1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <linux/dma-fence-array.h> 29 #include <linux/interval_tree_generic.h> 30 #include <linux/idr.h> 31 #include <drm/drmP.h> 32 #include <drm/amdgpu_drm.h> 33 #include "amdgpu.h" 34 #include "amdgpu_trace.h" 35 #include "amdgpu_amdkfd.h" 36 #include "amdgpu_gmc.h" 37 38 /** 39 * DOC: GPUVM 40 * 41 * GPUVM is similar to the legacy gart on older asics, however 42 * rather than there being a single global gart table 43 * for the entire GPU, there are multiple VM page tables active 44 * at any given time. The VM page tables can contain a mix 45 * vram pages and system memory pages and system memory pages 46 * can be mapped as snooped (cached system pages) or unsnooped 47 * (uncached system pages). 48 * Each VM has an ID associated with it and there is a page table 49 * associated with each VMID. When execting a command buffer, 50 * the kernel tells the the ring what VMID to use for that command 51 * buffer. VMIDs are allocated dynamically as commands are submitted. 52 * The userspace drivers maintain their own address space and the kernel 53 * sets up their pages tables accordingly when they submit their 54 * command buffers and a VMID is assigned. 55 * Cayman/Trinity support up to 8 active VMs at any given time; 56 * SI supports 16. 57 */ 58 59 #define START(node) ((node)->start) 60 #define LAST(node) ((node)->last) 61 62 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 63 START, LAST, static, amdgpu_vm_it) 64 65 #undef START 66 #undef LAST 67 68 /** 69 * struct amdgpu_pte_update_params - Local structure 70 * 71 * Encapsulate some VM table update parameters to reduce 72 * the number of function parameters 73 * 74 */ 75 struct amdgpu_pte_update_params { 76 77 /** 78 * @adev: amdgpu device we do this update for 79 */ 80 struct amdgpu_device *adev; 81 82 /** 83 * @vm: optional amdgpu_vm we do this update for 84 */ 85 struct amdgpu_vm *vm; 86 87 /** 88 * @src: address where to copy page table entries from 89 */ 90 uint64_t src; 91 92 /** 93 * @ib: indirect buffer to fill with commands 94 */ 95 struct amdgpu_ib *ib; 96 97 /** 98 * @func: Function which actually does the update 99 */ 100 void (*func)(struct amdgpu_pte_update_params *params, 101 struct amdgpu_bo *bo, uint64_t pe, 102 uint64_t addr, unsigned count, uint32_t incr, 103 uint64_t flags); 104 /** 105 * @pages_addr: 106 * 107 * DMA addresses to use for mapping, used during VM update by CPU 108 */ 109 dma_addr_t *pages_addr; 110 111 /** 112 * @kptr: 113 * 114 * Kernel pointer of PD/PT BO that needs to be updated, 115 * used during VM update by CPU 116 */ 117 void *kptr; 118 }; 119 120 /** 121 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 122 */ 123 struct amdgpu_prt_cb { 124 125 /** 126 * @adev: amdgpu device 127 */ 128 struct amdgpu_device *adev; 129 130 /** 131 * @cb: callback 132 */ 133 struct dma_fence_cb cb; 134 }; 135 136 /** 137 * amdgpu_vm_level_shift - return the addr shift for each level 138 * 139 * @adev: amdgpu_device pointer 140 * @level: VMPT level 141 * 142 * Returns: 143 * The number of bits the pfn needs to be right shifted for a level. 144 */ 145 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev, 146 unsigned level) 147 { 148 unsigned shift = 0xff; 149 150 switch (level) { 151 case AMDGPU_VM_PDB2: 152 case AMDGPU_VM_PDB1: 153 case AMDGPU_VM_PDB0: 154 shift = 9 * (AMDGPU_VM_PDB0 - level) + 155 adev->vm_manager.block_size; 156 break; 157 case AMDGPU_VM_PTB: 158 shift = 0; 159 break; 160 default: 161 dev_err(adev->dev, "the level%d isn't supported.\n", level); 162 } 163 164 return shift; 165 } 166 167 /** 168 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 169 * 170 * @adev: amdgpu_device pointer 171 * @level: VMPT level 172 * 173 * Returns: 174 * The number of entries in a page directory or page table. 175 */ 176 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 177 unsigned level) 178 { 179 unsigned shift = amdgpu_vm_level_shift(adev, 180 adev->vm_manager.root_level); 181 182 if (level == adev->vm_manager.root_level) 183 /* For the root directory */ 184 return round_up(adev->vm_manager.max_pfn, 1ULL << shift) >> shift; 185 else if (level != AMDGPU_VM_PTB) 186 /* Everything in between */ 187 return 512; 188 else 189 /* For the page tables on the leaves */ 190 return AMDGPU_VM_PTE_COUNT(adev); 191 } 192 193 /** 194 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT 195 * 196 * @adev: amdgpu_device pointer 197 * @level: VMPT level 198 * 199 * Returns: 200 * The mask to extract the entry number of a PD/PT from an address. 201 */ 202 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev, 203 unsigned int level) 204 { 205 if (level <= adev->vm_manager.root_level) 206 return 0xffffffff; 207 else if (level != AMDGPU_VM_PTB) 208 return 0x1ff; 209 else 210 return AMDGPU_VM_PTE_COUNT(adev) - 1; 211 } 212 213 /** 214 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 215 * 216 * @adev: amdgpu_device pointer 217 * @level: VMPT level 218 * 219 * Returns: 220 * The size of the BO for a page directory or page table in bytes. 221 */ 222 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 223 { 224 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 225 } 226 227 /** 228 * amdgpu_vm_bo_evicted - vm_bo is evicted 229 * 230 * @vm_bo: vm_bo which is evicted 231 * 232 * State for PDs/PTs and per VM BOs which are not at the location they should 233 * be. 234 */ 235 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 236 { 237 struct amdgpu_vm *vm = vm_bo->vm; 238 struct amdgpu_bo *bo = vm_bo->bo; 239 240 vm_bo->moved = true; 241 if (bo->tbo.type == ttm_bo_type_kernel) 242 list_move(&vm_bo->vm_status, &vm->evicted); 243 else 244 list_move_tail(&vm_bo->vm_status, &vm->evicted); 245 } 246 247 /** 248 * amdgpu_vm_bo_relocated - vm_bo is reloacted 249 * 250 * @vm_bo: vm_bo which is relocated 251 * 252 * State for PDs/PTs which needs to update their parent PD. 253 */ 254 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 255 { 256 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 257 } 258 259 /** 260 * amdgpu_vm_bo_moved - vm_bo is moved 261 * 262 * @vm_bo: vm_bo which is moved 263 * 264 * State for per VM BOs which are moved, but that change is not yet reflected 265 * in the page tables. 266 */ 267 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 268 { 269 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 270 } 271 272 /** 273 * amdgpu_vm_bo_idle - vm_bo is idle 274 * 275 * @vm_bo: vm_bo which is now idle 276 * 277 * State for PDs/PTs and per VM BOs which have gone through the state machine 278 * and are now idle. 279 */ 280 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 281 { 282 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 283 vm_bo->moved = false; 284 } 285 286 /** 287 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 288 * 289 * @vm_bo: vm_bo which is now invalidated 290 * 291 * State for normal BOs which are invalidated and that change not yet reflected 292 * in the PTs. 293 */ 294 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 295 { 296 spin_lock(&vm_bo->vm->invalidated_lock); 297 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 298 spin_unlock(&vm_bo->vm->invalidated_lock); 299 } 300 301 /** 302 * amdgpu_vm_bo_done - vm_bo is done 303 * 304 * @vm_bo: vm_bo which is now done 305 * 306 * State for normal BOs which are invalidated and that change has been updated 307 * in the PTs. 308 */ 309 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 310 { 311 spin_lock(&vm_bo->vm->invalidated_lock); 312 list_del_init(&vm_bo->vm_status); 313 spin_unlock(&vm_bo->vm->invalidated_lock); 314 } 315 316 /** 317 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 318 * 319 * @base: base structure for tracking BO usage in a VM 320 * @vm: vm to which bo is to be added 321 * @bo: amdgpu buffer object 322 * 323 * Initialize a bo_va_base structure and add it to the appropriate lists 324 * 325 */ 326 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 327 struct amdgpu_vm *vm, 328 struct amdgpu_bo *bo) 329 { 330 base->vm = vm; 331 base->bo = bo; 332 base->next = NULL; 333 INIT_LIST_HEAD(&base->vm_status); 334 335 if (!bo) 336 return; 337 base->next = bo->vm_bo; 338 bo->vm_bo = base; 339 340 if (bo->tbo.resv != vm->root.base.bo->tbo.resv) 341 return; 342 343 vm->bulk_moveable = false; 344 if (bo->tbo.type == ttm_bo_type_kernel) 345 amdgpu_vm_bo_relocated(base); 346 else 347 amdgpu_vm_bo_idle(base); 348 349 if (bo->preferred_domains & 350 amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type)) 351 return; 352 353 /* 354 * we checked all the prerequisites, but it looks like this per vm bo 355 * is currently evicted. add the bo to the evicted list to make sure it 356 * is validated on next vm use to avoid fault. 357 * */ 358 amdgpu_vm_bo_evicted(base); 359 } 360 361 /** 362 * amdgpu_vm_pt_parent - get the parent page directory 363 * 364 * @pt: child page table 365 * 366 * Helper to get the parent entry for the child page table. NULL if we are at 367 * the root page directory. 368 */ 369 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt) 370 { 371 struct amdgpu_bo *parent = pt->base.bo->parent; 372 373 if (!parent) 374 return NULL; 375 376 return container_of(parent->vm_bo, struct amdgpu_vm_pt, base); 377 } 378 379 /** 380 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt 381 */ 382 struct amdgpu_vm_pt_cursor { 383 uint64_t pfn; 384 struct amdgpu_vm_pt *parent; 385 struct amdgpu_vm_pt *entry; 386 unsigned level; 387 }; 388 389 /** 390 * amdgpu_vm_pt_start - start PD/PT walk 391 * 392 * @adev: amdgpu_device pointer 393 * @vm: amdgpu_vm structure 394 * @start: start address of the walk 395 * @cursor: state to initialize 396 * 397 * Initialize a amdgpu_vm_pt_cursor to start a walk. 398 */ 399 static void amdgpu_vm_pt_start(struct amdgpu_device *adev, 400 struct amdgpu_vm *vm, uint64_t start, 401 struct amdgpu_vm_pt_cursor *cursor) 402 { 403 cursor->pfn = start; 404 cursor->parent = NULL; 405 cursor->entry = &vm->root; 406 cursor->level = adev->vm_manager.root_level; 407 } 408 409 /** 410 * amdgpu_vm_pt_descendant - go to child node 411 * 412 * @adev: amdgpu_device pointer 413 * @cursor: current state 414 * 415 * Walk to the child node of the current node. 416 * Returns: 417 * True if the walk was possible, false otherwise. 418 */ 419 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev, 420 struct amdgpu_vm_pt_cursor *cursor) 421 { 422 unsigned mask, shift, idx; 423 424 if (!cursor->entry->entries) 425 return false; 426 427 BUG_ON(!cursor->entry->base.bo); 428 mask = amdgpu_vm_entries_mask(adev, cursor->level); 429 shift = amdgpu_vm_level_shift(adev, cursor->level); 430 431 ++cursor->level; 432 idx = (cursor->pfn >> shift) & mask; 433 cursor->parent = cursor->entry; 434 cursor->entry = &cursor->entry->entries[idx]; 435 return true; 436 } 437 438 /** 439 * amdgpu_vm_pt_sibling - go to sibling node 440 * 441 * @adev: amdgpu_device pointer 442 * @cursor: current state 443 * 444 * Walk to the sibling node of the current node. 445 * Returns: 446 * True if the walk was possible, false otherwise. 447 */ 448 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev, 449 struct amdgpu_vm_pt_cursor *cursor) 450 { 451 unsigned shift, num_entries; 452 453 /* Root doesn't have a sibling */ 454 if (!cursor->parent) 455 return false; 456 457 /* Go to our parents and see if we got a sibling */ 458 shift = amdgpu_vm_level_shift(adev, cursor->level - 1); 459 num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1); 460 461 if (cursor->entry == &cursor->parent->entries[num_entries - 1]) 462 return false; 463 464 cursor->pfn += 1ULL << shift; 465 cursor->pfn &= ~((1ULL << shift) - 1); 466 ++cursor->entry; 467 return true; 468 } 469 470 /** 471 * amdgpu_vm_pt_ancestor - go to parent node 472 * 473 * @cursor: current state 474 * 475 * Walk to the parent node of the current node. 476 * Returns: 477 * True if the walk was possible, false otherwise. 