xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c (revision 8c69d0298fb56f603e694cf0188e25b58dfe8b7e)
1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 
29 #include <linux/dma-fence-array.h>
30 #include <linux/interval_tree_generic.h>
31 #include <linux/idr.h>
32 #include <linux/dma-buf.h>
33 
34 #include <drm/amdgpu_drm.h>
35 #include <drm/drm_drv.h>
36 #include "amdgpu.h"
37 #include "amdgpu_trace.h"
38 #include "amdgpu_amdkfd.h"
39 #include "amdgpu_gmc.h"
40 #include "amdgpu_xgmi.h"
41 #include "amdgpu_dma_buf.h"
42 #include "amdgpu_res_cursor.h"
43 #include "kfd_svm.h"
44 
45 /**
46  * DOC: GPUVM
47  *
48  * GPUVM is similar to the legacy gart on older asics, however
49  * rather than there being a single global gart table
50  * for the entire GPU, there are multiple VM page tables active
51  * at any given time.  The VM page tables can contain a mix
52  * vram pages and system memory pages and system memory pages
53  * can be mapped as snooped (cached system pages) or unsnooped
54  * (uncached system pages).
55  * Each VM has an ID associated with it and there is a page table
56  * associated with each VMID.  When execting a command buffer,
57  * the kernel tells the the ring what VMID to use for that command
58  * buffer.  VMIDs are allocated dynamically as commands are submitted.
59  * The userspace drivers maintain their own address space and the kernel
60  * sets up their pages tables accordingly when they submit their
61  * command buffers and a VMID is assigned.
62  * Cayman/Trinity support up to 8 active VMs at any given time;
63  * SI supports 16.
64  */
65 
66 #define START(node) ((node)->start)
67 #define LAST(node) ((node)->last)
68 
69 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
70 		     START, LAST, static, amdgpu_vm_it)
71 
72 #undef START
73 #undef LAST
74 
75 /**
76  * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
77  */
78 struct amdgpu_prt_cb {
79 
80 	/**
81 	 * @adev: amdgpu device
82 	 */
83 	struct amdgpu_device *adev;
84 
85 	/**
86 	 * @cb: callback
87 	 */
88 	struct dma_fence_cb cb;
89 };
90 
91 /*
92  * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS
93  * happens while holding this lock anywhere to prevent deadlocks when
94  * an MMU notifier runs in reclaim-FS context.
95  */
96 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm)
97 {
98 	mutex_lock(&vm->eviction_lock);
99 	vm->saved_flags = memalloc_noreclaim_save();
100 }
101 
102 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm)
103 {
104 	if (mutex_trylock(&vm->eviction_lock)) {
105 		vm->saved_flags = memalloc_noreclaim_save();
106 		return 1;
107 	}
108 	return 0;
109 }
110 
111 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm)
112 {
113 	memalloc_noreclaim_restore(vm->saved_flags);
114 	mutex_unlock(&vm->eviction_lock);
115 }
116 
117 /**
118  * amdgpu_vm_level_shift - return the addr shift for each level
119  *
120  * @adev: amdgpu_device pointer
121  * @level: VMPT level
122  *
123  * Returns:
124  * The number of bits the pfn needs to be right shifted for a level.
125  */
126 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
127 				      unsigned level)
128 {
129 	switch (level) {
130 	case AMDGPU_VM_PDB2:
131 	case AMDGPU_VM_PDB1:
132 	case AMDGPU_VM_PDB0:
133 		return 9 * (AMDGPU_VM_PDB0 - level) +
134 			adev->vm_manager.block_size;
135 	case AMDGPU_VM_PTB:
136 		return 0;
137 	default:
138 		return ~0;
139 	}
140 }
141 
142 /**
143  * amdgpu_vm_num_entries - return the number of entries in a PD/PT
144  *
145  * @adev: amdgpu_device pointer
146  * @level: VMPT level
147  *
148  * Returns:
149  * The number of entries in a page directory or page table.
150  */
151 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
152 				      unsigned level)
153 {
154 	unsigned shift = amdgpu_vm_level_shift(adev,
155 					       adev->vm_manager.root_level);
156 
157 	if (level == adev->vm_manager.root_level)
158 		/* For the root directory */
159 		return round_up(adev->vm_manager.max_pfn, 1ULL << shift)
160 			>> shift;
161 	else if (level != AMDGPU_VM_PTB)
162 		/* Everything in between */
163 		return 512;
164 	else
165 		/* For the page tables on the leaves */
166 		return AMDGPU_VM_PTE_COUNT(adev);
167 }
168 
169 /**
170  * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD
171  *
172  * @adev: amdgpu_device pointer
173  *
174  * Returns:
175  * The number of entries in the root page directory which needs the ATS setting.
176  */
177 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev)
178 {
179 	unsigned shift;
180 
181 	shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level);
182 	return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT);
183 }
184 
185 /**
186  * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
187  *
188  * @adev: amdgpu_device pointer
189  * @level: VMPT level
190  *
191  * Returns:
192  * The mask to extract the entry number of a PD/PT from an address.
193  */
194 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
195 				       unsigned int level)
196 {
197 	if (level <= adev->vm_manager.root_level)
198 		return 0xffffffff;
199 	else if (level != AMDGPU_VM_PTB)
200 		return 0x1ff;
201 	else
202 		return AMDGPU_VM_PTE_COUNT(adev) - 1;
203 }
204 
205 /**
206  * amdgpu_vm_bo_size - returns the size of the BOs in bytes
207  *
208  * @adev: amdgpu_device pointer
209  * @level: VMPT level
210  *
211  * Returns:
212  * The size of the BO for a page directory or page table in bytes.
213  */
214 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
215 {
216 	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
217 }
218 
219 /**
220  * amdgpu_vm_bo_evicted - vm_bo is evicted
221  *
222  * @vm_bo: vm_bo which is evicted
223  *
224  * State for PDs/PTs and per VM BOs which are not at the location they should
225  * be.
226  */
227 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
228 {
229 	struct amdgpu_vm *vm = vm_bo->vm;
230 	struct amdgpu_bo *bo = vm_bo->bo;
231 
232 	vm_bo->moved = true;
233 	if (bo->tbo.type == ttm_bo_type_kernel)
234 		list_move(&vm_bo->vm_status, &vm->evicted);
235 	else
236 		list_move_tail(&vm_bo->vm_status, &vm->evicted);
237 }
238 /**
239  * amdgpu_vm_bo_moved - vm_bo is moved
240  *
241  * @vm_bo: vm_bo which is moved
242  *
243  * State for per VM BOs which are moved, but that change is not yet reflected
244  * in the page tables.
245  */
246 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
247 {
248 	list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
249 }
250 
251 /**
252  * amdgpu_vm_bo_idle - vm_bo is idle
253  *
254  * @vm_bo: vm_bo which is now idle
255  *
256  * State for PDs/PTs and per VM BOs which have gone through the state machine
257  * and are now idle.
258  */
259 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
260 {
261 	list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
262 	vm_bo->moved = false;
263 }
264 
265 /**
266  * amdgpu_vm_bo_invalidated - vm_bo is invalidated
267  *
268  * @vm_bo: vm_bo which is now invalidated
269  *
270  * State for normal BOs which are invalidated and that change not yet reflected
271  * in the PTs.
272  */
273 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
274 {
275 	spin_lock(&vm_bo->vm->invalidated_lock);
276 	list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
277 	spin_unlock(&vm_bo->vm->invalidated_lock);
278 }
279 
280 /**
281  * amdgpu_vm_bo_relocated - vm_bo is reloacted
282  *
283  * @vm_bo: vm_bo which is relocated
284  *
285  * State for PDs/PTs which needs to update their parent PD.
286  * For the root PD, just move to idle state.
287  */
288 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
289 {
290 	if (vm_bo->bo->parent)
291 		list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
292 	else
293 		amdgpu_vm_bo_idle(vm_bo);
294 }
295 
296 /**
297  * amdgpu_vm_bo_done - vm_bo is done
298  *
299  * @vm_bo: vm_bo which is now done
300  *
301  * State for normal BOs which are invalidated and that change has been updated
302  * in the PTs.
303  */
304 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
305 {
306 	spin_lock(&vm_bo->vm->invalidated_lock);
307 	list_move(&vm_bo->vm_status, &vm_bo->vm->done);
308 	spin_unlock(&vm_bo->vm->invalidated_lock);
309 }
310 
311 /**
312  * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
313  *
314  * @base: base structure for tracking BO usage in a VM
315  * @vm: vm to which bo is to be added
316  * @bo: amdgpu buffer object
317  *
318  * Initialize a bo_va_base structure and add it to the appropriate lists
319  *
320  */
321 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
322 				   struct amdgpu_vm *vm,
323 				   struct amdgpu_bo *bo)
324 {
325 	base->vm = vm;
326 	base->bo = bo;
327 	base->next = NULL;
328 	INIT_LIST_HEAD(&base->vm_status);
329 
330 	if (!bo)
331 		return;
332 	base->next = bo->vm_bo;
333 	bo->vm_bo = base;
334 
335 	if (bo->tbo.base.resv != vm->root.base.bo->tbo.base.resv)
336 		return;
337 
338 	vm->bulk_moveable = false;
339 	if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
340 		amdgpu_vm_bo_relocated(base);
341 	else
342 		amdgpu_vm_bo_idle(base);
343 
344 	if (bo->preferred_domains &
345 	    amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type))
346 		return;
347 
348 	/*
349 	 * we checked all the prerequisites, but it looks like this per vm bo
350 	 * is currently evicted. add the bo to the evicted list to make sure it
351 	 * is validated on next vm use to avoid fault.
352 	 * */
353 	amdgpu_vm_bo_evicted(base);
354 }
355 
356 /**
357  * amdgpu_vm_pt_parent - get the parent page directory
358  *
359  * @pt: child page table
360  *
361  * Helper to get the parent entry for the child page table. NULL if we are at
362  * the root page directory.
363  */
364 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt)
365 {
366 	struct amdgpu_bo *parent = pt->base.bo->parent;
367 
368 	if (!parent)
369 		return NULL;
370 
371 	return container_of(parent->vm_bo, struct amdgpu_vm_pt, base);
372 }
373 
374 /*
375  * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
376  */
377 struct amdgpu_vm_pt_cursor {
378 	uint64_t pfn;
379 	struct amdgpu_vm_pt *parent;
380 	struct amdgpu_vm_pt *entry;
381 	unsigned level;
382 };
383 
384 /**
385  * amdgpu_vm_pt_start - start PD/PT walk
386  *
387  * @adev: amdgpu_device pointer
388  * @vm: amdgpu_vm structure
389  * @start: start address of the walk
390  * @cursor: state to initialize
391  *
392  * Initialize a amdgpu_vm_pt_cursor to start a walk.
393  */
394 static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
395 			       struct amdgpu_vm *vm, uint64_t start,
396 			       struct amdgpu_vm_pt_cursor *cursor)
397 {
398 	cursor->pfn = start;
399 	cursor->parent = NULL;
400 	cursor->entry = &vm->root;
401 	cursor->level = adev->vm_manager.root_level;
402 }
403 
404 /**
405  * amdgpu_vm_pt_descendant - go to child node
406  *
407  * @adev: amdgpu_device pointer
408  * @cursor: current state
409  *
410  * Walk to the child node of the current node.
411  * Returns:
412  * True if the walk was possible, false otherwise.
413  */
414 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
415 				    struct amdgpu_vm_pt_cursor *cursor)
416 {
417 	unsigned mask, shift, idx;
418 
419 	if (!cursor->entry->entries)
420 		return false;
421 
422 	BUG_ON(!cursor->entry->base.bo);
423 	mask = amdgpu_vm_entries_mask(adev, cursor->level);
424 	shift = amdgpu_vm_level_shift(adev, cursor->level);
425 
426 	++cursor->level;
427 	idx = (cursor->pfn >> shift) & mask;
428 	cursor->parent = cursor->entry;
429 	cursor->entry = &cursor->entry->entries[idx];
430 	return true;
431 }
432 
433 /**
434  * amdgpu_vm_pt_sibling - go to sibling node
435  *
436  * @adev: amdgpu_device pointer
437  * @cursor: current state
438  *
439  * Walk to the sibling node of the current node.
440  * Returns:
441  * True if the walk was possible, false otherwise.
442  */
443 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
444 				 struct amdgpu_vm_pt_cursor *cursor)
445 {
446 	unsigned shift, num_entries;
447 
448 	/* Root doesn't have a sibling */
449 	if (!cursor->parent)
450 		return false;
451 
452 	/* Go to our parents and see if we got a sibling */
453 	shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
454 	num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
455 
456 	if (cursor->entry == &cursor->parent->entries[num_entries - 1])
457 		return false;
458 
459 	cursor->pfn += 1ULL << shift;
460 	cursor->pfn &= ~((1ULL << shift) - 1);
461 	++cursor->entry;
462 	return true;
463 }
464 
465 /**
466  * amdgpu_vm_pt_ancestor - go to parent node
467  *
468  * @cursor: current state
469  *
470  * Walk to the parent node of the current node.
471  * Returns:
472  * True if the walk was possible, false otherwise.
473  */
474 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
475 {
476 	if (!cursor->parent)
477 		return false;
478 
479 	--cursor->level;
480 	cursor->entry = cursor->parent;
481 	cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
482 	return true;
483 }
484 
485 /**
486  * amdgpu_vm_pt_next - get next PD/PT in hieratchy
487  *
488  * @adev: amdgpu_device pointer
489  * @cursor: current state
490  *
491  * Walk the PD/PT tree to the next node.
492  */
493 static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
494 			      struct amdgpu_vm_pt_cursor *cursor)
495 {
496 	/* First try a newborn child */
497 	if (amdgpu_vm_pt_descendant(adev, cursor))
498 		return;
499 
500 	/* If that didn't worked try to find a sibling */
501 	while (!amdgpu_vm_pt_sibling(adev, cursor)) {
502 		/* No sibling, go to our parents and grandparents */
503 		if (!amdgpu_vm_pt_ancestor(cursor)) {
504 			cursor->pfn = ~0ll;
505 			return;
506 		}
507 	}
508 }
509 
510 /**
511  * amdgpu_vm_pt_first_dfs - start a deep first search
512  *
513  * @adev: amdgpu_device structure
514  * @vm: amdgpu_vm structure
515  * @start: optional cursor to start with
516  * @cursor: state to initialize
517  *
518  * Starts a deep first traversal of the PD/PT tree.
