle 853 * @end: last PTE to handle 854 * @dst: addr those PTEs should point to 855 * @flags: hw mapping flags 856 */ 857 static void amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params *params, 858 struct amdgpu_vm *vm, 859 uint64_t start, uint64_t end, 860 uint64_t dst, uint32_t flags) 861 { 862 /** 863 * The MC L1 TLB supports variable sized pages, based on a fragment 864 * field in the PTE. When this field is set to a non-zero value, page 865 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 866 * flags are considered valid for all PTEs within the fragment range 867 * and corresponding mappings are assumed to be physically contiguous. 868 * 869 * The L1 TLB can store a single PTE for the whole fragment, 870 * significantly increasing the space available for translation 871 * caching. This leads to large improvements in throughput when the 872 * TLB is under pressure. 873 * 874 * The L2 TLB distributes small and large fragments into two 875 * asymmetric partitions. The large fragment cache is significantly 876 * larger. Thus, we try to use large fragments wherever possible. 877 * Userspace can support this by aligning virtual base address and 878 * allocation size to the fragment size. 879 */ 880 881 /* SI and newer are optimized for 64KB */ 882 uint64_t frag_flags = AMDGPU_PTE_FRAG(AMDGPU_LOG2_PAGES_PER_FRAG); 883 uint64_t frag_align = 1 << AMDGPU_LOG2_PAGES_PER_FRAG; 884 885 uint64_t frag_start = ALIGN(start, frag_align); 886 uint64_t frag_end = end & ~(frag_align - 1); 887 888 /* system pages are non continuously */ 889 if (params->src || !(flags & AMDGPU_PTE_VALID) || 890 (frag_start >= frag_end)) { 891 892 amdgpu_vm_update_ptes(params, vm, start, end, dst, flags); 893 return; 894 } 895 896 /* handle the 4K area at the beginning */ 897 if (start != frag_start) { 898 amdgpu_vm_update_ptes(params, vm, start, frag_start, 899 dst, flags); 900 dst += (frag_start - start) * AMDGPU_GPU_PAGE_SIZE; 901 } 902 903 /* handle the area in the middle */ 904 amdgpu_vm_update_ptes(params, vm, frag_start, frag_end, dst, 905 flags | frag_flags); 906 907 /* handle the 4K area at the end */ 908 if (frag_end != end) { 909 dst += (frag_end - frag_start) * AMDGPU_GPU_PAGE_SIZE; 910 amdgpu_vm_update_ptes(params, vm, frag_end, end, dst, flags); 911 } 912 } 913 914 /** 915 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 916 * 917 * @adev: amdgpu_device pointer 918 * @exclusive: fence we need to sync to 919 * @src: address where to copy page table entries from 920 * @pages_addr: DMA addresses to use for mapping 921 * @vm: requested vm 922 * @start: start of mapped range 923 * @last: last mapped entry 924 * @flags: flags for the entries 925 * @addr: addr to set the area to 926 * @fence: optional resulting fence 927 * 928 * Fill in the page table entries between @start and @last. 929 * Returns 0 for success, -EINVAL for failure. 