478 */ 479 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor) 480 { 481 if (!cursor->parent) 482 return false; 483 484 --cursor->level; 485 cursor->entry = cursor->parent; 486 cursor->parent = amdgpu_vm_pt_parent(cursor->parent); 487 return true; 488 } 489 490 /** 491 * amdgpu_vm_pt_next - get next PD/PT in hieratchy 492 * 493 * @adev: amdgpu_device pointer 494 * @cursor: current state 495 * 496 * Walk the PD/PT tree to the next node. 497 */ 498 static void amdgpu_vm_pt_next(struct amdgpu_device *adev, 499 struct amdgpu_vm_pt_cursor *cursor) 500 { 501 /* First try a newborn child */ 502 if (amdgpu_vm_pt_descendant(adev, cursor)) 503 return; 504 505 /* If that didn't worked try to find a sibling */ 506 while (!amdgpu_vm_pt_sibling(adev, cursor)) { 507 /* No sibling, go to our parents and grandparents */ 508 if (!amdgpu_vm_pt_ancestor(cursor)) { 509 cursor->pfn = ~0ll; 510 return; 511 } 512 } 513 } 514 515 /** 516 * amdgpu_vm_pt_first_leaf - get first leaf PD/PT 517 * 518 * @adev: amdgpu_device pointer 519 * @vm: amdgpu_vm structure 520 * @start: start addr of the walk 521 * @cursor: state to initialize 522 * 523 * Start a walk and go directly to the leaf node. 524 */ 525 static void amdgpu_vm_pt_first_leaf(struct amdgpu_device *adev, 526 struct amdgpu_vm *vm, uint64_t start, 527 struct amdgpu_vm_pt_cursor *cursor) 528 { 529 amdgpu_vm_pt_start(adev, vm, start, cursor); 530 while (amdgpu_vm_pt_descendant(adev, cursor)); 531 } 532 533 /** 534 * amdgpu_vm_pt_next_leaf - get next leaf PD/PT 535 * 536 * @adev: amdgpu_device pointer 537 * @cursor: current state 538 * 539 * Walk the PD/PT tree to the next leaf node. 540 */ 541 static void amdgpu_vm_pt_next_leaf(struct amdgpu_device *adev, 542 struct amdgpu_vm_pt_cursor *cursor) 543 { 544 amdgpu_vm_pt_next(adev, cursor); 545 if (cursor->pfn != ~0ll) 546 while (amdgpu_vm_pt_descendant(adev, cursor)); 547 } 548 549 /** 550 * for_each_amdgpu_vm_pt_leaf - walk over all leaf PDs/PTs in the hierarchy 551 */ 552 #define for_each_amdgpu_vm_pt_leaf(adev, vm, start, end, cursor) \ 553 for (amdgpu_vm_pt_first_leaf((adev), (vm), (start), &(cursor)); \ 554 (cursor).pfn <= end; amdgpu_vm_pt_next_leaf((adev), &(cursor))) 555 556 /** 557 * amdgpu_vm_pt_first_dfs - start a deep first search 558 * 559 * @adev: amdgpu_device structure 560 * @vm: amdgpu_vm structure 561 * @cursor: state to initialize 562 * 563 * Starts a deep first traversal of the PD/PT tree. 564 */ 565 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev, 566 struct amdgpu_vm *vm, 567 struct amdgpu_vm_pt_cursor *cursor) 568 { 569 amdgpu_vm_pt_start(adev, vm, 0, cursor); 570 while (amdgpu_vm_pt_descendant(adev, cursor)); 571 } 572 573 /** 574 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search 575 * 576 * @adev: amdgpu_device structure 577 * @cursor: current state 578 * 579 * Move the cursor to the next node in a deep first search. 580 */ 581 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev, 582 struct amdgpu_vm_pt_cursor *cursor) 583 { 584 if (!cursor->entry) 585 return; 586 587 if (!cursor->parent) 588 cursor->entry = NULL; 589 else if (amdgpu_vm_pt_sibling(adev, cursor)) 590 while (amdgpu_vm_pt_descendant(adev, cursor)); 591 else 592 amdgpu_vm_pt_ancestor(cursor); 593 } 594 595 /** 596 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs 597 */ 598 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, cursor, entry) \ 599 for (amdgpu_vm_pt_first_dfs((adev), (vm), &(cursor)), \ 600 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\ 601 (entry); (entry) = (cursor).entry, \ 602 amdgpu_vm_pt_next_dfs((adev), &(cursor))) 603 604 /** 605 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 606 * 607 * @vm: vm providing the BOs 608 * @validated: head of validation list 609 * @entry: entry to add 610 * 611 * Add the page directory to the list of BOs to 612 * validate for command submission. 613 */ 614 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 615 struct list_head *validated, 616 struct amdgpu_bo_list_entry *entry) 617 { 618 entry->priority = 0; 619 entry->tv.bo = &vm->root.base.bo->tbo; 620 /* One for the VM updates, one for TTM and one for the CS job */ 621 entry->tv.num_shared = 3; 622 entry->user_pages = NULL; 623 list_add(&entry->tv.head, validated); 624 } 625 626 /** 627 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 628 * 629 * @adev: amdgpu device pointer 630 * @vm: vm providing the BOs 631 * 632 * Move all BOs to the end of LRU and remember their positions to put them 633 * together. 634 */ 635 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 636 struct amdgpu_vm *vm) 637 { 638 struct ttm_bo_global *glob = adev->mman.bdev.glob; 639 struct amdgpu_vm_bo_base *bo_base; 640 641 if (vm->bulk_moveable) { 642 spin_lock(&glob->lru_lock); 643 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move); 644 spin_unlock(&glob->lru_lock); 645 return; 646 } 647 648 memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move)); 649 650 spin_lock(&glob->lru_lock); 651 list_for_each_entry(bo_base, &vm->idle, vm_status) { 652 struct amdgpu_bo *bo = bo_base->bo; 653 654 if (!bo->parent) 655 continue; 656 657 ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move); 658 if (bo->shadow) 659 ttm_bo_move_to_lru_tail(&bo->shadow->tbo, 660 &vm->lru_bulk_move); 661 } 662 spin_unlock(&glob->lru_lock); 663 664 vm->bulk_moveable = true; 665 } 666 667 /** 668 * amdgpu_vm_validate_pt_bos - validate the page table BOs 669 * 670 * @adev: amdgpu device pointer 671 * @vm: vm providing the BOs 672 * @validate: callback to do the validation 673 * @param: parameter for the validation callback 674 * 675 * Validate the page table BOs on command submission if neccessary. 676 * 677 * Returns: 678 * Validation result. 679 */ 680 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 681 int (*validate)(void *p, struct amdgpu_bo *bo), 682 void *param) 683 { 684 struct amdgpu_vm_bo_base *bo_base, *tmp; 685 int r = 0; 686 687 vm->bulk_moveable &= list_empty(&vm->evicted); 688 689 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) { 690 struct amdgpu_bo *bo = bo_base->bo; 691 692 r = validate(param, bo); 693 if (r) 694 break; 695 696 if (bo->tbo.type != ttm_bo_type_kernel) { 697 amdgpu_vm_bo_moved(bo_base); 698 } else { 699 if (vm->use_cpu_for_update) 700 r = amdgpu_bo_kmap(bo, NULL); 701 else 702 r = amdgpu_ttm_alloc_gart(&bo->tbo); 703 if (r) 704 break; 705 if (bo->shadow) { 706 r = amdgpu_ttm_alloc_gart(&bo->shadow->tbo); 707 if (r) 708 break; 709 } 710 amdgpu_vm_bo_relocated(bo_base); 711 } 712 } 713 714 return r; 715 } 716 717 /** 718 * amdgpu_vm_ready - check VM is ready for updates 719 * 720 * @vm: VM to check 721 * 722 * Check if all VM PDs/PTs are ready for updates 723 * 724 * Returns: 725 * True if eviction list is empty. 726 */ 727 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 728 { 729 return list_empty(&vm->evicted); 730 } 731 732 /** 733 * amdgpu_vm_clear_bo - initially clear the PDs/PTs 734 * 735 * @adev: amdgpu_device pointer 736 * @vm: VM to clear BO from 737 * @bo: BO to clear 738 * @level: level this BO is at 739 * @pte_support_ats: indicate ATS support from PTE 740 * 741 * Root PD needs to be reserved when calling this. 742 * 743 * Returns: 744 * 0 on success, errno otherwise. 745 */ 746 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev, 747 struct amdgpu_vm *vm, struct amdgpu_bo *bo, 748 unsigned level, bool pte_support_ats) 749 { 750 struct ttm_operation_ctx ctx = { true, false }; 751 struct dma_fence *fence = NULL; 752 unsigned entries, ats_entries; 753 struct amdgpu_ring *ring; 754 struct amdgpu_job *job; 755 uint64_t addr; 756 int r; 757 758 entries = amdgpu_bo_size(bo) / 8; 759 760 if (pte_support_ats) { 761 if (level == adev->vm_manager.root_level) { 762 ats_entries = amdgpu_vm_level_shift(adev, level); 763 ats_entries += AMDGPU_GPU_PAGE_SHIFT; 764 ats_entries = AMDGPU_GMC_HOLE_START >> ats_entries; 765 ats_entries = min(ats_entries, entries); 766 entries -= ats_entries; 767 } else { 768 ats_entries = entries; 769 entries = 0; 770 } 771 } else { 772 ats_entries = 0; 773 } 774 775 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, sched); 776 777 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 778 if (r) 779 goto error; 780 781 r = amdgpu_ttm_alloc_gart(&bo->tbo); 782 if (r) 783 return r; 784 785 r = amdgpu_job_alloc_with_ib(adev, 64, &job); 786 if (r) 787 goto error; 788 789 addr = amdgpu_bo_gpu_offset(bo); 790 if (ats_entries) { 791 uint64_t ats_value; 792 793 ats_value = AMDGPU_PTE_DEFAULT_ATC; 794 if (level != AMDGPU_VM_PTB) 795 ats_value |= AMDGPU_PDE_PTE; 796 797 amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0, 798 ats_entries, 0, ats_value); 799 addr += ats_entries * 8; 800 } 801 802 if (entries) 803 amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0, 804 entries, 0, 0); 805 806 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 807 808 WARN_ON(job->ibs[0].length_dw > 64); 809 r = amdgpu_sync_resv(adev, &job->sync, bo->tbo.resv, 810 AMDGPU_FENCE_OWNER_UNDEFINED, false); 811 if (r) 812 goto error_free; 813 814 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_UNDEFINED, 815 &fence); 816 if (r) 817 goto error_free; 818 819 amdgpu_bo_fence(bo, fence, true); 820 dma_fence_put(fence); 821 822 if (bo->shadow) 823 return amdgpu_vm_clear_bo(adev, vm, bo->shadow, 824 level, pte_support_ats); 825 826 return 0; 827 828 error_free: 829 amdgpu_job_free(job); 830 831 error: 832 return r; 833 } 834 835 /** 836 * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation 837 * 838 * @adev: amdgpu_device pointer 839 * @vm: requesting vm 840 * @bp: resulting BO allocation parameters 841 */ 842 static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm, 843 int level, struct amdgpu_bo_param *bp) 844 { 845 memset(bp, 0, sizeof(*bp)); 846 847 bp->size = amdgpu_vm_bo_size(adev, level); 848 bp->byte_align = AMDGPU_GPU_PAGE_SIZE; 849 bp->domain = AMDGPU_GEM_DOMAIN_VRAM; 850 bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain); 851 bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 852 AMDGPU_GEM_CREATE_CPU_GTT_USWC; 853 if (vm->use_cpu_for_update) 854 bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 855 else if (!vm->root.base.bo || vm->root.base.bo->shadow) 856 bp->flags |= AMDGPU_GEM_CREATE_SHADOW; 857 bp->type = ttm_bo_type_kernel; 858 if (vm->root.base.bo) 859 bp->resv = vm->root.base.bo->tbo.resv; 860 } 861 862 /** 863 * amdgpu_vm_alloc_pts - Allocate page tables. 864 * 865 * @adev: amdgpu_device pointer 866 * @vm: VM to allocate page tables for 867 * @saddr: Start address which needs to be allocated 868 * @size: Size from start address we need. 869 * 870 * Make sure the page directories and page tables are allocated 871 * 872 * Returns: 873 * 0 on success, errno otherwise. 874 */ 875 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 876 struct amdgpu_vm *vm, 877 uint64_t saddr, uint64_t size) 878 { 879 struct amdgpu_vm_pt_cursor cursor; 880 struct amdgpu_bo *pt; 881 bool ats = false; 882 uint64_t eaddr; 883 int r; 884 885 /* validate the parameters */ 886 if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK) 887 return -EINVAL; 888 889 eaddr = saddr + size - 1; 890 891 if (vm->pte_support_ats) 892 ats = saddr < AMDGPU_GMC_HOLE_START; 893 894 saddr /= AMDGPU_GPU_PAGE_SIZE; 895 eaddr /= AMDGPU_GPU_PAGE_SIZE; 896 897 if (eaddr >= adev->vm_manager.max_pfn) { 898 dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n", 899 eaddr, adev->vm_manager.max_pfn); 900 return -EINVAL; 901 } 902 903 for_each_amdgpu_vm_pt_leaf(adev, vm, saddr, eaddr, cursor) { 904 struct amdgpu_vm_pt *entry = cursor.entry; 905 struct amdgpu_bo_param bp; 906 907 if (cursor.level < AMDGPU_VM_PTB) { 908 unsigned num_entries; 909 910 num_entries = amdgpu_vm_num_entries(adev, cursor.level); 911 entry->entries = kvmalloc_array(num_entries, 912 sizeof(*entry->entries), 913 GFP_KERNEL | 914 __GFP_ZERO); 915 if (!entry->entries) 916 return -ENOMEM; 917 } 918 919 920 if (entry->base.bo) 921 continue; 922 923 amdgpu_vm_bo_param(adev, vm, cursor.level, &bp); 924 925 r = amdgpu_bo_create(adev, &bp, &pt); 926 if (r) 927 return r; 928 929 r = amdgpu_vm_clear_bo(adev, vm, pt, cursor.level, ats); 930 if (r) 931 goto error_free_pt; 932 933 if (vm->use_cpu_for_update) { 934 r = amdgpu_bo_kmap(pt, NULL); 935 if (r) 936 goto error_free_pt; 937 } 938 939 /* Keep a reference to the root directory to avoid 940 * freeing them up in the wrong order. 