1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 29 #include <linux/dma-fence-array.h> 30 #include <linux/interval_tree_generic.h> 31 #include <linux/idr.h> 32 #include <linux/dma-buf.h> 33 34 #include <drm/amdgpu_drm.h> 35 #include <drm/drm_drv.h> 36 #include <drm/ttm/ttm_tt.h> 37 #include <drm/drm_exec.h> 38 #include "amdgpu.h" 39 #include "amdgpu_trace.h" 40 #include "amdgpu_amdkfd.h" 41 #include "amdgpu_gmc.h" 42 #include "amdgpu_xgmi.h" 43 #include "amdgpu_dma_buf.h" 44 #include "amdgpu_res_cursor.h" 45 #include "kfd_svm.h" 46 47 /** 48 * DOC: GPUVM 49 * 50 * GPUVM is the MMU functionality provided on the GPU. 51 * GPUVM is similar to the legacy GART on older asics, however 52 * rather than there being a single global GART table 53 * for the entire GPU, there can be multiple GPUVM page tables active 54 * at any given time. The GPUVM page tables can contain a mix 55 * VRAM pages and system pages (both memory and MMIO) and system pages 56 * can be mapped as snooped (cached system pages) or unsnooped 57 * (uncached system pages). 58 * 59 * Each active GPUVM has an ID associated with it and there is a page table 60 * linked with each VMID. When executing a command buffer, 61 * the kernel tells the engine what VMID to use for that command 62 * buffer. VMIDs are allocated dynamically as commands are submitted. 63 * The userspace drivers maintain their own address space and the kernel 64 * sets up their pages tables accordingly when they submit their 65 * command buffers and a VMID is assigned. 66 * The hardware supports up to 16 active GPUVMs at any given time. 67 * 68 * Each GPUVM is represented by a 1-2 or 1-5 level page table, depending 69 * on the ASIC family. GPUVM supports RWX attributes on each page as well 70 * as other features such as encryption and caching attributes. 71 * 72 * VMID 0 is special. It is the GPUVM used for the kernel driver. In 73 * addition to an aperture managed by a page table, VMID 0 also has 74 * several other apertures. There is an aperture for direct access to VRAM 75 * and there is a legacy AGP aperture which just forwards accesses directly 76 * to the matching system physical addresses (or IOVAs when an IOMMU is 77 * present). These apertures provide direct access to these memories without 78 * incurring the overhead of a page table. VMID 0 is used by the kernel 79 * driver for tasks like memory management. 80 * 81 * GPU clients (i.e., engines on the GPU) use GPUVM VMIDs to access memory. 82 * For user applications, each application can have their own unique GPUVM 83 * address space. The application manages the address space and the kernel 84 * driver manages the GPUVM page tables for each process. If an GPU client 85 * accesses an invalid page, it will generate a GPU page fault, similar to 86 * accessing an invalid page on a CPU. 87 */ 88 89 #define START(node) ((node)->start) 90 #define LAST(node) ((node)->last) 91 92 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 93 START, LAST, static, amdgpu_vm_it) 94 95 #undef START 96 #undef LAST 97 98 /** 99 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 100 */ 101 struct amdgpu_prt_cb { 102 103 /** 104 * @adev: amdgpu device 105 */ 106 struct amdgpu_device *adev; 107 108 /** 109 * @cb: callback 110 */ 111 struct dma_fence_cb cb; 112 }; 113 114 /** 115 * struct amdgpu_vm_tlb_seq_struct - Helper to increment the TLB flush sequence 116 */ 117 struct