930 */ 931 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 932 struct fence *exclusive, 933 uint64_t src, 934 dma_addr_t *pages_addr, 935 struct amdgpu_vm *vm, 936 uint64_t start, uint64_t last, 937 uint32_t flags, uint64_t addr, 938 struct fence **fence) 939 { 940 struct amdgpu_ring *ring; 941 void *owner = AMDGPU_FENCE_OWNER_VM; 942 unsigned nptes, ncmds, ndw; 943 struct amdgpu_job *job; 944 struct amdgpu_pte_update_params params; 945 struct fence *f = NULL; 946 int r; 947 948 memset(¶ms, 0, sizeof(params)); 949 params.adev = adev; 950 params.src = src; 951 952 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched); 953 954 memset(¶ms, 0, sizeof(params)); 955 params.adev = adev; 956 params.src = src; 957 958 /* sync to everything on unmapping */ 959 if (!(flags & AMDGPU_PTE_VALID)) 960 owner = AMDGPU_FENCE_OWNER_UNDEFINED; 961 962 nptes = last - start + 1; 963 964 /* 965 * reserve space for one command every (1 << BLOCK_SIZE) 966 * entries or 2k dwords (whatever is smaller) 967 */ 968 ncmds = (nptes >> min(amdgpu_vm_block_size, 11)) + 1; 969 970 /* padding, etc. */ 971 ndw = 64; 972 973 if (src) { 974 /* only copy commands needed */ 975 ndw += ncmds * 7; 976 977 params.func = amdgpu_vm_do_copy_ptes; 978 979 } else if (pages_addr) { 980 /* copy commands needed */ 981 ndw += ncmds * 7; 982 983 /* and also PTEs */ 984 ndw += nptes * 2; 985 986 params.func = amdgpu_vm_do_copy_ptes; 987 988 } else { 989 /* set page commands needed */ 990 ndw += ncmds * 10; 991 992 /* two extra commands for begin/end of fragment */ 993 ndw += 2 * 10; 994 995 params.func = amdgpu_vm_do_set_ptes; 996 } 997 998 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 999 if (r) 1000 return r; 1001 1002 params.ib = &job->ibs[0]; 1003 1004 if (!src && pages_addr) { 1005 uint64_t *pte; 1006 unsigned i; 1007 1008 /* Put the PTEs at the end of the IB. */ 1009 i = ndw - nptes * 2; 1010 pte= (uint64_t *)&(job->ibs->ptr[i]); 1011 params.src = job->ibs->gpu_addr + i * 4; 1012 1013 for (i = 0; i < nptes; ++i) { 1014 pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i * 1015 AMDGPU_GPU_PAGE_SIZE); 1016 pte[i] |= flags; 1017 } 1018 addr = 0; 1019 } 1020 1021 r = amdgpu_sync_fence(adev, &job->sync, exclusive); 1022 if (r) 1023 goto error_free; 1024 1025 r = amdgpu_sync_resv(adev, &job->sync, vm->page_directory->tbo.resv, 1026 owner); 1027 if (r) 1028 goto error_free; 1029 1030 r = reservation_object_reserve_shared(vm->page_directory->tbo.resv); 1031 if (r) 1032 goto error_free; 1033 1034 params.shadow = true; 1035 amdgpu_vm_frag_ptes(¶ms, vm, start, last + 1, addr, flags); 1036 params.shadow = false; 1037 amdgpu_vm_frag_ptes(¶ms, vm, start, last + 1, addr, flags); 1038 1039 amdgpu_ring_pad_ib(ring, params.ib); 1040 WARN_ON(params.ib->length_dw > ndw); 1041 r = amdgpu_job_submit(job, ring, &vm->entity, 1042 AMDGPU_FENCE_OWNER_VM, &f); 1043 if (r) 1044 goto error_free; 1045 1046 amdgpu_bo_fence(vm->page_directory, f, true); 1047 if (fence) { 1048 fence_put(*fence); 1049 *fence = fence_get(f); 1050 } 1051 fence_put(f); 1052 return 0; 1053 1054 error_free: 1055 amdgpu_job_free(job); 1056 return r; 1057 } 1058 1059 /** 1060 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks 1061 * 1062 * @adev: amdgpu_device pointer 1063 * @exclusive: fence we need to sync to 1064 * @gtt_flags: flags as they are used for GTT 1065 * @pages_addr: DMA addresses to use for mapping 1066 * @vm: requested vm 1067 * @mapping: mapped range and flags to use for the update 1068 * @addr: addr to set the area to 1069 * @flags: HW flags for the mapping 1070 * @fence: optional resulting fence 1071 * 1072 * Split the mapping into smaller chunks so that each update fits 1073 * into a SDMA IB. 1074 * Returns 0 for success, -EINVAL for failure. 