1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 29 #include <linux/dma-fence-array.h> 30 #include <linux/interval_tree_generic.h> 31 #include <linux/idr.h> 32 #include <linux/dma-buf.h> 33 34 #include <drm/amdgpu_drm.h> 35 #include <drm/drm_drv.h> 36 #include <drm/ttm/ttm_tt.h> 37 #include <drm/drm_exec.h> 38 #include "amdgpu.h" 39 #include "amdgpu_trace.h" 40 #include "amdgpu_amdkfd.h" 41 #include "amdgpu_gmc.h" 42 #include "amdgpu_xgmi.h" 43 #include "amdgpu_dma_buf.h" 44 #include "amdgpu_res_cursor.h" 45 #include "kfd_svm.h" 46 47 /** 48 * DOC: GPUVM 49 * 50 * GPUVM is the MMU functionality provided on the GPU. 51 * GPUVM is similar to the legacy GART on older asics, however 52 * rather than there being a single global GART table 53 * for the entire GPU, there can be multiple GPUVM page tables active 54 * at any given time. The GPUVM page tables can contain a mix 55 * VRAM pages and system pages (both memory and MMIO) and system pages 56 * can be mapped as snooped (cached system pages) or unsnooped 57 * (uncached system pages). 58 * 59 * Each active GPUVM has an ID associated with it and there is a page table 60 * linked with each VMID. When executing a command buffer, 61 * the kernel tells the engine what VMID to use for that command 62 * buffer. VMIDs are allocated dynamically as commands are submitted. 63 * The userspace drivers maintain their own address space and the kernel 64 * sets up their pages tables accordingly when they submit their 65 * command buffers and a VMID is assigned. 66 * The hardware supports up to 16 active GPUVMs at any given time. 67 * 68 * Each GPUVM is represented by a 1-2 or 1-5 level page table, depending 69 * on the ASIC family. GPUVM supports RWX attributes on each page as well 70 * as other features such as encryption and caching attributes. 71 * 72 * VMID 0 is special. It is the GPUVM used for the kernel driver. In 73 * addition to an aperture managed by a page table, VMID 0 also has 74 * several other apertures. There is an aperture for direct access to VRAM 75 * and there is a legacy AGP aperture which just forwards accesses directly 76 * to the matching system physical addresses (or IOVAs when an IOMMU is 77 * present). These apertures provide direct access to these memories without 78 * incurring the overhead of a page table. VMID 0 is used by the kernel 79 * driver for tasks like memory management. 80 * 81 * GPU clients (i.e., engines on the GPU) use GPUVM VMIDs to access memory. 82 * For user applications, each application can have their own unique GPUVM 83 * address space. The application manages the address space and the kernel 84 * driver manages the GPUVM page tables for each process. If an GPU client 85 * accesses an invalid page, it will generate a GPU page fault, similar to 86 * accessing an invalid page on a CPU. 87 */ 88 89 #define START(node) ((node)->start) 90 #define LAST(node) ((node)->last) 91 92 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 93 START, LAST, static, amdgpu_vm_it) 94 95 #undef START 96 #undef LAST 97 98 /** 99 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 100 */ 101 struct amdgpu_prt_cb { 102 103 /** 104 * @adev: amdgpu device 105 */ 106 struct amdgpu_device *adev; 107 108 /** 109 * @cb: callback 110 */ 111 struct dma_fence_cb cb; 112 }; 113 114 /** 115 * struct amdgpu_vm_tlb_seq_struct - Helper to increment the TLB flush sequence 116 */ 117 struct amdgpu_vm_tlb_seq_struct { 118 /** 119 * @vm: pointer to the amdgpu_vm structure to set the fence sequence on 120 */ 121 struct amdgpu_vm *vm; 122 123 /** 124 * @cb: callback 125 */ 126 struct dma_fence_cb cb; 127 }; 128 129 /** 130 * amdgpu_vm_set_pasid - manage pasid and vm ptr mapping 131 * 132 * @adev: amdgpu_device pointer 133 * @vm: amdgpu_vm pointer 134 * @pasid: the pasid the VM is using on this GPU 135 * 136 * Set the pasid this VM is using on this GPU, can also be used to remove the 137 * pasid by passing in zero. 138 * 139 */ 140 int amdgpu_vm_set_pasid(struct amdgpu_device *adev, struct amdgpu_vm *vm, 141 u32 pasid) 142 { 143 int r; 144 145 if (vm->pasid == pasid) 146 return 0; 147 148 if (vm->pasid) { 149 r = xa_err(xa_erase_irq(&adev->vm_manager.pasids, vm->pasid)); 150 if (r < 0) 151 return r; 152 153 vm->pasid = 0; 154 } 155 156 if (pasid) { 157 r = xa_err(xa_store_irq(&adev->vm_manager.pasids, pasid, vm, 158 GFP_KERNEL)); 159 if (r < 0) 160 return r; 161 162 vm->pasid = pasid; 163 } 164 165 166 return 0; 167 } 168 169 /** 170 * amdgpu_vm_bo_evicted - vm_bo is evicted 171 * 172 * @vm_bo: vm_bo which is evicted 173 * 174 * State for PDs/PTs and per VM BOs which are not at the location they should 175 * be. 176 */ 177 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 178 { 179 struct amdgpu_vm *vm = vm_bo->vm; 180 struct amdgpu_bo *bo = vm_bo->bo; 181 182 vm_bo->moved = true; 183 spin_lock(&vm_bo->vm->status_lock); 184 if (bo->tbo.type == ttm_bo_type_kernel) 185 list_move(&vm_bo->vm_status, &vm->evicted); 186 else 187 list_move_tail(&vm_bo->vm_status, &vm->evicted); 188 spin_unlock(&vm_bo->vm->status_lock); 189 } 190 /** 191 * amdgpu_vm_bo_moved - vm_bo is moved 192 * 193 * @vm_bo: vm_bo which is moved 194 * 195 * State for per VM BOs which are moved, but that change is not yet reflected 196 * in the page tables. 197 */ 198 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 199 { 200 spin_lock(&vm_bo->vm->status_lock); 201 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 202 spin_unlock(&vm_bo->vm->status_lock); 203 } 204 205 /** 206 * amdgpu_vm_bo_idle - vm_bo is idle 207 * 208 * @vm_bo: vm_bo which is now idle 209 * 210 * State for PDs/PTs and per VM BOs which have gone through the state machine 211 * and are now idle. 212 */ 213 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 214 { 215 spin_lock(&vm_bo->vm->status_lock); 216 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 217 spin_unlock(&vm_bo->vm->status_lock); 218 vm_bo->moved = false; 219 } 220 221 /** 222 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 223 * 224 * @vm_bo: vm_bo which is now invalidated 225 * 226 * State for normal BOs which are invalidated and that change not yet reflected 227 * in the PTs. 228 */ 229 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 230 { 231 spin_lock(&vm_bo->vm->status_lock); 232 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 233 spin_unlock(&vm_bo->vm->status_lock); 234 } 235 236 /** 237 * amdgpu_vm_bo_evicted_user - vm_bo is evicted 238 * 239 * @vm_bo: vm_bo which is evicted 240 * 241 * State for BOs used by user mode queues which are not at the location they 242 * should be. 243 */ 244 static void amdgpu_vm_bo_evicted_user(struct amdgpu_vm_bo_base *vm_bo) 245 { 246 vm_bo->moved = true; 247 spin_lock(&vm_bo->vm->status_lock); 248 list_move(&vm_bo->vm_status, &vm_bo->vm->evicted_user); 249 spin_unlock(&vm_bo->vm->status_lock); 250 } 251 252 /** 253 * amdgpu_vm_bo_relocated - vm_bo is reloacted 254 * 255 * @vm_bo: vm_bo which is relocated 256 * 257 * State for PDs/PTs which needs to update their parent PD. 258 * For the root PD, just move to idle state. 259 */ 260 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 261 { 262 if (vm_bo->bo->parent) { 263 spin_lock(&vm_bo->vm->status_lock); 264 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 265 spin_unlock(&vm_bo->vm->status_lock); 266 } else { 267 amdgpu_vm_bo_idle(vm_bo); 268 } 269 } 270 271 /** 272 * amdgpu_vm_bo_done - vm_bo is done 273 * 274 * @vm_bo: vm_bo which is now done 275 * 276 * State for normal BOs which are invalidated and that change has been updated 277 * in the PTs. 278 */ 279 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 280 { 281 spin_lock(&vm_bo->vm->status_lock); 282 list_move(&vm_bo->vm_status, &vm_bo->vm->done); 283 spin_unlock(&vm_bo->vm->status_lock); 284 } 285 286 /** 287 * amdgpu_vm_bo_reset_state_machine - reset the vm_bo state machine 288 * @vm: the VM which state machine to reset 289 * 290 * Move all vm_bo object in the VM into a state where they will be updated 291 * again during validation. 292 */ 293 static void amdgpu_vm_bo_reset_state_machine(struct amdgpu_vm *vm) 294 { 295 struct amdgpu_vm_bo_base *vm_bo, *tmp; 296 297 spin_lock(&vm->status_lock); 298 list_splice_init(&vm->done, &vm->invalidated); 299 list_for_each_entry(vm_bo, &vm->invalidated, vm_status) 300 vm_bo->moved = true; 301 list_for_each_entry_safe(vm_bo, tmp, &vm->idle, vm_status) { 302 struct amdgpu_bo *bo = vm_bo->bo; 303 304 vm_bo->moved = true; 305 if (!bo || bo->tbo.type != ttm_bo_type_kernel) 306 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 307 else if (bo->parent) 308 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 309 } 310 spin_unlock(&vm->status_lock); 311 } 312 313 /** 314 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 315 * 316 * @base: base structure for tracking BO usage in a VM 317 * @vm: vm to which bo is to be added 318 * @bo: amdgpu buffer object 319 * 320 * Initialize a bo_va_base structure and add it to the appropriate lists 321 * 322 */ 323 void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 324 struct amdgpu_vm *vm, struct amdgpu_bo *bo) 325 { 326 base->vm = vm; 327 base->bo = bo; 328 base->next = NULL; 329 INIT_LIST_HEAD(&base->vm_status); 330 331 if (!bo) 332 return; 333 base->next = bo->vm_bo; 334 bo->vm_bo = base; 335 336 if (!amdgpu_vm_is_bo_always_valid(vm, bo)) 337 return; 338 339 dma_resv_assert_held(vm->root.bo->tbo.base.resv); 340 341 ttm_bo_set_bulk_move(&bo->tbo, &vm->lru_bulk_move); 342 if (bo->tbo.type == ttm_bo_type_kernel && bo->parent) 343 amdgpu_vm_bo_relocated(base); 344 else 345 amdgpu_vm_bo_idle(base); 346 347 if (bo->preferred_domains & 348 amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type)) 349 return; 350 351 /* 352 * we checked all the prerequisites, but it looks like this per vm bo 353 * is currently evicted. add the bo to the evicted list to make sure it 354 * is validated on next vm use to avoid fault. 355 * */ 356 amdgpu_vm_bo_evicted(base); 357 } 358 359 /** 360 * amdgpu_vm_lock_pd - lock PD in drm_exec 361 * 362 * @vm: vm providing the BOs 363 * @exec: drm execution context 364 * @num_fences: number of extra fences to reserve 365 * 366 * Lock the VM root PD in the DRM execution context. 367 */ 368 int amdgpu_vm_lock_pd(struct amdgpu_vm *vm, struct drm_exec *exec, 369 unsigned int num_fences) 370 { 371 /* We need at least two fences for the VM PD/PT updates */ 372 return drm_exec_prepare_obj(exec, &vm->root.bo->tbo.base, 373 2 + num_fences); 374 } 375 376 /** 377 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 378 * 379 * @adev: amdgpu device pointer 380 * @vm: vm providing the BOs 381 * 382 * Move all BOs to the end of LRU and remember their positions to put them 383 * together. 