amdgpu_vm_tlb_seq_struct { 118 /** 119 * @vm: pointer to the amdgpu_vm structure to set the fence sequence on 120 */ 121 struct amdgpu_vm *vm; 122 123 /** 124 * @cb: callback 125 */ 126 struct dma_fence_cb cb; 127 }; 128 129 /** 130 * amdgpu_vm_set_pasid - manage pasid and vm ptr mapping 131 * 132 * @adev: amdgpu_device pointer 133 * @vm: amdgpu_vm pointer 134 * @pasid: the pasid the VM is using on this GPU 135 * 136 * Set the pasid this VM is using on this GPU, can also be used to remove the 137 * pasid by passing in zero. 138 * 139 */ 140 int amdgpu_vm_set_pasid(struct amdgpu_device *adev, struct amdgpu_vm *vm, 141 u32 pasid) 142 { 143 int r; 144 145 if (vm->pasid == pasid) 146 return 0; 147 148 if (vm->pasid) { 149 r = xa_err(xa_erase_irq(&adev->vm_manager.pasids, vm->pasid)); 150 if (r < 0) 151 return r; 152 153 vm->pasid = 0; 154 } 155 156 if (pasid) { 157 r = xa_err(xa_store_irq(&adev->vm_manager.pasids, pasid, vm, 158 GFP_KERNEL)); 159 if (r < 0) 160 return r; 161 162 vm->pasid = pasid; 163 } 164 165 166 return 0; 167 } 168 169 /** 170 * amdgpu_vm_bo_evicted - vm_bo is evicted 171 * 172 * @vm_bo: vm_bo which is evicted 173 * 174 * State for PDs/PTs and per VM BOs which are not at the location they should 175 * be. 176 */ 177 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 178 { 179 struct amdgpu_vm *vm = vm_bo->vm; 180 struct amdgpu_bo *bo = vm_bo->bo; 181 182 vm_bo->moved = true; 183 spin_lock(&vm_bo->vm->status_lock); 184 if (bo->tbo.type == ttm_bo_type_kernel) 185 list_move(&vm_bo->vm_status, &vm->evicted); 186 else 187 list_move_tail(&vm_bo->vm_status, &vm->evicted); 188 spin_unlock(&vm_bo->vm->status_lock); 189 } 190 /** 191 * amdgpu_vm_bo_moved - vm_bo is moved 192 * 193 * @vm_bo: vm_bo which is moved 194 * 195 * State for per VM BOs which are moved, but that change is not yet reflected 196 * in the page tables. 197 */ 198 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 199 { 200 spin_lock(&vm_bo->vm->status_lock); 201 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 202 spin_unlock(&vm_bo->vm->status_lock); 203 } 204 205 /** 206 * amdgpu_vm_bo_idle - vm_bo is idle 207 * 208 * @vm_bo: vm_bo which is now idle 209 * 210 * State for PDs/PTs and per VM BOs which have gone through the state machine 211 * and are now idle. 212 */ 213 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 214 { 215 spin_lock(&vm_bo->vm->status_lock); 216 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 217 spin_unlock(&vm_bo->vm->status_lock); 218 vm_bo->moved = false; 219 } 220 221 /** 222 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 223 * 224 * @vm_bo: vm_bo which is now invalidated 225 * 226 * State for normal BOs which are invalidated and that change not yet reflected 227 * in the PTs. 228 */ 229 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 230 { 231 spin_lock(&vm_bo->vm->status_lock); 232 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 233 spin_unlock(&vm_bo->vm->status_lock); 234 } 235 236 /** 237 * amdgpu_vm_bo_evicted_user - vm_bo is evicted 238 * 239 * @vm_bo: vm_bo which is evicted 240 * 241 * State for BOs used by user mode queues which are not at the location they 242 * should be. 243 */ 244 static void amdgpu_vm_bo_evicted_user(struct amdgpu_vm_bo_base *vm_bo) 245 { 246 vm_bo->moved = true; 247 spin_lock(&vm_bo->vm->status_lock); 248 list_move(&vm_bo->vm_status, &vm_bo->vm->evicted_user); 249 spin_unlock(&vm_bo->vm->status_lock); 250 } 251 252 /** 253 * amdgpu_vm_bo_relocated - vm_bo is reloacted 254 * 255 * @vm_bo: vm_bo which is relocated 256 * 257 * State for PDs/PTs which needs to update their parent PD. 258 * For the root PD, just move to idle state. 