519  */
520 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
521 				   struct amdgpu_vm *vm,
522 				   struct amdgpu_vm_pt_cursor *start,
523 				   struct amdgpu_vm_pt_cursor *cursor)
524 {
525 	if (start)
526 		*cursor = *start;
527 	else
528 		amdgpu_vm_pt_start(adev, vm, 0, cursor);
529 	while (amdgpu_vm_pt_descendant(adev, cursor));
530 }
531 
532 /**
533  * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
534  *
535  * @start: starting point for the search
536  * @entry: current entry
537  *
538  * Returns:
539  * True when the search should continue, false otherwise.
540  */
541 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
542 				      struct amdgpu_vm_pt *entry)
543 {
544 	return entry && (!start || entry != start->entry);
545 }
546 
547 /**
548  * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
549  *
550  * @adev: amdgpu_device structure
551  * @cursor: current state
552  *
553  * Move the cursor to the next node in a deep first search.
554  */
555 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
556 				  struct amdgpu_vm_pt_cursor *cursor)
557 {
558 	if (!cursor->entry)
559 		return;
560 
561 	if (!cursor->parent)
562 		cursor->entry = NULL;
563 	else if (amdgpu_vm_pt_sibling(adev, cursor))
564 		while (amdgpu_vm_pt_descendant(adev, cursor));
565 	else
566 		amdgpu_vm_pt_ancestor(cursor);
567 }
568 
569 /*
570  * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
571  */
572 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)		\
573 	for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)),		\
574 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
575 	     amdgpu_vm_pt_continue_dfs((start), (entry));			\
576 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
577 
578 /**
579  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
580  *
581  * @vm: vm providing the BOs
582  * @validated: head of validation list
583  * @entry: entry to add
584  *
585  * Add the page directory to the list of BOs to
586  * validate for command submission.
587  */
588 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
589 			 struct list_head *validated,
590 			 struct amdgpu_bo_list_entry *entry)
591 {
592 	entry->priority = 0;
593 	entry->tv.bo = &vm->root.base.bo->tbo;
594 	/* Two for VM updates, one for TTM and one for the CS job */
595 	entry->tv.num_shared = 4;
596 	entry->user_pages = NULL;
597 	list_add(&entry->tv.head, validated);
598 }
599 
600 /**
601  * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag
602  *
603  * @bo: BO which was removed from the LRU
604  *
605  * Make sure the bulk_moveable flag is updated when a BO is removed from the
606  * LRU.
607  */
608 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo)
609 {
610 	struct amdgpu_bo *abo;
611 	struct amdgpu_vm_bo_base *bo_base;
612 
613 	if (!amdgpu_bo_is_amdgpu_bo(bo))
614 		return;
615 
616 	if (bo->pin_count)
617 		return;
618 
619 	abo = ttm_to_amdgpu_bo(bo);
620 	if (!abo->parent)
621 		return;
622 	for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) {
623 		struct amdgpu_vm *vm = bo_base->vm;
624 
625 		if (abo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
626 			vm->bulk_moveable = false;
627 	}
628 
629 }
630 /**
631  * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
632  *
633  * @adev: amdgpu device pointer
634  * @vm: vm providing the BOs
635  *
636  * Move all BOs to the end of LRU and remember their positions to put them
637  * together.
638  */
639 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
640 				struct amdgpu_vm *vm)
641 {
642 	struct amdgpu_vm_bo_base *bo_base;
643 
644 	if (vm->bulk_moveable) {
645 		spin_lock(&adev->mman.bdev.lru_lock);
646 		ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
647 		spin_unlock(&adev->mman.bdev.lru_lock);
648 		return;
649 	}
650 
651 	memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
652 
653 	spin_lock(&adev->mman.bdev.lru_lock);
654 	list_for_each_entry(bo_base, &vm->idle, vm_status) {
655 		struct amdgpu_bo *bo = bo_base->bo;
656 
657 		if (!bo->parent)
658 			continue;
659 
660 		ttm_bo_move_to_lru_tail(&bo->tbo, bo->tbo.resource,
661 					&vm->lru_bulk_move);
662 		if (bo->shadow)
663 			ttm_bo_move_to_lru_tail(&bo->shadow->tbo,
664 						bo->shadow->tbo.resource,
665 						&vm->lru_bulk_move);
666 	}
667 	spin_unlock(&adev->mman.bdev.lru_lock);
668 
669 	vm->bulk_moveable = true;
670 }
671 
672 /**
673  * amdgpu_vm_validate_pt_bos - validate the page table BOs
674  *
675  * @adev: amdgpu device pointer
676  * @vm: vm providing the BOs
677  * @validate: callback to do the validation
678  * @param: parameter for the validation callback
679  *
680  * Validate the page table BOs on command submission if neccessary.
681  *
682  * Returns:
683  * Validation result.
684  */
685 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
686 			      int (*validate)(void *p, struct amdgpu_bo *bo),
687 			      void *param)
688 {
689 	struct amdgpu_vm_bo_base *bo_base, *tmp;
690 	int r;
691 
692 	vm->bulk_moveable &= list_empty(&vm->evicted);
693 
694 	list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
695 		struct amdgpu_bo *bo = bo_base->bo;
696 
697 		r = validate(param, bo);
698 		if (r)
699 			return r;
700 
701 		if (bo->tbo.type != ttm_bo_type_kernel) {
702 			amdgpu_vm_bo_moved(bo_base);
703 		} else {
704 			vm->update_funcs->map_table(bo);
705 			amdgpu_vm_bo_relocated(bo_base);
706 		}
707 	}
708 
709 	amdgpu_vm_eviction_lock(vm);
710 	vm->evicting = false;
711 	amdgpu_vm_eviction_unlock(vm);
712 
713 	return 0;
714 }
715 
716 /**
717  * amdgpu_vm_ready - check VM is ready for updates
718  *
719  * @vm: VM to check
720  *
721  * Check if all VM PDs/PTs are ready for updates
722  *
723  * Returns:
724  * True if eviction list is empty.
725  */
726 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
727 {
728 	return list_empty(&vm->evicted);
729 }
730 
731 /**
732  * amdgpu_vm_clear_bo - initially clear the PDs/PTs
733  *
734  * @adev: amdgpu_device pointer
735  * @vm: VM to clear BO from
736  * @bo: BO to clear
737  * @immediate: use an immediate update
738  *
739  * Root PD needs to be reserved when calling this.
740  *
741  * Returns:
742  * 0 on success, errno otherwise.
743  */
744 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
745 			      struct amdgpu_vm *vm,
746 			      struct amdgpu_bo *bo,
747 			      bool immediate)
748 {
749 	struct ttm_operation_ctx ctx = { true, false };
750 	unsigned level = adev->vm_manager.root_level;
751 	struct amdgpu_vm_update_params params;
752 	struct amdgpu_bo *ancestor = bo;
753 	unsigned entries, ats_entries;
754 	uint64_t addr;
755 	int r;
756 
757 	/* Figure out our place in the hierarchy */
758 	if (ancestor->parent) {
759 		++level;
760 		while (ancestor->parent->parent) {
761 			++level;
762 			ancestor = ancestor->parent;
763 		}
764 	}
765 
766 	entries = amdgpu_bo_size(bo) / 8;
767 	if (!vm->pte_support_ats) {
768 		ats_entries = 0;
769 
770 	} else if (!bo->parent) {
771 		ats_entries = amdgpu_vm_num_ats_entries(adev);
772 		ats_entries = min(ats_entries, entries);
773 		entries -= ats_entries;
774 
775 	} else {
776 		struct amdgpu_vm_pt *pt;
777 
778 		pt = container_of(ancestor->vm_bo, struct amdgpu_vm_pt, base);
779 		ats_entries = amdgpu_vm_num_ats_entries(adev);
780 		if ((pt - vm->root.entries) >= ats_entries) {
781 			ats_entries = 0;
782 		} else {
783 			ats_entries = entries;
784 			entries = 0;
785 		}
786 	}
787 
788 	r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
789 	if (r)
790 		return r;
791 
792 	if (bo->shadow) {
793 		r = ttm_bo_validate(&bo->shadow->tbo, &bo->shadow->placement,
794 				    &ctx);
795 		if (r)
796 			return r;
797 	}
798 
799 	r = vm->update_funcs->map_table(bo);
800 	if (r)
801 		return r;
802 
803 	memset(&params, 0, sizeof(params));
804 	params.adev = adev;
805 	params.vm = vm;
806 	params.immediate = immediate;
807 
808 	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
809 	if (r)
810 		return r;
811 
812 	addr = 0;
813 	if (ats_entries) {
814 		uint64_t value = 0, flags;
815 
816 		flags = AMDGPU_PTE_DEFAULT_ATC;
817 		if (level != AMDGPU_VM_PTB) {
818 			/* Handle leaf PDEs as PTEs */
819 			flags |= AMDGPU_PDE_PTE;
820 			amdgpu_gmc_get_vm_pde(adev, level, &value, &flags);
821 		}
822 
823 		r = vm->update_funcs->update(&params, bo, addr, 0, ats_entries,
824 					     value, flags);
825 		if (r)
826 			return r;
827 
828 		addr += ats_entries * 8;
829 	}
830 
831 	if (entries) {
832 		uint64_t value = 0, flags = 0;
833 
834 		if (adev->asic_type >= CHIP_VEGA10) {
835 			if (level != AMDGPU_VM_PTB) {
836 				/* Handle leaf PDEs as PTEs */
837 				flags |= AMDGPU_PDE_PTE;
838 				amdgpu_gmc_get_vm_pde(adev, level,
839 						      &value, &flags);
840 			} else {
841 				/* Workaround for fault priority problem on GMC9 */
842 				flags = AMDGPU_PTE_EXECUTABLE;
843 			}
844 		}
845 
846 		r = vm->update_funcs->update(&params, bo, addr, 0, entries,
847 					     value, flags);
848 		if (r)
849 			return r;
850 	}
851 
852 	return vm->update_funcs->commit(&params, NULL);
853 }
854 
855 /**
856  * amdgpu_vm_pt_create - create bo for PD/PT
857  *
858  * @adev: amdgpu_device pointer
859  * @vm: requesting vm
860  * @level: the page table level
861  * @immediate: use a immediate update
862  * @bo: pointer to the buffer object pointer
863  */
864 static int amdgpu_vm_pt_create(struct amdgpu_device *adev,
865 			       struct amdgpu_vm *vm,
866 			       int level, bool immediate,
867 			       struct amdgpu_bo **bo)
868 {
869 	struct amdgpu_bo_param bp;
870 	int r;
871 
872 	memset(&bp, 0, sizeof(bp));
873 
874 	bp.size = amdgpu_vm_bo_size(adev, level);
875 	bp.byte_align = AMDGPU_GPU_PAGE_SIZE;
876 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
877 	bp.domain = amdgpu_bo_get_preferred_pin_domain(adev, bp.domain);
878 	bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
879 		AMDGPU_GEM_CREATE_CPU_GTT_USWC;
880 	bp.bo_ptr_size = sizeof(struct amdgpu_bo);
881 	if (vm->use_cpu_for_update)
882 		bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
883 
884 	bp.type = ttm_bo_type_kernel;
885 	bp.no_wait_gpu = immediate;
886 	if (vm->root.base.bo)
887 		bp.resv = vm->root.base.bo->tbo.base.resv;
888 
889 	r = amdgpu_bo_create(adev, &bp, bo);
890 	if (r)
891 		return r;
892 
893 	if (vm->is_compute_context && (adev->flags & AMD_IS_APU))
894 		return 0;
895 
896 	if (!bp.resv)
897 		WARN_ON(dma_resv_lock((*bo)->tbo.base.resv,
898 				      NULL));
899 	r = amdgpu_bo_create_shadow(adev, bp.size, *bo);
900 
901 	if (!bp.resv)
902 		dma_resv_unlock((*bo)->tbo.base.resv);
903 
904 	if (r) {
905 		amdgpu_bo_unref(bo);
906 		return r;
907 	}
908 
909 	return 0;
910 }
911 
912 /**
913  * amdgpu_vm_alloc_pts - Allocate a specific page table
914  *
915  * @adev: amdgpu_device pointer
916  * @vm: VM to allocate page tables for
917  * @cursor: Which page table to allocate
918  * @immediate: use an immediate update
919  *
920  * Make sure a specific page table or directory is allocated.
921  *
922  * Returns:
923  * 1 if page table needed to be allocated, 0 if page table was already
924  * allocated, negative errno if an error occurred.
925  */
926 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
927 			       struct amdgpu_vm *vm,
928 			       struct amdgpu_vm_pt_cursor *cursor,
929 			       bool immediate)
930 {
931 	struct amdgpu_vm_pt *entry = cursor->entry;
932 	struct amdgpu_bo *pt;
933 	int r;
934 
935 	if (cursor->level < AMDGPU_VM_PTB && !entry->entries) {
936 		unsigned num_entries;
937 
938 		num_entries = amdgpu_vm_num_entries(adev, cursor->level);
939 		entry->entries = kvmalloc_array(num_entries,
940 						sizeof(*entry->entries),
941 						GFP_KERNEL | __GFP_ZERO);
942 		if (!entry->entries)
943 			return -ENOMEM;
944 	}
945 
946 	if (entry->base.bo)
947 		return 0;
948 
949 	r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt);
950 	if (r)
951 		return r;
952 
953 	/* Keep a reference to the root directory to avoid
954 	 * freeing them up in the wrong order.