384 */ 385 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 386 struct amdgpu_vm *vm) 387 { 388 spin_lock(&adev->mman.bdev.lru_lock); 389 ttm_lru_bulk_move_tail(&vm->lru_bulk_move); 390 spin_unlock(&adev->mman.bdev.lru_lock); 391 } 392 393 /* Create scheduler entities for page table updates */ 394 static int amdgpu_vm_init_entities(struct amdgpu_device *adev, 395 struct amdgpu_vm *vm) 396 { 397 int r; 398 399 r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL, 400 adev->vm_manager.vm_pte_scheds, 401 adev->vm_manager.vm_pte_num_scheds, NULL); 402 if (r) 403 goto error; 404 405 return drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL, 406 adev->vm_manager.vm_pte_scheds, 407 adev->vm_manager.vm_pte_num_scheds, NULL); 408 409 error: 410 drm_sched_entity_destroy(&vm->immediate); 411 return r; 412 } 413 414 /* Destroy the entities for page table updates again */ 415 static void amdgpu_vm_fini_entities(struct amdgpu_vm *vm) 416 { 417 drm_sched_entity_destroy(&vm->immediate); 418 drm_sched_entity_destroy(&vm->delayed); 419 } 420 421 /** 422 * amdgpu_vm_generation - return the page table re-generation counter 423 * @adev: the amdgpu_device 424 * @vm: optional VM to check, might be NULL 425 * 426 * Returns a page table re-generation token to allow checking if submissions 427 * are still valid to use this VM. The VM parameter might be NULL in which case 428 * just the VRAM lost counter will be used. 429 */ 430 uint64_t amdgpu_vm_generation(struct amdgpu_device *adev, struct amdgpu_vm *vm) 431 { 432 uint64_t result = (u64)atomic_read(&adev->vram_lost_counter) << 32; 433 434 if (!vm) 435 return result; 436 437 result += lower_32_bits(vm->generation); 438 /* Add one if the page tables will be re-generated on next CS */ 439 if (drm_sched_entity_error(&vm->delayed)) 440 ++result; 441 442 return result; 443 } 444 445 /** 446 * amdgpu_vm_validate - validate evicted BOs tracked in the VM 447 * 448 * @adev: amdgpu device pointer 449 * @vm: vm providing the BOs 450 * @ticket: optional reservation ticket used to reserve the VM 451 * @validate: callback to do the validation 452 * @param: parameter for the validation callback 453 * 454 * Validate the page table BOs and per-VM BOs on command submission if 455 * necessary. If a ticket is given, also try to validate evicted user queue 456 * BOs. They must already be reserved with the given ticket. 457 * 458 * Returns: 459 * Validation result. 460 */ 461 int amdgpu_vm_validate(struct amdgpu_device *adev, struct amdgpu_vm *vm, 462 struct ww_acquire_ctx *ticket, 463 int (*validate)(void *p, struct amdgpu_bo *bo), 464 void *param) 465 { 466 uint64_t new_vm_generation = amdgpu_vm_generation(adev, vm); 467 struct amdgpu_vm_bo_base *bo_base; 468 struct amdgpu_bo *bo; 469 int r; 470 471 if (vm->generation != new_vm_generation) { 472 vm->generation = new_vm_generation; 473 amdgpu_vm_bo_reset_state_machine(vm); 474 amdgpu_vm_fini_entities(vm); 475 r = amdgpu_vm_init_entities(adev, vm); 476 if (r) 477 return r; 478 } 479 480 spin_lock(&vm->status_lock); 481 while (!list_empty(&vm->evicted)) { 482 bo_base = list_first_entry(&vm->evicted, 483 struct amdgpu_vm_bo_base, 484 vm_status); 485 spin_unlock(&vm->status_lock); 486 487 bo = bo_base->bo; 488 489 r = validate(param, bo); 490 if (r) 491 return r; 492 493 if (bo->tbo.type != ttm_bo_type_kernel) { 494 amdgpu_vm_bo_moved(bo_base); 495 } else { 496 vm->update_funcs->map_table(to_amdgpu_bo_vm(bo)); 497 amdgpu_vm_bo_relocated(bo_base); 498 } 499 spin_lock(&vm->status_lock); 500 } 501 while (ticket && !list_empty(&vm->evicted_user)) { 502 bo_base = list_first_entry(&vm->evicted_user, 503 struct amdgpu_vm_bo_base, 504 vm_status); 505 spin_unlock(&vm->status_lock); 506 507 bo = bo_base->bo; 508 509 if (dma_resv_locking_ctx(bo->tbo.base.resv) != ticket) { 510 struct amdgpu_task_info *ti = amdgpu_vm_get_task_info_vm(vm); 511 512 pr_warn_ratelimited("Evicted user BO is not reserved\n"); 513 if (ti) { 514 pr_warn_ratelimited("pid %d\n", ti->pid); 515 amdgpu_vm_put_task_info(ti); 516 } 517 518 return -EINVAL; 519 } 520 521 r = validate(param, bo); 522 if (r) 523 return r; 524 525 amdgpu_vm_bo_invalidated(bo_base); 526 527 spin_lock(&vm->status_lock); 528 } 529 spin_unlock(&vm->status_lock); 530 531 amdgpu_vm_eviction_lock(vm); 532 vm->evicting = false; 533 amdgpu_vm_eviction_unlock(vm); 534 535 return 0; 536 } 537 538 /** 539 * amdgpu_vm_ready - check VM is ready for updates 540 * 541 * @vm: VM to check 542 * 543 * Check if all VM PDs/PTs are ready for updates 544 * 545 * Returns: 546 * True if VM is not evicting. 547 */ 548 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 549 { 550 bool empty; 551 bool ret; 552 553 amdgpu_vm_eviction_lock(vm); 554 ret = !vm->evicting; 555 amdgpu_vm_eviction_unlock(vm); 556 557 spin_lock(&vm->status_lock); 558 empty = list_empty(&vm->evicted); 559 spin_unlock(&vm->status_lock); 560 561 return ret && empty; 562 } 563 564 /** 565 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 566 * 567 * @adev: amdgpu_device pointer 568 */ 569 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 570 { 571 const struct amdgpu_ip_block *ip_block; 572 bool has_compute_vm_bug; 573 struct amdgpu_ring *ring; 574 int i; 575 576 has_compute_vm_bug = false; 577 578 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 579 if (ip_block) { 580 /* Compute has a VM bug for GFX version < 7. 581 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 582 if (ip_block->version->major <= 7) 583 has_compute_vm_bug = true; 584 else if (ip_block->version->major == 8) 585 if (adev->gfx.mec_fw_version < 673) 586 has_compute_vm_bug = true; 587 } 588 589 for (i = 0; i < adev->num_rings; i++) { 590 ring = adev->rings[i]; 591 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 592 /* only compute rings */ 593 ring->has_compute_vm_bug = has_compute_vm_bug; 594 else 595 ring->has_compute_vm_bug = false; 596 } 597 } 598 599 /** 600 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 601 * 602 * @ring: ring on which the job will be submitted 603 * @job: job to submit 604 * 605 * Returns: 606 * True if sync is needed. 607 */ 608 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 609 struct amdgpu_job *job) 610 { 611 struct amdgpu_device *adev = ring->adev; 612 unsigned vmhub = ring->vm_hub; 613 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 614 615 if (job->vmid == 0) 616 return false; 617 618 if (job->vm_needs_flush || ring->has_compute_vm_bug) 619 return true; 620 621 if (ring->funcs->emit_gds_switch && job->gds_switch_needed) 622 return true; 623 624 if (amdgpu_vmid_had_gpu_reset(adev, &id_mgr->ids[job->vmid])) 625 return true; 626 627 return false; 628 } 629 630 /** 631 * amdgpu_vm_flush - hardware flush the vm 632 * 633 * @ring: ring to use for flush 634 * @job: related job 635 * @need_pipe_sync: is pipe sync needed 636 * 637 * Emit a VM flush when it is necessary. 638 * 639 * Returns: 640 * 0 on success, errno otherwise. 641 */ 642 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, 643 bool need_pipe_sync) 644 { 645 struct amdgpu_device *adev = ring->adev; 646 unsigned vmhub = ring->vm_hub; 647 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 648 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 649 bool spm_update_needed = job->spm_update_needed; 650 bool gds_switch_needed = ring->funcs->emit_gds_switch && 651 job->gds_switch_needed; 652 bool vm_flush_needed = job->vm_needs_flush; 653 struct dma_fence *fence = NULL; 654 bool pasid_mapping_needed = false; 655 unsigned int patch; 656 int r; 657 658 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 659 gds_switch_needed = true; 660 vm_flush_needed = true; 661 pasid_mapping_needed = true; 662 spm_update_needed = true; 663 } 664 665 mutex_lock(&id_mgr->lock); 666 if (id->pasid != job->pasid || !id->pasid_mapping || 667 !dma_fence_is_signaled(id->pasid_mapping)) 668 pasid_mapping_needed = true; 669 mutex_unlock(&id_mgr->lock); 670 671 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 672 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 673 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 674 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 675 ring->funcs->emit_wreg; 676 677 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync && 678 !(job->enforce_isolation && !job->vmid)) 679 return 0; 680 681 amdgpu_ring_ib_begin(ring); 682 if (ring->funcs->init_cond_exec) 683 patch = amdgpu_ring_init_cond_exec(ring, 684 ring->cond_exe_gpu_addr); 685 686 if (need_pipe_sync) 687 amdgpu_ring_emit_pipeline_sync(ring); 688 689 if (adev->gfx.enable_cleaner_shader && 690 ring->funcs->emit_cleaner_shader && 691 job->enforce_isolation) 692 ring->funcs->emit_cleaner_shader(ring); 693 694 if (vm_flush_needed) { 695 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 696 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 697 } 698 699 if (pasid_mapping_needed) 700 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 701 702 if (spm_update_needed && adev->gfx.rlc.funcs->update_spm_vmid) 703 adev->gfx.rlc.funcs->update_spm_vmid(adev, ring, job->vmid); 704 705 if (!ring->is_mes_queue && ring->funcs->emit_gds_switch && 706 gds_switch_needed) { 707 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 708 job->gds_size, job->gws_base, 709 job->gws_size, job->oa_base, 710 job->oa_size); 711 } 712 713 if (vm_flush_needed || pasid_mapping_needed) { 714 r = amdgpu_fence_emit(ring, &fence, NULL, 0); 715 if (r) 716 return r; 717 } 718 719 if (vm_flush_needed) { 720 mutex_lock(&id_mgr->lock); 721 dma_fence_put(id->last_flush); 722 id->last_flush = dma_fence_get(fence); 723 id->current_gpu_reset_count = 724 atomic_read(&adev->gpu_reset_counter); 725 mutex_unlock(&id_mgr->lock); 726 } 727 728 if (pasid_mapping_needed) { 729 mutex_lock(&id_mgr->lock); 730 id->pasid = job->pasid; 731 dma_fence_put(id->pasid_mapping); 732 id->pasid_mapping = dma_fence_get(fence); 733 mutex_unlock(&id_mgr->lock); 734 } 735 dma_fence_put(fence); 736 737 amdgpu_ring_patch_cond_exec(ring, patch); 738 739 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 740 if (ring->funcs->emit_switch_buffer) { 741 amdgpu_ring_emit_switch_buffer(ring); 742 amdgpu_ring_emit_switch_buffer(ring); 743 } 744 745 amdgpu_ring_ib_end(ring); 746 return 0; 747 } 748 749 /** 750 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 751 * 752 * @vm: requested vm 753 * @bo: requested buffer object 754 * 755 * Find @bo inside the requested vm. 756 * Search inside the @bos vm list for the requested vm 757 * Returns the found bo_va or NULL if none is found 758 * 759 * Object has to be reserved! 760 * 761 * Returns: 762 * Found bo_va or NULL. 763 */ 764 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 765 struct amdgpu_bo *bo) 766 { 767 struct amdgpu_vm_bo_base *base; 768 769 for (base = bo->vm_bo; base; base = base->next) { 770 if (base->vm != vm) 771 continue; 772 773 return container_of(base, struct amdgpu_bo_va, base); 774 } 775 return NULL; 776 } 777 778 /** 779 * amdgpu_vm_map_gart - Resolve gart mapping of addr 780 * 781 * @pages_addr: optional DMA address to use for lookup 782 * @addr: the unmapped addr 783 * 784 * Look up the physical address of the page that the pte resolves 785 * to. 786 * 787 * Returns: 788 * The pointer for the page table entry. 