941 */ 942 pt->parent = amdgpu_bo_ref(cursor.parent->base.bo); 943 944 amdgpu_vm_bo_base_init(&entry->base, vm, pt); 945 } 946 947 return 0; 948 949 error_free_pt: 950 amdgpu_bo_unref(&pt->shadow); 951 amdgpu_bo_unref(&pt); 952 return r; 953 } 954 955 /** 956 * amdgpu_vm_free_pts - free PD/PT levels 957 * 958 * @adev: amdgpu device structure 959 * @vm: amdgpu vm structure 960 * 961 * Free the page directory or page table level and all sub levels. 962 */ 963 static void amdgpu_vm_free_pts(struct amdgpu_device *adev, 964 struct amdgpu_vm *vm) 965 { 966 struct amdgpu_vm_pt_cursor cursor; 967 struct amdgpu_vm_pt *entry; 968 969 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, cursor, entry) { 970 971 if (entry->base.bo) { 972 entry->base.bo->vm_bo = NULL; 973 list_del(&entry->base.vm_status); 974 amdgpu_bo_unref(&entry->base.bo->shadow); 975 amdgpu_bo_unref(&entry->base.bo); 976 } 977 kvfree(entry->entries); 978 } 979 980 BUG_ON(vm->root.base.bo); 981 } 982 983 /** 984 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 985 * 986 * @adev: amdgpu_device pointer 987 */ 988 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 989 { 990 const struct amdgpu_ip_block *ip_block; 991 bool has_compute_vm_bug; 992 struct amdgpu_ring *ring; 993 int i; 994 995 has_compute_vm_bug = false; 996 997 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 998 if (ip_block) { 999 /* Compute has a VM bug for GFX version < 7. 1000 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 1001 if (ip_block->version->major <= 7) 1002 has_compute_vm_bug = true; 1003 else if (ip_block->version->major == 8) 1004 if (adev->gfx.mec_fw_version < 673) 1005 has_compute_vm_bug = true; 1006 } 1007 1008 for (i = 0; i < adev->num_rings; i++) { 1009 ring = adev->rings[i]; 1010 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 1011 /* only compute rings */ 1012 ring->has_compute_vm_bug = has_compute_vm_bug; 1013 else 1014 ring->has_compute_vm_bug = false; 1015 } 1016 } 1017 1018 /** 1019 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 1020 * 1021 * @ring: ring on which the job will be submitted 1022 * @job: job to submit 1023 * 1024 * Returns: 1025 * True if sync is needed. 1026 */ 1027 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 1028 struct amdgpu_job *job) 1029 { 1030 struct amdgpu_device *adev = ring->adev; 1031 unsigned vmhub = ring->funcs->vmhub; 1032 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1033 struct amdgpu_vmid *id; 1034 bool gds_switch_needed; 1035 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; 1036 1037 if (job->vmid == 0) 1038 return false; 1039 id = &id_mgr->ids[job->vmid]; 1040 gds_switch_needed = ring->funcs->emit_gds_switch && ( 1041 id->gds_base != job->gds_base || 1042 id->gds_size != job->gds_size || 1043 id->gws_base != job->gws_base || 1044 id->gws_size != job->gws_size || 1045 id->oa_base != job->oa_base || 1046 id->oa_size != job->oa_size); 1047 1048 if (amdgpu_vmid_had_gpu_reset(adev, id)) 1049 return true; 1050 1051 return vm_flush_needed || gds_switch_needed; 1052 } 1053 1054 /** 1055 * amdgpu_vm_flush - hardware flush the vm 1056 * 1057 * @ring: ring to use for flush 1058 * @job: related job 1059 * @need_pipe_sync: is pipe sync needed 1060 * 1061 * Emit a VM flush when it is necessary. 1062 * 1063 * Returns: 1064 * 0 on success, errno otherwise. 1065 */ 1066 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync) 1067 { 1068 struct amdgpu_device *adev = ring->adev; 1069 unsigned vmhub = ring->funcs->vmhub; 1070 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1071 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 1072 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 1073 id->gds_base != job->gds_base || 1074 id->gds_size != job->gds_size || 1075 id->gws_base != job->gws_base || 1076 id->gws_size != job->gws_size || 1077 id->oa_base != job->oa_base || 1078 id->oa_size != job->oa_size); 1079 bool vm_flush_needed = job->vm_needs_flush; 1080 bool pasid_mapping_needed = id->pasid != job->pasid || 1081 !id->pasid_mapping || 1082 !dma_fence_is_signaled(id->pasid_mapping); 1083 struct dma_fence *fence = NULL; 1084 unsigned patch_offset = 0; 1085 int r; 1086 1087 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 1088 gds_switch_needed = true; 1089 vm_flush_needed = true; 1090 pasid_mapping_needed = true; 1091 } 1092 1093 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 1094 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 1095 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 1096 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 1097 ring->funcs->emit_wreg; 1098 1099 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 1100 return 0; 1101 1102 if (ring->funcs->init_cond_exec) 1103 patch_offset = amdgpu_ring_init_cond_exec(ring); 1104 1105 if (need_pipe_sync) 1106 amdgpu_ring_emit_pipeline_sync(ring); 1107 1108 if (vm_flush_needed) { 1109 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 1110 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 1111 } 1112 1113 if (pasid_mapping_needed) 1114 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 1115 1116 if (vm_flush_needed || pasid_mapping_needed) { 1117 r = amdgpu_fence_emit(ring, &fence, 0); 1118 if (r) 1119 return r; 1120 } 1121 1122 if (vm_flush_needed) { 1123 mutex_lock(&id_mgr->lock); 1124 dma_fence_put(id->last_flush); 1125 id->last_flush = dma_fence_get(fence); 1126 id->current_gpu_reset_count = 1127 atomic_read(&adev->gpu_reset_counter); 1128 mutex_unlock(&id_mgr->lock); 1129 } 1130 1131 if (pasid_mapping_needed) { 1132 id->pasid = job->pasid; 1133 dma_fence_put(id->pasid_mapping); 1134 id->pasid_mapping = dma_fence_get(fence); 1135 } 1136 dma_fence_put(fence); 1137 1138 if (ring->funcs->emit_gds_switch && gds_switch_needed) { 1139 id->gds_base = job->gds_base; 1140 id->gds_size = job->gds_size; 1141 id->gws_base = job->gws_base; 1142 id->gws_size = job->gws_size; 1143 id->oa_base = job->oa_base; 1144 id->oa_size = job->oa_size; 1145 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 1146 job->gds_size, job->gws_base, 1147 job->gws_size, job->oa_base, 1148 job->oa_size); 1149 } 1150 1151 if (ring->funcs->patch_cond_exec) 1152 amdgpu_ring_patch_cond_exec(ring, patch_offset); 1153 1154 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 1155 if (ring->funcs->emit_switch_buffer) { 1156 amdgpu_ring_emit_switch_buffer(ring); 1157 amdgpu_ring_emit_switch_buffer(ring); 1158 } 1159 return 0; 1160 } 1161 1162 /** 1163 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 1164 * 1165 * @vm: requested vm 1166 * @bo: requested buffer object 1167 * 1168 * Find @bo inside the requested vm. 1169 * Search inside the @bos vm list for the requested vm 1170 * Returns the found bo_va or NULL if none is found 1171 * 1172 * Object has to be reserved! 1173 * 1174 * Returns: 1175 * Found bo_va or NULL. 1176 */ 1177 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 1178 struct amdgpu_bo *bo) 1179 { 1180 struct amdgpu_vm_bo_base *base; 1181 1182 for (base = bo->vm_bo; base; base = base->next) { 1183 if (base->vm != vm) 1184 continue; 1185 1186 return container_of(base, struct amdgpu_bo_va, base); 1187 } 1188 return NULL; 1189 } 1190 1191 /** 1192 * amdgpu_vm_do_set_ptes - helper to call the right asic function 1193 * 1194 * @params: see amdgpu_pte_update_params definition 1195 * @bo: PD/PT to update 1196 * @pe: addr of the page entry 1197 * @addr: dst addr to write into pe 1198 * @count: number of page entries to update 1199 * @incr: increase next addr by incr bytes 1200 * @flags: hw access flags 1201 * 1202 * Traces the parameters and calls the right asic functions 1203 * to setup the page table using the DMA. 1204 */ 1205 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params, 1206 struct amdgpu_bo *bo, 1207 uint64_t pe, uint64_t addr, 1208 unsigned count, uint32_t incr, 1209 uint64_t flags) 1210 { 1211 pe += amdgpu_bo_gpu_offset(bo); 1212 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 1213 1214 if (count < 3) { 1215 amdgpu_vm_write_pte(params->adev, params->ib, pe, 1216 addr | flags, count, incr); 1217 1218 } else { 1219 amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr, 1220 count, incr, flags); 1221 } 1222 } 1223 1224 /** 1225 * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART 1226 * 1227 * @params: see amdgpu_pte_update_params definition 1228 * @bo: PD/PT to update 1229 * @pe: addr of the page entry 1230 * @addr: dst addr to write into pe 1231 * @count: number of page entries to update 1232 * @incr: increase next addr by incr bytes 1233 * @flags: hw access flags 1234 * 1235 * Traces the parameters and calls the DMA function to copy the PTEs. 1236 */ 1237 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params, 1238 struct amdgpu_bo *bo, 1239 uint64_t pe, uint64_t addr, 1240 unsigned count, uint32_t incr, 1241 uint64_t flags) 1242 { 1243 uint64_t src = (params->src + (addr >> 12) * 8); 1244 1245 pe += amdgpu_bo_gpu_offset(bo); 1246 trace_amdgpu_vm_copy_ptes(pe, src, count); 1247 1248 amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count); 1249 } 1250 1251 /** 1252 * amdgpu_vm_map_gart - Resolve gart mapping of addr 1253 * 1254 * @pages_addr: optional DMA address to use for lookup 1255 * @addr: the unmapped addr 1256 * 1257 * Look up the physical address of the page that the pte resolves 1258 * to. 1259 * 1260 * Returns: 1261 * The pointer for the page table entry. 1262 */ 1263 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 1264 { 1265 uint64_t result; 1266 1267 /* page table offset */ 1268 result = pages_addr[addr >> PAGE_SHIFT]; 1269 1270 /* in case cpu page size != gpu page size*/ 1271 result |= addr & (~PAGE_MASK); 1272 1273 result &= 0xFFFFFFFFFFFFF000ULL; 1274 1275 return result; 1276 } 1277 1278 /** 1279 * amdgpu_vm_cpu_set_ptes - helper to update page tables via CPU 1280 * 1281 * @params: see amdgpu_pte_update_params definition 1282 * @bo: PD/PT to update 1283 * @pe: kmap addr of the page entry 1284 * @addr: dst addr to write into pe 1285 * @count: number of page entries to update 1286 * @incr: increase next addr by incr bytes 1287 * @flags: hw access flags 1288 * 1289 * Write count number of PT/PD entries directly. 1290 */ 1291 static void amdgpu_vm_cpu_set_ptes(struct amdgpu_pte_update_params *params, 1292 struct amdgpu_bo *bo, 1293 uint64_t pe, uint64_t addr, 1294 unsigned count, uint32_t incr, 1295 uint64_t flags) 1296 { 1297 unsigned int i; 1298 uint64_t value; 1299 1300 pe += (unsigned long)amdgpu_bo_kptr(bo); 1301 1302 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 1303 1304 for (i = 0; i < count; i++) { 1305 value = params->pages_addr ? 1306 amdgpu_vm_map_gart(params->pages_addr, addr) : 1307 addr; 1308 amdgpu_gmc_set_pte_pde(params->adev, (void *)(uintptr_t)pe, 1309 i, value, flags); 1310 addr += incr; 1311 } 1312 } 1313 1314 1315 /** 1316 * amdgpu_vm_wait_pd - Wait for PT BOs to be free. 1317 * 1318 * @adev: amdgpu_device pointer 1319 * @vm: related vm 1320 * @owner: fence owner 1321 * 1322 * Returns: 1323 * 0 on success, errno otherwise. 1324 */ 1325 static int amdgpu_vm_wait_pd(struct amdgpu_device *adev, struct amdgpu_vm *vm, 1326 void *owner) 1327 { 1328 struct amdgpu_sync sync; 1329 int r; 1330 1331 amdgpu_sync_create(&sync); 1332 amdgpu_sync_resv(adev, &sync, vm->root.base.bo->tbo.resv, owner, false); 1333 r = amdgpu_sync_wait(&sync, true); 1334 amdgpu_sync_free(&sync); 1335 1336 return r; 1337 } 1338 1339 /** 1340 * amdgpu_vm_update_func - helper to call update function 1341 * 1342 * Calls the update function for both the given BO as well as its shadow. 