955 	 */
956 	pt->parent = amdgpu_bo_ref(cursor->parent->base.bo);
957 	amdgpu_vm_bo_base_init(&entry->base, vm, pt);
958 
959 	r = amdgpu_vm_clear_bo(adev, vm, pt, immediate);
960 	if (r)
961 		goto error_free_pt;
962 
963 	return 0;
964 
965 error_free_pt:
966 	amdgpu_bo_unref(&pt->shadow);
967 	amdgpu_bo_unref(&pt);
968 	return r;
969 }
970 
971 /**
972  * amdgpu_vm_free_table - fre one PD/PT
973  *
974  * @entry: PDE to free
975  */
976 static void amdgpu_vm_free_table(struct amdgpu_vm_pt *entry)
977 {
978 	if (entry->base.bo) {
979 		entry->base.bo->vm_bo = NULL;
980 		list_del(&entry->base.vm_status);
981 		amdgpu_bo_unref(&entry->base.bo->shadow);
982 		amdgpu_bo_unref(&entry->base.bo);
983 	}
984 	kvfree(entry->entries);
985 	entry->entries = NULL;
986 }
987 
988 /**
989  * amdgpu_vm_free_pts - free PD/PT levels
990  *
991  * @adev: amdgpu device structure
992  * @vm: amdgpu vm structure
993  * @start: optional cursor where to start freeing PDs/PTs
994  *
995  * Free the page directory or page table level and all sub levels.
996  */
997 static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
998 			       struct amdgpu_vm *vm,
999 			       struct amdgpu_vm_pt_cursor *start)
1000 {
1001 	struct amdgpu_vm_pt_cursor cursor;
1002 	struct amdgpu_vm_pt *entry;
1003 
1004 	vm->bulk_moveable = false;
1005 
1006 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
1007 		amdgpu_vm_free_table(entry);
1008 
1009 	if (start)
1010 		amdgpu_vm_free_table(start->entry);
1011 }
1012 
1013 /**
1014  * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
1015  *
1016  * @adev: amdgpu_device pointer
1017  */
1018 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
1019 {
1020 	const struct amdgpu_ip_block *ip_block;
1021 	bool has_compute_vm_bug;
1022 	struct amdgpu_ring *ring;
1023 	int i;
1024 
1025 	has_compute_vm_bug = false;
1026 
1027 	ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
1028 	if (ip_block) {
1029 		/* Compute has a VM bug for GFX version < 7.
1030 		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
1031 		if (ip_block->version->major <= 7)
1032 			has_compute_vm_bug = true;
1033 		else if (ip_block->version->major == 8)
1034 			if (adev->gfx.mec_fw_version < 673)
1035 				has_compute_vm_bug = true;
1036 	}
1037 
1038 	for (i = 0; i < adev->num_rings; i++) {
1039 		ring = adev->rings[i];
1040 		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
1041 			/* only compute rings */
1042 			ring->has_compute_vm_bug = has_compute_vm_bug;
1043 		else
1044 			ring->has_compute_vm_bug = false;
1045 	}
1046 }
1047 
1048 /**
1049  * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
1050  *
1051  * @ring: ring on which the job will be submitted
1052  * @job: job to submit
1053  *
1054  * Returns:
1055  * True if sync is needed.
1056  */
1057 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
1058 				  struct amdgpu_job *job)
1059 {
1060 	struct amdgpu_device *adev = ring->adev;
1061 	unsigned vmhub = ring->funcs->vmhub;
1062 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1063 	struct amdgpu_vmid *id;
1064 	bool gds_switch_needed;
1065 	bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
1066 
1067 	if (job->vmid == 0)
1068 		return false;
1069 	id = &id_mgr->ids[job->vmid];
1070 	gds_switch_needed = ring->funcs->emit_gds_switch && (
1071 		id->gds_base != job->gds_base ||
1072 		id->gds_size != job->gds_size ||
1073 		id->gws_base != job->gws_base ||
1074 		id->gws_size != job->gws_size ||
1075 		id->oa_base != job->oa_base ||
1076 		id->oa_size != job->oa_size);
1077 
1078 	if (amdgpu_vmid_had_gpu_reset(adev, id))
1079 		return true;
1080 
1081 	return vm_flush_needed || gds_switch_needed;
1082 }
1083 
1084 /**
1085  * amdgpu_vm_flush - hardware flush the vm
1086  *
1087  * @ring: ring to use for flush
1088  * @job:  related job
1089  * @need_pipe_sync: is pipe sync needed
1090  *
1091  * Emit a VM flush when it is necessary.
1092  *
1093  * Returns:
1094  * 0 on success, errno otherwise.
1095  */
1096 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
1097 		    bool need_pipe_sync)
1098 {
1099 	struct amdgpu_device *adev = ring->adev;
1100 	unsigned vmhub = ring->funcs->vmhub;
1101 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1102 	struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1103 	bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1104 		id->gds_base != job->gds_base ||
1105 		id->gds_size != job->gds_size ||
1106 		id->gws_base != job->gws_base ||
1107 		id->gws_size != job->gws_size ||
1108 		id->oa_base != job->oa_base ||
1109 		id->oa_size != job->oa_size);
1110 	bool vm_flush_needed = job->vm_needs_flush;
1111 	struct dma_fence *fence = NULL;
1112 	bool pasid_mapping_needed = false;
1113 	unsigned patch_offset = 0;
1114 	bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL));
1115 	int r;
1116 
1117 	if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid)
1118 		adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid);
1119 
1120 	if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1121 		gds_switch_needed = true;
1122 		vm_flush_needed = true;
1123 		pasid_mapping_needed = true;
1124 	}
1125 
1126 	mutex_lock(&id_mgr->lock);
1127 	if (id->pasid != job->pasid || !id->pasid_mapping ||
1128 	    !dma_fence_is_signaled(id->pasid_mapping))
1129 		pasid_mapping_needed = true;
1130 	mutex_unlock(&id_mgr->lock);
1131 
1132 	gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1133 	vm_flush_needed &= !!ring->funcs->emit_vm_flush  &&
1134 			job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1135 	pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1136 		ring->funcs->emit_wreg;
1137 
1138 	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
1139 		return 0;
1140 
1141 	if (ring->funcs->init_cond_exec)
1142 		patch_offset = amdgpu_ring_init_cond_exec(ring);
1143 
1144 	if (need_pipe_sync)
1145 		amdgpu_ring_emit_pipeline_sync(ring);
1146 
1147 	if (vm_flush_needed) {
1148 		trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1149 		amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1150 	}
1151 
1152 	if (pasid_mapping_needed)
1153 		amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1154 
1155 	if (vm_flush_needed || pasid_mapping_needed) {
1156 		r = amdgpu_fence_emit(ring, &fence, 0);
1157 		if (r)
1158 			return r;
1159 	}
1160 
1161 	if (vm_flush_needed) {
1162 		mutex_lock(&id_mgr->lock);
1163 		dma_fence_put(id->last_flush);
1164 		id->last_flush = dma_fence_get(fence);
1165 		id->current_gpu_reset_count =
1166 			atomic_read(&adev->gpu_reset_counter);
1167 		mutex_unlock(&id_mgr->lock);
1168 	}
1169 
1170 	if (pasid_mapping_needed) {
1171 		mutex_lock(&id_mgr->lock);
1172 		id->pasid = job->pasid;
1173 		dma_fence_put(id->pasid_mapping);
1174 		id->pasid_mapping = dma_fence_get(fence);
1175 		mutex_unlock(&id_mgr->lock);
1176 	}
1177 	dma_fence_put(fence);
1178 
1179 	if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1180 		id->gds_base = job->gds_base;
1181 		id->gds_size = job->gds_size;
1182 		id->gws_base = job->gws_base;
1183 		id->gws_size = job->gws_size;
1184 		id->oa_base = job->oa_base;
1185 		id->oa_size = job->oa_size;
1186 		amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1187 					    job->gds_size, job->gws_base,
1188 					    job->gws_size, job->oa_base,
1189 					    job->oa_size);
1190 	}
1191 
1192 	if (ring->funcs->patch_cond_exec)
1193 		amdgpu_ring_patch_cond_exec(ring, patch_offset);
1194 
1195 	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1196 	if (ring->funcs->emit_switch_buffer) {
1197 		amdgpu_ring_emit_switch_buffer(ring);
1198 		amdgpu_ring_emit_switch_buffer(ring);
1199 	}
1200 	return 0;
1201 }
1202 
1203 /**
1204  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1205  *
1206  * @vm: requested vm
1207  * @bo: requested buffer object
1208  *
1209  * Find @bo inside the requested vm.
1210  * Search inside the @bos vm list for the requested vm
1211  * Returns the found bo_va or NULL if none is found
1212  *
1213  * Object has to be reserved!
1214  *
1215  * Returns:
1216  * Found bo_va or NULL.
1217  */
1218 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1219 				       struct amdgpu_bo *bo)
1220 {
1221 	struct amdgpu_vm_bo_base *base;
1222 
1223 	for (base = bo->vm_bo; base; base = base->next) {
1224 		if (base->vm != vm)
1225 			continue;
1226 
1227 		return container_of(base, struct amdgpu_bo_va, base);
1228 	}
1229 	return NULL;
1230 }
1231 
1232 /**
1233  * amdgpu_vm_map_gart - Resolve gart mapping of addr
1234  *
1235  * @pages_addr: optional DMA address to use for lookup
1236  * @addr: the unmapped addr
1237  *
1238  * Look up the physical address of the page that the pte resolves
1239  * to.
1240  *
1241  * Returns:
1242  * The pointer for the page table entry.
1243  */
1244 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1245 {
1246 	uint64_t result;
1247 
1248 	/* page table offset */
1249 	result = pages_addr[addr >> PAGE_SHIFT];
1250 
1251 	/* in case cpu page size != gpu page size*/
1252 	result |= addr & (~PAGE_MASK);
1253 
1254 	result &= 0xFFFFFFFFFFFFF000ULL;
1255 
1256 	return result;
1257 }
1258 
1259 /**
1260  * amdgpu_vm_update_pde - update a single level in the hierarchy
1261  *
1262  * @params: parameters for the update
1263  * @vm: requested vm
1264  * @entry: entry to update
1265  *
1266  * Makes sure the requested entry in parent is up to date.
1267  */
1268 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params,
1269 				struct amdgpu_vm *vm,
1270 				struct amdgpu_vm_pt *entry)
1271 {
1272 	struct amdgpu_vm_pt *parent = amdgpu_vm_pt_parent(entry);
1273 	struct amdgpu_bo *bo = parent->base.bo, *pbo;
1274 	uint64_t pde, pt, flags;
1275 	unsigned level;
1276 
1277 	for (level = 0, pbo = bo->parent; pbo; ++level)
1278 		pbo = pbo->parent;
1279 
1280 	level += params->adev->vm_manager.root_level;
1281 	amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags);
1282 	pde = (entry - parent->entries) * 8;
1283 	return vm->update_funcs->update(params, bo, pde, pt, 1, 0, flags);
1284 }
1285 
1286 /**
1287  * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1288  *
1289  * @adev: amdgpu_device pointer
1290  * @vm: related vm
1291  *
1292  * Mark all PD level as invalid after an error.
1293  */
1294 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1295 				     struct amdgpu_vm *vm)
1296 {
1297 	struct amdgpu_vm_pt_cursor cursor;
1298 	struct amdgpu_vm_pt *entry;
1299 
1300 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry)
1301 		if (entry->base.bo && !entry->base.moved)
1302 			amdgpu_vm_bo_relocated(&entry->base);
1303 }
1304 
1305 /**
1306  * amdgpu_vm_update_pdes - make sure that all directories are valid
1307  *
1308  * @adev: amdgpu_device pointer
1309  * @vm: requested vm
1310  * @immediate: submit immediately to the paging queue
1311  *
1312  * Makes sure all directories are up to date.
1313  *
1314  * Returns:
1315  * 0 for success, error for failure.
1316  */
1317 int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
1318 			  struct amdgpu_vm *vm, bool immediate)
1319 {
1320 	struct amdgpu_vm_update_params params;
1321 	int r;
1322 
1323 	if (list_empty(&vm->relocated))
1324 		return 0;
1325 
1326 	memset(&params, 0, sizeof(params));
1327 	params.adev = adev;
1328 	params.vm = vm;
1329 	params.immediate = immediate;
1330 
1331 	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
1332 	if (r)
1333 		return r;
1334 
1335 	while (!list_empty(&vm->relocated)) {
1336 		struct amdgpu_vm_pt *entry;
1337 
1338 		entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt,
1339 					 base.vm_status);
1340 		amdgpu_vm_bo_idle(&entry->base);
1341 
1342 		r = amdgpu_vm_update_pde(&params, vm, entry);
1343 		if (r)
1344 			goto error;
1345 	}
1346 
1347 	r = vm->update_funcs->commit(&params, &vm->last_update);
1348 	if (r)
1349 		goto error;
1350 	return 0;
1351 
1352 error:
1353 	amdgpu_vm_invalidate_pds(adev, vm);
1354 	return r;
1355 }
1356 
1357 /*
1358  * amdgpu_vm_update_flags - figure out flags for PTE updates
1359  *
1360  * Make sure to set the right flags for the PTEs at the desired level.
1361  */
1362 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params,
1363 				   struct amdgpu_bo *bo, unsigned level,
1364 				   uint64_t pe, uint64_t addr,
1365 				   unsigned count, uint32_t incr,
1366 				   uint64_t flags)
1367 
1368 {
1369 	if (level != AMDGPU_VM_PTB) {
1370 		flags |= AMDGPU_PDE_PTE;
1371 		amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1372 
1373 	} else if (params->adev->asic_type >= CHIP_VEGA10 &&
1374 		   !(flags & AMDGPU_PTE_VALID) &&
1375 		   !(flags & AMDGPU_PTE_PRT)) {
1376 
1377 		/* Workaround for fault priority problem on GMC9 */
1378 		flags |= AMDGPU_PTE_EXECUTABLE;
1379 	}
1380 
1381 	params->vm->update_funcs->update(params, bo, pe, addr, count, incr,
1382 					 flags);
1383 }
1384 
1385 /**
1386  * amdgpu_vm_fragment - get fragment for PTEs
1387  *
1388  * @params: see amdgpu_vm_update_params definition
1389  * @start: first PTE to handle
1390  * @end: last PTE to handle
1391  * @flags: hw mapping flags
1392  * @frag: resulting fragment size
1393  * @frag_end: end of this fragment
1394  *
1395  * Returns the first possible fragment for the start and end address.