1075 */ 1076 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev, 1077 struct fence *exclusive, 1078 uint32_t gtt_flags, 1079 dma_addr_t *pages_addr, 1080 struct amdgpu_vm *vm, 1081 struct amdgpu_bo_va_mapping *mapping, 1082 uint32_t flags, uint64_t addr, 1083 struct fence **fence) 1084 { 1085 const uint64_t max_size = 64ULL * 1024ULL * 1024ULL / AMDGPU_GPU_PAGE_SIZE; 1086 1087 uint64_t src = 0, start = mapping->it.start; 1088 int r; 1089 1090 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1091 * but in case of something, we filter the flags in first place 1092 */ 1093 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1094 flags &= ~AMDGPU_PTE_READABLE; 1095 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1096 flags &= ~AMDGPU_PTE_WRITEABLE; 1097 1098 trace_amdgpu_vm_bo_update(mapping); 1099 1100 if (pages_addr) { 1101 if (flags == gtt_flags) 1102 src = adev->gart.table_addr + (addr >> 12) * 8; 1103 addr = 0; 1104 } 1105 addr += mapping->offset; 1106 1107 if (!pages_addr || src) 1108 return amdgpu_vm_bo_update_mapping(adev, exclusive, 1109 src, pages_addr, vm, 1110 start, mapping->it.last, 1111 flags, addr, fence); 1112 1113 while (start != mapping->it.last + 1) { 1114 uint64_t last; 1115 1116 last = min((uint64_t)mapping->it.last, start + max_size - 1); 1117 r = amdgpu_vm_bo_update_mapping(adev, exclusive, 1118 src, pages_addr, vm, 1119 start, last, flags, addr, 1120 fence); 1121 if (r) 1122 return r; 1123 1124 start = last + 1; 1125 addr += max_size * AMDGPU_GPU_PAGE_SIZE; 1126 } 1127 1128 return 0; 1129 } 1130 1131 /** 1132 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1133 * 1134 * @adev: amdgpu_device pointer 1135 * @bo_va: requested BO and VM object 1136 * @clear: if true clear the entries 1137 * 1138 * Fill in the page table entries for @bo_va. 1139 * Returns 0 for success, -EINVAL for failure. 1140 */ 1141 int amdgpu_vm_bo_update(struct amdgpu_device *adev, 1142 struct amdgpu_bo_va *bo_va, 1143 bool clear) 1144 { 1145 struct amdgpu_vm *vm = bo_va->vm; 1146 struct amdgpu_bo_va_mapping *mapping; 1147 dma_addr_t *pages_addr = NULL; 1148 uint32_t gtt_flags, flags; 1149 struct ttm_mem_reg *mem; 1150 struct fence *exclusive; 1151 uint64_t addr; 1152 int r; 1153 1154 if (clear) { 1155 mem = NULL; 1156 addr = 0; 1157 exclusive = NULL; 1158 } else { 1159 struct ttm_dma_tt *ttm; 1160 1161 mem = &bo_va->bo->tbo.mem; 1162 addr = (u64)mem->start << PAGE_SHIFT; 1163 switch (mem->mem_type) { 1164 case TTM_PL_TT: 1165 ttm = container_of(bo_va->bo->tbo.ttm, struct 1166 ttm_dma_tt, ttm); 1167 pages_addr = ttm->dma_address; 1168 break; 1169 1170 case TTM_PL_VRAM: 1171 addr += adev->vm_manager.vram_base_offset; 1172 break; 1173 1174 default: 1175 break; 1176 } 1177 1178 exclusive = reservation_object_get_excl(bo_va->bo->tbo.resv); 1179 } 1180 1181 flags = amdgpu_ttm_tt_pte_flags(adev, bo_va->bo->tbo.ttm, mem); 1182 gtt_flags = (amdgpu_ttm_is_bound(bo_va->bo->tbo.ttm) && 1183 adev == bo_va->bo->adev) ? flags : 0; 1184 1185 spin_lock(&vm->status_lock); 1186 if (!list_empty(&bo_va->vm_status)) 