789 */ 790 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 791 { 792 uint64_t result; 793 794 /* page table offset */ 795 result = pages_addr[addr >> PAGE_SHIFT]; 796 797 /* in case cpu page size != gpu page size*/ 798 result |= addr & (~PAGE_MASK); 799 800 result &= 0xFFFFFFFFFFFFF000ULL; 801 802 return result; 803 } 804 805 /** 806 * amdgpu_vm_update_pdes - make sure that all directories are valid 807 * 808 * @adev: amdgpu_device pointer 809 * @vm: requested vm 810 * @immediate: submit immediately to the paging queue 811 * 812 * Makes sure all directories are up to date. 813 * 814 * Returns: 815 * 0 for success, error for failure. 816 */ 817 int amdgpu_vm_update_pdes(struct amdgpu_device *adev, 818 struct amdgpu_vm *vm, bool immediate) 819 { 820 struct amdgpu_vm_update_params params; 821 struct amdgpu_vm_bo_base *entry; 822 bool flush_tlb_needed = false; 823 LIST_HEAD(relocated); 824 int r, idx; 825 826 spin_lock(&vm->status_lock); 827 list_splice_init(&vm->relocated, &relocated); 828 spin_unlock(&vm->status_lock); 829 830 if (list_empty(&relocated)) 831 return 0; 832 833 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 834 return -ENODEV; 835 836 memset(¶ms, 0, sizeof(params)); 837 params.adev = adev; 838 params.vm = vm; 839 params.immediate = immediate; 840 841 r = vm->update_funcs->prepare(¶ms, NULL); 842 if (r) 843 goto error; 844 845 list_for_each_entry(entry, &relocated, vm_status) { 846 /* vm_flush_needed after updating moved PDEs */ 847 flush_tlb_needed |= entry->moved; 848 849 r = amdgpu_vm_pde_update(¶ms, entry); 850 if (r) 851 goto error; 852 } 853 854 r = vm->update_funcs->commit(¶ms, &vm->last_update); 855 if (r) 856 goto error; 857 858 if (flush_tlb_needed) 859 atomic64_inc(&vm->tlb_seq); 860 861 while (!list_empty(&relocated)) { 862 entry = list_first_entry(&relocated, struct amdgpu_vm_bo_base, 863 vm_status); 864 amdgpu_vm_bo_idle(entry); 865 } 866 867 error: 868 drm_dev_exit(idx); 869 return r; 870 } 871 872 /** 873 * amdgpu_vm_tlb_seq_cb - make sure to increment tlb sequence 874 * @fence: unused 875 * @cb: the callback structure 876 * 877 * Increments the tlb sequence to make sure that future CS execute a VM flush. 878 */ 879 static void amdgpu_vm_tlb_seq_cb(struct dma_fence *fence, 880 struct dma_fence_cb *cb) 881 { 882 struct amdgpu_vm_tlb_seq_struct *tlb_cb; 883 884 tlb_cb = container_of(cb, typeof(*tlb_cb), cb); 885 atomic64_inc(&tlb_cb->vm->tlb_seq); 886 kfree(tlb_cb); 887 } 888 889 /** 890 * amdgpu_vm_tlb_flush - prepare TLB flush 891 * 892 * @params: parameters for update 893 * @fence: input fence to sync TLB flush with 894 * @tlb_cb: the callback structure 895 * 896 * Increments the tlb sequence to make sure that future CS execute a VM flush. 897 */ 898 static void 899 amdgpu_vm_tlb_flush(struct amdgpu_vm_update_params *params, 900 struct dma_fence **fence, 901 struct amdgpu_vm_tlb_seq_struct *tlb_cb) 902 { 903 struct amdgpu_vm *vm = params->vm; 904 905 tlb_cb->vm = vm; 906 if (!fence || !*fence) { 907 amdgpu_vm_tlb_seq_cb(NULL, &tlb_cb->cb); 908 return; 909 } 910 911 if (!dma_fence_add_callback(*fence, &tlb_cb->cb, 912 amdgpu_vm_tlb_seq_cb)) { 913 dma_fence_put(vm->last_tlb_flush); 914 vm->last_tlb_flush = dma_fence_get(*fence); 915 } else { 916 amdgpu_vm_tlb_seq_cb(NULL, &tlb_cb->cb); 917 } 918 919 /* Prepare a TLB flush fence to be attached to PTs */ 920 if (!params->unlocked && vm->is_compute_context) { 921 amdgpu_vm_tlb_fence_create(params->adev, vm, fence); 922 923 /* Makes sure no PD/PT is freed before the flush */ 924 dma_resv_add_fence(vm->root.bo->tbo.base.resv, *fence, 925 DMA_RESV_USAGE_BOOKKEEP); 926 } 927 } 928 929 /** 930 * amdgpu_vm_update_range - update a range in the vm page table 931 * 932 * @adev: amdgpu_device pointer to use for commands 933 * @vm: the VM to update the range 934 * @immediate: immediate submission in a page fault 935 * @unlocked: unlocked invalidation during MM callback 936 * @flush_tlb: trigger tlb invalidation after update completed 937 * @allow_override: change MTYPE for local NUMA nodes 938 * @sync: fences we need to sync to 939 * @start: start of mapped range 940 * @last: last mapped entry 941 * @flags: flags for the entries 942 * @offset: offset into nodes and pages_addr 943 * @vram_base: base for vram mappings 944 * @res: ttm_resource to map 945 * @pages_addr: DMA addresses to use for mapping 946 * @fence: optional resulting fence 947 * 948 * Fill in the page table entries between @start and @last. 949 * 950 * Returns: 951 * 0 for success, negative erro code for failure. 952 */ 953 int amdgpu_vm_update_range(struct amdgpu_device *adev, struct amdgpu_vm *vm, 954 bool immediate, bool unlocked, bool flush_tlb, 955 bool allow_override, struct amdgpu_sync *sync, 956 uint64_t start, uint64_t last, uint64_t flags, 957 uint64_t offset, uint64_t vram_base, 958 struct ttm_resource *res, dma_addr_t *pages_addr, 959 struct dma_fence **fence) 960 { 961 struct amdgpu_vm_tlb_seq_struct *tlb_cb; 962 struct amdgpu_vm_update_params params; 963 struct amdgpu_res_cursor cursor; 964 int r, idx; 965 966 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 967 return -ENODEV; 968 969 tlb_cb = kmalloc(sizeof(*tlb_cb), GFP_KERNEL); 970 if (!tlb_cb) { 971 drm_dev_exit(idx); 972 return -ENOMEM; 973 } 974 975 /* Vega20+XGMI where PTEs get inadvertently cached in L2 texture cache, 976 * heavy-weight flush TLB unconditionally. 977 */ 978 flush_tlb |= adev->gmc.xgmi.num_physical_nodes && 979 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 0); 980 981 /* 982 * On GFX8 and older any 8 PTE block with a valid bit set enters the TLB 983 */ 984 flush_tlb |= amdgpu_ip_version(adev, GC_HWIP, 0) < IP_VERSION(9, 0, 0); 985 986 memset(¶ms, 0, sizeof(params)); 987 params.adev = adev; 988 params.vm = vm; 989 params.immediate = immediate; 990 params.pages_addr = pages_addr; 991 params.unlocked = unlocked; 992 params.needs_flush = flush_tlb; 993 params.allow_override = allow_override; 994 INIT_LIST_HEAD(¶ms.tlb_flush_waitlist); 995 996 amdgpu_vm_eviction_lock(vm); 997 if (vm->evicting) { 998 r = -EBUSY; 999 goto error_free; 1000 } 1001 1002 if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) { 1003 struct dma_fence *tmp = dma_fence_get_stub(); 1004 1005 amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true); 1006 swap(vm->last_unlocked, tmp); 1007 dma_fence_put(tmp); 1008 } 1009 1010 r = vm->update_funcs->prepare(¶ms, sync); 1011 if (r) 1012 goto error_free; 1013 1014 amdgpu_res_first(pages_addr ? NULL : res, offset, 1015 (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor); 1016 while (cursor.remaining) { 1017 uint64_t tmp, num_entries, addr; 1018 1019 num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT; 1020 if (pages_addr) { 1021 bool contiguous = true; 1022 1023 if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) { 1024 uint64_t pfn = cursor.start >> PAGE_SHIFT; 1025 uint64_t count; 1026 1027 contiguous = pages_addr[pfn + 1] == 1028 pages_addr[pfn] + PAGE_SIZE; 1029 1030 tmp = num_entries / 1031 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1032 for (count = 2; count < tmp; ++count) { 1033 uint64_t idx = pfn + count; 1034 1035 if (contiguous != (pages_addr[idx] == 1036 pages_addr[idx - 1] + PAGE_SIZE)) 1037 break; 1038 } 1039 if (!contiguous) 1040 count--; 1041 num_entries = count * 1042 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1043 } 1044 1045 if (!contiguous) { 1046 addr = cursor.start; 1047 params.pages_addr = pages_addr; 1048 } else { 1049 addr = pages_addr[cursor.start >> PAGE_SHIFT]; 1050 params.pages_addr = NULL; 1051 } 1052 1053 } else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT_FLAG(adev))) { 1054 addr = vram_base + cursor.start; 1055 } else { 1056 addr = 0; 1057 } 1058 1059 tmp = start + num_entries; 1060 r = amdgpu_vm_ptes_update(¶ms, start, tmp, addr, flags); 1061 if (r) 1062 goto error_free; 1063 1064 amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE); 1065 start = tmp; 1066 } 1067 1068 r = vm->update_funcs->commit(¶ms, fence); 1069 if (r) 1070 goto error_free; 1071 1072 if (params.needs_flush) { 1073 amdgpu_vm_tlb_flush(¶ms, fence, tlb_cb); 1074 tlb_cb = NULL; 1075 } 1076 1077 amdgpu_vm_pt_free_list(adev, ¶ms); 1078 1079 error_free: 1080 kfree(tlb_cb); 1081 amdgpu_vm_eviction_unlock(vm); 1082 drm_dev_exit(idx); 1083 return r; 1084 } 1085 1086 static void amdgpu_vm_bo_get_memory(struct amdgpu_bo_va *bo_va, 1087 struct amdgpu_mem_stats *stats, 1088 unsigned int size) 1089 { 1090 struct amdgpu_vm *vm = bo_va->base.vm; 1091 struct amdgpu_bo *bo = bo_va->base.bo; 1092 1093 if (!bo) 1094 return; 1095 1096 /* 1097 * For now ignore BOs which are currently locked and potentially 1098 * changing their location. 1099 */ 1100 if (!amdgpu_vm_is_bo_always_valid(vm, bo) && 1101 !dma_resv_trylock(bo->tbo.base.resv)) 1102 return; 1103 1104 amdgpu_bo_get_memory(bo, stats, size); 1105 if (!amdgpu_vm_is_bo_always_valid(vm, bo)) 1106 dma_resv_unlock(bo->tbo.base.resv); 1107 } 1108 1109 void amdgpu_vm_get_memory(struct amdgpu_vm *vm, 1110 struct amdgpu_mem_stats *stats, 1111 unsigned int size) 1112 { 1113 struct amdgpu_bo_va *bo_va, *tmp; 1114 1115 spin_lock(&vm->status_lock); 1116 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) 1117 amdgpu_vm_bo_get_memory(bo_va, stats, size); 1118 1119 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) 1120 amdgpu_vm_bo_get_memory(bo_va, stats, size); 1121 1122 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) 1123 amdgpu_vm_bo_get_memory(bo_va, stats, size); 1124 1125 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) 1126 amdgpu_vm_bo_get_memory(bo_va, stats, size); 1127 1128 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) 1129 amdgpu_vm_bo_get_memory(bo_va, stats, size); 1130 1131 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) 1132 amdgpu_vm_bo_get_memory(bo_va, stats, size); 1133 spin_unlock(&vm->status_lock); 1134 } 1135 1136 /** 1137 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1138 * 1139 * @adev: amdgpu_device pointer 1140 * @bo_va: requested BO and VM object 1141 * @clear: if true clear the entries 1142 * 1143 * Fill in the page table entries for @bo_va. 1144 * 1145 * Returns: 1146 * 0 for success, -EINVAL for failure. 1147 */ 1148 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, 1149 bool clear) 1150 { 1151 struct amdgpu_bo *bo = bo_va->base.bo; 1152 struct amdgpu_vm *vm = bo_va->base.vm; 1153 struct amdgpu_bo_va_mapping *mapping; 1154 struct dma_fence **last_update; 1155 dma_addr_t *pages_addr = NULL; 1156 struct ttm_resource *mem; 1157 struct amdgpu_sync sync; 1158 bool flush_tlb = clear; 1159 uint64_t vram_base; 1160 uint64_t flags; 1161 bool uncached; 1162 int r; 1163 1164 amdgpu_sync_create(&sync); 1165 if (clear) { 1166 mem = NULL; 1167 1168 /* Implicitly sync to command submissions in the same VM before 1169 * unmapping. 