1396  */
1397 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params,
1398 			       uint64_t start, uint64_t end, uint64_t flags,
1399 			       unsigned int *frag, uint64_t *frag_end)
1400 {
1401 	/**
1402 	 * The MC L1 TLB supports variable sized pages, based on a fragment
1403 	 * field in the PTE. When this field is set to a non-zero value, page
1404 	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1405 	 * flags are considered valid for all PTEs within the fragment range
1406 	 * and corresponding mappings are assumed to be physically contiguous.
1407 	 *
1408 	 * The L1 TLB can store a single PTE for the whole fragment,
1409 	 * significantly increasing the space available for translation
1410 	 * caching. This leads to large improvements in throughput when the
1411 	 * TLB is under pressure.
1412 	 *
1413 	 * The L2 TLB distributes small and large fragments into two
1414 	 * asymmetric partitions. The large fragment cache is significantly
1415 	 * larger. Thus, we try to use large fragments wherever possible.
1416 	 * Userspace can support this by aligning virtual base address and
1417 	 * allocation size to the fragment size.
1418 	 *
1419 	 * Starting with Vega10 the fragment size only controls the L1. The L2
1420 	 * is now directly feed with small/huge/giant pages from the walker.
1421 	 */
1422 	unsigned max_frag;
1423 
1424 	if (params->adev->asic_type < CHIP_VEGA10)
1425 		max_frag = params->adev->vm_manager.fragment_size;
1426 	else
1427 		max_frag = 31;
1428 
1429 	/* system pages are non continuously */
1430 	if (params->pages_addr) {
1431 		*frag = 0;
1432 		*frag_end = end;
1433 		return;
1434 	}
1435 
1436 	/* This intentionally wraps around if no bit is set */
1437 	*frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1438 	if (*frag >= max_frag) {
1439 		*frag = max_frag;
1440 		*frag_end = end & ~((1ULL << max_frag) - 1);
1441 	} else {
1442 		*frag_end = start + (1 << *frag);
1443 	}
1444 }
1445 
1446 /**
1447  * amdgpu_vm_update_ptes - make sure that page tables are valid
1448  *
1449  * @params: see amdgpu_vm_update_params definition
1450  * @start: start of GPU address range
1451  * @end: end of GPU address range
1452  * @dst: destination address to map to, the next dst inside the function
1453  * @flags: mapping flags
1454  *
1455  * Update the page tables in the range @start - @end.
1456  *
1457  * Returns:
1458  * 0 for success, -EINVAL for failure.
1459  */
1460 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params,
1461 				 uint64_t start, uint64_t end,
1462 				 uint64_t dst, uint64_t flags)
1463 {
1464 	struct amdgpu_device *adev = params->adev;
1465 	struct amdgpu_vm_pt_cursor cursor;
1466 	uint64_t frag_start = start, frag_end;
1467 	unsigned int frag;
1468 	int r;
1469 
1470 	/* figure out the initial fragment */
1471 	amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
1472 
1473 	/* walk over the address space and update the PTs */
1474 	amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1475 	while (cursor.pfn < end) {
1476 		unsigned shift, parent_shift, mask;
1477 		uint64_t incr, entry_end, pe_start;
1478 		struct amdgpu_bo *pt;
1479 
1480 		if (!params->unlocked) {
1481 			/* make sure that the page tables covering the
1482 			 * address range are actually allocated
1483 			 */
1484 			r = amdgpu_vm_alloc_pts(params->adev, params->vm,
1485 						&cursor, params->immediate);
1486 			if (r)
1487 				return r;
1488 		}
1489 
1490 		shift = amdgpu_vm_level_shift(adev, cursor.level);
1491 		parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1492 		if (params->unlocked) {
1493 			/* Unlocked updates are only allowed on the leaves */
1494 			if (amdgpu_vm_pt_descendant(adev, &cursor))
1495 				continue;
1496 		} else if (adev->asic_type < CHIP_VEGA10 &&
1497 			   (flags & AMDGPU_PTE_VALID)) {
1498 			/* No huge page support before GMC v9 */
1499 			if (cursor.level != AMDGPU_VM_PTB) {
1500 				if (!amdgpu_vm_pt_descendant(adev, &cursor))
1501 					return -ENOENT;
1502 				continue;
1503 			}
1504 		} else if (frag < shift) {
1505 			/* We can't use this level when the fragment size is
1506 			 * smaller than the address shift. Go to the next
1507 			 * child entry and try again.
1508 			 */
1509 			if (amdgpu_vm_pt_descendant(adev, &cursor))
1510 				continue;
1511 		} else if (frag >= parent_shift) {
1512 			/* If the fragment size is even larger than the parent
1513 			 * shift we should go up one level and check it again.
1514 			 */
1515 			if (!amdgpu_vm_pt_ancestor(&cursor))
1516 				return -EINVAL;
1517 			continue;
1518 		}
1519 
1520 		pt = cursor.entry->base.bo;
1521 		if (!pt) {
1522 			/* We need all PDs and PTs for mapping something, */
1523 			if (flags & AMDGPU_PTE_VALID)
1524 				return -ENOENT;
1525 
1526 			/* but unmapping something can happen at a higher
1527 			 * level.
1528 			 */
1529 			if (!amdgpu_vm_pt_ancestor(&cursor))
1530 				return -EINVAL;
1531 
1532 			pt = cursor.entry->base.bo;
1533 			shift = parent_shift;
1534 			frag_end = max(frag_end, ALIGN(frag_start + 1,
1535 				   1ULL << shift));
1536 		}
1537 
1538 		/* Looks good so far, calculate parameters for the update */
1539 		incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
1540 		mask = amdgpu_vm_entries_mask(adev, cursor.level);
1541 		pe_start = ((cursor.pfn >> shift) & mask) * 8;
1542 		entry_end = ((uint64_t)mask + 1) << shift;
1543 		entry_end += cursor.pfn & ~(entry_end - 1);
1544 		entry_end = min(entry_end, end);
1545 
1546 		do {
1547 			struct amdgpu_vm *vm = params->vm;
1548 			uint64_t upd_end = min(entry_end, frag_end);
1549 			unsigned nptes = (upd_end - frag_start) >> shift;
1550 			uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag);
1551 
1552 			/* This can happen when we set higher level PDs to
1553 			 * silent to stop fault floods.
1554 			 */
1555 			nptes = max(nptes, 1u);
1556 
1557 			trace_amdgpu_vm_update_ptes(params, frag_start, upd_end,
1558 						    nptes, dst, incr, upd_flags,
1559 						    vm->task_info.pid,
1560 						    vm->immediate.fence_context);
1561 			amdgpu_vm_update_flags(params, pt, cursor.level,
1562 					       pe_start, dst, nptes, incr,
1563 					       upd_flags);
1564 
1565 			pe_start += nptes * 8;
1566 			dst += nptes * incr;
1567 
1568 			frag_start = upd_end;
1569 			if (frag_start >= frag_end) {
1570 				/* figure out the next fragment */
1571 				amdgpu_vm_fragment(params, frag_start, end,
1572 						   flags, &frag, &frag_end);
1573 				if (frag < shift)
1574 					break;
1575 			}
1576 		} while (frag_start < entry_end);
1577 
1578 		if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1579 			/* Free all child entries.
1580 			 * Update the tables with the flags and addresses and free up subsequent
1581 			 * tables in the case of huge pages or freed up areas.
1582 			 * This is the maximum you can free, because all other page tables are not
1583 			 * completely covered by the range and so potentially still in use.
1584 			 */
1585 			while (cursor.pfn < frag_start) {
1586 				amdgpu_vm_free_pts(adev, params->vm, &cursor);
1587 				amdgpu_vm_pt_next(adev, &cursor);
1588 				params->table_freed = true;
1589 			}
1590 
1591 		} else if (frag >= shift) {
1592 			/* or just move on to the next on the same level. */
1593 			amdgpu_vm_pt_next(adev, &cursor);
1594 		}
1595 	}
1596 
1597 	return 0;
1598 }
1599 
1600 /**
1601  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1602  *
1603  * @adev: amdgpu_device pointer of the VM
1604  * @bo_adev: amdgpu_device pointer of the mapped BO
1605  * @vm: requested vm
1606  * @immediate: immediate submission in a page fault
1607  * @unlocked: unlocked invalidation during MM callback
1608  * @resv: fences we need to sync to
1609  * @start: start of mapped range
1610  * @last: last mapped entry
1611  * @flags: flags for the entries
1612  * @offset: offset into nodes and pages_addr
1613  * @res: ttm_resource to map
1614  * @pages_addr: DMA addresses to use for mapping
1615  * @fence: optional resulting fence
1616  * @table_freed: return true if page table is freed
1617  *
1618  * Fill in the page table entries between @start and @last.
1619  *
1620  * Returns:
1621  * 0 for success, -EINVAL for failure.
1622  */
1623 int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1624 				struct amdgpu_device *bo_adev,
1625 				struct amdgpu_vm *vm, bool immediate,
1626 				bool unlocked, struct dma_resv *resv,
1627 				uint64_t start, uint64_t last,
1628 				uint64_t flags, uint64_t offset,
1629 				struct ttm_resource *res,
1630 				dma_addr_t *pages_addr,
1631 				struct dma_fence **fence,
1632 				bool *table_freed)
1633 {
1634 	struct amdgpu_vm_update_params params;
1635 	struct amdgpu_res_cursor cursor;
1636 	enum amdgpu_sync_mode sync_mode;
1637 	int r, idx;
1638 
1639 	if (!drm_dev_enter(&adev->ddev, &idx))
1640 		return -ENODEV;
1641 
1642 	memset(&params, 0, sizeof(params));
1643 	params.adev = adev;
1644 	params.vm = vm;
1645 	params.immediate = immediate;
1646 	params.pages_addr = pages_addr;
1647 	params.unlocked = unlocked;
1648 
1649 	/* Implicitly sync to command submissions in the same VM before
1650 	 * unmapping. Sync to moving fences before mapping.
1651 	 */
1652 	if (!(flags & AMDGPU_PTE_VALID))
1653 		sync_mode = AMDGPU_SYNC_EQ_OWNER;
1654 	else
1655 		sync_mode = AMDGPU_SYNC_EXPLICIT;
1656 
1657 	amdgpu_vm_eviction_lock(vm);
1658 	if (vm->evicting) {
1659 		r = -EBUSY;
1660 		goto error_unlock;
1661 	}
1662 
1663 	if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) {
1664 		struct dma_fence *tmp = dma_fence_get_stub();
1665 
1666 		amdgpu_bo_fence(vm->root.base.bo, vm->last_unlocked, true);
1667 		swap(vm->last_unlocked, tmp);
1668 		dma_fence_put(tmp);
1669 	}
1670 
1671 	r = vm->update_funcs->prepare(&params, resv, sync_mode);
1672 	if (r)
1673 		goto error_unlock;
1674 
1675 	amdgpu_res_first(res, offset, (last - start + 1) * AMDGPU_GPU_PAGE_SIZE,
1676 			 &cursor);
1677 	while (cursor.remaining) {
1678 		uint64_t tmp, num_entries, addr;
1679 
1680 		num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT;
1681 		if (pages_addr) {
1682 			bool contiguous = true;
1683 
1684 			if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) {
1685 				uint64_t pfn = cursor.start >> PAGE_SHIFT;
1686 				uint64_t count;
1687 
1688 				contiguous = pages_addr[pfn + 1] ==
1689 					pages_addr[pfn] + PAGE_SIZE;
1690 
1691 				tmp = num_entries /
1692 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1693 				for (count = 2; count < tmp; ++count) {
1694 					uint64_t idx = pfn + count;
1695 
1696 					if (contiguous != (pages_addr[idx] ==
1697 					    pages_addr[idx - 1] + PAGE_SIZE))
1698 						break;
1699 				}
1700 				num_entries = count *
1701 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1702 			}
1703 
1704 			if (!contiguous) {
1705 				addr = cursor.start;
1706 				params.pages_addr = pages_addr;
1707 			} else {
1708 				addr = pages_addr[cursor.start >> PAGE_SHIFT];
1709 				params.pages_addr = NULL;
1710 			}
1711 
1712 		} else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) {
1713 			addr = bo_adev->vm_manager.vram_base_offset +
1714 				cursor.start;
1715 		} else {
1716 			addr = 0;
1717 		}
1718 
1719 		tmp = start + num_entries;
1720 		r = amdgpu_vm_update_ptes(&params, start, tmp, addr, flags);
1721 		if (r)
1722 			goto error_unlock;
1723 
1724 		amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE);
1725 		start = tmp;
1726 	};
1727 
1728 	r = vm->update_funcs->commit(&params, fence);
1729 
1730 	if (table_freed)
1731 		*table_freed = params.table_freed;
1732 
1733 error_unlock:
1734 	amdgpu_vm_eviction_unlock(vm);
1735 	drm_dev_exit(idx);
1736 	return r;
1737 }
1738 
1739 void amdgpu_vm_get_memory(struct amdgpu_vm *vm, uint64_t *vram_mem,
1740 				uint64_t *gtt_mem, uint64_t *cpu_mem)
1741 {
1742 	struct amdgpu_bo_va *bo_va, *tmp;
1743 
1744 	list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
1745 		if (!bo_va->base.bo)
1746 			continue;
1747 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1748 				gtt_mem, cpu_mem);
1749 	}
1750 	list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
1751 		if (!bo_va->base.bo)
1752 			continue;
1753 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1754 				gtt_mem, cpu_mem);
1755 	}
1756 	list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
1757 		if (!bo_va->base.bo)
1758 			continue;
1759 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1760 				gtt_mem, cpu_mem);
1761 	}
1762 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
1763 		if (!bo_va->base.bo)
1764 			continue;
1765 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1766 				gtt_mem, cpu_mem);
1767 	}
1768 	spin_lock(&vm->invalidated_lock);
1769 	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
1770 		if (!bo_va->base.bo)
1771 			continue;
1772 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1773 				gtt_mem, cpu_mem);
1774 	}
1775 	list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
1776 		if (!bo_va->base.bo)
1777 			continue;
1778 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1779 				gtt_mem, cpu_mem);
1780 	}
1781 	spin_unlock(&vm->invalidated_lock);
1782 }
1783 /**
1784  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1785  *
1786  * @adev: amdgpu_device pointer
1787  * @bo_va: requested BO and VM object
1788  * @clear: if true clear the entries
1789  *
1790  * Fill in the page table entries for @bo_va.