1187 list_splice_init(&bo_va->valids, &bo_va->invalids); 1188 spin_unlock(&vm->status_lock); 1189 1190 list_for_each_entry(mapping, &bo_va->invalids, list) { 1191 r = amdgpu_vm_bo_split_mapping(adev, exclusive, 1192 gtt_flags, pages_addr, vm, 1193 mapping, flags, addr, 1194 &bo_va->last_pt_update); 1195 if (r) 1196 return r; 1197 } 1198 1199 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1200 list_for_each_entry(mapping, &bo_va->valids, list) 1201 trace_amdgpu_vm_bo_mapping(mapping); 1202 1203 list_for_each_entry(mapping, &bo_va->invalids, list) 1204 trace_amdgpu_vm_bo_mapping(mapping); 1205 } 1206 1207 spin_lock(&vm->status_lock); 1208 list_splice_init(&bo_va->invalids, &bo_va->valids); 1209 list_del_init(&bo_va->vm_status); 1210 if (clear) 1211 list_add(&bo_va->vm_status, &vm->cleared); 1212 spin_unlock(&vm->status_lock); 1213 1214 return 0; 1215 } 1216 1217 /** 1218 * amdgpu_vm_clear_freed - clear freed BOs in the PT 1219 * 1220 * @adev: amdgpu_device pointer 1221 * @vm: requested vm 1222 * 1223 * Make sure all freed BOs are cleared in the PT. 1224 * Returns 0 for success. 1225 * 1226 * PTs have to be reserved and mutex must be locked! 1227 */ 1228 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 1229 struct amdgpu_vm *vm) 1230 { 1231 struct amdgpu_bo_va_mapping *mapping; 1232 int r; 1233 1234 while (!list_empty(&vm->freed)) { 1235 mapping = list_first_entry(&vm->freed, 1236 struct amdgpu_bo_va_mapping, list); 1237 list_del(&mapping->list); 1238 1239 r = amdgpu_vm_bo_split_mapping(adev, NULL, 0, NULL, vm, mapping, 1240 0, 0, NULL); 1241 kfree(mapping); 1242 if (r) 1243 return r; 1244 1245 } 1246 return 0; 1247 1248 } 1249 1250 /** 1251 * amdgpu_vm_clear_invalids - clear invalidated BOs in the PT 1252 * 1253 * @adev: amdgpu_device pointer 1254 * @vm: requested vm 1255 * 1256 * Make sure all invalidated BOs are cleared in the PT. 1257 * Returns 0 for success. 1258 * 1259 * PTs have to be reserved and mutex must be locked! 1260 */ 1261 int amdgpu_vm_clear_invalids(struct amdgpu_device *adev, 1262 struct amdgpu_vm *vm, struct amdgpu_sync *sync) 1263 { 1264 struct amdgpu_bo_va *bo_va = NULL; 1265 int r = 0; 1266 1267 spin_lock(&vm->status_lock); 1268 while (!list_empty(&vm->invalidated)) { 1269 bo_va = list_first_entry(&vm->invalidated, 1270 struct amdgpu_bo_va, vm_status); 1271 spin_unlock(&vm->status_lock); 1272 1273 r = amdgpu_vm_bo_update(adev, bo_va, true); 1274 if (r) 1275 return r; 1276 1277 spin_lock(&vm->status_lock); 1278 } 1279 spin_unlock(&vm->status_lock); 1280 1281 if (bo_va) 1282 r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update); 1283 1284 return r; 1285 } 1286 1287 /** 1288 * amdgpu_vm_bo_add - add a bo to a specific vm 1289 * 1290 * @adev: amdgpu_device pointer 1291 * @vm: requested vm 1292 * @bo: amdgpu buffer object 1293 * 1294 * Add @bo into the requested vm. 1295 * Add @bo to the list of bos associated with the vm 1296 * Returns newly added bo_va or NULL for failure 1297 * 1298 * Object has to be reserved! 