1170 */ 1171 r = amdgpu_sync_resv(adev, &sync, vm->root.bo->tbo.base.resv, 1172 AMDGPU_SYNC_EQ_OWNER, vm); 1173 if (r) 1174 goto error_free; 1175 if (bo) { 1176 r = amdgpu_sync_kfd(&sync, bo->tbo.base.resv); 1177 if (r) 1178 goto error_free; 1179 } 1180 } else if (!bo) { 1181 mem = NULL; 1182 1183 /* PRT map operations don't need to sync to anything. */ 1184 1185 } else { 1186 struct drm_gem_object *obj = &bo->tbo.base; 1187 1188 if (obj->import_attach && bo_va->is_xgmi) { 1189 struct dma_buf *dma_buf = obj->import_attach->dmabuf; 1190 struct drm_gem_object *gobj = dma_buf->priv; 1191 struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj); 1192 1193 if (abo->tbo.resource && 1194 abo->tbo.resource->mem_type == TTM_PL_VRAM) 1195 bo = gem_to_amdgpu_bo(gobj); 1196 } 1197 mem = bo->tbo.resource; 1198 if (mem && (mem->mem_type == TTM_PL_TT || 1199 mem->mem_type == AMDGPU_PL_PREEMPT)) 1200 pages_addr = bo->tbo.ttm->dma_address; 1201 1202 /* Implicitly sync to moving fences before mapping anything */ 1203 r = amdgpu_sync_resv(adev, &sync, bo->tbo.base.resv, 1204 AMDGPU_SYNC_EXPLICIT, vm); 1205 if (r) 1206 goto error_free; 1207 } 1208 1209 if (bo) { 1210 struct amdgpu_device *bo_adev; 1211 1212 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1213 1214 if (amdgpu_bo_encrypted(bo)) 1215 flags |= AMDGPU_PTE_TMZ; 1216 1217 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev); 1218 vram_base = bo_adev->vm_manager.vram_base_offset; 1219 uncached = (bo->flags & AMDGPU_GEM_CREATE_UNCACHED) != 0; 1220 } else { 1221 flags = 0x0; 1222 vram_base = 0; 1223 uncached = false; 1224 } 1225 1226 if (clear || amdgpu_vm_is_bo_always_valid(vm, bo)) 1227 last_update = &vm->last_update; 1228 else 1229 last_update = &bo_va->last_pt_update; 1230 1231 if (!clear && bo_va->base.moved) { 1232 flush_tlb = true; 1233 list_splice_init(&bo_va->valids, &bo_va->invalids); 1234 1235 } else if (bo_va->cleared != clear) { 1236 list_splice_init(&bo_va->valids, &bo_va->invalids); 1237 } 1238 1239 list_for_each_entry(mapping, &bo_va->invalids, list) { 1240 uint64_t update_flags = flags; 1241 1242 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1243 * but in case of something, we filter the flags in first place 1244 */ 1245 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1246 update_flags &= ~AMDGPU_PTE_READABLE; 1247 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1248 update_flags &= ~AMDGPU_PTE_WRITEABLE; 1249 1250 /* Apply ASIC specific mapping flags */ 1251 amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags); 1252 1253 trace_amdgpu_vm_bo_update(mapping); 1254 1255 r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, 1256 !uncached, &sync, mapping->start, 1257 mapping->last, update_flags, 1258 mapping->offset, vram_base, mem, 1259 pages_addr, last_update); 1260 if (r) 1261 goto error_free; 1262 } 1263 1264 /* If the BO is not in its preferred location add it back to 1265 * the evicted list so that it gets validated again on the 1266 * next command submission. 1267 */ 1268 if (amdgpu_vm_is_bo_always_valid(vm, bo)) { 1269 uint32_t mem_type = bo->tbo.resource->mem_type; 1270 1271 if (!(bo->preferred_domains & 1272 amdgpu_mem_type_to_domain(mem_type))) 1273 amdgpu_vm_bo_evicted(&bo_va->base); 1274 else 1275 amdgpu_vm_bo_idle(&bo_va->base); 1276 } else { 1277 amdgpu_vm_bo_done(&bo_va->base); 1278 } 1279 1280 list_splice_init(&bo_va->invalids, &bo_va->valids); 1281 bo_va->cleared = clear; 1282 bo_va->base.moved = false; 1283 1284 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1285 list_for_each_entry(mapping, &bo_va->valids, list) 1286 trace_amdgpu_vm_bo_mapping(mapping); 1287 } 1288 1289 error_free: 1290 amdgpu_sync_free(&sync); 1291 return r; 1292 } 1293 1294 /** 1295 * amdgpu_vm_update_prt_state - update the global PRT state 1296 * 1297 * @adev: amdgpu_device pointer 1298 */ 1299 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1300 { 1301 unsigned long flags; 1302 bool enable; 1303 1304 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1305 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1306 adev->gmc.gmc_funcs->set_prt(adev, enable); 1307 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1308 } 1309 1310 /** 1311 * amdgpu_vm_prt_get - add a PRT user 1312 * 1313 * @adev: amdgpu_device pointer 1314 */ 1315 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1316 { 1317 if (!adev->gmc.gmc_funcs->set_prt) 1318 return; 1319 1320 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1321 amdgpu_vm_update_prt_state(adev); 1322 } 1323 1324 /** 1325 * amdgpu_vm_prt_put - drop a PRT user 1326 * 1327 * @adev: amdgpu_device pointer 1328 */ 1329 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1330 { 1331 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1332 amdgpu_vm_update_prt_state(adev); 1333 } 1334 1335 /** 1336 * amdgpu_vm_prt_cb - callback for updating the PRT status 1337 * 1338 * @fence: fence for the callback 1339 * @_cb: the callback function 1340 */ 1341 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1342 { 1343 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1344 1345 amdgpu_vm_prt_put(cb->adev); 1346 kfree(cb); 1347 } 1348 1349 /** 1350 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 1351 * 1352 * @adev: amdgpu_device pointer 1353 * @fence: fence for the callback 1354 */ 1355 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 1356 struct dma_fence *fence) 1357 { 1358 struct amdgpu_prt_cb *cb; 1359 1360 if (!adev->gmc.gmc_funcs->set_prt) 1361 return; 1362 1363 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 1364 if (!cb) { 1365 /* Last resort when we are OOM */ 1366 if (fence) 1367 dma_fence_wait(fence, false); 1368 1369 amdgpu_vm_prt_put(adev); 1370 } else { 1371 cb->adev = adev; 1372 if (!fence || dma_fence_add_callback(fence, &cb->cb, 1373 amdgpu_vm_prt_cb)) 1374 amdgpu_vm_prt_cb(fence, &cb->cb); 1375 } 1376 } 1377 1378 /** 1379 * amdgpu_vm_free_mapping - free a mapping 1380 * 1381 * @adev: amdgpu_device pointer 1382 * @vm: requested vm 1383 * @mapping: mapping to be freed 1384 * @fence: fence of the unmap operation 1385 * 1386 * Free a mapping and make sure we decrease the PRT usage count if applicable. 1387 */ 1388 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 1389 struct amdgpu_vm *vm, 1390 struct amdgpu_bo_va_mapping *mapping, 1391 struct dma_fence *fence) 1392 { 1393 if (mapping->flags & AMDGPU_PTE_PRT_FLAG(adev)) 1394 amdgpu_vm_add_prt_cb(adev, fence); 1395 kfree(mapping); 1396 } 1397 1398 /** 1399 * amdgpu_vm_prt_fini - finish all prt mappings 1400 * 1401 * @adev: amdgpu_device pointer 1402 * @vm: requested vm 1403 * 1404 * Register a cleanup callback to disable PRT support after VM dies. 1405 */ 1406 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1407 { 1408 struct dma_resv *resv = vm->root.bo->tbo.base.resv; 1409 struct dma_resv_iter cursor; 1410 struct dma_fence *fence; 1411 1412 dma_resv_for_each_fence(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP, fence) { 1413 /* Add a callback for each fence in the reservation object */ 1414 amdgpu_vm_prt_get(adev); 1415 amdgpu_vm_add_prt_cb(adev, fence); 1416 } 1417 } 1418 1419 /** 1420 * amdgpu_vm_clear_freed - clear freed BOs in the PT 1421 * 1422 * @adev: amdgpu_device pointer 1423 * @vm: requested vm 1424 * @fence: optional resulting fence (unchanged if no work needed to be done 1425 * or if an error occurred) 1426 * 1427 * Make sure all freed BOs are cleared in the PT. 1428 * PTs have to be reserved and mutex must be locked! 1429 * 1430 * Returns: 1431 * 0 for success. 1432 * 1433 */ 1434 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 1435 struct amdgpu_vm *vm, 1436 struct dma_fence **fence) 1437 { 1438 struct amdgpu_bo_va_mapping *mapping; 1439 struct dma_fence *f = NULL; 1440 struct amdgpu_sync sync; 1441 int r; 1442 1443 1444 /* 1445 * Implicitly sync to command submissions in the same VM before 1446 * unmapping. 1447 */ 1448 amdgpu_sync_create(&sync); 1449 r = amdgpu_sync_resv(adev, &sync, vm->root.bo->tbo.base.resv, 1450 AMDGPU_SYNC_EQ_OWNER, vm); 1451 if (r) 1452 goto error_free; 1453 1454 while (!list_empty(&vm->freed)) { 1455 mapping = list_first_entry(&vm->freed, 1456 struct amdgpu_bo_va_mapping, list); 1457 list_del(&mapping->list); 1458 1459 r = amdgpu_vm_update_range(adev, vm, false, false, true, false, 1460 &sync, mapping->start, mapping->last, 1461 0, 0, 0, NULL, NULL, &f); 1462 amdgpu_vm_free_mapping(adev, vm, mapping, f); 1463 if (r) { 1464 dma_fence_put(f); 1465 goto error_free; 1466 } 1467 } 1468 1469 if (fence && f) { 1470 dma_fence_put(*fence); 1471 *fence = f; 1472 } else { 1473 dma_fence_put(f); 1474 } 1475 1476 error_free: 1477 amdgpu_sync_free(&sync); 1478 return r; 1479 1480 } 1481 1482 /** 1483 * amdgpu_vm_handle_moved - handle moved BOs in the PT 1484 * 1485 * @adev: amdgpu_device pointer 1486 * @vm: requested vm 1487 * @ticket: optional reservation ticket used to reserve the VM 1488 * 1489 * Make sure all BOs which are moved are updated in the PTs. 1490 * 1491 * Returns: 1492 * 0 for success. 1493 * 1494 * PTs have to be reserved! 1495 */ 1496 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 1497 struct amdgpu_vm *vm, 1498 struct ww_acquire_ctx *ticket) 1499 { 1500 struct amdgpu_bo_va *bo_va; 1501 struct dma_resv *resv; 1502 bool clear, unlock; 1503 int r; 1504 1505 spin_lock(&vm->status_lock); 1506 while (!list_empty(&vm->moved)) { 1507 bo_va = list_first_entry(&vm->moved, struct amdgpu_bo_va, 1508 base.vm_status); 1509 spin_unlock(&vm->status_lock); 1510 1511 /* Per VM BOs never need to bo cleared in the page tables */ 1512 r = amdgpu_vm_bo_update(adev, bo_va, false); 1513 if (r) 1514 return r; 1515 spin_lock(&vm->status_lock); 1516 } 1517 1518 while (!list_empty(&vm->invalidated)) { 1519 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 1520 base.vm_status); 1521 resv = bo_va->base.bo->tbo.base.resv; 1522 spin_unlock(&vm->status_lock); 1523 1524 /* Try to reserve the BO to avoid clearing its ptes */ 1525 if (!adev->debug_vm && dma_resv_trylock(resv)) { 1526 clear = false; 1527 unlock = true; 1528 /* The caller is already holding the reservation lock */ 1529 } else if (ticket && dma_resv_locking_ctx(resv) == ticket) { 1530 clear = false; 1531 unlock = false; 1532 /* Somebody else is using the BO right now */ 1533 } else { 1534 clear = true; 1535 unlock = false; 1536 } 1537 1538 r = amdgpu_vm_bo_update(adev, bo_va, clear); 1539 1540 if (unlock) 1541 dma_resv_unlock(resv); 1542 if (r) 1543 return r; 1544 1545 /* Remember evicted DMABuf imports in compute VMs for later 1546 * validation 1547 */ 1548 if (vm->is_compute_context && 1549 bo_va->base.bo->tbo.base.import_attach && 1550 (!bo_va->base.bo->tbo.resource || 1551 bo_va->base.bo->tbo.resource->mem_type == TTM_PL_SYSTEM)) 1552 amdgpu_vm_bo_evicted_user(&bo_va->base); 1553 1554 spin_lock(&vm->status_lock); 1555 } 1556 spin_unlock(&vm->status_lock); 1557 1558 return 0; 1559 } 1560 1561 /** 1562 * amdgpu_vm_flush_compute_tlb - Flush TLB on compute VM 1563 * 1564 * @adev: amdgpu_device pointer 1565 * @vm: requested vm 1566 * @flush_type: flush type 1567 * @xcc_mask: mask of XCCs that belong to the compute partition in need of a TLB flush. 