1791  *
1792  * Returns:
1793  * 0 for success, -EINVAL for failure.
1794  */
1795 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
1796 			bool clear)
1797 {
1798 	struct amdgpu_bo *bo = bo_va->base.bo;
1799 	struct amdgpu_vm *vm = bo_va->base.vm;
1800 	struct amdgpu_bo_va_mapping *mapping;
1801 	dma_addr_t *pages_addr = NULL;
1802 	struct ttm_resource *mem;
1803 	struct dma_fence **last_update;
1804 	struct dma_resv *resv;
1805 	uint64_t flags;
1806 	struct amdgpu_device *bo_adev = adev;
1807 	int r;
1808 
1809 	if (clear || !bo) {
1810 		mem = NULL;
1811 		resv = vm->root.base.bo->tbo.base.resv;
1812 	} else {
1813 		struct drm_gem_object *obj = &bo->tbo.base;
1814 
1815 		resv = bo->tbo.base.resv;
1816 		if (obj->import_attach && bo_va->is_xgmi) {
1817 			struct dma_buf *dma_buf = obj->import_attach->dmabuf;
1818 			struct drm_gem_object *gobj = dma_buf->priv;
1819 			struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj);
1820 
1821 			if (abo->tbo.resource->mem_type == TTM_PL_VRAM)
1822 				bo = gem_to_amdgpu_bo(gobj);
1823 		}
1824 		mem = bo->tbo.resource;
1825 		if (mem->mem_type == TTM_PL_TT)
1826 			pages_addr = bo->tbo.ttm->dma_address;
1827 	}
1828 
1829 	if (bo) {
1830 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1831 
1832 		if (amdgpu_bo_encrypted(bo))
1833 			flags |= AMDGPU_PTE_TMZ;
1834 
1835 		bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1836 	} else {
1837 		flags = 0x0;
1838 	}
1839 
1840 	if (clear || (bo && bo->tbo.base.resv ==
1841 		      vm->root.base.bo->tbo.base.resv))
1842 		last_update = &vm->last_update;
1843 	else
1844 		last_update = &bo_va->last_pt_update;
1845 
1846 	if (!clear && bo_va->base.moved) {
1847 		bo_va->base.moved = false;
1848 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1849 
1850 	} else if (bo_va->cleared != clear) {
1851 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1852 	}
1853 
1854 	list_for_each_entry(mapping, &bo_va->invalids, list) {
1855 		uint64_t update_flags = flags;
1856 
1857 		/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1858 		 * but in case of something, we filter the flags in first place
1859 		 */
1860 		if (!(mapping->flags & AMDGPU_PTE_READABLE))
1861 			update_flags &= ~AMDGPU_PTE_READABLE;
1862 		if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1863 			update_flags &= ~AMDGPU_PTE_WRITEABLE;
1864 
1865 		/* Apply ASIC specific mapping flags */
1866 		amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags);
1867 
1868 		trace_amdgpu_vm_bo_update(mapping);
1869 
1870 		r = amdgpu_vm_bo_update_mapping(adev, bo_adev, vm, false, false,
1871 						resv, mapping->start,
1872 						mapping->last, update_flags,
1873 						mapping->offset, mem,
1874 						pages_addr, last_update, NULL);
1875 		if (r)
1876 			return r;
1877 	}
1878 
1879 	/* If the BO is not in its preferred location add it back to
1880 	 * the evicted list so that it gets validated again on the
1881 	 * next command submission.
1882 	 */
1883 	if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
1884 		uint32_t mem_type = bo->tbo.resource->mem_type;
1885 
1886 		if (!(bo->preferred_domains &
1887 		      amdgpu_mem_type_to_domain(mem_type)))
1888 			amdgpu_vm_bo_evicted(&bo_va->base);
1889 		else
1890 			amdgpu_vm_bo_idle(&bo_va->base);
1891 	} else {
1892 		amdgpu_vm_bo_done(&bo_va->base);
1893 	}
1894 
1895 	list_splice_init(&bo_va->invalids, &bo_va->valids);
1896 	bo_va->cleared = clear;
1897 
1898 	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1899 		list_for_each_entry(mapping, &bo_va->valids, list)
1900 			trace_amdgpu_vm_bo_mapping(mapping);
1901 	}
1902 
1903 	return 0;
1904 }
1905 
1906 /**
1907  * amdgpu_vm_update_prt_state - update the global PRT state
1908  *
1909  * @adev: amdgpu_device pointer
1910  */
1911 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1912 {
1913 	unsigned long flags;
1914 	bool enable;
1915 
1916 	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1917 	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1918 	adev->gmc.gmc_funcs->set_prt(adev, enable);
1919 	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1920 }
1921 
1922 /**
1923  * amdgpu_vm_prt_get - add a PRT user
1924  *
1925  * @adev: amdgpu_device pointer
1926  */
1927 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1928 {
1929 	if (!adev->gmc.gmc_funcs->set_prt)
1930 		return;
1931 
1932 	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1933 		amdgpu_vm_update_prt_state(adev);
1934 }
1935 
1936 /**
1937  * amdgpu_vm_prt_put - drop a PRT user
1938  *
1939  * @adev: amdgpu_device pointer
1940  */
1941 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1942 {
1943 	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1944 		amdgpu_vm_update_prt_state(adev);
1945 }
1946 
1947 /**
1948  * amdgpu_vm_prt_cb - callback for updating the PRT status
1949  *
1950  * @fence: fence for the callback
1951  * @_cb: the callback function
1952  */
1953 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1954 {
1955 	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1956 
1957 	amdgpu_vm_prt_put(cb->adev);
1958 	kfree(cb);
1959 }
1960 
1961 /**
1962  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1963  *
1964  * @adev: amdgpu_device pointer
1965  * @fence: fence for the callback
1966  */
1967 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1968 				 struct dma_fence *fence)
1969 {
1970 	struct amdgpu_prt_cb *cb;
1971 
1972 	if (!adev->gmc.gmc_funcs->set_prt)
1973 		return;
1974 
1975 	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1976 	if (!cb) {
1977 		/* Last resort when we are OOM */
1978 		if (fence)
1979 			dma_fence_wait(fence, false);
1980 
1981 		amdgpu_vm_prt_put(adev);
1982 	} else {
1983 		cb->adev = adev;
1984 		if (!fence || dma_fence_add_callback(fence, &cb->cb,
1985 						     amdgpu_vm_prt_cb))
1986 			amdgpu_vm_prt_cb(fence, &cb->cb);
1987 	}
1988 }
1989 
1990 /**
1991  * amdgpu_vm_free_mapping - free a mapping
1992  *
1993  * @adev: amdgpu_device pointer
1994  * @vm: requested vm
1995  * @mapping: mapping to be freed
1996  * @fence: fence of the unmap operation
1997  *
1998  * Free a mapping and make sure we decrease the PRT usage count if applicable.
1999  */
2000 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
2001 				   struct amdgpu_vm *vm,
2002 				   struct amdgpu_bo_va_mapping *mapping,
2003 				   struct dma_fence *fence)
2004 {
2005 	if (mapping->flags & AMDGPU_PTE_PRT)
2006 		amdgpu_vm_add_prt_cb(adev, fence);
2007 	kfree(mapping);
2008 }
2009 
2010 /**
2011  * amdgpu_vm_prt_fini - finish all prt mappings
2012  *
2013  * @adev: amdgpu_device pointer
2014  * @vm: requested vm
2015  *
2016  * Register a cleanup callback to disable PRT support after VM dies.
2017  */
2018 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2019 {
2020 	struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
2021 	struct dma_fence *excl, **shared;
2022 	unsigned i, shared_count;
2023 	int r;
2024 
2025 	r = dma_resv_get_fences_rcu(resv, &excl,
2026 					      &shared_count, &shared);
2027 	if (r) {
2028 		/* Not enough memory to grab the fence list, as last resort
2029 		 * block for all the fences to complete.
2030 		 */
2031 		dma_resv_wait_timeout_rcu(resv, true, false,
2032 						    MAX_SCHEDULE_TIMEOUT);
2033 		return;
2034 	}
2035 
2036 	/* Add a callback for each fence in the reservation object */
2037 	amdgpu_vm_prt_get(adev);
2038 	amdgpu_vm_add_prt_cb(adev, excl);
2039 
2040 	for (i = 0; i < shared_count; ++i) {
2041 		amdgpu_vm_prt_get(adev);
2042 		amdgpu_vm_add_prt_cb(adev, shared[i]);
2043 	}
2044 
2045 	kfree(shared);
2046 }
2047 
2048 /**
2049  * amdgpu_vm_clear_freed - clear freed BOs in the PT
2050  *
2051  * @adev: amdgpu_device pointer
2052  * @vm: requested vm
2053  * @fence: optional resulting fence (unchanged if no work needed to be done
2054  * or if an error occurred)
2055  *
2056  * Make sure all freed BOs are cleared in the PT.
2057  * PTs have to be reserved and mutex must be locked!
2058  *
2059  * Returns:
2060  * 0 for success.
2061  *
2062  */
2063 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
2064 			  struct amdgpu_vm *vm,
2065 			  struct dma_fence **fence)
2066 {
2067 	struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
2068 	struct amdgpu_bo_va_mapping *mapping;
2069 	uint64_t init_pte_value = 0;
2070 	struct dma_fence *f = NULL;
2071 	int r;
2072 
2073 	while (!list_empty(&vm->freed)) {
2074 		mapping = list_first_entry(&vm->freed,
2075 			struct amdgpu_bo_va_mapping, list);
2076 		list_del(&mapping->list);
2077 
2078 		if (vm->pte_support_ats &&
2079 		    mapping->start < AMDGPU_GMC_HOLE_START)
2080 			init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
2081 
2082 		r = amdgpu_vm_bo_update_mapping(adev, adev, vm, false, false,
2083 						resv, mapping->start,
2084 						mapping->last, init_pte_value,
2085 						0, NULL, NULL, &f, NULL);
2086 		amdgpu_vm_free_mapping(adev, vm, mapping, f);
2087 		if (r) {
2088 			dma_fence_put(f);
2089 			return r;
2090 		}
2091 	}
2092 
2093 	if (fence && f) {
2094 		dma_fence_put(*fence);
2095 		*fence = f;
2096 	} else {
2097 		dma_fence_put(f);
2098 	}
2099 
2100 	return 0;
2101 
2102 }
2103 
2104 /**
2105  * amdgpu_vm_handle_moved - handle moved BOs in the PT
2106  *
2107  * @adev: amdgpu_device pointer
2108  * @vm: requested vm
2109  *
2110  * Make sure all BOs which are moved are updated in the PTs.
2111  *
2112  * Returns:
2113  * 0 for success.
2114  *
2115  * PTs have to be reserved!
2116  */
2117 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
2118 			   struct amdgpu_vm *vm)
2119 {
2120 	struct amdgpu_bo_va *bo_va, *tmp;
2121 	struct dma_resv *resv;
2122 	bool clear;
2123 	int r;
2124 
2125 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
2126 		/* Per VM BOs never need to bo cleared in the page tables */
2127 		r = amdgpu_vm_bo_update(adev, bo_va, false);
2128 		if (r)
2129 			return r;
2130 	}
2131 
2132 	spin_lock(&vm->invalidated_lock);
2133 	while (!list_empty(&vm->invalidated)) {
2134 		bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
2135 					 base.vm_status);
2136 		resv = bo_va->base.bo->tbo.base.resv;
2137 		spin_unlock(&vm->invalidated_lock);
2138 
2139 		/* Try to reserve the BO to avoid clearing its ptes */
2140 		if (!amdgpu_vm_debug && dma_resv_trylock(resv))
2141 			clear = false;
2142 		/* Somebody else is using the BO right now */
2143 		else
2144 			clear = true;
2145 
2146 		r = amdgpu_vm_bo_update(adev, bo_va, clear);
2147 		if (r)
2148 			return r;
2149 
2150 		if (!clear)
2151 			dma_resv_unlock(resv);
2152 		spin_lock(&vm->invalidated_lock);
2153 	}
2154 	spin_unlock(&vm->invalidated_lock);
2155 
2156 	return 0;
2157 }
2158 
2159 /**
2160  * amdgpu_vm_bo_add - add a bo to a specific vm
2161  *
2162  * @adev: amdgpu_device pointer
2163  * @vm: requested vm
2164  * @bo: amdgpu buffer object
2165  *
2166  * Add @bo into the requested vm.
2167  * Add @bo to the list of bos associated with the vm
2168  *
2169  * Returns:
2170  * Newly added bo_va or NULL for failure
2171  *
2172  * Object has to be reserved!
2173  */
2174 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2175 				      struct amdgpu_vm *vm,
2176 				      struct amdgpu_bo *bo)
2177 {
2178 	struct amdgpu_bo_va *bo_va;
2179 
2180 	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2181 	if (bo_va == NULL) {
2182 		return NULL;
2183 	}
2184 	amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
2185 
2186 	bo_va->ref_count = 1;
2187 	INIT_LIST_HEAD(&bo_va->valids);
2188 	INIT_LIST_HEAD(&bo_va->invalids);
2189 
2190 	if (!bo)
2191 		return bo_va;
2192 
2193 	if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) {
2194 		bo_va->is_xgmi = true;
2195 		/* Power up XGMI if it can be potentially used */
2196 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20);
2197 	}
2198 
2199 	return bo_va;
2200 }
2201 
2202 
2203 /**
2204  * amdgpu_vm_bo_insert_map - insert a new mapping
2205  *
2206  * @adev: amdgpu_device pointer
2207  * @bo_va: bo_va to store the address
2208  * @mapping: the mapping to insert
2209  *
2210  * Insert a new mapping into all structures.