1299 */ 1300 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 1301 struct amdgpu_vm *vm, 1302 struct amdgpu_bo *bo) 1303 { 1304 struct amdgpu_bo_va *bo_va; 1305 1306 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 1307 if (bo_va == NULL) { 1308 return NULL; 1309 } 1310 bo_va->vm = vm; 1311 bo_va->bo = bo; 1312 bo_va->ref_count = 1; 1313 INIT_LIST_HEAD(&bo_va->bo_list); 1314 INIT_LIST_HEAD(&bo_va->valids); 1315 INIT_LIST_HEAD(&bo_va->invalids); 1316 INIT_LIST_HEAD(&bo_va->vm_status); 1317 1318 list_add_tail(&bo_va->bo_list, &bo->va); 1319 1320 return bo_va; 1321 } 1322 1323 /** 1324 * amdgpu_vm_bo_map - map bo inside a vm 1325 * 1326 * @adev: amdgpu_device pointer 1327 * @bo_va: bo_va to store the address 1328 * @saddr: where to map the BO 1329 * @offset: requested offset in the BO 1330 * @flags: attributes of pages (read/write/valid/etc.) 1331 * 1332 * Add a mapping of the BO at the specefied addr into the VM. 1333 * Returns 0 for success, error for failure. 1334 * 1335 * Object has to be reserved and unreserved outside! 1336 */ 1337 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 1338 struct amdgpu_bo_va *bo_va, 1339 uint64_t saddr, uint64_t offset, 1340 uint64_t size, uint32_t flags) 1341 { 1342 struct amdgpu_bo_va_mapping *mapping; 1343 struct amdgpu_vm *vm = bo_va->vm; 1344 struct interval_tree_node *it; 1345 unsigned last_pfn, pt_idx; 1346 uint64_t eaddr; 1347 int r; 1348 1349 /* validate the parameters */ 1350 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 1351 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 1352 return -EINVAL; 1353 1354 /* make sure object fit at this offset */ 1355 eaddr = saddr + size - 1; 1356 if ((saddr >= eaddr) || (offset + size > amdgpu_bo_size(bo_va->bo))) 1357 return -EINVAL; 1358 1359 last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE; 1360 if (last_pfn >= adev->vm_manager.max_pfn) { 1361 dev_err(adev->dev, "va above limit (0x%08X >= 0x%08X)\n", 1362 last_pfn, adev->vm_manager.max_pfn); 1363 return -EINVAL; 1364 } 1365 1366 saddr /= AMDGPU_GPU_PAGE_SIZE; 1367 eaddr /= AMDGPU_GPU_PAGE_SIZE; 1368 1369 it = interval_tree_iter_first(&vm->va, saddr, eaddr); 1370 if (it) { 1371 struct amdgpu_bo_va_mapping *tmp; 1372 tmp = container_of(it, struct amdgpu_bo_va_mapping, it); 1373 /* bo and tmp overlap, invalid addr */ 1374 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 1375 "0x%010lx-0x%010lx\n", bo_va->bo, saddr, eaddr, 1376 tmp->it.start, tmp->it.last + 1); 1377 r = -EINVAL; 1378 goto error; 1379 } 1380 1381 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1382 if (!mapping) { 1383 r = -ENOMEM; 1384 goto error; 1385 } 1386 1387 INIT_LIST_HEAD(&mapping->list); 1388 mapping->it.start = saddr; 1389 mapping->it.last = eaddr; 1390 mapping->offset = offset; 1391 mapping->flags = flags; 1392 1393 list_add(&mapping->list, &bo_va->invalids); 1394 interval_tree_insert(&mapping->it, &vm->va); 1395 1396 /* Make sure the page tables are allocated */ 1397 saddr >>= amdgpu_vm_block_size; 1398 eaddr >>= amdgpu_vm_block_size; 1399 1400 BUG_ON(eaddr >= amdgpu_vm_num_pdes(adev)); 1401 1402 if (eaddr > vm->max_pde_used) 1403 vm->max_pde_used = eaddr; 1404 1405 /* walk over the address space and allocate the page tables */ 1406 for (pt_idx = saddr; pt_idx <= eaddr; ++pt_idx) { 1407 struct reservation_object *resv = vm->page_directory->tbo.resv; 1408 struct amdgpu_bo_list_entry *entry; 1409 struct amdgpu_bo *pt; 1410 1411 entry = &vm->page_tables[pt_idx].entry; 1412 if (entry->robj) 1413 continue; 1414 1415 r = amdgpu_bo_create(adev, AMDGPU_VM_PTE_COUNT * 8, 1416 AMDGPU_GPU_PAGE_SIZE, true, 1417 AMDGPU_GEM_DOMAIN_VRAM, 1418 AMDGPU_GEM_CREATE_NO_CPU_ACCESS | 1419 AMDGPU_GEM_CREATE_SHADOW, 1420 NULL, resv, &pt); 1421 if (r) 1422 goto error_free; 1423 1424 /* Keep a reference to the page table to avoid freeing 1425 * them up in the wrong order. 