1343 */ 1344 static void amdgpu_vm_update_func(struct amdgpu_pte_update_params *params, 1345 struct amdgpu_bo *bo, 1346 uint64_t pe, uint64_t addr, 1347 unsigned count, uint32_t incr, 1348 uint64_t flags) 1349 { 1350 if (bo->shadow) 1351 params->func(params, bo->shadow, pe, addr, count, incr, flags); 1352 params->func(params, bo, pe, addr, count, incr, flags); 1353 } 1354 1355 /* 1356 * amdgpu_vm_update_pde - update a single level in the hierarchy 1357 * 1358 * @param: parameters for the update 1359 * @vm: requested vm 1360 * @parent: parent directory 1361 * @entry: entry to update 1362 * 1363 * Makes sure the requested entry in parent is up to date. 1364 */ 1365 static void amdgpu_vm_update_pde(struct amdgpu_pte_update_params *params, 1366 struct amdgpu_vm *vm, 1367 struct amdgpu_vm_pt *parent, 1368 struct amdgpu_vm_pt *entry) 1369 { 1370 struct amdgpu_bo *bo = parent->base.bo, *pbo; 1371 uint64_t pde, pt, flags; 1372 unsigned level; 1373 1374 /* Don't update huge pages here */ 1375 if (entry->huge) 1376 return; 1377 1378 for (level = 0, pbo = bo->parent; pbo; ++level) 1379 pbo = pbo->parent; 1380 1381 level += params->adev->vm_manager.root_level; 1382 amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags); 1383 pde = (entry - parent->entries) * 8; 1384 amdgpu_vm_update_func(params, bo, pde, pt, 1, 0, flags); 1385 } 1386 1387 /* 1388 * amdgpu_vm_invalidate_pds - mark all PDs as invalid 1389 * 1390 * @adev: amdgpu_device pointer 1391 * @vm: related vm 1392 * 1393 * Mark all PD level as invalid after an error. 1394 */ 1395 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev, 1396 struct amdgpu_vm *vm) 1397 { 1398 struct amdgpu_vm_pt_cursor cursor; 1399 struct amdgpu_vm_pt *entry; 1400 1401 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, cursor, entry) 1402 if (entry->base.bo && !entry->base.moved) 1403 amdgpu_vm_bo_relocated(&entry->base); 1404 } 1405 1406 /* 1407 * amdgpu_vm_update_directories - make sure that all directories are valid 1408 * 1409 * @adev: amdgpu_device pointer 1410 * @vm: requested vm 1411 * 1412 * Makes sure all directories are up to date. 1413 * 1414 * Returns: 1415 * 0 for success, error for failure. 1416 */ 1417 int amdgpu_vm_update_directories(struct amdgpu_device *adev, 1418 struct amdgpu_vm *vm) 1419 { 1420 struct amdgpu_pte_update_params params; 1421 struct amdgpu_job *job; 1422 unsigned ndw = 0; 1423 int r = 0; 1424 1425 if (list_empty(&vm->relocated)) 1426 return 0; 1427 1428 restart: 1429 memset(¶ms, 0, sizeof(params)); 1430 params.adev = adev; 1431 1432 if (vm->use_cpu_for_update) { 1433 r = amdgpu_vm_wait_pd(adev, vm, AMDGPU_FENCE_OWNER_VM); 1434 if (unlikely(r)) 1435 return r; 1436 1437 params.func = amdgpu_vm_cpu_set_ptes; 1438 } else { 1439 ndw = 512 * 8; 1440 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 1441 if (r) 1442 return r; 1443 1444 params.ib = &job->ibs[0]; 1445 params.func = amdgpu_vm_do_set_ptes; 1446 } 1447 1448 while (!list_empty(&vm->relocated)) { 1449 struct amdgpu_vm_pt *pt, *entry; 1450 1451 entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt, 1452 base.vm_status); 1453 amdgpu_vm_bo_idle(&entry->base); 1454 1455 pt = amdgpu_vm_pt_parent(entry); 1456 if (!pt) 1457 continue; 1458 1459 amdgpu_vm_update_pde(¶ms, vm, pt, entry); 1460 1461 if (!vm->use_cpu_for_update && 1462 (ndw - params.ib->length_dw) < 32) 1463 break; 1464 } 1465 1466 if (vm->use_cpu_for_update) { 1467 /* Flush HDP */ 1468 mb(); 1469 amdgpu_asic_flush_hdp(adev, NULL); 1470 } else if (params.ib->length_dw == 0) { 1471 amdgpu_job_free(job); 1472 } else { 1473 struct amdgpu_bo *root = vm->root.base.bo; 1474 struct amdgpu_ring *ring; 1475 struct dma_fence *fence; 1476 1477 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, 1478 sched); 1479 1480 amdgpu_ring_pad_ib(ring, params.ib); 1481 amdgpu_sync_resv(adev, &job->sync, root->tbo.resv, 1482 AMDGPU_FENCE_OWNER_VM, false); 1483 WARN_ON(params.ib->length_dw > ndw); 1484 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_VM, 1485 &fence); 1486 if (r) 1487 goto error; 1488 1489 amdgpu_bo_fence(root, fence, true); 1490 dma_fence_put(vm->last_update); 1491 vm->last_update = fence; 1492 } 1493 1494 if (!list_empty(&vm->relocated)) 1495 goto restart; 1496 1497 return 0; 1498 1499 error: 1500 amdgpu_vm_invalidate_pds(adev, vm); 1501 amdgpu_job_free(job); 1502 return r; 1503 } 1504 1505 /** 1506 * amdgpu_vm_update_huge - figure out parameters for PTE updates 1507 * 1508 * Make sure to set the right flags for the PTEs at the desired level. 1509 */ 1510 static void amdgpu_vm_update_huge(struct amdgpu_pte_update_params *params, 1511 struct amdgpu_bo *bo, unsigned level, 1512 uint64_t pe, uint64_t addr, 1513 unsigned count, uint32_t incr, 1514 uint64_t flags) 1515 1516 { 1517 if (level != AMDGPU_VM_PTB) { 1518 flags |= AMDGPU_PDE_PTE; 1519 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags); 1520 } 1521 1522 amdgpu_vm_update_func(params, bo, pe, addr, count, incr, flags); 1523 } 1524 1525 /** 1526 * amdgpu_vm_fragment - get fragment for PTEs 1527 * 1528 * @params: see amdgpu_pte_update_params definition 1529 * @start: first PTE to handle 1530 * @end: last PTE to handle 1531 * @flags: hw mapping flags 1532 * @frag: resulting fragment size 1533 * @frag_end: end of this fragment 1534 * 1535 * Returns the first possible fragment for the start and end address. 1536 */ 1537 static void amdgpu_vm_fragment(struct amdgpu_pte_update_params *params, 1538 uint64_t start, uint64_t end, uint64_t flags, 1539 unsigned int *frag, uint64_t *frag_end) 1540 { 1541 /** 1542 * The MC L1 TLB supports variable sized pages, based on a fragment 1543 * field in the PTE. When this field is set to a non-zero value, page 1544 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1545 * flags are considered valid for all PTEs within the fragment range 1546 * and corresponding mappings are assumed to be physically contiguous. 1547 * 1548 * The L1 TLB can store a single PTE for the whole fragment, 1549 * significantly increasing the space available for translation 1550 * caching. This leads to large improvements in throughput when the 1551 * TLB is under pressure. 1552 * 1553 * The L2 TLB distributes small and large fragments into two 1554 * asymmetric partitions. The large fragment cache is significantly 1555 * larger. Thus, we try to use large fragments wherever possible. 1556 * Userspace can support this by aligning virtual base address and 1557 * allocation size to the fragment size. 1558 * 1559 * Starting with Vega10 the fragment size only controls the L1. The L2 1560 * is now directly feed with small/huge/giant pages from the walker. 1561 */ 1562 unsigned max_frag; 1563 1564 if (params->adev->asic_type < CHIP_VEGA10) 1565 max_frag = params->adev->vm_manager.fragment_size; 1566 else 1567 max_frag = 31; 1568 1569 /* system pages are non continuously */ 1570 if (params->src) { 1571 *frag = 0; 1572 *frag_end = end; 1573 return; 1574 } 1575 1576 /* This intentionally wraps around if no bit is set */ 1577 *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1); 1578 if (*frag >= max_frag) { 1579 *frag = max_frag; 1580 *frag_end = end & ~((1ULL << max_frag) - 1); 1581 } else { 1582 *frag_end = start + (1 << *frag); 1583 } 1584 } 1585 1586 /** 1587 * amdgpu_vm_update_ptes - make sure that page tables are valid 1588 * 1589 * @params: see amdgpu_pte_update_params definition 1590 * @start: start of GPU address range 1591 * @end: end of GPU address range 1592 * @dst: destination address to map to, the next dst inside the function 1593 * @flags: mapping flags 1594 * 1595 * Update the page tables in the range @start - @end. 1596 * 1597 * Returns: 1598 * 0 for success, -EINVAL for failure. 1599 */ 1600 static int amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params, 1601 uint64_t start, uint64_t end, 1602 uint64_t dst, uint64_t flags) 1603 { 1604 struct amdgpu_device *adev = params->adev; 1605 struct amdgpu_vm_pt_cursor cursor; 1606 uint64_t frag_start = start, frag_end; 1607 unsigned int frag; 1608 1609 /* figure out the initial fragment */ 1610 amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end); 1611 1612 /* walk over the address space and update the PTs */ 1613 amdgpu_vm_pt_start(adev, params->vm, start, &cursor); 1614 while (cursor.pfn < end) { 1615 struct amdgpu_bo *pt = cursor.entry->base.bo; 1616 unsigned shift, parent_shift, mask; 1617 uint64_t incr, entry_end, pe_start; 1618 1619 if (!pt) 1620 return -ENOENT; 1621 1622 /* The root level can't be a huge page */ 1623 if (cursor.level == adev->vm_manager.root_level) { 1624 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1625 return -ENOENT; 1626 continue; 1627 } 1628 1629 /* If it isn't already handled it can't be a huge page */ 1630 if (cursor.entry->huge) { 1631 /* Add the entry to the relocated list to update it. */ 1632 cursor.entry->huge = false; 1633 amdgpu_vm_bo_relocated(&cursor.entry->base); 1634 } 1635 1636 shift = amdgpu_vm_level_shift(adev, cursor.level); 1637 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1); 1638 if (adev->asic_type < CHIP_VEGA10) { 1639 /* No huge page support before GMC v9 */ 1640 if (cursor.level != AMDGPU_VM_PTB) { 1641 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1642 return -ENOENT; 1643 continue; 1644 } 1645 } else if (frag < shift) { 1646 /* We can't use this level when the fragment size is 1647 * smaller than the address shift. Go to the next 1648 * child entry and try again. 1649 */ 1650 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1651 return -ENOENT; 1652 continue; 1653 } else if (frag >= parent_shift && 1654 cursor.level - 1 != adev->vm_manager.root_level) { 1655 /* If the fragment size is even larger than the parent 1656 * shift we should go up one level and check it again 1657 * unless one level up is the root level. 1658 */ 1659 if (!amdgpu_vm_pt_ancestor(&cursor)) 1660 return -ENOENT; 1661 continue; 1662 } 1663 1664 /* Looks good so far, calculate parameters for the update */ 1665 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift; 1666 mask = amdgpu_vm_entries_mask(adev, cursor.level); 1667 pe_start = ((cursor.pfn >> shift) & mask) * 8; 1668 entry_end = (uint64_t)(mask + 1) << shift; 1669 entry_end += cursor.pfn & ~(entry_end - 1); 1670 entry_end = min(entry_end, end); 1671 1672 do { 1673 uint64_t upd_end = min(entry_end, frag_end); 1674 unsigned nptes = (upd_end - frag_start) >> shift; 1675 1676 amdgpu_vm_update_huge(params, pt, cursor.level, 1677 pe_start, dst, nptes, incr, 1678 flags | AMDGPU_PTE_FRAG(frag)); 1679 1680 pe_start += nptes * 8; 1681 dst += (uint64_t)nptes * AMDGPU_GPU_PAGE_SIZE << shift; 1682 1683 frag_start = upd_end; 1684 if (frag_start >= frag_end) { 1685 /* figure out the next fragment */ 1686 amdgpu_vm_fragment(params, frag_start, end, 1687 flags, &frag, &frag_end); 1688 if (frag < shift) 1689 break; 1690 } 1691 } while (frag_start < entry_end); 1692 1693 if (amdgpu_vm_pt_descendant(adev, &cursor)) { 1694 /* Mark all child entries as huge */ 1695 while (cursor.pfn < frag_start) { 1696 cursor.entry->huge = true; 1697 amdgpu_vm_pt_next(adev, &cursor); 1698 } 1699 1700 } else if (frag >= shift) { 1701 /* or just move on to the next on the same level. */ 1702 amdgpu_vm_pt_next(adev, &cursor); 1703 } 1704 } 1705 1706 return 0; 1707 } 1708 1709 /** 1710 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1711 * 1712 * @adev: amdgpu_device pointer 1713 * @exclusive: fence we need to sync to 1714 * @pages_addr: DMA addresses to use for mapping 1715 * @vm: requested vm 1716 * @start: start of mapped range 1717 * @last: last mapped entry 1718 * @flags: flags for the entries 1719 * @addr: addr to set the area to 1720 * @fence: optional resulting fence 1721 * 1722 * Fill in the page table entries between @start and @last. 1723 * 1724 * Returns: 1725 * 0 for success, -EINVAL for failure. 1726 */ 1727 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1728 struct dma_fence *exclusive, 1729 dma_addr_t *pages_addr, 1730 struct amdgpu_vm *vm, 1731 uint64_t start, uint64_t last, 1732 uint64_t flags, uint64_t addr, 1733 struct dma_fence **fence) 1734 { 1735 struct amdgpu_ring *ring; 1736 void *owner = AMDGPU_FENCE_OWNER_VM; 1737 unsigned nptes, ncmds, ndw; 1738 struct amdgpu_job *job; 1739 struct amdgpu_pte_update_params params; 1740 struct dma_fence *f = NULL; 1741 int r; 1742 1743 memset(¶ms, 0, sizeof(params)); 1744 params.adev = adev; 1745 params.vm = vm; 1746 1747 /* sync to everything on unmapping */ 1748 if (!