2211  */
2212 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2213 				    struct amdgpu_bo_va *bo_va,
2214 				    struct amdgpu_bo_va_mapping *mapping)
2215 {
2216 	struct amdgpu_vm *vm = bo_va->base.vm;
2217 	struct amdgpu_bo *bo = bo_va->base.bo;
2218 
2219 	mapping->bo_va = bo_va;
2220 	list_add(&mapping->list, &bo_va->invalids);
2221 	amdgpu_vm_it_insert(mapping, &vm->va);
2222 
2223 	if (mapping->flags & AMDGPU_PTE_PRT)
2224 		amdgpu_vm_prt_get(adev);
2225 
2226 	if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv &&
2227 	    !bo_va->base.moved) {
2228 		list_move(&bo_va->base.vm_status, &vm->moved);
2229 	}
2230 	trace_amdgpu_vm_bo_map(bo_va, mapping);
2231 }
2232 
2233 /**
2234  * amdgpu_vm_bo_map - map bo inside a vm
2235  *
2236  * @adev: amdgpu_device pointer
2237  * @bo_va: bo_va to store the address
2238  * @saddr: where to map the BO
2239  * @offset: requested offset in the BO
2240  * @size: BO size in bytes
2241  * @flags: attributes of pages (read/write/valid/etc.)
2242  *
2243  * Add a mapping of the BO at the specefied addr into the VM.
2244  *
2245  * Returns:
2246  * 0 for success, error for failure.
2247  *
2248  * Object has to be reserved and unreserved outside!
2249  */
2250 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2251 		     struct amdgpu_bo_va *bo_va,
2252 		     uint64_t saddr, uint64_t offset,
2253 		     uint64_t size, uint64_t flags)
2254 {
2255 	struct amdgpu_bo_va_mapping *mapping, *tmp;
2256 	struct amdgpu_bo *bo = bo_va->base.bo;
2257 	struct amdgpu_vm *vm = bo_va->base.vm;
2258 	uint64_t eaddr;
2259 
2260 	/* validate the parameters */
2261 	if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK ||
2262 	    size == 0 || size & ~PAGE_MASK)
2263 		return -EINVAL;
2264 
2265 	/* make sure object fit at this offset */
2266 	eaddr = saddr + size - 1;
2267 	if (saddr >= eaddr ||
2268 	    (bo && offset + size > amdgpu_bo_size(bo)) ||
2269 	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2270 		return -EINVAL;
2271 
2272 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2273 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2274 
2275 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2276 	if (tmp) {
2277 		/* bo and tmp overlap, invalid addr */
2278 		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2279 			"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2280 			tmp->start, tmp->last + 1);
2281 		return -EINVAL;
2282 	}
2283 
2284 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2285 	if (!mapping)
2286 		return -ENOMEM;
2287 
2288 	mapping->start = saddr;
2289 	mapping->last = eaddr;
2290 	mapping->offset = offset;
2291 	mapping->flags = flags;
2292 
2293 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2294 
2295 	return 0;
2296 }
2297 
2298 /**
2299  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2300  *
2301  * @adev: amdgpu_device pointer
2302  * @bo_va: bo_va to store the address
2303  * @saddr: where to map the BO
2304  * @offset: requested offset in the BO
2305  * @size: BO size in bytes
2306  * @flags: attributes of pages (read/write/valid/etc.)
2307  *
2308  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2309  * mappings as we do so.
2310  *
2311  * Returns:
2312  * 0 for success, error for failure.
2313  *
2314  * Object has to be reserved and unreserved outside!
2315  */
2316 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2317 			     struct amdgpu_bo_va *bo_va,
2318 			     uint64_t saddr, uint64_t offset,
2319 			     uint64_t size, uint64_t flags)
2320 {
2321 	struct amdgpu_bo_va_mapping *mapping;
2322 	struct amdgpu_bo *bo = bo_va->base.bo;
2323 	uint64_t eaddr;
2324 	int r;
2325 
2326 	/* validate the parameters */
2327 	if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK ||
2328 	    size == 0 || size & ~PAGE_MASK)
2329 		return -EINVAL;
2330 
2331 	/* make sure object fit at this offset */
2332 	eaddr = saddr + size - 1;
2333 	if (saddr >= eaddr ||
2334 	    (bo && offset + size > amdgpu_bo_size(bo)) ||
2335 	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2336 		return -EINVAL;
2337 
2338 	/* Allocate all the needed memory */
2339 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2340 	if (!mapping)
2341 		return -ENOMEM;
2342 
2343 	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2344 	if (r) {
2345 		kfree(mapping);
2346 		return r;
2347 	}
2348 
2349 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2350 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2351 
2352 	mapping->start = saddr;
2353 	mapping->last = eaddr;
2354 	mapping->offset = offset;
2355 	mapping->flags = flags;
2356 
2357 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2358 
2359 	return 0;
2360 }
2361 
2362 /**
2363  * amdgpu_vm_bo_unmap - remove bo mapping from vm
2364  *
2365  * @adev: amdgpu_device pointer
2366  * @bo_va: bo_va to remove the address from
2367  * @saddr: where to the BO is mapped
2368  *
2369  * Remove a mapping of the BO at the specefied addr from the VM.
2370  *
2371  * Returns:
2372  * 0 for success, error for failure.
2373  *
2374  * Object has to be reserved and unreserved outside!
2375  */
2376 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2377 		       struct amdgpu_bo_va *bo_va,
2378 		       uint64_t saddr)
2379 {
2380 	struct amdgpu_bo_va_mapping *mapping;
2381 	struct amdgpu_vm *vm = bo_va->base.vm;
2382 	bool valid = true;
2383 
2384 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2385 
2386 	list_for_each_entry(mapping, &bo_va->valids, list) {
2387 		if (mapping->start == saddr)
2388 			break;
2389 	}
2390 
2391 	if (&mapping->list == &bo_va->valids) {
2392 		valid = false;
2393 
2394 		list_for_each_entry(mapping, &bo_va->invalids, list) {
2395 			if (mapping->start == saddr)
2396 				break;
2397 		}
2398 
2399 		if (&mapping->list == &bo_va->invalids)
2400 			return -ENOENT;
2401 	}
2402 
2403 	list_del(&mapping->list);
2404 	amdgpu_vm_it_remove(mapping, &vm->va);
2405 	mapping->bo_va = NULL;
2406 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2407 
2408 	if (valid)
2409 		list_add(&mapping->list, &vm->freed);
2410 	else
2411 		amdgpu_vm_free_mapping(adev, vm, mapping,
2412 				       bo_va->last_pt_update);
2413 
2414 	return 0;
2415 }
2416 
2417 /**
2418  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2419  *
2420  * @adev: amdgpu_device pointer
2421  * @vm: VM structure to use
2422  * @saddr: start of the range
2423  * @size: size of the range
2424  *
2425  * Remove all mappings in a range, split them as appropriate.
2426  *
2427  * Returns:
2428  * 0 for success, error for failure.
2429  */
2430 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2431 				struct amdgpu_vm *vm,
2432 				uint64_t saddr, uint64_t size)
2433 {
2434 	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2435 	LIST_HEAD(removed);
2436 	uint64_t eaddr;
2437 
2438 	eaddr = saddr + size - 1;
2439 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2440 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2441 
2442 	/* Allocate all the needed memory */
2443 	before = kzalloc(sizeof(*before), GFP_KERNEL);
2444 	if (!before)
2445 		return -ENOMEM;
2446 	INIT_LIST_HEAD(&before->list);
2447 
2448 	after = kzalloc(sizeof(*after), GFP_KERNEL);
2449 	if (!after) {
2450 		kfree(before);
2451 		return -ENOMEM;
2452 	}
2453 	INIT_LIST_HEAD(&after->list);
2454 
2455 	/* Now gather all removed mappings */
2456 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2457 	while (tmp) {
2458 		/* Remember mapping split at the start */
2459 		if (tmp->start < saddr) {
2460 			before->start = tmp->start;
2461 			before->last = saddr - 1;
2462 			before->offset = tmp->offset;
2463 			before->flags = tmp->flags;
2464 			before->bo_va = tmp->bo_va;
2465 			list_add(&before->list, &tmp->bo_va->invalids);
2466 		}
2467 
2468 		/* Remember mapping split at the end */
2469 		if (tmp->last > eaddr) {
2470 			after->start = eaddr + 1;
2471 			after->last = tmp->last;
2472 			after->offset = tmp->offset;
2473 			after->offset += (after->start - tmp->start) << PAGE_SHIFT;
2474 			after->flags = tmp->flags;
2475 			after->bo_va = tmp->bo_va;
2476 			list_add(&after->list, &tmp->bo_va->invalids);
2477 		}
2478 
2479 		list_del(&tmp->list);
2480 		list_add(&tmp->list, &removed);
2481 
2482 		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2483 	}
2484 
2485 	/* And free them up */
2486 	list_for_each_entry_safe(tmp, next, &removed, list) {
2487 		amdgpu_vm_it_remove(tmp, &vm->va);
2488 		list_del(&tmp->list);
2489 
2490 		if (tmp->start < saddr)
2491 		    tmp->start = saddr;
2492 		if (tmp->last > eaddr)
2493 		    tmp->last = eaddr;
2494 
2495 		tmp->bo_va = NULL;
2496 		list_add(&tmp->list, &vm->freed);
2497 		trace_amdgpu_vm_bo_unmap(NULL, tmp);
2498 	}
2499 
2500 	/* Insert partial mapping before the range */
2501 	if (!list_empty(&before->list)) {
2502 		amdgpu_vm_it_insert(before, &vm->va);
2503 		if (before->flags & AMDGPU_PTE_PRT)
2504 			amdgpu_vm_prt_get(adev);
2505 	} else {
2506 		kfree(before);
2507 	}
2508 
2509 	/* Insert partial mapping after the range */
2510 	if (!list_empty(&after->list)) {
2511 		amdgpu_vm_it_insert(after, &vm->va);
2512 		if (after->flags & AMDGPU_PTE_PRT)
2513 			amdgpu_vm_prt_get(adev);
2514 	} else {
2515 		kfree(after);
2516 	}
2517 
2518 	return 0;
2519 }
2520 
2521 /**
2522  * amdgpu_vm_bo_lookup_mapping - find mapping by address
2523  *
2524  * @vm: the requested VM
2525  * @addr: the address
2526  *
2527  * Find a mapping by it's address.
2528  *
2529  * Returns:
2530  * The amdgpu_bo_va_mapping matching for addr or NULL
2531  *
2532  */
2533 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2534 							 uint64_t addr)
2535 {
2536 	return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2537 }
2538 
2539 /**
2540  * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2541  *
2542  * @vm: the requested vm
2543  * @ticket: CS ticket
2544  *
2545  * Trace all mappings of BOs reserved during a command submission.
2546  */
2547 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2548 {
2549 	struct amdgpu_bo_va_mapping *mapping;
2550 
2551 	if (!trace_amdgpu_vm_bo_cs_enabled())
2552 		return;
2553 
2554 	for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2555 	     mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2556 		if (mapping->bo_va && mapping->bo_va->base.bo) {
2557 			struct amdgpu_bo *bo;
2558 
2559 			bo = mapping->bo_va->base.bo;
2560 			if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
2561 			    ticket)
2562 				continue;
2563 		}
2564 
2565 		trace_amdgpu_vm_bo_cs(mapping);
2566 	}
2567 }
2568 
2569 /**
2570  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2571  *
2572  * @adev: amdgpu_device pointer
2573  * @bo_va: requested bo_va
2574  *
2575  * Remove @bo_va->bo from the requested vm.
2576  *
2577  * Object have to be reserved!
2578  */
2579 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2580 		      struct amdgpu_bo_va *bo_va)
2581 {
2582 	struct amdgpu_bo_va_mapping *mapping, *next;
2583 	struct amdgpu_bo *bo = bo_va->base.bo;
2584 	struct amdgpu_vm *vm = bo_va->base.vm;
2585 	struct amdgpu_vm_bo_base **base;
2586 
2587 	if (bo) {
2588 		if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2589 			vm->bulk_moveable = false;
2590 
2591 		for (base = &bo_va->base.bo->vm_bo; *base;
2592 		     base = &(*base)->next) {
2593 			if (*base != &bo_va->base)
2594 				continue;
2595 
2596 			*base = bo_va->base.next;
2597 			break;
2598 		}
2599 	}
2600 
2601 	spin_lock(&vm->invalidated_lock);
2602 	list_del(&bo_va->base.vm_status);
2603 	spin_unlock(&vm->invalidated_lock);
2604 
2605 	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2606 		list_del(&mapping->list);
2607 		amdgpu_vm_it_remove(mapping, &vm->va);
2608 		mapping->bo_va = NULL;
2609 		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2610 		list_add(&mapping->list, &vm->freed);
2611 	}
2612 	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2613 		list_del(&mapping->list);
2614 		amdgpu_vm_it_remove(mapping, &vm->va);
2615 		amdgpu_vm_free_mapping(adev, vm, mapping,
2616 				       bo_va->last_pt_update);
2617 	}
2618 
2619 	dma_fence_put(bo_va->last_pt_update);
2620 
2621 	if (bo && bo_va->is_xgmi)
2622 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN);
2623 
2624 	kfree(bo_va);
2625 }
2626 
2627 /**
2628  * amdgpu_vm_evictable - check if we can evict a VM
2629  *
2630  * @bo: A page table of the VM.
2631  *
2632  * Check if it is possible to evict a VM.
2633  */
2634 bool amdgpu_vm_evictable(struct amdgpu_bo *bo)
2635 {
2636 	struct amdgpu_vm_bo_base *bo_base = bo->vm_bo;
2637 
2638 	/* Page tables of a destroyed VM can go away immediately */
2639 	if (!bo_base || !bo_base->vm)
2640 		return true;
2641 
2642 	/* Don't evict VM page tables while they are busy */
2643 	if (!dma_resv_test_signaled_rcu(bo->tbo.base.resv, true))
2644 		return false;
2645 
2646 	/* Try to block ongoing updates */
2647 	if (!amdgpu_vm_eviction_trylock(bo_base->vm))
2648 		return false;
2649 
2650 	/* Don't evict VM page tables while they are updated */
2651 	if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) {
2652 		amdgpu_vm_eviction_unlock(bo_base->vm);
2653 		return false;
2654 	}
2655 
2656 	bo_base->vm->evicting = true;
2657 	amdgpu_vm_eviction_unlock(bo_base->vm);
2658 	return true;
2659 }
2660 
2661 /**
2662  * amdgpu_vm_bo_invalidate - mark the bo as invalid
2663  *
2664  * @adev: amdgpu_device pointer
2665  * @bo: amdgpu buffer object
2666  * @evicted: is the BO evicted
2667  *
2668  * Mark @bo as invalid.