1568 * 1569 * Flush TLB if needed for a compute VM. 1570 * 1571 * Returns: 1572 * 0 for success. 1573 */ 1574 int amdgpu_vm_flush_compute_tlb(struct amdgpu_device *adev, 1575 struct amdgpu_vm *vm, 1576 uint32_t flush_type, 1577 uint32_t xcc_mask) 1578 { 1579 uint64_t tlb_seq = amdgpu_vm_tlb_seq(vm); 1580 bool all_hub = false; 1581 int xcc = 0, r = 0; 1582 1583 WARN_ON_ONCE(!vm->is_compute_context); 1584 1585 /* 1586 * It can be that we race and lose here, but that is extremely unlikely 1587 * and the worst thing which could happen is that we flush the changes 1588 * into the TLB once more which is harmless. 1589 */ 1590 if (atomic64_xchg(&vm->kfd_last_flushed_seq, tlb_seq) == tlb_seq) 1591 return 0; 1592 1593 if (adev->family == AMDGPU_FAMILY_AI || 1594 adev->family == AMDGPU_FAMILY_RV) 1595 all_hub = true; 1596 1597 for_each_inst(xcc, xcc_mask) { 1598 r = amdgpu_gmc_flush_gpu_tlb_pasid(adev, vm->pasid, flush_type, 1599 all_hub, xcc); 1600 if (r) 1601 break; 1602 } 1603 return r; 1604 } 1605 1606 /** 1607 * amdgpu_vm_bo_add - add a bo to a specific vm 1608 * 1609 * @adev: amdgpu_device pointer 1610 * @vm: requested vm 1611 * @bo: amdgpu buffer object 1612 * 1613 * Add @bo into the requested vm. 1614 * Add @bo to the list of bos associated with the vm 1615 * 1616 * Returns: 1617 * Newly added bo_va or NULL for failure 1618 * 1619 * Object has to be reserved! 1620 */ 1621 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 1622 struct amdgpu_vm *vm, 1623 struct amdgpu_bo *bo) 1624 { 1625 struct amdgpu_bo_va *bo_va; 1626 1627 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 1628 if (bo_va == NULL) { 1629 return NULL; 1630 } 1631 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 1632 1633 bo_va->ref_count = 1; 1634 bo_va->last_pt_update = dma_fence_get_stub(); 1635 INIT_LIST_HEAD(&bo_va->valids); 1636 INIT_LIST_HEAD(&bo_va->invalids); 1637 1638 if (!bo) 1639 return bo_va; 1640 1641 dma_resv_assert_held(bo->tbo.base.resv); 1642 if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) { 1643 bo_va->is_xgmi = true; 1644 /* Power up XGMI if it can be potentially used */ 1645 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20); 1646 } 1647 1648 return bo_va; 1649 } 1650 1651 1652 /** 1653 * amdgpu_vm_bo_insert_map - insert a new mapping 1654 * 1655 * @adev: amdgpu_device pointer 1656 * @bo_va: bo_va to store the address 1657 * @mapping: the mapping to insert 1658 * 1659 * Insert a new mapping into all structures. 1660 */ 1661 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 1662 struct amdgpu_bo_va *bo_va, 1663 struct amdgpu_bo_va_mapping *mapping) 1664 { 1665 struct amdgpu_vm *vm = bo_va->base.vm; 1666 struct amdgpu_bo *bo = bo_va->base.bo; 1667 1668 mapping->bo_va = bo_va; 1669 list_add(&mapping->list, &bo_va->invalids); 1670 amdgpu_vm_it_insert(mapping, &vm->va); 1671 1672 if (mapping->flags & AMDGPU_PTE_PRT_FLAG(adev)) 1673 amdgpu_vm_prt_get(adev); 1674 1675 if (amdgpu_vm_is_bo_always_valid(vm, bo) && !bo_va->base.moved) 1676 amdgpu_vm_bo_moved(&bo_va->base); 1677 1678 trace_amdgpu_vm_bo_map(bo_va, mapping); 1679 } 1680 1681 /* Validate operation parameters to prevent potential abuse */ 1682 static int amdgpu_vm_verify_parameters(struct amdgpu_device *adev, 1683 struct amdgpu_bo *bo, 1684 uint64_t saddr, 1685 uint64_t offset, 1686 uint64_t size) 1687 { 1688 uint64_t tmp, lpfn; 1689 1690 if (saddr & AMDGPU_GPU_PAGE_MASK 1691 || offset & AMDGPU_GPU_PAGE_MASK 1692 || size & AMDGPU_GPU_PAGE_MASK) 1693 return -EINVAL; 1694 1695 if (check_add_overflow(saddr, size, &tmp) 1696 || check_add_overflow(offset, size, &tmp) 1697 || size == 0 /* which also leads to end < begin */) 1698 return -EINVAL; 1699 1700 /* make sure object fit at this offset */ 1701 if (bo && offset + size > amdgpu_bo_size(bo)) 1702 return -EINVAL; 1703 1704 /* Ensure last pfn not exceed max_pfn */ 1705 lpfn = (saddr + size - 1) >> AMDGPU_GPU_PAGE_SHIFT; 1706 if (lpfn >= adev->vm_manager.max_pfn) 1707 return -EINVAL; 1708 1709 return 0; 1710 } 1711 1712 /** 1713 * amdgpu_vm_bo_map - map bo inside a vm 1714 * 1715 * @adev: amdgpu_device pointer 1716 * @bo_va: bo_va to store the address 1717 * @saddr: where to map the BO 1718 * @offset: requested offset in the BO 1719 * @size: BO size in bytes 1720 * @flags: attributes of pages (read/write/valid/etc.) 1721 * 1722 * Add a mapping of the BO at the specefied addr into the VM. 1723 * 1724 * Returns: 1725 * 0 for success, error for failure. 1726 * 1727 * Object has to be reserved and unreserved outside! 1728 */ 1729 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 1730 struct amdgpu_bo_va *bo_va, 1731 uint64_t saddr, uint64_t offset, 1732 uint64_t size, uint64_t flags) 1733 { 1734 struct amdgpu_bo_va_mapping *mapping, *tmp; 1735 struct amdgpu_bo *bo = bo_va->base.bo; 1736 struct amdgpu_vm *vm = bo_va->base.vm; 1737 uint64_t eaddr; 1738 int r; 1739 1740 r = amdgpu_vm_verify_parameters(adev, bo, saddr, offset, size); 1741 if (r) 1742 return r; 1743 1744 saddr /= AMDGPU_GPU_PAGE_SIZE; 1745 eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE; 1746 1747 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 1748 if (tmp) { 1749 /* bo and tmp overlap, invalid addr */ 1750 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 1751 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 1752 tmp->start, tmp->last + 1); 1753 return -EINVAL; 1754 } 1755 1756 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1757 if (!mapping) 1758 return -ENOMEM; 1759 1760 mapping->start = saddr; 1761 mapping->last = eaddr; 1762 mapping->offset = offset; 1763 mapping->flags = flags; 1764 1765 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 1766 1767 return 0; 1768 } 1769 1770 /** 1771 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 1772 * 1773 * @adev: amdgpu_device pointer 1774 * @bo_va: bo_va to store the address 1775 * @saddr: where to map the BO 1776 * @offset: requested offset in the BO 1777 * @size: BO size in bytes 1778 * @flags: attributes of pages (read/write/valid/etc.) 1779 * 1780 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 1781 * mappings as we do so. 1782 * 1783 * Returns: 1784 * 0 for success, error for failure. 1785 * 1786 * Object has to be reserved and unreserved outside! 1787 */ 1788 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 1789 struct amdgpu_bo_va *bo_va, 1790 uint64_t saddr, uint64_t offset, 1791 uint64_t size, uint64_t flags) 1792 { 1793 struct amdgpu_bo_va_mapping *mapping; 1794 struct amdgpu_bo *bo = bo_va->base.bo; 1795 uint64_t eaddr; 1796 int r; 1797 1798 r = amdgpu_vm_verify_parameters(adev, bo, saddr, offset, size); 1799 if (r) 1800 return r; 1801 1802 /* Allocate all the needed memory */ 1803 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1804 if (!mapping) 1805 return -ENOMEM; 1806 1807 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 1808 if (r) { 1809 kfree(mapping); 1810 return r; 1811 } 1812 1813 saddr /= AMDGPU_GPU_PAGE_SIZE; 1814 eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE; 1815 1816 mapping->start = saddr; 1817 mapping->last = eaddr; 1818 mapping->offset = offset; 1819 mapping->flags = flags; 1820 1821 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 1822 1823 return 0; 1824 } 1825 1826 /** 1827 * amdgpu_vm_bo_unmap - remove bo mapping from vm 1828 * 1829 * @adev: amdgpu_device pointer 1830 * @bo_va: bo_va to remove the address from 1831 * @saddr: where to the BO is mapped 1832 * 1833 * Remove a mapping of the BO at the specefied addr from the VM. 1834 * 1835 * Returns: 1836 * 0 for success, error for failure. 1837 * 1838 * Object has to be reserved and unreserved outside! 1839 */ 1840 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 1841 struct amdgpu_bo_va *bo_va, 1842 uint64_t saddr) 1843 { 1844 struct amdgpu_bo_va_mapping *mapping; 1845 struct amdgpu_vm *vm = bo_va->base.vm; 1846 bool valid = true; 1847 1848 saddr /= AMDGPU_GPU_PAGE_SIZE; 1849 1850 list_for_each_entry(mapping, &bo_va->valids, list) { 1851 if (mapping->start == saddr) 1852 break; 1853 } 1854 1855 if (&mapping->list == &bo_va->valids) { 1856 valid = false; 1857 1858 list_for_each_entry(mapping, &bo_va->invalids, list) { 1859 if (mapping->start == saddr) 1860 break; 1861 } 1862 1863 if (&mapping->list == &bo_va->invalids) 1864 return -ENOENT; 1865 } 1866 1867 list_del(&mapping->list); 1868 amdgpu_vm_it_remove(mapping, &vm->va); 1869 mapping->bo_va = NULL; 1870 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 1871 1872 if (valid) 1873 list_add(&mapping->list, &vm->freed); 1874 else 1875 amdgpu_vm_free_mapping(adev, vm, mapping, 1876 bo_va->last_pt_update); 1877 1878 return 0; 1879 } 1880 1881 /** 1882 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 1883 * 1884 * @adev: amdgpu_device pointer 1885 * @vm: VM structure to use 1886 * @saddr: start of the range 1887 * @size: size of the range 1888 * 1889 * Remove all mappings in a range, split them as appropriate. 1890 * 1891 * Returns: 1892 * 0 for success, error for failure. 1893 */ 1894 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 1895 struct amdgpu_vm *vm, 1896 uint64_t saddr, uint64_t size) 1897 { 1898 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 1899 LIST_HEAD(removed); 1900 uint64_t eaddr; 1901 int r; 1902 1903 r = amdgpu_vm_verify_parameters(adev, NULL, saddr, 0, size); 1904 if (r) 1905 return r; 1906 1907 saddr /= AMDGPU_GPU_PAGE_SIZE; 1908 eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE; 1909 1910 /* Allocate all the needed memory */ 1911 before = kzalloc(sizeof(*before), GFP_KERNEL); 1912 if (!before) 1913 return -ENOMEM; 1914 INIT_LIST_HEAD(&before->list); 1915 1916 after = kzalloc(sizeof(*after), GFP_KERNEL); 1917 if (!after) { 1918 kfree(before); 1919 return -ENOMEM; 1920 } 1921 INIT_LIST_HEAD(&after->list); 1922 1923 /* Now gather all removed mappings */ 1924 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 1925 while (tmp) { 1926 /* Remember mapping split at the start */ 1927 if (tmp->start < saddr) { 1928 before->start = tmp->start; 1929 before->last = saddr - 1; 1930 before->offset = tmp->offset; 1931 before->flags = tmp->flags; 1932 before->bo_va = tmp->bo_va; 1933 list_add(&before->list, &tmp->bo_va->invalids); 1934 } 1935 1936 /* Remember mapping split at the end */ 1937 if (tmp->last > eaddr) { 1938 after->start = eaddr + 1; 1939 after->last = tmp->last; 1940 after->offset = tmp->offset; 1941 after->offset += (after->start - tmp->start) << PAGE_SHIFT; 1942 after->flags = tmp->flags; 1943 after->bo_va = tmp->bo_va; 1944 list_add(&after->list, &tmp->bo_va->invalids); 1945 } 1946 1947 list_del(&tmp->list); 1948 list_add(&tmp->list, &removed); 1949 1950 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 1951 } 1952 1953 /* And free them up */ 1954 list_for_each_entry_safe(tmp, next, &removed, list) { 1955 amdgpu_vm_it_remove(tmp, &vm->va); 1956 list_del(&tmp->list); 1957 1958 if (tmp->start < saddr) 1959 tmp->start = saddr; 1960 if (tmp->last > eaddr) 1961 tmp->last = eaddr; 1962 1963 tmp->bo_va = NULL; 1964 list_add(&tmp->list, &vm->freed); 1965 trace_amdgpu_vm_bo_unmap(NULL, tmp); 1966 } 1967 1968 /* Insert partial mapping before the range */ 1969 if (!list_empty(&before->list)) { 1970 struct amdgpu_bo *bo = before->bo_va->base.bo; 1971 1972 amdgpu_vm_it_insert(before, &vm->va); 1973 if (before->flags & AMDGPU_PTE_PRT_FLAG(adev)) 1974 amdgpu_vm_prt_get(adev); 1975 1976 if (amdgpu_vm_is_bo_always_valid(vm, bo) && 1977 !before->bo_va->base.moved) 1978 amdgpu_vm_bo_moved(&before->bo_va->base); 1979 } else { 1980 kfree(before); 1981 } 1982 1983 /* Insert partial mapping after the range */ 1984 if (!list_empty(&after->list)) { 1985 struct amdgpu_bo *bo = after->bo_va->base.bo; 1986 1987 amdgpu_vm_it_insert(after, &vm->va); 1988 if (after->flags & AMDGPU_PTE_PRT_FLAG(adev)) 1989 amdgpu_vm_prt_get(adev); 1990 1991 if (amdgpu_vm_is_bo_always_valid(vm, bo) && 1992 !after->bo_va->base.moved) 1993 amdgpu_vm_bo_moved(&after->bo_va->base); 1994 } else { 1995 kfree(after); 1996 } 1997 1998 return 0; 1999 } 2000 2001 /** 2002 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2003 * 2004 * @vm: the requested VM 2005 * @addr: the address 2006 * 2007 * Find a mapping by it's address. 