(flags & AMDGPU_PTE_VALID)) 1749 owner = AMDGPU_FENCE_OWNER_UNDEFINED; 1750 1751 if (vm->use_cpu_for_update) { 1752 /* params.src is used as flag to indicate system Memory */ 1753 if (pages_addr) 1754 params.src = ~0; 1755 1756 /* Wait for PT BOs to be free. PTs share the same resv. object 1757 * as the root PD BO 1758 */ 1759 r = amdgpu_vm_wait_pd(adev, vm, owner); 1760 if (unlikely(r)) 1761 return r; 1762 1763 params.func = amdgpu_vm_cpu_set_ptes; 1764 params.pages_addr = pages_addr; 1765 return amdgpu_vm_update_ptes(¶ms, start, last + 1, 1766 addr, flags); 1767 } 1768 1769 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, sched); 1770 1771 nptes = last - start + 1; 1772 1773 /* 1774 * reserve space for two commands every (1 << BLOCK_SIZE) 1775 * entries or 2k dwords (whatever is smaller) 1776 * 1777 * The second command is for the shadow pagetables. 1778 */ 1779 if (vm->root.base.bo->shadow) 1780 ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1) * 2; 1781 else 1782 ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1); 1783 1784 /* padding, etc. */ 1785 ndw = 64; 1786 1787 if (pages_addr) { 1788 /* copy commands needed */ 1789 ndw += ncmds * adev->vm_manager.vm_pte_funcs->copy_pte_num_dw; 1790 1791 /* and also PTEs */ 1792 ndw += nptes * 2; 1793 1794 params.func = amdgpu_vm_do_copy_ptes; 1795 1796 } else { 1797 /* set page commands needed */ 1798 ndw += ncmds * 10; 1799 1800 /* extra commands for begin/end fragments */ 1801 if (vm->root.base.bo->shadow) 1802 ndw += 2 * 10 * adev->vm_manager.fragment_size * 2; 1803 else 1804 ndw += 2 * 10 * adev->vm_manager.fragment_size; 1805 1806 params.func = amdgpu_vm_do_set_ptes; 1807 } 1808 1809 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 1810 if (r) 1811 return r; 1812 1813 params.ib = &job->ibs[0]; 1814 1815 if (pages_addr) { 1816 uint64_t *pte; 1817 unsigned i; 1818 1819 /* Put the PTEs at the end of the IB. */ 1820 i = ndw - nptes * 2; 1821 pte= (uint64_t *)&(job->ibs->ptr[i]); 1822 params.src = job->ibs->gpu_addr + i * 4; 1823 1824 for (i = 0; i < nptes; ++i) { 1825 pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i * 1826 AMDGPU_GPU_PAGE_SIZE); 1827 pte[i] |= flags; 1828 } 1829 addr = 0; 1830 } 1831 1832 r = amdgpu_sync_fence(adev, &job->sync, exclusive, false); 1833 if (r) 1834 goto error_free; 1835 1836 r = amdgpu_sync_resv(adev, &job->sync, vm->root.base.bo->tbo.resv, 1837 owner, false); 1838 if (r) 1839 goto error_free; 1840 1841 r = amdgpu_vm_update_ptes(¶ms, start, last + 1, addr, flags); 1842 if (r) 1843 goto error_free; 1844 1845 amdgpu_ring_pad_ib(ring, params.ib); 1846 WARN_ON(params.ib->length_dw > ndw); 1847 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_VM, &f); 1848 if (r) 1849 goto error_free; 1850 1851 amdgpu_bo_fence(vm->root.base.bo, f, true); 1852 dma_fence_put(*fence); 1853 *fence = f; 1854 return 0; 1855 1856 error_free: 1857 amdgpu_job_free(job); 1858 return r; 1859 } 1860 1861 /** 1862 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks 1863 * 1864 * @adev: amdgpu_device pointer 1865 * @exclusive: fence we need to sync to 1866 * @pages_addr: DMA addresses to use for mapping 1867 * @vm: requested vm 1868 * @mapping: mapped range and flags to use for the update 1869 * @flags: HW flags for the mapping 1870 * @nodes: array of drm_mm_nodes with the MC addresses 1871 * @fence: optional resulting fence 1872 * 1873 * Split the mapping into smaller chunks so that each update fits 1874 * into a SDMA IB. 1875 * 1876 * Returns: 1877 * 0 for success, -EINVAL for failure. 1878 */ 1879 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev, 1880 struct dma_fence *exclusive, 1881 dma_addr_t *pages_addr, 1882 struct amdgpu_vm *vm, 1883 struct amdgpu_bo_va_mapping *mapping, 1884 uint64_t flags, 1885 struct drm_mm_node *nodes, 1886 struct dma_fence **fence) 1887 { 1888 unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size; 1889 uint64_t pfn, start = mapping->start; 1890 int r; 1891 1892 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1893 * but in case of something, we filter the flags in first place 1894 */ 1895 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1896 flags &= ~AMDGPU_PTE_READABLE; 1897 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1898 flags &= ~AMDGPU_PTE_WRITEABLE; 1899 1900 flags &= ~AMDGPU_PTE_EXECUTABLE; 1901 flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE; 1902 1903 flags &= ~AMDGPU_PTE_MTYPE_MASK; 1904 flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK); 1905 1906 if ((mapping->flags & AMDGPU_PTE_PRT) && 1907 (adev->asic_type >= CHIP_VEGA10)) { 1908 flags |= AMDGPU_PTE_PRT; 1909 flags &= ~AMDGPU_PTE_VALID; 1910 } 1911 1912 trace_amdgpu_vm_bo_update(mapping); 1913 1914 pfn = mapping->offset >> PAGE_SHIFT; 1915 if (nodes) { 1916 while (pfn >= nodes->size) { 1917 pfn -= nodes->size; 1918 ++nodes; 1919 } 1920 } 1921 1922 do { 1923 dma_addr_t *dma_addr = NULL; 1924 uint64_t max_entries; 1925 uint64_t addr, last; 1926 1927 if (nodes) { 1928 addr = nodes->start << PAGE_SHIFT; 1929 max_entries = (nodes->size - pfn) * 1930 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1931 } else { 1932 addr = 0; 1933 max_entries = S64_MAX; 1934 } 1935 1936 if (pages_addr) { 1937 uint64_t count; 1938 1939 max_entries = min(max_entries, 16ull * 1024ull); 1940 for (count = 1; 1941 count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1942 ++count) { 1943 uint64_t idx = pfn + count; 1944 1945 if (pages_addr[idx] != 1946 (pages_addr[idx - 1] + PAGE_SIZE)) 1947 break; 1948 } 1949 1950 if (count < min_linear_pages) { 1951 addr = pfn << PAGE_SHIFT; 1952 dma_addr = pages_addr; 1953 } else { 1954 addr = pages_addr[pfn]; 1955 max_entries = count * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1956 } 1957 1958 } else if (flags & AMDGPU_PTE_VALID) { 1959 addr += adev->vm_manager.vram_base_offset; 1960 addr += pfn << PAGE_SHIFT; 1961 } 1962 1963 last = min((uint64_t)mapping->last, start + max_entries - 1); 1964 r = amdgpu_vm_bo_update_mapping(adev, exclusive, dma_addr, vm, 1965 start, last, flags, addr, 1966 fence); 1967 if (r) 1968 return r; 1969 1970 pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1971 if (nodes && nodes->size == pfn) { 1972 pfn = 0; 1973 ++nodes; 1974 } 1975 start = last + 1; 1976 1977 } while (unlikely(start != mapping->last + 1)); 1978 1979 return 0; 1980 } 1981 1982 /** 1983 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1984 * 1985 * @adev: amdgpu_device pointer 1986 * @bo_va: requested BO and VM object 1987 * @clear: if true clear the entries 1988 * 1989 * Fill in the page table entries for @bo_va. 1990 * 1991 * Returns: 1992 * 0 for success, -EINVAL for failure. 1993 */ 1994 int amdgpu_vm_bo_update(struct amdgpu_device *adev, 1995 struct amdgpu_bo_va *bo_va, 1996 bool clear) 1997 { 1998 struct amdgpu_bo *bo = bo_va->base.bo; 1999 struct amdgpu_vm *vm = bo_va->base.vm; 2000 struct amdgpu_bo_va_mapping *mapping; 2001 dma_addr_t *pages_addr = NULL; 2002 struct ttm_mem_reg *mem; 2003 struct drm_mm_node *nodes; 2004 struct dma_fence *exclusive, **last_update; 2005 uint64_t flags; 2006 int r; 2007 2008 if (clear || !bo) { 2009 mem = NULL; 2010 nodes = NULL; 2011 exclusive = NULL; 2012 } else { 2013 struct ttm_dma_tt *ttm; 2014 2015 mem = &bo->tbo.mem; 2016 nodes = mem->mm_node; 2017 if (mem->mem_type == TTM_PL_TT) { 2018 ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm); 2019 pages_addr = ttm->dma_address; 2020 } 2021 exclusive = reservation_object_get_excl(bo->tbo.resv); 2022 } 2023 2024 if (bo) 2025 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 2026 else 2027 flags = 0x0; 2028 2029 if (clear || (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv)) 2030 last_update = &vm->last_update; 2031 else 2032 last_update = &bo_va->last_pt_update; 2033 2034 if (!clear && bo_va->base.moved) { 2035 bo_va->base.moved = false; 2036 list_splice_init(&bo_va->valids, &bo_va->invalids); 2037 2038 } else if (bo_va->cleared != clear) { 2039 list_splice_init(&bo_va->valids, &bo_va->invalids); 2040 } 2041 2042 list_for_each_entry(mapping, &bo_va->invalids, list) { 2043 r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm, 2044 mapping, flags, nodes, 2045 last_update); 2046 if (r) 2047 return r; 2048 } 2049 2050 if (vm->use_cpu_for_update) { 2051 /* Flush HDP */ 2052 mb(); 2053 amdgpu_asic_flush_hdp(adev, NULL); 2054 } 2055 2056 /* If the BO is not in its preferred location add it back to 2057 * the evicted list so that it gets validated again on the 2058 * next command submission. 2059 */ 2060 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv) { 2061 uint32_t mem_type = bo->tbo.mem.mem_type; 2062 2063 if (!(bo->preferred_domains & amdgpu_mem_type_to_domain(mem_type))) 2064 amdgpu_vm_bo_evicted(&bo_va->base); 2065 else 2066 amdgpu_vm_bo_idle(&bo_va->base); 2067 } else { 2068 amdgpu_vm_bo_done(&bo_va->base); 2069 } 2070 2071 list_splice_init(&bo_va->invalids, &bo_va->valids); 2072 bo_va->cleared = clear; 2073 2074 if (trace_amdgpu_vm_bo_mapping_enabled()) { 2075 list_for_each_entry(mapping, &bo_va->valids, list) 2076 trace_amdgpu_vm_bo_mapping(mapping); 2077 } 2078 2079 return 0; 2080 } 2081 2082 /** 2083 * amdgpu_vm_update_prt_state - update the global PRT state 2084 * 2085 * @adev: amdgpu_device pointer 2086 */ 2087 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 2088 { 2089 unsigned long flags; 2090 bool enable; 2091 2092 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 2093 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 2094 adev->gmc.gmc_funcs->set_prt(adev, enable); 2095 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 2096 } 2097 2098 /** 2099 * amdgpu_vm_prt_get - add a PRT user 2100 * 2101 * @adev: amdgpu_device pointer 2102 */ 2103 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 2104 { 2105 if (!adev->gmc.gmc_funcs->set_prt) 2106 return; 2107 2108 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 2109 amdgpu_vm_update_prt_state(adev); 2110 } 2111 2112 /** 2113 * amdgpu_vm_prt_put - drop a PRT user 2114 * 2115 * @adev: amdgpu_device pointer 2116 */ 2117 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 2118 { 2119 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 2120 amdgpu_vm_update_prt_state(adev); 2121 } 2122 2123 /** 2124 * amdgpu_vm_prt_cb - callback for updating the PRT status 2125 * 2126 * @fence: fence for the callback 2127 * @_cb: the callback function 2128 */ 2129 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 2130 { 2131 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 2132 2133 amdgpu_vm_prt_put(cb->adev); 2134 kfree(cb); 2135 } 2136 2137 /** 2138 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 2139 * 2140 * @adev: amdgpu_device pointer 2141 * @fence: fence for the callback 2142 */ 2143 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 2144 struct dma_fence *fence) 2145 { 2146 struct amdgpu_prt_cb *cb; 2147 2148 if (!adev->gmc.gmc_funcs->set_prt) 2149 return; 2150 2151 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 2152 if (!cb) { 2153 /* Last resort when we are OOM */ 2154 if (fence) 2155 dma_fence_wait(fence, false); 2156 2157 amdgpu_vm_prt_put(adev); 2158 } else { 2159 cb->adev = adev; 2160 if (!fence || dma_fence_add_callback(fence, &cb->cb, 2161 amdgpu_vm_prt_cb)) 2162 amdgpu_vm_prt_cb(fence, &cb->cb); 2163 } 2164 } 2165 2166 /** 2167 * amdgpu_vm_free_mapping - free a mapping 2168 * 2169 * @adev: amdgpu_device pointer 2170 * @vm: requested vm 2171 * @mapping: mapping to be freed 2172 * @fence: fence of the unmap operation 2173 * 2174 * Free a mapping and make sure we decrease the PRT usage count if applicable. 2175 */ 2176 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 2177 struct amdgpu_vm *vm, 2178 struct amdgpu_bo_va_mapping *mapping, 2179 struct dma_fence *fence) 2180 { 2181 if (mapping->flags & AMDGPU_PTE_PRT) 2182 amdgpu_vm_add_prt_cb(adev, fence); 2183 kfree(mapping); 2184 } 2185 2186 /** 2187 * amdgpu_vm_prt_fini - finish all prt mappings 2188 * 2189 * @adev: amdgpu_device pointer 2190 * @vm: requested vm 2191 * 2192 * Register a cleanup callback to disable PRT support after VM dies. 2193 */ 2194 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2195 { 2196 struct reservation_object *resv = vm->root.base.bo->tbo.resv; 2197 struct dma_fence *excl, **shared; 2198 unsigned i, shared_count; 2199 int r; 2200 2201 r = reservation_object_get_fences_rcu(resv, &excl, 2202 &shared_count, &shared); 2203 if (r) { 2204 /* Not enough memory to grab the fence list, as last resort 2205 * block for all the fences to complete. 