2669  */
2670 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2671 			     struct amdgpu_bo *bo, bool evicted)
2672 {
2673 	struct amdgpu_vm_bo_base *bo_base;
2674 
2675 	/* shadow bo doesn't have bo base, its validation needs its parent */
2676 	if (bo->parent && bo->parent->shadow == bo)
2677 		bo = bo->parent;
2678 
2679 	for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2680 		struct amdgpu_vm *vm = bo_base->vm;
2681 
2682 		if (evicted && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
2683 			amdgpu_vm_bo_evicted(bo_base);
2684 			continue;
2685 		}
2686 
2687 		if (bo_base->moved)
2688 			continue;
2689 		bo_base->moved = true;
2690 
2691 		if (bo->tbo.type == ttm_bo_type_kernel)
2692 			amdgpu_vm_bo_relocated(bo_base);
2693 		else if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2694 			amdgpu_vm_bo_moved(bo_base);
2695 		else
2696 			amdgpu_vm_bo_invalidated(bo_base);
2697 	}
2698 }
2699 
2700 /**
2701  * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2702  *
2703  * @vm_size: VM size
2704  *
2705  * Returns:
2706  * VM page table as power of two
2707  */
2708 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2709 {
2710 	/* Total bits covered by PD + PTs */
2711 	unsigned bits = ilog2(vm_size) + 18;
2712 
2713 	/* Make sure the PD is 4K in size up to 8GB address space.
2714 	   Above that split equal between PD and PTs */
2715 	if (vm_size <= 8)
2716 		return (bits - 9);
2717 	else
2718 		return ((bits + 3) / 2);
2719 }
2720 
2721 /**
2722  * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2723  *
2724  * @adev: amdgpu_device pointer
2725  * @min_vm_size: the minimum vm size in GB if it's set auto
2726  * @fragment_size_default: Default PTE fragment size
2727  * @max_level: max VMPT level
2728  * @max_bits: max address space size in bits
2729  *
2730  */
2731 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2732 			   uint32_t fragment_size_default, unsigned max_level,
2733 			   unsigned max_bits)
2734 {
2735 	unsigned int max_size = 1 << (max_bits - 30);
2736 	unsigned int vm_size;
2737 	uint64_t tmp;
2738 
2739 	/* adjust vm size first */
2740 	if (amdgpu_vm_size != -1) {
2741 		vm_size = amdgpu_vm_size;
2742 		if (vm_size > max_size) {
2743 			dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2744 				 amdgpu_vm_size, max_size);
2745 			vm_size = max_size;
2746 		}
2747 	} else {
2748 		struct sysinfo si;
2749 		unsigned int phys_ram_gb;
2750 
2751 		/* Optimal VM size depends on the amount of physical
2752 		 * RAM available. Underlying requirements and
2753 		 * assumptions:
2754 		 *
2755 		 *  - Need to map system memory and VRAM from all GPUs
2756 		 *     - VRAM from other GPUs not known here
2757 		 *     - Assume VRAM <= system memory
2758 		 *  - On GFX8 and older, VM space can be segmented for
2759 		 *    different MTYPEs
2760 		 *  - Need to allow room for fragmentation, guard pages etc.
2761 		 *
2762 		 * This adds up to a rough guess of system memory x3.
2763 		 * Round up to power of two to maximize the available
2764 		 * VM size with the given page table size.
2765 		 */
2766 		si_meminfo(&si);
2767 		phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2768 			       (1 << 30) - 1) >> 30;
2769 		vm_size = roundup_pow_of_two(
2770 			min(max(phys_ram_gb * 3, min_vm_size), max_size));
2771 	}
2772 
2773 	adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2774 
2775 	tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2776 	if (amdgpu_vm_block_size != -1)
2777 		tmp >>= amdgpu_vm_block_size - 9;
2778 	tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2779 	adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2780 	switch (adev->vm_manager.num_level) {
2781 	case 3:
2782 		adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2783 		break;
2784 	case 2:
2785 		adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2786 		break;
2787 	case 1:
2788 		adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2789 		break;
2790 	default:
2791 		dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2792 	}
2793 	/* block size depends on vm size and hw setup*/
2794 	if (amdgpu_vm_block_size != -1)
2795 		adev->vm_manager.block_size =
2796 			min((unsigned)amdgpu_vm_block_size, max_bits
2797 			    - AMDGPU_GPU_PAGE_SHIFT
2798 			    - 9 * adev->vm_manager.num_level);
2799 	else if (adev->vm_manager.num_level > 1)
2800 		adev->vm_manager.block_size = 9;
2801 	else
2802 		adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2803 
2804 	if (amdgpu_vm_fragment_size == -1)
2805 		adev->vm_manager.fragment_size = fragment_size_default;
2806 	else
2807 		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2808 
2809 	DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2810 		 vm_size, adev->vm_manager.num_level + 1,
2811 		 adev->vm_manager.block_size,
2812 		 adev->vm_manager.fragment_size);
2813 }
2814 
2815 /**
2816  * amdgpu_vm_wait_idle - wait for the VM to become idle
2817  *
2818  * @vm: VM object to wait for
2819  * @timeout: timeout to wait for VM to become idle
2820  */
2821 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2822 {
2823 	timeout = dma_resv_wait_timeout_rcu(vm->root.base.bo->tbo.base.resv,
2824 					    true, true, timeout);
2825 	if (timeout <= 0)
2826 		return timeout;
2827 
2828 	return dma_fence_wait_timeout(vm->last_unlocked, true, timeout);
2829 }
2830 
2831 /**
2832  * amdgpu_vm_init - initialize a vm instance
2833  *
2834  * @adev: amdgpu_device pointer
2835  * @vm: requested vm
2836  * @pasid: Process address space identifier
2837  *
2838  * Init @vm fields.
2839  *
2840  * Returns:
2841  * 0 for success, error for failure.
2842  */
2843 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, u32 pasid)
2844 {
2845 	struct amdgpu_bo *root;
2846 	int r, i;
2847 
2848 	vm->va = RB_ROOT_CACHED;
2849 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2850 		vm->reserved_vmid[i] = NULL;
2851 	INIT_LIST_HEAD(&vm->evicted);
2852 	INIT_LIST_HEAD(&vm->relocated);
2853 	INIT_LIST_HEAD(&vm->moved);
2854 	INIT_LIST_HEAD(&vm->idle);
2855 	INIT_LIST_HEAD(&vm->invalidated);
2856 	spin_lock_init(&vm->invalidated_lock);
2857 	INIT_LIST_HEAD(&vm->freed);
2858 	INIT_LIST_HEAD(&vm->done);
2859 
2860 	/* create scheduler entities for page table updates */
2861 	r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL,
2862 				  adev->vm_manager.vm_pte_scheds,
2863 				  adev->vm_manager.vm_pte_num_scheds, NULL);
2864 	if (r)
2865 		return r;
2866 
2867 	r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL,
2868 				  adev->vm_manager.vm_pte_scheds,
2869 				  adev->vm_manager.vm_pte_num_scheds, NULL);
2870 	if (r)
2871 		goto error_free_immediate;
2872 
2873 	vm->pte_support_ats = false;
2874 	vm->is_compute_context = false;
2875 
2876 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2877 				    AMDGPU_VM_USE_CPU_FOR_GFX);
2878 
2879 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2880 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2881 	WARN_ONCE((vm->use_cpu_for_update &&
2882 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2883 		  "CPU update of VM recommended only for large BAR system\n");
2884 
2885 	if (vm->use_cpu_for_update)
2886 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2887 	else
2888 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2889 	vm->last_update = NULL;
2890 	vm->last_unlocked = dma_fence_get_stub();
2891 
2892 	mutex_init(&vm->eviction_lock);
2893 	vm->evicting = false;
2894 
2895 	r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level,
2896 				false, &root);
2897 	if (r)
2898 		goto error_free_delayed;
2899 
2900 	r = amdgpu_bo_reserve(root, true);
2901 	if (r)
2902 		goto error_free_root;
2903 
2904 	r = dma_resv_reserve_shared(root->tbo.base.resv, 1);
2905 	if (r)
2906 		goto error_unreserve;
2907 
2908 	amdgpu_vm_bo_base_init(&vm->root.base, vm, root);
2909 
2910 	r = amdgpu_vm_clear_bo(adev, vm, root, false);
2911 	if (r)
2912 		goto error_unreserve;
2913 
2914 	amdgpu_bo_unreserve(vm->root.base.bo);
2915 
2916 	if (pasid) {
2917 		unsigned long flags;
2918 
2919 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2920 		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2921 			      GFP_ATOMIC);
2922 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2923 		if (r < 0)
2924 			goto error_free_root;
2925 
2926 		vm->pasid = pasid;
2927 	}
2928 
2929 	INIT_KFIFO(vm->faults);
2930 
2931 	return 0;
2932 
2933 error_unreserve:
2934 	amdgpu_bo_unreserve(vm->root.base.bo);
2935 
2936 error_free_root:
2937 	amdgpu_bo_unref(&vm->root.base.bo->shadow);
2938 	amdgpu_bo_unref(&vm->root.base.bo);
2939 	vm->root.base.bo = NULL;
2940 
2941 error_free_delayed:
2942 	dma_fence_put(vm->last_unlocked);
2943 	drm_sched_entity_destroy(&vm->delayed);
2944 
2945 error_free_immediate:
2946 	drm_sched_entity_destroy(&vm->immediate);
2947 
2948 	return r;
2949 }
2950 
2951 /**
2952  * amdgpu_vm_check_clean_reserved - check if a VM is clean
2953  *
2954  * @adev: amdgpu_device pointer
2955  * @vm: the VM to check
2956  *
2957  * check all entries of the root PD, if any subsequent PDs are allocated,
2958  * it means there are page table creating and filling, and is no a clean
2959  * VM
2960  *
2961  * Returns:
2962  *	0 if this VM is clean
2963  */
2964 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev,
2965 	struct amdgpu_vm *vm)
2966 {
2967 	enum amdgpu_vm_level root = adev->vm_manager.root_level;
2968 	unsigned int entries = amdgpu_vm_num_entries(adev, root);
2969 	unsigned int i = 0;
2970 
2971 	if (!(vm->root.entries))
2972 		return 0;
2973 
2974 	for (i = 0; i < entries; i++) {
2975 		if (vm->root.entries[i].base.bo)
2976 			return -EINVAL;
2977 	}
2978 
2979 	return 0;
2980 }
2981 
2982 /**
2983  * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
2984  *
2985  * @adev: amdgpu_device pointer
2986  * @vm: requested vm
2987  * @pasid: pasid to use
2988  *
2989  * This only works on GFX VMs that don't have any BOs added and no
2990  * page tables allocated yet.
2991  *
2992  * Changes the following VM parameters:
2993  * - use_cpu_for_update
2994  * - pte_supports_ats
2995  * - pasid (old PASID is released, because compute manages its own PASIDs)
2996  *
2997  * Reinitializes the page directory to reflect the changed ATS
2998  * setting.
2999  *
3000  * Returns:
3001  * 0 for success, -errno for errors.
3002  */
3003 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm,
3004 			   u32 pasid)
3005 {
3006 	bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
3007 	int r;
3008 
3009 	r = amdgpu_bo_reserve(vm->root.base.bo, true);
3010 	if (r)
3011 		return r;
3012 
3013 	/* Sanity checks */
3014 	r = amdgpu_vm_check_clean_reserved(adev, vm);
3015 	if (r)
3016 		goto unreserve_bo;
3017 
3018 	if (pasid) {
3019 		unsigned long flags;
3020 
3021 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3022 		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
3023 			      GFP_ATOMIC);
3024 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3025 
3026 		if (r == -ENOSPC)
3027 			goto unreserve_bo;
3028 		r = 0;
3029 	}
3030 
3031 	/* Check if PD needs to be reinitialized and do it before
3032 	 * changing any other state, in case it fails.
3033 	 */
3034 	if (pte_support_ats != vm->pte_support_ats) {
3035 		vm->pte_support_ats = pte_support_ats;
3036 		r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, false);
3037 		if (r)
3038 			goto free_idr;
3039 	}
3040 
3041 	/* Update VM state */
3042 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
3043 				    AMDGPU_VM_USE_CPU_FOR_COMPUTE);
3044 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
3045 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
3046 	WARN_ONCE((vm->use_cpu_for_update &&
3047 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
3048 		  "CPU update of VM recommended only for large BAR system\n");
3049 
3050 	if (vm->use_cpu_for_update) {
3051 		/* Sync with last SDMA update/clear before switching to CPU */
3052 		r = amdgpu_bo_sync_wait(vm->root.base.bo,
3053 					AMDGPU_FENCE_OWNER_UNDEFINED, true);
3054 		if (r)
3055 			goto free_idr;
3056 
3057 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
3058 	} else {
3059 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
3060 	}
3061 	dma_fence_put(vm->last_update);
3062 	vm->last_update = NULL;
3063 	vm->is_compute_context = true;
3064 
3065 	if (vm->pasid) {
3066 		unsigned long flags;
3067 
3068 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3069 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3070 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3071 
3072 		/* Free the original amdgpu allocated pasid
3073 		 * Will be replaced with kfd allocated pasid
3074 		 */
3075 		amdgpu_pasid_free(vm->pasid);
3076 		vm->pasid = 0;
3077 	}
3078 
3079 	/* Free the shadow bo for compute VM */
3080 	amdgpu_bo_unref(&vm->root.base.bo->shadow);
3081 
3082 	if (pasid)
3083 		vm->pasid = pasid;
3084 
3085 	goto unreserve_bo;
3086 
3087 free_idr:
3088 	if (pasid) {
3089 		unsigned long flags;
3090 
3091 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3092 		idr_remove(&adev->vm_manager.pasid_idr, pasid);
3093 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3094 	}
3095 unreserve_bo:
3096 	amdgpu_bo_unreserve(vm->root.base.bo);
3097 	return r;
3098 }
3099 
3100 /**
3101  * amdgpu_vm_release_compute - release a compute vm
3102  * @adev: amdgpu_device pointer
3103  * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
3104  *
3105  * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
3106  * pasid from vm. Compute should stop use of vm after this call.