2008 * 2009 * Returns: 2010 * The amdgpu_bo_va_mapping matching for addr or NULL 2011 * 2012 */ 2013 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2014 uint64_t addr) 2015 { 2016 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2017 } 2018 2019 /** 2020 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2021 * 2022 * @vm: the requested vm 2023 * @ticket: CS ticket 2024 * 2025 * Trace all mappings of BOs reserved during a command submission. 2026 */ 2027 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2028 { 2029 struct amdgpu_bo_va_mapping *mapping; 2030 2031 if (!trace_amdgpu_vm_bo_cs_enabled()) 2032 return; 2033 2034 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2035 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2036 if (mapping->bo_va && mapping->bo_va->base.bo) { 2037 struct amdgpu_bo *bo; 2038 2039 bo = mapping->bo_va->base.bo; 2040 if (dma_resv_locking_ctx(bo->tbo.base.resv) != 2041 ticket) 2042 continue; 2043 } 2044 2045 trace_amdgpu_vm_bo_cs(mapping); 2046 } 2047 } 2048 2049 /** 2050 * amdgpu_vm_bo_del - remove a bo from a specific vm 2051 * 2052 * @adev: amdgpu_device pointer 2053 * @bo_va: requested bo_va 2054 * 2055 * Remove @bo_va->bo from the requested vm. 2056 * 2057 * Object have to be reserved! 2058 */ 2059 void amdgpu_vm_bo_del(struct amdgpu_device *adev, 2060 struct amdgpu_bo_va *bo_va) 2061 { 2062 struct amdgpu_bo_va_mapping *mapping, *next; 2063 struct amdgpu_bo *bo = bo_va->base.bo; 2064 struct amdgpu_vm *vm = bo_va->base.vm; 2065 struct amdgpu_vm_bo_base **base; 2066 2067 dma_resv_assert_held(vm->root.bo->tbo.base.resv); 2068 2069 if (bo) { 2070 dma_resv_assert_held(bo->tbo.base.resv); 2071 if (amdgpu_vm_is_bo_always_valid(vm, bo)) 2072 ttm_bo_set_bulk_move(&bo->tbo, NULL); 2073 2074 for (base = &bo_va->base.bo->vm_bo; *base; 2075 base = &(*base)->next) { 2076 if (*base != &bo_va->base) 2077 continue; 2078 2079 *base = bo_va->base.next; 2080 break; 2081 } 2082 } 2083 2084 spin_lock(&vm->status_lock); 2085 list_del(&bo_va->base.vm_status); 2086 spin_unlock(&vm->status_lock); 2087 2088 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2089 list_del(&mapping->list); 2090 amdgpu_vm_it_remove(mapping, &vm->va); 2091 mapping->bo_va = NULL; 2092 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2093 list_add(&mapping->list, &vm->freed); 2094 } 2095 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2096 list_del(&mapping->list); 2097 amdgpu_vm_it_remove(mapping, &vm->va); 2098 amdgpu_vm_free_mapping(adev, vm, mapping, 2099 bo_va->last_pt_update); 2100 } 2101 2102 dma_fence_put(bo_va->last_pt_update); 2103 2104 if (bo && bo_va->is_xgmi) 2105 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN); 2106 2107 kfree(bo_va); 2108 } 2109 2110 /** 2111 * amdgpu_vm_evictable - check if we can evict a VM 2112 * 2113 * @bo: A page table of the VM. 2114 * 2115 * Check if it is possible to evict a VM. 2116 */ 2117 bool amdgpu_vm_evictable(struct amdgpu_bo *bo) 2118 { 2119 struct amdgpu_vm_bo_base *bo_base = bo->vm_bo; 2120 2121 /* Page tables of a destroyed VM can go away immediately */ 2122 if (!bo_base || !bo_base->vm) 2123 return true; 2124 2125 /* Don't evict VM page tables while they are busy */ 2126 if (!dma_resv_test_signaled(bo->tbo.base.resv, DMA_RESV_USAGE_BOOKKEEP)) 2127 return false; 2128 2129 /* Try to block ongoing updates */ 2130 if (!amdgpu_vm_eviction_trylock(bo_base->vm)) 2131 return false; 2132 2133 /* Don't evict VM page tables while they are updated */ 2134 if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) { 2135 amdgpu_vm_eviction_unlock(bo_base->vm); 2136 return false; 2137 } 2138 2139 bo_base->vm->evicting = true; 2140 amdgpu_vm_eviction_unlock(bo_base->vm); 2141 return true; 2142 } 2143 2144 /** 2145 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2146 * 2147 * @adev: amdgpu_device pointer 2148 * @bo: amdgpu buffer object 2149 * @evicted: is the BO evicted 2150 * 2151 * Mark @bo as invalid. 2152 */ 2153 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2154 struct amdgpu_bo *bo, bool evicted) 2155 { 2156 struct amdgpu_vm_bo_base *bo_base; 2157 2158 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2159 struct amdgpu_vm *vm = bo_base->vm; 2160 2161 if (evicted && amdgpu_vm_is_bo_always_valid(vm, bo)) { 2162 amdgpu_vm_bo_evicted(bo_base); 2163 continue; 2164 } 2165 2166 if (bo_base->moved) 2167 continue; 2168 bo_base->moved = true; 2169 2170 if (bo->tbo.type == ttm_bo_type_kernel) 2171 amdgpu_vm_bo_relocated(bo_base); 2172 else if (amdgpu_vm_is_bo_always_valid(vm, bo)) 2173 amdgpu_vm_bo_moved(bo_base); 2174 else 2175 amdgpu_vm_bo_invalidated(bo_base); 2176 } 2177 } 2178 2179 /** 2180 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2181 * 2182 * @vm_size: VM size 2183 * 2184 * Returns: 2185 * VM page table as power of two 2186 */ 2187 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2188 { 2189 /* Total bits covered by PD + PTs */ 2190 unsigned bits = ilog2(vm_size) + 18; 2191 2192 /* Make sure the PD is 4K in size up to 8GB address space. 2193 Above that split equal between PD and PTs */ 2194 if (vm_size <= 8) 2195 return (bits - 9); 2196 else 2197 return ((bits + 3) / 2); 2198 } 2199 2200 /** 2201 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2202 * 2203 * @adev: amdgpu_device pointer 2204 * @min_vm_size: the minimum vm size in GB if it's set auto 2205 * @fragment_size_default: Default PTE fragment size 2206 * @max_level: max VMPT level 2207 * @max_bits: max address space size in bits 2208 * 2209 */ 2210 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2211 uint32_t fragment_size_default, unsigned max_level, 2212 unsigned max_bits) 2213 { 2214 unsigned int max_size = 1 << (max_bits - 30); 2215 unsigned int vm_size; 2216 uint64_t tmp; 2217 2218 /* adjust vm size first */ 2219 if (amdgpu_vm_size != -1) { 2220 vm_size = amdgpu_vm_size; 2221 if (vm_size > max_size) { 2222 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2223 amdgpu_vm_size, max_size); 2224 vm_size = max_size; 2225 } 2226 } else { 2227 struct sysinfo si; 2228 unsigned int phys_ram_gb; 2229 2230 /* Optimal VM size depends on the amount of physical 2231 * RAM available. Underlying requirements and 2232 * assumptions: 2233 * 2234 * - Need to map system memory and VRAM from all GPUs 2235 * - VRAM from other GPUs not known here 2236 * - Assume VRAM <= system memory 2237 * - On GFX8 and older, VM space can be segmented for 2238 * different MTYPEs 2239 * - Need to allow room for fragmentation, guard pages etc. 2240 * 2241 * This adds up to a rough guess of system memory x3. 2242 * Round up to power of two to maximize the available 2243 * VM size with the given page table size. 2244 */ 2245 si_meminfo(&si); 2246 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2247 (1 << 30) - 1) >> 30; 2248 vm_size = roundup_pow_of_two( 2249 clamp(phys_ram_gb * 3, min_vm_size, max_size)); 2250 } 2251 2252 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2253 2254 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2255 if (amdgpu_vm_block_size != -1) 2256 tmp >>= amdgpu_vm_block_size - 9; 2257 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2258 adev->vm_manager.num_level = min_t(unsigned int, max_level, tmp); 2259 switch (adev->vm_manager.num_level) { 2260 case 3: 2261 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2262 break; 2263 case 2: 2264 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2265 break; 2266 case 1: 2267 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2268 break; 2269 default: 2270 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2271 } 2272 /* block size depends on vm size and hw setup*/ 2273 if (amdgpu_vm_block_size != -1) 2274 adev->vm_manager.block_size = 2275 min((unsigned)amdgpu_vm_block_size, max_bits 2276 - AMDGPU_GPU_PAGE_SHIFT 2277 - 9 * adev->vm_manager.num_level); 2278 else if (adev->vm_manager.num_level > 1) 2279 adev->vm_manager.block_size = 9; 2280 else 2281 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2282 2283 if (amdgpu_vm_fragment_size == -1) 2284 adev->vm_manager.fragment_size = fragment_size_default; 2285 else 2286 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2287 2288 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2289 vm_size, adev->vm_manager.num_level + 1, 2290 adev->vm_manager.block_size, 2291 adev->vm_manager.fragment_size); 2292 } 2293 2294 /** 2295 * amdgpu_vm_wait_idle - wait for the VM to become idle 2296 * 2297 * @vm: VM object to wait for 2298 * @timeout: timeout to wait for VM to become idle 2299 */ 2300 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout) 2301 { 2302 timeout = dma_resv_wait_timeout(vm->root.bo->tbo.base.resv, 2303 DMA_RESV_USAGE_BOOKKEEP, 2304 true, timeout); 2305 if (timeout <= 0) 2306 return timeout; 2307 2308 return dma_fence_wait_timeout(vm->last_unlocked, true, timeout); 2309 } 2310 2311 static void amdgpu_vm_destroy_task_info(struct kref *kref) 2312 { 2313 struct amdgpu_task_info *ti = container_of(kref, struct amdgpu_task_info, refcount); 2314 2315 kfree(ti); 2316 } 2317 2318 static inline struct amdgpu_vm * 2319 amdgpu_vm_get_vm_from_pasid(struct amdgpu_device *adev, u32 pasid) 2320 { 2321 struct amdgpu_vm *vm; 2322 unsigned long flags; 2323 2324 xa_lock_irqsave(&adev->vm_manager.pasids, flags); 2325 vm = xa_load(&adev->vm_manager.pasids, pasid); 2326 xa_unlock_irqrestore(&adev->vm_manager.pasids, flags); 2327 2328 return vm; 2329 } 2330 2331 /** 2332 * amdgpu_vm_put_task_info - reference down the vm task_info ptr 2333 * 2334 * @task_info: task_info struct under discussion. 