2206 */ 2207 reservation_object_wait_timeout_rcu(resv, true, false, 2208 MAX_SCHEDULE_TIMEOUT); 2209 return; 2210 } 2211 2212 /* Add a callback for each fence in the reservation object */ 2213 amdgpu_vm_prt_get(adev); 2214 amdgpu_vm_add_prt_cb(adev, excl); 2215 2216 for (i = 0; i < shared_count; ++i) { 2217 amdgpu_vm_prt_get(adev); 2218 amdgpu_vm_add_prt_cb(adev, shared[i]); 2219 } 2220 2221 kfree(shared); 2222 } 2223 2224 /** 2225 * amdgpu_vm_clear_freed - clear freed BOs in the PT 2226 * 2227 * @adev: amdgpu_device pointer 2228 * @vm: requested vm 2229 * @fence: optional resulting fence (unchanged if no work needed to be done 2230 * or if an error occurred) 2231 * 2232 * Make sure all freed BOs are cleared in the PT. 2233 * PTs have to be reserved and mutex must be locked! 2234 * 2235 * Returns: 2236 * 0 for success. 2237 * 2238 */ 2239 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 2240 struct amdgpu_vm *vm, 2241 struct dma_fence **fence) 2242 { 2243 struct amdgpu_bo_va_mapping *mapping; 2244 uint64_t init_pte_value = 0; 2245 struct dma_fence *f = NULL; 2246 int r; 2247 2248 while (!list_empty(&vm->freed)) { 2249 mapping = list_first_entry(&vm->freed, 2250 struct amdgpu_bo_va_mapping, list); 2251 list_del(&mapping->list); 2252 2253 if (vm->pte_support_ats && 2254 mapping->start < AMDGPU_GMC_HOLE_START) 2255 init_pte_value = AMDGPU_PTE_DEFAULT_ATC; 2256 2257 r = amdgpu_vm_bo_update_mapping(adev, NULL, NULL, vm, 2258 mapping->start, mapping->last, 2259 init_pte_value, 0, &f); 2260 amdgpu_vm_free_mapping(adev, vm, mapping, f); 2261 if (r) { 2262 dma_fence_put(f); 2263 return r; 2264 } 2265 } 2266 2267 if (fence && f) { 2268 dma_fence_put(*fence); 2269 *fence = f; 2270 } else { 2271 dma_fence_put(f); 2272 } 2273 2274 return 0; 2275 2276 } 2277 2278 /** 2279 * amdgpu_vm_handle_moved - handle moved BOs in the PT 2280 * 2281 * @adev: amdgpu_device pointer 2282 * @vm: requested vm 2283 * 2284 * Make sure all BOs which are moved are updated in the PTs. 2285 * 2286 * Returns: 2287 * 0 for success. 2288 * 2289 * PTs have to be reserved! 2290 */ 2291 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 2292 struct amdgpu_vm *vm) 2293 { 2294 struct amdgpu_bo_va *bo_va, *tmp; 2295 struct reservation_object *resv; 2296 bool clear; 2297 int r; 2298 2299 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 2300 /* Per VM BOs never need to bo cleared in the page tables */ 2301 r = amdgpu_vm_bo_update(adev, bo_va, false); 2302 if (r) 2303 return r; 2304 } 2305 2306 spin_lock(&vm->invalidated_lock); 2307 while (!list_empty(&vm->invalidated)) { 2308 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 2309 base.vm_status); 2310 resv = bo_va->base.bo->tbo.resv; 2311 spin_unlock(&vm->invalidated_lock); 2312 2313 /* Try to reserve the BO to avoid clearing its ptes */ 2314 if (!amdgpu_vm_debug && reservation_object_trylock(resv)) 2315 clear = false; 2316 /* Somebody else is using the BO right now */ 2317 else 2318 clear = true; 2319 2320 r = amdgpu_vm_bo_update(adev, bo_va, clear); 2321 if (r) 2322 return r; 2323 2324 if (!clear) 2325 reservation_object_unlock(resv); 2326 spin_lock(&vm->invalidated_lock); 2327 } 2328 spin_unlock(&vm->invalidated_lock); 2329 2330 return 0; 2331 } 2332 2333 /** 2334 * amdgpu_vm_bo_add - add a bo to a specific vm 2335 * 2336 * @adev: amdgpu_device pointer 2337 * @vm: requested vm 2338 * @bo: amdgpu buffer object 2339 * 2340 * Add @bo into the requested vm. 2341 * Add @bo to the list of bos associated with the vm 2342 * 2343 * Returns: 2344 * Newly added bo_va or NULL for failure 2345 * 2346 * Object has to be reserved! 2347 */ 2348 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 2349 struct amdgpu_vm *vm, 2350 struct amdgpu_bo *bo) 2351 { 2352 struct amdgpu_bo_va *bo_va; 2353 2354 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 2355 if (bo_va == NULL) { 2356 return NULL; 2357 } 2358 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 2359 2360 bo_va->ref_count = 1; 2361 INIT_LIST_HEAD(&bo_va->valids); 2362 INIT_LIST_HEAD(&bo_va->invalids); 2363 2364 return bo_va; 2365 } 2366 2367 2368 /** 2369 * amdgpu_vm_bo_insert_mapping - insert a new mapping 2370 * 2371 * @adev: amdgpu_device pointer 2372 * @bo_va: bo_va to store the address 2373 * @mapping: the mapping to insert 2374 * 2375 * Insert a new mapping into all structures. 2376 */ 2377 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 2378 struct amdgpu_bo_va *bo_va, 2379 struct amdgpu_bo_va_mapping *mapping) 2380 { 2381 struct amdgpu_vm *vm = bo_va->base.vm; 2382 struct amdgpu_bo *bo = bo_va->base.bo; 2383 2384 mapping->bo_va = bo_va; 2385 list_add(&mapping->list, &bo_va->invalids); 2386 amdgpu_vm_it_insert(mapping, &vm->va); 2387 2388 if (mapping->flags & AMDGPU_PTE_PRT) 2389 amdgpu_vm_prt_get(adev); 2390 2391 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv && 2392 !bo_va->base.moved) { 2393 list_move(&bo_va->base.vm_status, &vm->moved); 2394 } 2395 trace_amdgpu_vm_bo_map(bo_va, mapping); 2396 } 2397 2398 /** 2399 * amdgpu_vm_bo_map - map bo inside a vm 2400 * 2401 * @adev: amdgpu_device pointer 2402 * @bo_va: bo_va to store the address 2403 * @saddr: where to map the BO 2404 * @offset: requested offset in the BO 2405 * @size: BO size in bytes 2406 * @flags: attributes of pages (read/write/valid/etc.) 2407 * 2408 * Add a mapping of the BO at the specefied addr into the VM. 2409 * 2410 * Returns: 2411 * 0 for success, error for failure. 2412 * 2413 * Object has to be reserved and unreserved outside! 2414 */ 2415 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 2416 struct amdgpu_bo_va *bo_va, 2417 uint64_t saddr, uint64_t offset, 2418 uint64_t size, uint64_t flags) 2419 { 2420 struct amdgpu_bo_va_mapping *mapping, *tmp; 2421 struct amdgpu_bo *bo = bo_va->base.bo; 2422 struct amdgpu_vm *vm = bo_va->base.vm; 2423 uint64_t eaddr; 2424 2425 /* validate the parameters */ 2426 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2427 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2428 return -EINVAL; 2429 2430 /* make sure object fit at this offset */ 2431 eaddr = saddr + size - 1; 2432 if (saddr >= eaddr || 2433 (bo && offset + size > amdgpu_bo_size(bo))) 2434 return -EINVAL; 2435 2436 saddr /= AMDGPU_GPU_PAGE_SIZE; 2437 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2438 2439 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2440 if (tmp) { 2441 /* bo and tmp overlap, invalid addr */ 2442 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 2443 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 2444 tmp->start, tmp->last + 1); 2445 return -EINVAL; 2446 } 2447 2448 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2449 if (!mapping) 2450 return -ENOMEM; 2451 2452 mapping->start = saddr; 2453 mapping->last = eaddr; 2454 mapping->offset = offset; 2455 mapping->flags = flags; 2456 2457 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2458 2459 return 0; 2460 } 2461 2462 /** 2463 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 2464 * 2465 * @adev: amdgpu_device pointer 2466 * @bo_va: bo_va to store the address 2467 * @saddr: where to map the BO 2468 * @offset: requested offset in the BO 2469 * @size: BO size in bytes 2470 * @flags: attributes of pages (read/write/valid/etc.) 2471 * 2472 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 2473 * mappings as we do so. 2474 * 2475 * Returns: 2476 * 0 for success, error for failure. 2477 * 2478 * Object has to be reserved and unreserved outside! 2479 */ 2480 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 2481 struct amdgpu_bo_va *bo_va, 2482 uint64_t saddr, uint64_t offset, 2483 uint64_t size, uint64_t flags) 2484 { 2485 struct amdgpu_bo_va_mapping *mapping; 2486 struct amdgpu_bo *bo = bo_va->base.bo; 2487 uint64_t eaddr; 2488 int r; 2489 2490 /* validate the parameters */ 2491 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2492 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2493 return -EINVAL; 2494 2495 /* make sure object fit at this offset */ 2496 eaddr = saddr + size - 1; 2497 if (saddr >= eaddr || 2498 (bo && offset + size > amdgpu_bo_size(bo))) 2499 return -EINVAL; 2500 2501 /* Allocate all the needed memory */ 2502 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2503 if (!mapping) 2504 return -ENOMEM; 2505 2506 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 2507 if (r) { 2508 kfree(mapping); 2509 return r; 2510 } 2511 2512 saddr /= AMDGPU_GPU_PAGE_SIZE; 2513 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2514 2515 mapping->start = saddr; 2516 mapping->last = eaddr; 2517 mapping->offset = offset; 2518 mapping->flags = flags; 2519 2520 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2521 2522 return 0; 2523 } 2524 2525 /** 2526 * amdgpu_vm_bo_unmap - remove bo mapping from vm 2527 * 2528 * @adev: amdgpu_device pointer 2529 * @bo_va: bo_va to remove the address from 2530 * @saddr: where to the BO is mapped 2531 * 2532 * Remove a mapping of the BO at the specefied addr from the VM. 2533 * 2534 * Returns: 2535 * 0 for success, error for failure. 2536 * 2537 * Object has to be reserved and unreserved outside! 2538 */ 2539 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 2540 struct amdgpu_bo_va *bo_va, 2541 uint64_t saddr) 2542 { 2543 struct amdgpu_bo_va_mapping *mapping; 2544 struct amdgpu_vm *vm = bo_va->base.vm; 2545 bool valid = true; 2546 2547 saddr /= AMDGPU_GPU_PAGE_SIZE; 2548 2549 list_for_each_entry(mapping, &bo_va->valids, list) { 2550 if (mapping->start == saddr) 2551 break; 2552 } 2553 2554 if (&mapping->list == &bo_va->valids) { 2555 valid = false; 2556 2557 list_for_each_entry(mapping, &bo_va->invalids, list) { 2558 if (mapping->start == saddr) 2559 break; 2560 } 2561 2562 if (&mapping->list == &bo_va->invalids) 2563 return -ENOENT; 2564 } 2565 2566 list_del(&mapping->list); 2567 amdgpu_vm_it_remove(mapping, &vm->va); 2568 mapping->bo_va = NULL; 2569 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2570 2571 if (valid) 2572 list_add(&mapping->list, &vm->freed); 2573 else 2574 amdgpu_vm_free_mapping(adev, vm, mapping, 2575 bo_va->last_pt_update); 2576 2577 return 0; 2578 } 2579 2580 /** 2581 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 2582 * 2583 * @adev: amdgpu_device pointer 2584 * @vm: VM structure to use 2585 * @saddr: start of the range 2586 * @size: size of the range 2587 * 2588 * Remove all mappings in a range, split them as appropriate. 2589 * 2590 * Returns: 2591 * 0 for success, error for failure. 2592 */ 2593 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 2594 struct amdgpu_vm *vm, 2595 uint64_t saddr, uint64_t size) 2596 { 2597 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 2598 LIST_HEAD(removed); 2599 uint64_t eaddr; 2600 2601 eaddr = saddr + size - 1; 2602 saddr /= AMDGPU_GPU_PAGE_SIZE; 2603 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2604 2605 /* Allocate all the needed memory */ 2606 before = kzalloc(sizeof(*before), GFP_KERNEL); 2607 if (!before) 2608 return -ENOMEM; 2609 INIT_LIST_HEAD(&before->list); 2610 2611 after = kzalloc(sizeof(*after), GFP_KERNEL); 2612 if (!after) { 2613 kfree(before); 2614 return -ENOMEM; 2615 } 2616 INIT_LIST_HEAD(&after->list); 2617 2618 /* Now gather all removed mappings */ 2619 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2620 while (tmp) { 2621 /* Remember mapping split at the start */ 2622 if (tmp->start < saddr) { 2623 before->start = tmp->start; 2624 before->last = saddr - 1; 2625 before->offset = tmp->offset; 2626 before->flags = tmp->flags; 2627 before->bo_va = tmp->bo_va; 2628 list_add(&before->list, &tmp->bo_va->invalids); 2629 } 2630 2631 /* Remember mapping split at the end */ 2632 if (tmp->last > eaddr) { 2633 after->start = eaddr + 1; 2634 after->last = tmp->last; 2635 after->offset = tmp->offset; 2636 after->offset += after->start - tmp->start; 2637 after->flags = tmp->flags; 2638 after->bo_va = tmp->bo_va; 2639 list_add(&after->list, &tmp->bo_va->invalids); 2640 } 2641 2642 list_del(&tmp->list); 2643 list_add(&tmp->list, &removed); 2644 2645 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2646 } 2647 2648 /* And free them up */ 2649 list_for_each_entry_safe(tmp, next, &removed, list) { 2650 amdgpu_vm_it_remove(tmp, &vm->va); 2651 list_del(&tmp->list); 2652 2653 if (tmp->start < saddr) 2654 tmp->start = saddr; 2655 if (tmp->last > eaddr) 2656 tmp->last = eaddr; 2657 2658 tmp->bo_va = NULL; 2659 list_add(&tmp->list, &vm->freed); 2660 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2661 } 2662 2663 /* Insert partial mapping before the range */ 2664 if (!list_empty(&before->list)) { 2665 amdgpu_vm_it_insert(before, &vm->va); 2666 if (before->flags & AMDGPU_PTE_PRT) 2667 amdgpu_vm_prt_get(adev); 2668 } else { 2669 kfree(before); 2670 } 2671 2672 /* Insert partial mapping after the range */ 2673 if (!list_empty(&after->list)) { 2674 amdgpu_vm_it_insert(after, &vm->va); 2675 if (after->flags & AMDGPU_PTE_PRT) 2676 amdgpu_vm_prt_get(adev); 2677 } else { 2678 kfree(after); 2679 } 2680 2681 return 0; 2682 } 2683 2684 /** 2685 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2686 * 2687 * @vm: the requested VM 2688 * @addr: the address 2689 * 2690 * Find a mapping by it's address. 