3107  */
3108 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3109 {
3110 	if (vm->pasid) {
3111 		unsigned long flags;
3112 
3113 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3114 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3115 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3116 	}
3117 	vm->pasid = 0;
3118 	vm->is_compute_context = false;
3119 }
3120 
3121 /**
3122  * amdgpu_vm_fini - tear down a vm instance
3123  *
3124  * @adev: amdgpu_device pointer
3125  * @vm: requested vm
3126  *
3127  * Tear down @vm.
3128  * Unbind the VM and remove all bos from the vm bo list
3129  */
3130 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3131 {
3132 	struct amdgpu_bo_va_mapping *mapping, *tmp;
3133 	bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
3134 	struct amdgpu_bo *root;
3135 	int i;
3136 
3137 	amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
3138 
3139 	root = amdgpu_bo_ref(vm->root.base.bo);
3140 	amdgpu_bo_reserve(root, true);
3141 	if (vm->pasid) {
3142 		unsigned long flags;
3143 
3144 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3145 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3146 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3147 		vm->pasid = 0;
3148 	}
3149 
3150 	dma_fence_wait(vm->last_unlocked, false);
3151 	dma_fence_put(vm->last_unlocked);
3152 
3153 	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
3154 		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
3155 			amdgpu_vm_prt_fini(adev, vm);
3156 			prt_fini_needed = false;
3157 		}
3158 
3159 		list_del(&mapping->list);
3160 		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
3161 	}
3162 
3163 	amdgpu_vm_free_pts(adev, vm, NULL);
3164 	amdgpu_bo_unreserve(root);
3165 	amdgpu_bo_unref(&root);
3166 	WARN_ON(vm->root.base.bo);
3167 
3168 	drm_sched_entity_destroy(&vm->immediate);
3169 	drm_sched_entity_destroy(&vm->delayed);
3170 
3171 	if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
3172 		dev_err(adev->dev, "still active bo inside vm\n");
3173 	}
3174 	rbtree_postorder_for_each_entry_safe(mapping, tmp,
3175 					     &vm->va.rb_root, rb) {
3176 		/* Don't remove the mapping here, we don't want to trigger a
3177 		 * rebalance and the tree is about to be destroyed anyway.
3178 		 */
3179 		list_del(&mapping->list);
3180 		kfree(mapping);
3181 	}
3182 
3183 	dma_fence_put(vm->last_update);
3184 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
3185 		amdgpu_vmid_free_reserved(adev, vm, i);
3186 }
3187 
3188 /**
3189  * amdgpu_vm_manager_init - init the VM manager
3190  *
3191  * @adev: amdgpu_device pointer
3192  *
3193  * Initialize the VM manager structures
3194  */
3195 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
3196 {
3197 	unsigned i;
3198 
3199 	/* Concurrent flushes are only possible starting with Vega10 and
3200 	 * are broken on Navi10 and Navi14.
3201 	 */
3202 	adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 ||
3203 					      adev->asic_type == CHIP_NAVI10 ||
3204 					      adev->asic_type == CHIP_NAVI14);
3205 	amdgpu_vmid_mgr_init(adev);
3206 
3207 	adev->vm_manager.fence_context =
3208 		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
3209 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
3210 		adev->vm_manager.seqno[i] = 0;
3211 
3212 	spin_lock_init(&adev->vm_manager.prt_lock);
3213 	atomic_set(&adev->vm_manager.num_prt_users, 0);
3214 
3215 	/* If not overridden by the user, by default, only in large BAR systems
3216 	 * Compute VM tables will be updated by CPU
3217 	 */
3218 #ifdef CONFIG_X86_64
3219 	if (amdgpu_vm_update_mode == -1) {
3220 		if (amdgpu_gmc_vram_full_visible(&adev->gmc))
3221 			adev->vm_manager.vm_update_mode =
3222 				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
3223 		else
3224 			adev->vm_manager.vm_update_mode = 0;
3225 	} else
3226 		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
3227 #else
3228 	adev->vm_manager.vm_update_mode = 0;
3229 #endif
3230 
3231 	idr_init(&adev->vm_manager.pasid_idr);
3232 	spin_lock_init(&adev->vm_manager.pasid_lock);
3233 }
3234 
3235 /**
3236  * amdgpu_vm_manager_fini - cleanup VM manager
3237  *
3238  * @adev: amdgpu_device pointer
3239  *
3240  * Cleanup the VM manager and free resources.
3241  */
3242 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
3243 {
3244 	WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
3245 	idr_destroy(&adev->vm_manager.pasid_idr);
3246 
3247 	amdgpu_vmid_mgr_fini(adev);
3248 }
3249 
3250 /**
3251  * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
3252  *
3253  * @dev: drm device pointer
3254  * @data: drm_amdgpu_vm
3255  * @filp: drm file pointer
3256  *
3257  * Returns:
3258  * 0 for success, -errno for errors.
3259  */
3260 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3261 {
3262 	union drm_amdgpu_vm *args = data;
3263 	struct amdgpu_device *adev = drm_to_adev(dev);
3264 	struct amdgpu_fpriv *fpriv = filp->driver_priv;
3265 	long timeout = msecs_to_jiffies(2000);
3266 	int r;
3267 
3268 	switch (args->in.op) {
3269 	case AMDGPU_VM_OP_RESERVE_VMID:
3270 		/* We only have requirement to reserve vmid from gfxhub */
3271 		r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm,
3272 					       AMDGPU_GFXHUB_0);
3273 		if (r)
3274 			return r;
3275 		break;
3276 	case AMDGPU_VM_OP_UNRESERVE_VMID:
3277 		if (amdgpu_sriov_runtime(adev))
3278 			timeout = 8 * timeout;
3279 
3280 		/* Wait vm idle to make sure the vmid set in SPM_VMID is
3281 		 * not referenced anymore.
3282 		 */
3283 		r = amdgpu_bo_reserve(fpriv->vm.root.base.bo, true);
3284 		if (r)
3285 			return r;
3286 
3287 		r = amdgpu_vm_wait_idle(&fpriv->vm, timeout);
3288 		if (r < 0)
3289 			return r;
3290 
3291 		amdgpu_bo_unreserve(fpriv->vm.root.base.bo);
3292 		amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0);
3293 		break;
3294 	default:
3295 		return -EINVAL;
3296 	}
3297 
3298 	return 0;
3299 }
3300 
3301 /**
3302  * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3303  *
3304  * @adev: drm device pointer
3305  * @pasid: PASID identifier for VM
3306  * @task_info: task_info to fill.
3307  */
3308 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid,
3309 			 struct amdgpu_task_info *task_info)
3310 {
3311 	struct amdgpu_vm *vm;
3312 	unsigned long flags;
3313 
3314 	spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3315 
3316 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3317 	if (vm)
3318 		*task_info = vm->task_info;
3319 
3320 	spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3321 }
3322 
3323 /**
3324  * amdgpu_vm_set_task_info - Sets VMs task info.
3325  *
3326  * @vm: vm for which to set the info
3327  */
3328 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
3329 {
3330 	if (vm->task_info.pid)
3331 		return;
3332 
3333 	vm->task_info.pid = current->pid;
3334 	get_task_comm(vm->task_info.task_name, current);
3335 
3336 	if (current->group_leader->mm != current->mm)
3337 		return;
3338 
3339 	vm->task_info.tgid = current->group_leader->pid;
3340 	get_task_comm(vm->task_info.process_name, current->group_leader);
3341 }
3342 
3343 /**
3344  * amdgpu_vm_handle_fault - graceful handling of VM faults.
3345  * @adev: amdgpu device pointer
3346  * @pasid: PASID of the VM
3347  * @addr: Address of the fault
3348  *
3349  * Try to gracefully handle a VM fault. Return true if the fault was handled and
3350  * shouldn't be reported any more.
3351  */
3352 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid,
3353 			    uint64_t addr)
3354 {
3355 	bool is_compute_context = false;
3356 	struct amdgpu_bo *root;
3357 	uint64_t value, flags;
3358 	struct amdgpu_vm *vm;
3359 	int r;
3360 
3361 	spin_lock(&adev->vm_manager.pasid_lock);
3362 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3363 	if (vm) {
3364 		root = amdgpu_bo_ref(vm->root.base.bo);
3365 		is_compute_context = vm->is_compute_context;
3366 	} else {
3367 		root = NULL;
3368 	}
3369 	spin_unlock(&adev->vm_manager.pasid_lock);
3370 
3371 	if (!root)
3372 		return false;
3373 
3374 	addr /= AMDGPU_GPU_PAGE_SIZE;
3375 
3376 	if (is_compute_context &&
3377 	    !svm_range_restore_pages(adev, pasid, addr)) {
3378 		amdgpu_bo_unref(&root);
3379 		return true;
3380 	}
3381 
3382 	r = amdgpu_bo_reserve(root, true);
3383 	if (r)
3384 		goto error_unref;
3385 
3386 	/* Double check that the VM still exists */
3387 	spin_lock(&adev->vm_manager.pasid_lock);
3388 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3389 	if (vm && vm->root.base.bo != root)
3390 		vm = NULL;
3391 	spin_unlock(&adev->vm_manager.pasid_lock);
3392 	if (!vm)
3393 		goto error_unlock;
3394 
3395 	flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
3396 		AMDGPU_PTE_SYSTEM;
3397 
3398 	if (is_compute_context) {
3399 		/* Intentionally setting invalid PTE flag
3400 		 * combination to force a no-retry-fault
3401 		 */
3402 		flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE |
3403 			AMDGPU_PTE_TF;
3404 		value = 0;
3405 	} else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
3406 		/* Redirect the access to the dummy page */
3407 		value = adev->dummy_page_addr;
3408 		flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
3409 			AMDGPU_PTE_WRITEABLE;
3410 
3411 	} else {
3412 		/* Let the hw retry silently on the PTE */
3413 		value = 0;
3414 	}
3415 
3416 	r = dma_resv_reserve_shared(root->tbo.base.resv, 1);
3417 	if (r) {
3418 		pr_debug("failed %d to reserve fence slot\n", r);
3419 		goto error_unlock;
3420 	}
3421 
3422 	r = amdgpu_vm_bo_update_mapping(adev, adev, vm, true, false, NULL, addr,
3423 					addr, flags, value, NULL, NULL, NULL,
3424 					NULL);
3425 	if (r)
3426 		goto error_unlock;
3427 
3428 	r = amdgpu_vm_update_pdes(adev, vm, true);
3429 
3430 error_unlock:
3431 	amdgpu_bo_unreserve(root);
3432 	if (r < 0)
3433 		DRM_ERROR("Can't handle page fault (%d)\n", r);
3434 
3435 error_unref:
3436 	amdgpu_bo_unref(&root);
3437 
3438 	return false;
3439 }
3440 
3441 #if defined(CONFIG_DEBUG_FS)
3442 /**
3443  * amdgpu_debugfs_vm_bo_info  - print BO info for the VM
3444  *
3445  * @vm: Requested VM for printing BO info
3446  * @m: debugfs file
3447  *
3448  * Print BO information in debugfs file for the VM
3449  */
3450 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m)
3451 {
3452 	struct amdgpu_bo_va *bo_va, *tmp;
3453 	u64 total_idle = 0;
3454 	u64 total_evicted = 0;
3455 	u64 total_relocated = 0;
3456 	u64 total_moved = 0;
3457 	u64 total_invalidated = 0;
3458 	u64 total_done = 0;
3459 	unsigned int total_idle_objs = 0;
3460 	unsigned int total_evicted_objs = 0;
3461 	unsigned int total_relocated_objs = 0;
3462 	unsigned int total_moved_objs = 0;
3463 	unsigned int total_invalidated_objs = 0;
3464 	unsigned int total_done_objs = 0;
3465 	unsigned int id = 0;
3466 
3467 	seq_puts(m, "\tIdle BOs:\n");
3468 	list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
3469 		if (!bo_va->base.bo)
3470 			continue;
3471 		total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3472 	}
3473 	total_idle_objs = id;
3474 	id = 0;
3475 
3476 	seq_puts(m, "\tEvicted BOs:\n");
3477 	list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
3478 		if (!bo_va->base.bo)
3479 			continue;
3480 		total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3481 	}
3482 	total_evicted_objs = id;
3483 	id = 0;
3484 
3485 	seq_puts(m, "\tRelocated BOs:\n");
3486 	list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
3487 		if (!bo_va->base.bo)
3488 			continue;
3489 		total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3490 	}
3491 	total_relocated_objs = id;
3492 	id = 0;
3493 
3494 	seq_puts(m, "\tMoved BOs:\n");
3495 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
3496 		if (!bo_va->base.bo)
3497 			continue;
3498 		total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3499 	}
3500 	total_moved_objs = id;
3501 	id = 0;
3502 
3503 	seq_puts(m, "\tInvalidated BOs:\n");
3504 	spin_lock(&vm->invalidated_lock);
3505 	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
3506 		if (!bo_va->base.bo)
3507 			continue;
3508 		total_invalidated += amdgpu_bo_print_info(id++,	bo_va->base.bo, m);
3509 	}
3510 	total_invalidated_objs = id;
3511 	id = 0;
3512 
3513 	seq_puts(m, "\tDone BOs:\n");
3514 	list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
3515 		if (!bo_va->base.bo)
3516 			continue;
3517 		total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3518 	}
3519 	spin_unlock(&vm->invalidated_lock);
3520 	total_done_objs = id;
3521 
3522 	seq_printf(m, "\tTotal idle size:        %12lld\tobjs:\t%d\n", total_idle,
3523 		   total_idle_objs);
3524 	seq_printf(m, "\tTotal evicted size:     %12lld\tobjs:\t%d\n", total_evicted,
3525 		   total_evicted_objs);
3526 	seq_printf(m, "\tTotal relocated size:   %12lld\tobjs:\t%d\n", total_relocated,
3527 		   total_relocated_objs);
3528 	seq_printf(m, "\tTotal moved size:       %12lld\tobjs:\t%d\n", total_moved,
3529 		   total_moved_objs);
3530 	seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated,
3531 		   total_invalidated_objs);
3532 	seq_printf(m, "\tTotal done size:        %12lld\tobjs:\t%d\n", total_done,
3533 		   total_done_objs);
3534 }
3535 #endif
3536