1426 */ 1427 pt->parent = amdgpu_bo_ref(vm->page_directory); 1428 1429 r = amdgpu_vm_clear_bo(adev, vm, pt); 1430 if (r) { 1431 amdgpu_bo_unref(&pt->shadow); 1432 amdgpu_bo_unref(&pt); 1433 goto error_free; 1434 } 1435 1436 if (pt->shadow) { 1437 r = amdgpu_vm_clear_bo(adev, vm, pt->shadow); 1438 if (r) { 1439 amdgpu_bo_unref(&pt->shadow); 1440 amdgpu_bo_unref(&pt); 1441 goto error_free; 1442 } 1443 } 1444 1445 entry->robj = pt; 1446 entry->priority = 0; 1447 entry->tv.bo = &entry->robj->tbo; 1448 entry->tv.shared = true; 1449 entry->user_pages = NULL; 1450 vm->page_tables[pt_idx].addr = 0; 1451 } 1452 1453 return 0; 1454 1455 error_free: 1456 list_del(&mapping->list); 1457 interval_tree_remove(&mapping->it, &vm->va); 1458 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 1459 kfree(mapping); 1460 1461 error: 1462 return r; 1463 } 1464 1465 /** 1466 * amdgpu_vm_bo_unmap - remove bo mapping from vm 1467 * 1468 * @adev: amdgpu_device pointer 1469 * @bo_va: bo_va to remove the address from 1470 * @saddr: where to the BO is mapped 1471 * 1472 * Remove a mapping of the BO at the specefied addr from the VM. 1473 * Returns 0 for success, error for failure. 1474 * 1475 * Object has to be reserved and unreserved outside! 1476 */ 1477 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 1478 struct amdgpu_bo_va *bo_va, 1479 uint64_t saddr) 1480 { 1481 struct amdgpu_bo_va_mapping *mapping; 1482 struct amdgpu_vm *vm = bo_va->vm; 1483 bool valid = true; 1484 1485 saddr /= AMDGPU_GPU_PAGE_SIZE; 1486 1487 list_for_each_entry(mapping, &bo_va->valids, list) { 1488 if (mapping->it.start == saddr) 1489 break; 1490 } 1491 1492 if (&mapping->list == &bo_va->valids) { 1493 valid = false; 1494 1495 list_for_each_entry(mapping, &bo_va->invalids, list) { 1496 if (mapping->it.start == saddr) 1497 break; 1498 } 1499 1500 if (&mapping->list == &bo_va->invalids) 1501 return -ENOENT; 1502 } 1503 1504 list_del(&mapping->list); 1505 interval_tree_remove(&mapping->it, &vm->va); 1506 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 1507 1508 if (valid) 1509 list_add(&mapping->list, &vm->freed); 1510 else 1511 kfree(mapping); 1512 1513 return 0; 1514 } 1515 1516 /** 1517 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 1518 * 1519 * @adev: amdgpu_device pointer 1520 * @bo_va: requested bo_va 1521 * 1522 * Remove @bo_va->bo from the requested vm. 1523 * 1524 * Object have to be reserved! 