2335 * 2336 * frees the vm task_info ptr at the last put 2337 */ 2338 void amdgpu_vm_put_task_info(struct amdgpu_task_info *task_info) 2339 { 2340 kref_put(&task_info->refcount, amdgpu_vm_destroy_task_info); 2341 } 2342 2343 /** 2344 * amdgpu_vm_get_task_info_vm - Extracts task info for a vm. 2345 * 2346 * @vm: VM to get info from 2347 * 2348 * Returns the reference counted task_info structure, which must be 2349 * referenced down with amdgpu_vm_put_task_info. 2350 */ 2351 struct amdgpu_task_info * 2352 amdgpu_vm_get_task_info_vm(struct amdgpu_vm *vm) 2353 { 2354 struct amdgpu_task_info *ti = NULL; 2355 2356 if (vm) { 2357 ti = vm->task_info; 2358 kref_get(&vm->task_info->refcount); 2359 } 2360 2361 return ti; 2362 } 2363 2364 /** 2365 * amdgpu_vm_get_task_info_pasid - Extracts task info for a PASID. 2366 * 2367 * @adev: drm device pointer 2368 * @pasid: PASID identifier for VM 2369 * 2370 * Returns the reference counted task_info structure, which must be 2371 * referenced down with amdgpu_vm_put_task_info. 2372 */ 2373 struct amdgpu_task_info * 2374 amdgpu_vm_get_task_info_pasid(struct amdgpu_device *adev, u32 pasid) 2375 { 2376 return amdgpu_vm_get_task_info_vm( 2377 amdgpu_vm_get_vm_from_pasid(adev, pasid)); 2378 } 2379 2380 static int amdgpu_vm_create_task_info(struct amdgpu_vm *vm) 2381 { 2382 vm->task_info = kzalloc(sizeof(struct amdgpu_task_info), GFP_KERNEL); 2383 if (!vm->task_info) 2384 return -ENOMEM; 2385 2386 kref_init(&vm->task_info->refcount); 2387 return 0; 2388 } 2389 2390 /** 2391 * amdgpu_vm_set_task_info - Sets VMs task info. 2392 * 2393 * @vm: vm for which to set the info 2394 */ 2395 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 2396 { 2397 if (!vm->task_info) 2398 return; 2399 2400 if (vm->task_info->pid == current->pid) 2401 return; 2402 2403 vm->task_info->pid = current->pid; 2404 get_task_comm(vm->task_info->task_name, current); 2405 2406 if (current->group_leader->mm != current->mm) 2407 return; 2408 2409 vm->task_info->tgid = current->group_leader->pid; 2410 get_task_comm(vm->task_info->process_name, current->group_leader); 2411 } 2412 2413 /** 2414 * amdgpu_vm_init - initialize a vm instance 2415 * 2416 * @adev: amdgpu_device pointer 2417 * @vm: requested vm 2418 * @xcp_id: GPU partition selection id 2419 * 2420 * Init @vm fields. 2421 * 2422 * Returns: 2423 * 0 for success, error for failure. 2424 */ 2425 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2426 int32_t xcp_id) 2427 { 2428 struct amdgpu_bo *root_bo; 2429 struct amdgpu_bo_vm *root; 2430 int r, i; 2431 2432 vm->va = RB_ROOT_CACHED; 2433 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2434 vm->reserved_vmid[i] = NULL; 2435 INIT_LIST_HEAD(&vm->evicted); 2436 INIT_LIST_HEAD(&vm->evicted_user); 2437 INIT_LIST_HEAD(&vm->relocated); 2438 INIT_LIST_HEAD(&vm->moved); 2439 INIT_LIST_HEAD(&vm->idle); 2440 INIT_LIST_HEAD(&vm->invalidated); 2441 spin_lock_init(&vm->status_lock); 2442 INIT_LIST_HEAD(&vm->freed); 2443 INIT_LIST_HEAD(&vm->done); 2444 INIT_LIST_HEAD(&vm->pt_freed); 2445 INIT_WORK(&vm->pt_free_work, amdgpu_vm_pt_free_work); 2446 INIT_KFIFO(vm->faults); 2447 2448 r = amdgpu_vm_init_entities(adev, vm); 2449 if (r) 2450 return r; 2451 2452 ttm_lru_bulk_move_init(&vm->lru_bulk_move); 2453 2454 vm->is_compute_context = false; 2455 2456 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2457 AMDGPU_VM_USE_CPU_FOR_GFX); 2458 2459 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2460 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2461 WARN_ONCE((vm->use_cpu_for_update && 2462 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2463 "CPU update of VM recommended only for large BAR system\n"); 2464 2465 if (vm->use_cpu_for_update) 2466 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2467 else 2468 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2469 2470 vm->last_update = dma_fence_get_stub(); 2471 vm->last_unlocked = dma_fence_get_stub(); 2472 vm->last_tlb_flush = dma_fence_get_stub(); 2473 vm->generation = amdgpu_vm_generation(adev, NULL); 2474 2475 mutex_init(&vm->eviction_lock); 2476 vm->evicting = false; 2477 vm->tlb_fence_context = dma_fence_context_alloc(1); 2478 2479 r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level, 2480 false, &root, xcp_id); 2481 if (r) 2482 goto error_free_delayed; 2483 2484 root_bo = amdgpu_bo_ref(&root->bo); 2485 r = amdgpu_bo_reserve(root_bo, true); 2486 if (r) { 2487 amdgpu_bo_unref(&root_bo); 2488 goto error_free_delayed; 2489 } 2490 2491 amdgpu_vm_bo_base_init(&vm->root, vm, root_bo); 2492 r = dma_resv_reserve_fences(root_bo->tbo.base.resv, 1); 2493 if (r) 2494 goto error_free_root; 2495 2496 r = amdgpu_vm_pt_clear(adev, vm, root, false); 2497 if (r) 2498 goto error_free_root; 2499 2500 r = amdgpu_vm_create_task_info(vm); 2501 if (r) 2502 DRM_DEBUG("Failed to create task info for VM\n"); 2503 2504 amdgpu_bo_unreserve(vm->root.bo); 2505 amdgpu_bo_unref(&root_bo); 2506 2507 return 0; 2508 2509 error_free_root: 2510 amdgpu_vm_pt_free_root(adev, vm); 2511 amdgpu_bo_unreserve(vm->root.bo); 2512 amdgpu_bo_unref(&root_bo); 2513 2514 error_free_delayed: 2515 dma_fence_put(vm->last_tlb_flush); 2516 dma_fence_put(vm->last_unlocked); 2517 ttm_lru_bulk_move_fini(&adev->mman.bdev, &vm->lru_bulk_move); 2518 amdgpu_vm_fini_entities(vm); 2519 2520 return r; 2521 } 2522 2523 /** 2524 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 2525 * 2526 * @adev: amdgpu_device pointer 2527 * @vm: requested vm 2528 * 2529 * This only works on GFX VMs that don't have any BOs added and no 2530 * page tables allocated yet. 2531 * 2532 * Changes the following VM parameters: 2533 * - use_cpu_for_update 2534 * - pte_supports_ats 2535 * 2536 * Reinitializes the page directory to reflect the changed ATS 2537 * setting. 2538 * 2539 * Returns: 2540 * 0 for success, -errno for errors. 2541 */ 2542 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2543 { 2544 int r; 2545 2546 r = amdgpu_bo_reserve(vm->root.bo, true); 2547 if (r) 2548 return r; 2549 2550 /* Update VM state */ 2551 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2552 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2553 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2554 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2555 WARN_ONCE((vm->use_cpu_for_update && 2556 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2557 "CPU update of VM recommended only for large BAR system\n"); 2558 2559 if (vm->use_cpu_for_update) { 2560 /* Sync with last SDMA update/clear before switching to CPU */ 2561 r = amdgpu_bo_sync_wait(vm->root.bo, 2562 AMDGPU_FENCE_OWNER_UNDEFINED, true); 2563 if (r) 2564 goto unreserve_bo; 2565 2566 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2567 r = amdgpu_vm_pt_map_tables(adev, vm); 2568 if (r) 2569 goto unreserve_bo; 2570 2571 } else { 2572 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2573 } 2574 2575 dma_fence_put(vm->last_update); 2576 vm->last_update = dma_fence_get_stub(); 2577 vm->is_compute_context = true; 2578 2579 unreserve_bo: 2580 amdgpu_bo_unreserve(vm->root.bo); 2581 return r; 2582 } 2583 2584 /** 2585 * amdgpu_vm_release_compute - release a compute vm 2586 * @adev: amdgpu_device pointer 2587 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute 2588 * 2589 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute 2590 * pasid from vm. Compute should stop use of vm after this call. 2591 */ 2592 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2593 { 2594 amdgpu_vm_set_pasid(adev, vm, 0); 2595 vm->is_compute_context = false; 2596 } 2597 2598 /** 2599 * amdgpu_vm_fini - tear down a vm instance 2600 * 2601 * @adev: amdgpu_device pointer 2602 * @vm: requested vm 2603 * 2604 * Tear down @vm. 2605 * Unbind the VM and remove all bos from the vm bo list 2606 */ 2607 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2608 { 2609 struct amdgpu_bo_va_mapping *mapping, *tmp; 2610 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 2611 struct amdgpu_bo *root; 2612 unsigned long flags; 2613 int i; 2614 2615 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 2616 2617 flush_work(&vm->pt_free_work); 2618 2619 root = amdgpu_bo_ref(vm->root.bo); 2620 amdgpu_bo_reserve(root, true); 2621 amdgpu_vm_put_task_info(vm->task_info); 2622 amdgpu_vm_set_pasid(adev, vm, 0); 2623 dma_fence_wait(vm->last_unlocked, false); 2624 dma_fence_put(vm->last_unlocked); 2625 dma_fence_wait(vm->last_tlb_flush, false); 2626 /* Make sure that all fence callbacks have completed */ 2627 spin_lock_irqsave(vm->last_tlb_flush->lock, flags); 2628 spin_unlock_irqrestore(vm->last_tlb_flush->lock, flags); 2629 dma_fence_put(vm->last_tlb_flush); 2630 2631 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 2632 if (mapping->flags & AMDGPU_PTE_PRT_FLAG(adev) && prt_fini_needed) { 2633 amdgpu_vm_prt_fini(adev, vm); 2634 prt_fini_needed = false; 2635 } 2636 2637 list_del(&mapping->list); 2638 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 2639 } 2640 2641 amdgpu_vm_pt_free_root(adev, vm); 2642 amdgpu_bo_unreserve(root); 2643 amdgpu_bo_unref(&root); 2644 WARN_ON(vm->root.bo); 2645 2646 amdgpu_vm_fini_entities(vm); 2647 2648 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 2649 dev_err(adev->dev, "still active bo inside vm\n"); 2650 } 2651 rbtree_postorder_for_each_entry_safe(mapping, tmp, 2652 &vm->va.rb_root, rb) { 2653 /* Don't remove the mapping here, we don't want to trigger a 2654 * rebalance and the tree is about to be destroyed anyway. 2655 */ 2656 list_del(&mapping->list); 2657 kfree(mapping); 2658 } 2659 2660 dma_fence_put(vm->last_update); 2661 2662 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) { 2663 if (vm->reserved_vmid[i]) { 2664 amdgpu_vmid_free_reserved(adev, i); 2665 vm->reserved_vmid[i] = false; 2666 } 2667 } 2668 2669 ttm_lru_bulk_move_fini(&adev->mman.bdev, &vm->lru_bulk_move); 2670 } 2671 2672 /** 2673 * amdgpu_vm_manager_init - init the VM manager 2674 * 2675 * @adev: amdgpu_device pointer 2676 * 2677 * Initialize the VM manager structures 2678 */ 2679 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 2680 { 2681 unsigned i; 2682 2683 /* Concurrent flushes are only possible starting with Vega10 and 2684 * are broken on Navi10 and Navi14. 