2691 * 2692 * Returns: 2693 * The amdgpu_bo_va_mapping matching for addr or NULL 2694 * 2695 */ 2696 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2697 uint64_t addr) 2698 { 2699 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2700 } 2701 2702 /** 2703 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2704 * 2705 * @vm: the requested vm 2706 * @ticket: CS ticket 2707 * 2708 * Trace all mappings of BOs reserved during a command submission. 2709 */ 2710 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2711 { 2712 struct amdgpu_bo_va_mapping *mapping; 2713 2714 if (!trace_amdgpu_vm_bo_cs_enabled()) 2715 return; 2716 2717 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2718 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2719 if (mapping->bo_va && mapping->bo_va->base.bo) { 2720 struct amdgpu_bo *bo; 2721 2722 bo = mapping->bo_va->base.bo; 2723 if (READ_ONCE(bo->tbo.resv->lock.ctx) != ticket) 2724 continue; 2725 } 2726 2727 trace_amdgpu_vm_bo_cs(mapping); 2728 } 2729 } 2730 2731 /** 2732 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 2733 * 2734 * @adev: amdgpu_device pointer 2735 * @bo_va: requested bo_va 2736 * 2737 * Remove @bo_va->bo from the requested vm. 2738 * 2739 * Object have to be reserved! 2740 */ 2741 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 2742 struct amdgpu_bo_va *bo_va) 2743 { 2744 struct amdgpu_bo_va_mapping *mapping, *next; 2745 struct amdgpu_bo *bo = bo_va->base.bo; 2746 struct amdgpu_vm *vm = bo_va->base.vm; 2747 struct amdgpu_vm_bo_base **base; 2748 2749 if (bo) { 2750 if (bo->tbo.resv == vm->root.base.bo->tbo.resv) 2751 vm->bulk_moveable = false; 2752 2753 for (base = &bo_va->base.bo->vm_bo; *base; 2754 base = &(*base)->next) { 2755 if (*base != &bo_va->base) 2756 continue; 2757 2758 *base = bo_va->base.next; 2759 break; 2760 } 2761 } 2762 2763 spin_lock(&vm->invalidated_lock); 2764 list_del(&bo_va->base.vm_status); 2765 spin_unlock(&vm->invalidated_lock); 2766 2767 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2768 list_del(&mapping->list); 2769 amdgpu_vm_it_remove(mapping, &vm->va); 2770 mapping->bo_va = NULL; 2771 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2772 list_add(&mapping->list, &vm->freed); 2773 } 2774 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2775 list_del(&mapping->list); 2776 amdgpu_vm_it_remove(mapping, &vm->va); 2777 amdgpu_vm_free_mapping(adev, vm, mapping, 2778 bo_va->last_pt_update); 2779 } 2780 2781 dma_fence_put(bo_va->last_pt_update); 2782 kfree(bo_va); 2783 } 2784 2785 /** 2786 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2787 * 2788 * @adev: amdgpu_device pointer 2789 * @bo: amdgpu buffer object 2790 * @evicted: is the BO evicted 2791 * 2792 * Mark @bo as invalid. 2793 */ 2794 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2795 struct amdgpu_bo *bo, bool evicted) 2796 { 2797 struct amdgpu_vm_bo_base *bo_base; 2798 2799 /* shadow bo doesn't have bo base, its validation needs its parent */ 2800 if (bo->parent && bo->parent->shadow == bo) 2801 bo = bo->parent; 2802 2803 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2804 struct amdgpu_vm *vm = bo_base->vm; 2805 2806 if (evicted && bo->tbo.resv == vm->root.base.bo->tbo.resv) { 2807 amdgpu_vm_bo_evicted(bo_base); 2808 continue; 2809 } 2810 2811 if (bo_base->moved) 2812 continue; 2813 bo_base->moved = true; 2814 2815 if (bo->tbo.type == ttm_bo_type_kernel) 2816 amdgpu_vm_bo_relocated(bo_base); 2817 else if (bo->tbo.resv == vm->root.base.bo->tbo.resv) 2818 amdgpu_vm_bo_moved(bo_base); 2819 else 2820 amdgpu_vm_bo_invalidated(bo_base); 2821 } 2822 } 2823 2824 /** 2825 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2826 * 2827 * @vm_size: VM size 2828 * 2829 * Returns: 2830 * VM page table as power of two 2831 */ 2832 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2833 { 2834 /* Total bits covered by PD + PTs */ 2835 unsigned bits = ilog2(vm_size) + 18; 2836 2837 /* Make sure the PD is 4K in size up to 8GB address space. 2838 Above that split equal between PD and PTs */ 2839 if (vm_size <= 8) 2840 return (bits - 9); 2841 else 2842 return ((bits + 3) / 2); 2843 } 2844 2845 /** 2846 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2847 * 2848 * @adev: amdgpu_device pointer 2849 * @min_vm_size: the minimum vm size in GB if it's set auto 2850 * @fragment_size_default: Default PTE fragment size 2851 * @max_level: max VMPT level 2852 * @max_bits: max address space size in bits 2853 * 2854 */ 2855 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2856 uint32_t fragment_size_default, unsigned max_level, 2857 unsigned max_bits) 2858 { 2859 unsigned int max_size = 1 << (max_bits - 30); 2860 unsigned int vm_size; 2861 uint64_t tmp; 2862 2863 /* adjust vm size first */ 2864 if (amdgpu_vm_size != -1) { 2865 vm_size = amdgpu_vm_size; 2866 if (vm_size > max_size) { 2867 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2868 amdgpu_vm_size, max_size); 2869 vm_size = max_size; 2870 } 2871 } else { 2872 struct sysinfo si; 2873 unsigned int phys_ram_gb; 2874 2875 /* Optimal VM size depends on the amount of physical 2876 * RAM available. Underlying requirements and 2877 * assumptions: 2878 * 2879 * - Need to map system memory and VRAM from all GPUs 2880 * - VRAM from other GPUs not known here 2881 * - Assume VRAM <= system memory 2882 * - On GFX8 and older, VM space can be segmented for 2883 * different MTYPEs 2884 * - Need to allow room for fragmentation, guard pages etc. 2885 * 2886 * This adds up to a rough guess of system memory x3. 2887 * Round up to power of two to maximize the available 2888 * VM size with the given page table size. 2889 */ 2890 si_meminfo(&si); 2891 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2892 (1 << 30) - 1) >> 30; 2893 vm_size = roundup_pow_of_two( 2894 min(max(phys_ram_gb * 3, min_vm_size), max_size)); 2895 } 2896 2897 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2898 2899 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2900 if (amdgpu_vm_block_size != -1) 2901 tmp >>= amdgpu_vm_block_size - 9; 2902 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2903 adev->vm_manager.num_level = min(max_level, (unsigned)tmp); 2904 switch (adev->vm_manager.num_level) { 2905 case 3: 2906 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2907 break; 2908 case 2: 2909 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2910 break; 2911 case 1: 2912 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2913 break; 2914 default: 2915 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2916 } 2917 /* block size depends on vm size and hw setup*/ 2918 if (amdgpu_vm_block_size != -1) 2919 adev->vm_manager.block_size = 2920 min((unsigned)amdgpu_vm_block_size, max_bits 2921 - AMDGPU_GPU_PAGE_SHIFT 2922 - 9 * adev->vm_manager.num_level); 2923 else if (adev->vm_manager.num_level > 1) 2924 adev->vm_manager.block_size = 9; 2925 else 2926 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2927 2928 if (amdgpu_vm_fragment_size == -1) 2929 adev->vm_manager.fragment_size = fragment_size_default; 2930 else 2931 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2932 2933 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2934 vm_size, adev->vm_manager.num_level + 1, 2935 adev->vm_manager.block_size, 2936 adev->vm_manager.fragment_size); 2937 } 2938 2939 static struct amdgpu_retryfault_hashtable *init_fault_hash(void) 2940 { 2941 struct amdgpu_retryfault_hashtable *fault_hash; 2942 2943 fault_hash = kmalloc(sizeof(*fault_hash), GFP_KERNEL); 2944 if (!fault_hash) 2945 return fault_hash; 2946 2947 INIT_CHASH_TABLE(fault_hash->hash, 2948 AMDGPU_PAGEFAULT_HASH_BITS, 8, 0); 2949 spin_lock_init(&fault_hash->lock); 2950 fault_hash->count = 0; 2951 2952 return fault_hash; 2953 } 2954 2955 /** 2956 * amdgpu_vm_init - initialize a vm instance 2957 * 2958 * @adev: amdgpu_device pointer 2959 * @vm: requested vm 2960 * @vm_context: Indicates if it GFX or Compute context 2961 * @pasid: Process address space identifier 2962 * 2963 * Init @vm fields. 2964 * 2965 * Returns: 2966 * 0 for success, error for failure. 2967 */ 2968 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2969 int vm_context, unsigned int pasid) 2970 { 2971 struct amdgpu_bo_param bp; 2972 struct amdgpu_bo *root; 2973 int r, i; 2974 2975 vm->va = RB_ROOT_CACHED; 2976 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2977 vm->reserved_vmid[i] = NULL; 2978 INIT_LIST_HEAD(&vm->evicted); 2979 INIT_LIST_HEAD(&vm->relocated); 2980 INIT_LIST_HEAD(&vm->moved); 2981 INIT_LIST_HEAD(&vm->idle); 2982 INIT_LIST_HEAD(&vm->invalidated); 2983 spin_lock_init(&vm->invalidated_lock); 2984 INIT_LIST_HEAD(&vm->freed); 2985 2986 /* create scheduler entity for page table updates */ 2987 r = drm_sched_entity_init(&vm->entity, adev->vm_manager.vm_pte_rqs, 2988 adev->vm_manager.vm_pte_num_rqs, NULL); 2989 if (r) 2990 return r; 2991 2992 vm->pte_support_ats = false; 2993 2994 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) { 2995 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2996 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2997 2998 if (adev->asic_type == CHIP_RAVEN) 2999 vm->pte_support_ats = true; 3000 } else { 3001 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 3002 AMDGPU_VM_USE_CPU_FOR_GFX); 3003 } 3004 DRM_DEBUG_DRIVER("VM update mode is %s\n", 3005 vm->use_cpu_for_update ? "CPU" : "SDMA"); 3006 WARN_ONCE((vm->use_cpu_for_update & !amdgpu_gmc_vram_full_visible(&adev->gmc)), 3007 "CPU update of VM recommended only for large BAR system\n"); 3008 vm->last_update = NULL; 3009 3010 amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, &bp); 3011 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) 3012 bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW; 3013 r = amdgpu_bo_create(adev, &bp, &root); 3014 if (r) 3015 goto error_free_sched_entity; 3016 3017 r = amdgpu_bo_reserve(root, true); 3018 if (r) 3019 goto error_free_root; 3020 3021 r = reservation_object_reserve_shared(root->tbo.resv, 1); 3022 if (r) 3023 goto error_unreserve; 3024 3025 r = amdgpu_vm_clear_bo(adev, vm, root, 3026 adev->vm_manager.root_level, 3027 vm->pte_support_ats); 3028 if (r) 3029 goto error_unreserve; 3030 3031 amdgpu_vm_bo_base_init(&vm->root.base, vm, root); 3032 amdgpu_bo_unreserve(vm->root.base.bo); 3033 3034 if (pasid) { 3035 unsigned long flags; 3036 3037 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3038 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 3039 GFP_ATOMIC); 3040 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3041 if (r < 0) 3042 goto error_free_root; 3043 3044 vm->pasid = pasid; 3045 } 3046 3047 vm->fault_hash = init_fault_hash(); 3048 if (!vm->fault_hash) { 3049 r = -ENOMEM; 3050 goto error_free_root; 3051 } 3052 3053 INIT_KFIFO(vm->faults); 3054 3055 return 0; 3056 3057 error_unreserve: 3058 amdgpu_bo_unreserve(vm->root.base.bo); 3059 3060 error_free_root: 3061 amdgpu_bo_unref(&vm->root.base.bo->shadow); 3062 amdgpu_bo_unref(&vm->root.base.bo); 3063 vm->root.base.bo = NULL; 3064 3065 error_free_sched_entity: 3066 drm_sched_entity_destroy(&vm->entity); 3067 3068 return r; 3069 } 3070 3071 /** 3072 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 3073 * 3074 * @adev: amdgpu_device pointer 3075 * @vm: requested vm 3076 * 3077 * This only works on GFX VMs that don't have any BOs added and no 3078 * page tables allocated yet. 3079 * 3080 * Changes the following VM parameters: 3081 * - use_cpu_for_update 3082 * - pte_supports_ats 3083 * - pasid (old PASID is released, because compute manages its own PASIDs) 3084 * 3085 * Reinitializes the page directory to reflect the changed ATS 3086 * setting. 