1525 */ 1526 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 1527 struct amdgpu_bo_va *bo_va) 1528 { 1529 struct amdgpu_bo_va_mapping *mapping, *next; 1530 struct amdgpu_vm *vm = bo_va->vm; 1531 1532 list_del(&bo_va->bo_list); 1533 1534 spin_lock(&vm->status_lock); 1535 list_del(&bo_va->vm_status); 1536 spin_unlock(&vm->status_lock); 1537 1538 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 1539 list_del(&mapping->list); 1540 interval_tree_remove(&mapping->it, &vm->va); 1541 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 1542 list_add(&mapping->list, &vm->freed); 1543 } 1544 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 1545 list_del(&mapping->list); 1546 interval_tree_remove(&mapping->it, &vm->va); 1547 kfree(mapping); 1548 } 1549 1550 fence_put(bo_va->last_pt_update); 1551 kfree(bo_va); 1552 } 1553 1554 /** 1555 * amdgpu_vm_bo_invalidate - mark the bo as invalid 1556 * 1557 * @adev: amdgpu_device pointer 1558 * @vm: requested vm 1559 * @bo: amdgpu buffer object 1560 * 1561 * Mark @bo as invalid. 1562 */ 1563 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 1564 struct amdgpu_bo *bo) 1565 { 1566 struct amdgpu_bo_va *bo_va; 1567 1568 list_for_each_entry(bo_va, &bo->va, bo_list) { 1569 spin_lock(&bo_va->vm->status_lock); 1570 if (list_empty(&bo_va->vm_status)) 1571 list_add(&bo_va->vm_status, &bo_va->vm->invalidated); 1572 spin_unlock(&bo_va->vm->status_lock); 1573 } 1574 } 1575 1576 /** 1577 * amdgpu_vm_init - initialize a vm instance 1578 * 1579 * @adev: amdgpu_device pointer 1580 * @vm: requested vm 1581 * 1582 * Init @vm fields. 1583 */ 1584 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1585 { 1586 const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE, 1587 AMDGPU_VM_PTE_COUNT * 8); 1588 unsigned pd_size, pd_entries; 1589 unsigned ring_instance; 1590 struct amdgpu_ring *ring; 1591 struct amd_sched_rq *rq; 1592 int i, r; 1593 1594 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 1595 vm->ids[i] = NULL; 1596 vm->va = RB_ROOT; 1597 vm->client_id = atomic64_inc_return(&adev->vm_manager.client_counter); 1598 spin_lock_init(&vm->status_lock); 1599 INIT_LIST_HEAD(&vm->invalidated); 1600 INIT_LIST_HEAD(&vm->cleared); 1601 INIT_LIST_HEAD(&vm->freed); 1602 1603 pd_size = amdgpu_vm_directory_size(adev); 1604 pd_entries = amdgpu_vm_num_pdes(adev); 1605 1606 /* allocate page table array */ 1607 vm->page_tables = drm_calloc_large(pd_entries, sizeof(struct amdgpu_vm_pt)); 1608 if (vm->page_tables == NULL) { 1609 DRM_ERROR("Cannot allocate memory for page table array\n"); 1610 return -ENOMEM; 1611 } 1612 1613 /* create scheduler entity for page table updates */ 1614 1615 ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring); 1616 ring_instance %= adev->vm_manager.vm_pte_num_rings; 1617 ring = adev->vm_manager.vm_pte_rings[ring_instance]; 1618 rq = &ring->sched.sched_rq[AMD_SCHED_PRIORITY_KERNEL]; 1619 r = amd_sched_entity_init(&ring->sched, &vm->entity, 1620 rq, amdgpu_sched_jobs); 1621 if (r) 1622 goto err; 1623 1624 vm->page_directory_fence = NULL; 1625 1626 r = amdgpu_bo_create(adev, pd_size, align, true, 1627 AMDGPU_GEM_DOMAIN_VRAM, 1628 AMDGPU_GEM_CREATE_NO_CPU_ACCESS | 1629 AMDGPU_GEM_CREATE_SHADOW, 1630 NULL, NULL, &vm->page_directory); 1631 if (r) 1632 goto error_free_sched_entity; 1633 1634 r = amdgpu_bo_reserve(vm->page_directory, false); 1635 if (r) 1636 goto error_free_page_directory; 1637 1638 r = amdgpu_vm_clear_bo(adev, vm, vm->page_directory); 1639 if (r) 1640 goto error_unreserve; 1641 1642 if (vm->page_directory->shadow) { 1643 r = amdgpu_vm_clear_bo(adev, vm, vm->page_directory->shadow); 1644 if (r) 1645 