2685 */ 2686 adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 || 2687 adev->asic_type == CHIP_NAVI10 || 2688 adev->asic_type == CHIP_NAVI14); 2689 amdgpu_vmid_mgr_init(adev); 2690 2691 adev->vm_manager.fence_context = 2692 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 2693 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 2694 adev->vm_manager.seqno[i] = 0; 2695 2696 spin_lock_init(&adev->vm_manager.prt_lock); 2697 atomic_set(&adev->vm_manager.num_prt_users, 0); 2698 2699 /* If not overridden by the user, by default, only in large BAR systems 2700 * Compute VM tables will be updated by CPU 2701 */ 2702 #ifdef CONFIG_X86_64 2703 if (amdgpu_vm_update_mode == -1) { 2704 /* For asic with VF MMIO access protection 2705 * avoid using CPU for VM table updates 2706 */ 2707 if (amdgpu_gmc_vram_full_visible(&adev->gmc) && 2708 !amdgpu_sriov_vf_mmio_access_protection(adev)) 2709 adev->vm_manager.vm_update_mode = 2710 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 2711 else 2712 adev->vm_manager.vm_update_mode = 0; 2713 } else 2714 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 2715 #else 2716 adev->vm_manager.vm_update_mode = 0; 2717 #endif 2718 2719 xa_init_flags(&adev->vm_manager.pasids, XA_FLAGS_LOCK_IRQ); 2720 } 2721 2722 /** 2723 * amdgpu_vm_manager_fini - cleanup VM manager 2724 * 2725 * @adev: amdgpu_device pointer 2726 * 2727 * Cleanup the VM manager and free resources. 2728 */ 2729 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 2730 { 2731 WARN_ON(!xa_empty(&adev->vm_manager.pasids)); 2732 xa_destroy(&adev->vm_manager.pasids); 2733 2734 amdgpu_vmid_mgr_fini(adev); 2735 } 2736 2737 /** 2738 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 2739 * 2740 * @dev: drm device pointer 2741 * @data: drm_amdgpu_vm 2742 * @filp: drm file pointer 2743 * 2744 * Returns: 2745 * 0 for success, -errno for errors. 2746 */ 2747 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 2748 { 2749 union drm_amdgpu_vm *args = data; 2750 struct amdgpu_device *adev = drm_to_adev(dev); 2751 struct amdgpu_fpriv *fpriv = filp->driver_priv; 2752 2753 /* No valid flags defined yet */ 2754 if (args->in.flags) 2755 return -EINVAL; 2756 2757 switch (args->in.op) { 2758 case AMDGPU_VM_OP_RESERVE_VMID: 2759 /* We only have requirement to reserve vmid from gfxhub */ 2760 if (!fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) { 2761 amdgpu_vmid_alloc_reserved(adev, AMDGPU_GFXHUB(0)); 2762 fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = true; 2763 } 2764 2765 break; 2766 case AMDGPU_VM_OP_UNRESERVE_VMID: 2767 if (fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) { 2768 amdgpu_vmid_free_reserved(adev, AMDGPU_GFXHUB(0)); 2769 fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = false; 2770 } 2771 break; 2772 default: 2773 return -EINVAL; 2774 } 2775 2776 return 0; 2777 } 2778 2779 /** 2780 * amdgpu_vm_handle_fault - graceful handling of VM faults. 2781 * @adev: amdgpu device pointer 2782 * @pasid: PASID of the VM 2783 * @ts: Timestamp of the fault 2784 * @vmid: VMID, only used for GFX 9.4.3. 2785 * @node_id: Node_id received in IH cookie. Only applicable for 2786 * GFX 9.4.3. 2787 * @addr: Address of the fault 2788 * @write_fault: true is write fault, false is read fault 2789 * 2790 * Try to gracefully handle a VM fault. Return true if the fault was handled and 2791 * shouldn't be reported any more. 2792 */ 2793 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid, 2794 u32 vmid, u32 node_id, uint64_t addr, uint64_t ts, 2795 bool write_fault) 2796 { 2797 bool is_compute_context = false; 2798 struct amdgpu_bo *root; 2799 unsigned long irqflags; 2800 uint64_t value, flags; 2801 struct amdgpu_vm *vm; 2802 int r; 2803 2804 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 2805 vm = xa_load(&adev->vm_manager.pasids, pasid); 2806 if (vm) { 2807 root = amdgpu_bo_ref(vm->root.bo); 2808 is_compute_context = vm->is_compute_context; 2809 } else { 2810 root = NULL; 2811 } 2812 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 2813 2814 if (!root) 2815 return false; 2816 2817 addr /= AMDGPU_GPU_PAGE_SIZE; 2818 2819 if (is_compute_context && !svm_range_restore_pages(adev, pasid, vmid, 2820 node_id, addr, ts, write_fault)) { 2821 amdgpu_bo_unref(&root); 2822 return true; 2823 } 2824 2825 r = amdgpu_bo_reserve(root, true); 2826 if (r) 2827 goto error_unref; 2828 2829 /* Double check that the VM still exists */ 2830 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 2831 vm = xa_load(&adev->vm_manager.pasids, pasid); 2832 if (vm && vm->root.bo != root) 2833 vm = NULL; 2834 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 2835 if (!vm) 2836 goto error_unlock; 2837 2838 flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED | 2839 AMDGPU_PTE_SYSTEM; 2840 2841 if (is_compute_context) { 2842 /* Intentionally setting invalid PTE flag 2843 * combination to force a no-retry-fault 2844 */ 2845 flags = AMDGPU_VM_NORETRY_FLAGS; 2846 value = 0; 2847 } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) { 2848 /* Redirect the access to the dummy page */ 2849 value = adev->dummy_page_addr; 2850 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE | 2851 AMDGPU_PTE_WRITEABLE; 2852 2853 } else { 2854 /* Let the hw retry silently on the PTE */ 2855 value = 0; 2856 } 2857 2858 r = dma_resv_reserve_fences(root->tbo.base.resv, 1); 2859 if (r) { 2860 pr_debug("failed %d to reserve fence slot\n", r); 2861 goto error_unlock; 2862 } 2863 2864 r = amdgpu_vm_update_range(adev, vm, true, false, false, false, 2865 NULL, addr, addr, flags, value, 0, NULL, NULL, NULL); 2866 if (r) 2867 goto error_unlock; 2868 2869 r = amdgpu_vm_update_pdes(adev, vm, true); 2870 2871 error_unlock: 2872 amdgpu_bo_unreserve(root); 2873 if (r < 0) 2874 DRM_ERROR("Can't handle page fault (%d)\n", r); 2875 2876 error_unref: 2877 amdgpu_bo_unref(&root); 2878 2879 return false; 2880 } 2881 2882 #if defined(CONFIG_DEBUG_FS) 2883 /** 2884 * amdgpu_debugfs_vm_bo_info - print BO info for the VM 2885 * 2886 * @vm: Requested VM for printing BO info 2887 * @m: debugfs file 2888 * 2889 * Print BO information in debugfs file for the VM 2890 */ 2891 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m) 2892 { 2893 struct amdgpu_bo_va *bo_va, *tmp; 2894 u64 total_idle = 0; 2895 u64 total_evicted = 0; 2896 u64 total_relocated = 0; 2897 u64 total_moved = 0; 2898 u64 total_invalidated = 0; 2899 u64 total_done = 0; 2900 unsigned int total_idle_objs = 0; 2901 unsigned int total_evicted_objs = 0; 2902 unsigned int total_relocated_objs = 0; 2903 unsigned int total_moved_objs = 0; 2904 unsigned int total_invalidated_objs = 0; 2905 unsigned int total_done_objs = 0; 2906 unsigned int id = 0; 2907 2908 spin_lock(&vm->status_lock); 2909 seq_puts(m, "\tIdle BOs:\n"); 2910 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) { 2911 if (!bo_va->base.bo) 2912 continue; 2913 total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2914 } 2915 total_idle_objs = id; 2916 id = 0; 2917 2918 seq_puts(m, "\tEvicted BOs:\n"); 2919 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) { 2920 if (!bo_va->base.bo) 2921 continue; 2922 total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2923 } 2924 total_evicted_objs = id; 2925 id = 0; 2926 2927 seq_puts(m, "\tRelocated BOs:\n"); 2928 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) { 2929 if (!bo_va->base.bo) 2930 continue; 2931 total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2932 } 2933 total_relocated_objs = id; 2934 id = 0; 2935 2936 seq_puts(m, "\tMoved BOs:\n"); 2937 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 2938 if (!bo_va->base.bo) 2939 continue; 2940 total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2941 } 2942 total_moved_objs = id; 2943 id = 0; 2944 2945 seq_puts(m, "\tInvalidated BOs:\n"); 2946 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) { 2947 if (!bo_va->base.bo) 2948 continue; 2949 total_invalidated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2950 } 2951 total_invalidated_objs = id; 2952 id = 0; 2953 2954 seq_puts(m, "\tDone BOs:\n"); 2955 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) { 2956 if (!bo_va->base.bo) 2957 continue; 2958 total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2959 } 2960 spin_unlock(&vm->status_lock); 2961 total_done_objs = id; 2962 2963 seq_printf(m, "\tTotal idle size: %12lld\tobjs:\t%d\n", total_idle, 2964 total_idle_objs); 2965 seq_printf(m, "\tTotal evicted size: %12lld\tobjs:\t%d\n", total_evicted, 2966 total_evicted_objs); 2967 seq_printf(m, "\tTotal relocated size: %12lld\tobjs:\t%d\n", total_relocated, 2968 total_relocated_objs); 2969 seq_printf(m, "\tTotal moved size: %12lld\tobjs:\t%d\n", total_moved, 2970 total_moved_objs); 2971 seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated, 2972 total_invalidated_objs); 2973 seq_printf(m, "\tTotal done size: %12lld\tobjs:\t%d\n", total_done, 2974 total_done_objs); 2975 } 2976 #endif 2977 2978 /** 2979 * amdgpu_vm_update_fault_cache - update cached fault into. 2980 * @adev: amdgpu device pointer 2981 * @pasid: PASID of the VM 2982 * @addr: Address of the fault 2983 * @status: GPUVM fault status register 2984 * @vmhub: which vmhub got the fault 2985 * 2986 * Cache the fault info for later use by userspace in debugging. 2987 */ 2988 void amdgpu_vm_update_fault_cache(struct amdgpu_device *adev, 2989 unsigned int pasid, 2990 uint64_t addr, 2991 uint32_t status, 2992 unsigned int vmhub) 2993 { 2994 struct amdgpu_vm *vm; 2995 unsigned long flags; 2996 2997 xa_lock_irqsave(&adev->vm_manager.pasids, flags); 2998 2999 vm = xa_load(&adev->vm_manager.pasids, pasid); 3000 /* Don't update the fault cache if status is 0. In the multiple 3001 * fault case, subsequent faults will return a 0 status which is 3002 * useless for userspace and replaces the useful fault status, so 3003 * only update if status is non-0. 3004 */ 3005 if (vm && status) { 3006 vm->fault_info.addr = addr; 3007 vm->fault_info.status = status; 3008 /* 3009 * Update the fault information globally for later usage 3010 * when vm could be stale or freed. 3011 */ 3012 adev->vm_manager.fault_info.addr = addr; 3013 adev->vm_manager.fault_info.vmhub = vmhub; 3014 adev->vm_manager.fault_info.status = status; 3015 3016 if (AMDGPU_IS_GFXHUB(vmhub)) { 3017 vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_GFX; 3018 vm->fault_info.vmhub |= 3019 (vmhub - AMDGPU_GFXHUB_START) << AMDGPU_VMHUB_IDX_SHIFT; 3020 } else if (AMDGPU_IS_MMHUB0(vmhub)) { 3021 vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_MM0; 3022 vm->fault_info.vmhub |= 3023 (vmhub - AMDGPU_MMHUB0_START) << AMDGPU_VMHUB_IDX_SHIFT; 3024 } else if (AMDGPU_IS_MMHUB1(vmhub)) { 3025 vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_MM1; 3026 vm->fault_info.vmhub |= 3027 (vmhub - AMDGPU_MMHUB1_START) << AMDGPU_VMHUB_IDX_SHIFT; 3028 } else { 3029 WARN_ONCE(1, "Invalid vmhub %u\n", vmhub); 3030 } 3031 } 3032 xa_unlock_irqrestore(&adev->vm_manager.pasids, flags); 3033 } 3034 3035 /** 3036 * amdgpu_vm_is_bo_always_valid - check if the BO is VM always valid 3037 * 3038 * @vm: VM to test against. 3039 * @bo: BO to be tested. 3040 * 3041 * Returns true if the BO shares the dma_resv object with the root PD and is 3042 * always guaranteed to be valid inside the VM. 3043 */ 3044 bool amdgpu_vm_is_bo_always_valid(struct amdgpu_vm *vm, struct amdgpu_bo *bo) 3045 { 3046 return bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv; 3047 } 3048