3087 * 3088 * Returns: 3089 * 0 for success, -errno for errors. 3090 */ 3091 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm, unsigned int pasid) 3092 { 3093 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN); 3094 int r; 3095 3096 r = amdgpu_bo_reserve(vm->root.base.bo, true); 3097 if (r) 3098 return r; 3099 3100 /* Sanity checks */ 3101 if (!RB_EMPTY_ROOT(&vm->va.rb_root) || vm->root.entries) { 3102 r = -EINVAL; 3103 goto unreserve_bo; 3104 } 3105 3106 if (pasid) { 3107 unsigned long flags; 3108 3109 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3110 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 3111 GFP_ATOMIC); 3112 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3113 3114 if (r == -ENOSPC) 3115 goto unreserve_bo; 3116 r = 0; 3117 } 3118 3119 /* Check if PD needs to be reinitialized and do it before 3120 * changing any other state, in case it fails. 3121 */ 3122 if (pte_support_ats != vm->pte_support_ats) { 3123 r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, 3124 adev->vm_manager.root_level, 3125 pte_support_ats); 3126 if (r) 3127 goto free_idr; 3128 } 3129 3130 /* Update VM state */ 3131 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 3132 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 3133 vm->pte_support_ats = pte_support_ats; 3134 DRM_DEBUG_DRIVER("VM update mode is %s\n", 3135 vm->use_cpu_for_update ? "CPU" : "SDMA"); 3136 WARN_ONCE((vm->use_cpu_for_update & !amdgpu_gmc_vram_full_visible(&adev->gmc)), 3137 "CPU update of VM recommended only for large BAR system\n"); 3138 3139 if (vm->pasid) { 3140 unsigned long flags; 3141 3142 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3143 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3144 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3145 3146 /* Free the original amdgpu allocated pasid 3147 * Will be replaced with kfd allocated pasid 3148 */ 3149 amdgpu_pasid_free(vm->pasid); 3150 vm->pasid = 0; 3151 } 3152 3153 /* Free the shadow bo for compute VM */ 3154 amdgpu_bo_unref(&vm->root.base.bo->shadow); 3155 3156 if (pasid) 3157 vm->pasid = pasid; 3158 3159 goto unreserve_bo; 3160 3161 free_idr: 3162 if (pasid) { 3163 unsigned long flags; 3164 3165 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3166 idr_remove(&adev->vm_manager.pasid_idr, pasid); 3167 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3168 } 3169 unreserve_bo: 3170 amdgpu_bo_unreserve(vm->root.base.bo); 3171 return r; 3172 } 3173 3174 /** 3175 * amdgpu_vm_release_compute - release a compute vm 3176 * @adev: amdgpu_device pointer 3177 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute 3178 * 3179 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute 3180 * pasid from vm. Compute should stop use of vm after this call. 3181 */ 3182 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3183 { 3184 if (vm->pasid) { 3185 unsigned long flags; 3186 3187 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3188 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3189 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3190 } 3191 vm->pasid = 0; 3192 } 3193 3194 /** 3195 * amdgpu_vm_fini - tear down a vm instance 3196 * 3197 * @adev: amdgpu_device pointer 3198 * @vm: requested vm 3199 * 3200 * Tear down @vm. 3201 * Unbind the VM and remove all bos from the vm bo list 3202 */ 3203 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3204 { 3205 struct amdgpu_bo_va_mapping *mapping, *tmp; 3206 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 3207 struct amdgpu_bo *root; 3208 u64 fault; 3209 int i, r; 3210 3211 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 3212 3213 /* Clear pending page faults from IH when the VM is destroyed */ 3214 while (kfifo_get(&vm->faults, &fault)) 3215 amdgpu_vm_clear_fault(vm->fault_hash, fault); 3216 3217 if (vm->pasid) { 3218 unsigned long flags; 3219 3220 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3221 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3222 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3223 } 3224 3225 kfree(vm->fault_hash); 3226 vm->fault_hash = NULL; 3227 3228 drm_sched_entity_destroy(&vm->entity); 3229 3230 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 3231 dev_err(adev->dev, "still active bo inside vm\n"); 3232 } 3233 rbtree_postorder_for_each_entry_safe(mapping, tmp, 3234 &vm->va.rb_root, rb) { 3235 /* Don't remove the mapping here, we don't want to trigger a 3236 * rebalance and the tree is about to be destroyed anyway. 3237 */ 3238 list_del(&mapping->list); 3239 kfree(mapping); 3240 } 3241 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 3242 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 3243 amdgpu_vm_prt_fini(adev, vm); 3244 prt_fini_needed = false; 3245 } 3246 3247 list_del(&mapping->list); 3248 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 3249 } 3250 3251 root = amdgpu_bo_ref(vm->root.base.bo); 3252 r = amdgpu_bo_reserve(root, true); 3253 if (r) { 3254 dev_err(adev->dev, "Leaking page tables because BO reservation failed\n"); 3255 } else { 3256 amdgpu_vm_free_pts(adev, vm); 3257 amdgpu_bo_unreserve(root); 3258 } 3259 amdgpu_bo_unref(&root); 3260 dma_fence_put(vm->last_update); 3261 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 3262 amdgpu_vmid_free_reserved(adev, vm, i); 3263 } 3264 3265 /** 3266 * amdgpu_vm_manager_init - init the VM manager 3267 * 3268 * @adev: amdgpu_device pointer 3269 * 3270 * Initialize the VM manager structures 3271 */ 3272 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 3273 { 3274 unsigned i; 3275 3276 amdgpu_vmid_mgr_init(adev); 3277 3278 adev->vm_manager.fence_context = 3279 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 3280 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 3281 adev->vm_manager.seqno[i] = 0; 3282 3283 spin_lock_init(&adev->vm_manager.prt_lock); 3284 atomic_set(&adev->vm_manager.num_prt_users, 0); 3285 3286 /* If not overridden by the user, by default, only in large BAR systems 3287 * Compute VM tables will be updated by CPU 3288 */ 3289 #ifdef CONFIG_X86_64 3290 if (amdgpu_vm_update_mode == -1) { 3291 if (amdgpu_gmc_vram_full_visible(&adev->gmc)) 3292 adev->vm_manager.vm_update_mode = 3293 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 3294 else 3295 adev->vm_manager.vm_update_mode = 0; 3296 } else 3297 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 3298 #else 3299 adev->vm_manager.vm_update_mode = 0; 3300 #endif 3301 3302 idr_init(&adev->vm_manager.pasid_idr); 3303 spin_lock_init(&adev->vm_manager.pasid_lock); 3304 } 3305 3306 /** 3307 * amdgpu_vm_manager_fini - cleanup VM manager 3308 * 3309 * @adev: amdgpu_device pointer 3310 * 3311 * Cleanup the VM manager and free resources. 3312 */ 3313 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 3314 { 3315 WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr)); 3316 idr_destroy(&adev->vm_manager.pasid_idr); 3317 3318 amdgpu_vmid_mgr_fini(adev); 3319 } 3320 3321 /** 3322 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 3323 * 3324 * @dev: drm device pointer 3325 * @data: drm_amdgpu_vm 3326 * @filp: drm file pointer 3327 * 3328 * Returns: 3329 * 0 for success, -errno for errors. 3330 */ 3331 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 3332 { 3333 union drm_amdgpu_vm *args = data; 3334 struct amdgpu_device *adev = dev->dev_private; 3335 struct amdgpu_fpriv *fpriv = filp->driver_priv; 3336 int r; 3337 3338 switch (args->in.op) { 3339 case AMDGPU_VM_OP_RESERVE_VMID: 3340 /* current, we only have requirement to reserve vmid from gfxhub */ 3341 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB); 3342 if (r) 3343 return r; 3344 break; 3345 case AMDGPU_VM_OP_UNRESERVE_VMID: 3346 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB); 3347 break; 3348 default: 3349 return -EINVAL; 3350 } 3351 3352 return 0; 3353 } 3354 3355 /** 3356 * amdgpu_vm_get_task_info - Extracts task info for a PASID. 3357 * 3358 * @adev: drm device pointer 3359 * @pasid: PASID identifier for VM 3360 * @task_info: task_info to fill. 3361 */ 3362 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, unsigned int pasid, 3363 struct amdgpu_task_info *task_info) 3364 { 3365 struct amdgpu_vm *vm; 3366 3367 spin_lock(&adev->vm_manager.pasid_lock); 3368 3369 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3370 if (vm) 3371 *task_info = vm->task_info; 3372 3373 spin_unlock(&adev->vm_manager.pasid_lock); 3374 } 3375 3376 /** 3377 * amdgpu_vm_set_task_info - Sets VMs task info. 3378 * 3379 * @vm: vm for which to set the info 3380 */ 3381 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 3382 { 3383 if (!vm->task_info.pid) { 3384 vm->task_info.pid = current->pid; 3385 get_task_comm(vm->task_info.task_name, current); 3386 3387 if (current->group_leader->mm == current->mm) { 3388 vm->task_info.tgid = current->group_leader->pid; 3389 get_task_comm(vm->task_info.process_name, current->group_leader); 3390 } 3391 } 3392 } 3393 3394 /** 3395 * amdgpu_vm_add_fault - Add a page fault record to fault hash table 3396 * 3397 * @fault_hash: fault hash table 3398 * @key: 64-bit encoding of PASID and address 3399 * 3400 * This should be called when a retry page fault interrupt is 3401 * received. If this is a new page fault, it will be added to a hash 3402 * table. The return value indicates whether this is a new fault, or 3403 * a fault that was already known and is already being handled. 3404 * 3405 * If there are too many pending page faults, this will fail. Retry 3406 * interrupts should be ignored in this case until there is enough 3407 * free space. 3408 * 3409 * Returns 0 if the fault was added, 1 if the fault was already known, 3410 * -ENOSPC if there are too many pending faults. 3411 */ 3412 int amdgpu_vm_add_fault(struct amdgpu_retryfault_hashtable *fault_hash, u64 key) 3413 { 3414 unsigned long flags; 3415 int r = -ENOSPC; 3416 3417 if (WARN_ON_ONCE(!fault_hash)) 3418 /* Should be allocated in amdgpu_vm_init 3419 */ 3420 return r; 3421 3422 spin_lock_irqsave(&fault_hash->lock, flags); 3423 3424 /* Only let the hash table fill up to 50% for best performance */ 3425 if (fault_hash->count >= (1 << (AMDGPU_PAGEFAULT_HASH_BITS-1))) 3426 goto unlock_out; 3427 3428 r = chash_table_copy_in(&fault_hash->hash, key, NULL); 3429 if (!r) 3430 fault_hash->count++; 3431 3432 /* chash_table_copy_in should never fail unless we're losing count */ 3433 WARN_ON_ONCE(r < 0); 3434 3435 unlock_out: 3436 spin_unlock_irqrestore(&fault_hash->lock, flags); 3437 return r; 3438 } 3439 3440 /** 3441 * amdgpu_vm_clear_fault - Remove a page fault record 3442 * 3443 * @fault_hash: fault hash table 3444 * @key: 64-bit encoding of PASID and address 3445 * 3446 * This should be called when a page fault has been handled. Any 3447 * future interrupt with this key will be processed as a new 3448 * page fault. 3449 */ 3450 void amdgpu_vm_clear_fault(struct amdgpu_retryfault_hashtable *fault_hash, u64 key) 3451 { 3452 unsigned long flags; 3453 int r; 3454 3455 if (!fault_hash) 3456 return; 3457 3458 spin_lock_irqsave(&fault_hash->lock, flags); 3459 3460 r = chash_table_remove(&fault_hash->hash, key, NULL); 3461 if (!WARN_ON_ONCE(r < 0)) { 3462 fault_hash->count--; 3463 WARN_ON_ONCE(fault_hash->count < 0); 3464 } 3465 3466 spin_unlock_irqrestore(&fault_hash->lock, flags); 3467 } 3468