goto error_unreserve; 1646 } 1647 1648 vm->last_eviction_counter = atomic64_read(&adev->num_evictions); 1649 amdgpu_bo_unreserve(vm->page_directory); 1650 1651 return 0; 1652 1653 error_unreserve: 1654 amdgpu_bo_unreserve(vm->page_directory); 1655 1656 error_free_page_directory: 1657 amdgpu_bo_unref(&vm->page_directory->shadow); 1658 amdgpu_bo_unref(&vm->page_directory); 1659 vm->page_directory = NULL; 1660 1661 error_free_sched_entity: 1662 amd_sched_entity_fini(&ring->sched, &vm->entity); 1663 1664 err: 1665 drm_free_large(vm->page_tables); 1666 1667 return r; 1668 } 1669 1670 /** 1671 * amdgpu_vm_fini - tear down a vm instance 1672 * 1673 * @adev: amdgpu_device pointer 1674 * @vm: requested vm 1675 * 1676 * Tear down @vm. 1677 * Unbind the VM and remove all bos from the vm bo list 1678 */ 1679 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1680 { 1681 struct amdgpu_bo_va_mapping *mapping, *tmp; 1682 int i; 1683 1684 amd_sched_entity_fini(vm->entity.sched, &vm->entity); 1685 1686 if (!RB_EMPTY_ROOT(&vm->va)) { 1687 dev_err(adev->dev, "still active bo inside vm\n"); 1688 } 1689 rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, it.rb) { 1690 list_del(&mapping->list); 1691 interval_tree_remove(&mapping->it, &vm->va); 1692 kfree(mapping); 1693 } 1694 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 1695 list_del(&mapping->list); 1696 kfree(mapping); 1697 } 1698 1699 for (i = 0; i < amdgpu_vm_num_pdes(adev); i++) { 1700 struct amdgpu_bo *pt = vm->page_tables[i].entry.robj; 1701 1702 if (!pt) 1703 continue; 1704 1705 amdgpu_bo_unref(&pt->shadow); 1706 amdgpu_bo_unref(&pt); 1707 } 1708 drm_free_large(vm->page_tables); 1709 1710 amdgpu_bo_unref(&vm->page_directory->shadow); 1711 amdgpu_bo_unref(&vm->page_directory); 1712 fence_put(vm->page_directory_fence); 1713 } 1714 1715 /** 1716 * amdgpu_vm_manager_init - init the VM manager 1717 * 1718 * @adev: amdgpu_device pointer 1719 * 1720 * Initialize the VM manager structures 1721 */ 1722 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 1723 { 1724 unsigned i; 1725 1726 INIT_LIST_HEAD(&adev->vm_manager.ids_lru); 1727 1728 /* skip over VMID 0, since it is the system VM */ 1729 for (i = 1; i < adev->vm_manager.num_ids; ++i) { 1730 amdgpu_vm_reset_id(adev, i); 1731 amdgpu_sync_create(&adev->vm_manager.ids[i].active); 1732 list_add_tail(&adev->vm_manager.ids[i].list, 1733 &adev->vm_manager.ids_lru); 1734 } 1735 1736 adev->vm_manager.fence_context = fence_context_alloc(AMDGPU_MAX_RINGS); 1737 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 1738 adev->vm_manager.seqno[i] = 0; 1739 1740 atomic_set(&adev->vm_manager.vm_pte_next_ring, 0); 1741 atomic64_set(&adev->vm_manager.client_counter, 0); 1742 } 1743 1744 /** 1745 * amdgpu_vm_manager_fini - cleanup VM manager 1746 * 1747 * @adev: amdgpu_device pointer 1748 * 1749 * Cleanup the VM manager and free resources. 1750 */ 1751 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 1752 { 1753 unsigned i; 1754 1755 for (i = 0; i < AMDGPU_NUM_VM; ++i) { 1756 struct amdgpu_vm_id *id = &adev->vm_manager.ids[i]; 1757 1758 fence_put(adev->vm_manager.ids[i].first); 1759 amdgpu_sync_free(&adev->vm_manager.ids[i].active); 1760 fence_put(id->flushed_updates); 1761 } 1762 } 1763