259 */ 260 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 261 { 262 if (vm_bo->bo->parent) { 263 spin_lock(&vm_bo->vm->status_lock); 264 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 265 spin_unlock(&vm_bo->vm->status_lock); 266 } else { 267 amdgpu_vm_bo_idle(vm_bo); 268 } 269 } 270 271 /** 272 * amdgpu_vm_bo_done - vm_bo is done 273 * 274 * @vm_bo: vm_bo which is now done 275 * 276 * State for normal BOs which are invalidated and that change has been updated 277 * in the PTs. 278 */ 279 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 280 { 281 spin_lock(&vm_bo->vm->status_lock); 282 list_move(&vm_bo->vm_status, &vm_bo->vm->done); 283 spin_unlock(&vm_bo->vm->status_lock); 284 } 285 286 /** 287 * amdgpu_vm_bo_reset_state_machine - reset the vm_bo state machine 288 * @vm: the VM which state machine to reset 289 * 290 * Move all vm_bo object in the VM into a state where they will be updated 291 * again during validation. 292 */ 293 static void amdgpu_vm_bo_reset_state_machine(struct amdgpu_vm *vm) 294 { 295 struct amdgpu_vm_bo_base *vm_bo, *tmp; 296 297 spin_lock(&vm->status_lock); 298 list_splice_init(&vm->done, &vm->invalidated); 299 list_for_each_entry(vm_bo, &vm->invalidated, vm_status) 300 vm_bo->moved = true; 301 list_for_each_entry_safe(vm_bo, tmp, &vm->idle, vm_status) { 302 struct amdgpu_bo *bo = vm_bo->bo; 303 304 vm_bo->moved = true; 305 if (!bo || bo->tbo.type != ttm_bo_type_kernel) 306 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 307 else if (bo->parent) 308 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 309 } 310 spin_unlock(&vm->status_lock); 311 } 312 313 /** 314 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 315 * 316 * @base: base structure for tracking BO usage in a VM 317 * @vm: vm to which bo is to be added 318 * @bo: amdgpu buffer object 319 * 320 * Initialize a bo_va_base structure and add it to the appropriate lists 321 * 322 */ 323 void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 324 struct amdgpu_vm *vm, struct amdgpu_bo *bo) 325 { 326 base->vm = vm; 327 base->bo = bo; 328 base->next = NULL; 329 INIT_LIST_HEAD(&base->vm_status); 330 331 if (!bo) 332 return; 333 base->next = bo->vm_bo; 334 bo->vm_bo = base; 335 336 if (!amdgpu_vm_is_bo_always_valid(vm, bo)) 337 return; 338 339 dma_resv_assert_held(vm->root.bo->tbo.base.resv); 340 341 ttm_bo_set_bulk_move(&bo->tbo, &vm->lru_bulk_move); 342 if (bo->tbo.type == ttm_bo_type_kernel && bo->parent) 343 amdgpu_vm_bo_relocated(base); 344 else 345 amdgpu_vm_bo_idle(base); 346 347 if (bo->preferred_domains & 348 amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type)) 349 return; 350 351 /* 352 * we checked all the prerequisites, but it looks like this per vm bo 353 * is currently evicted. add the bo to the evicted list to make sure it 354 * is validated on next vm use to avoid fault. 355 * */ 356 amdgpu_vm_bo_evicted(base); 357 } 358 359 /** 360 * amdgpu_vm_lock_pd - lock PD in drm_exec 361 * 362 * @vm: vm providing the BOs 363 * @exec: drm execution context 364 * @num_fences: number of extra fences to reserve 365 * 366 * Lock the VM root PD in the DRM execution context. 367 */ 368 int amdgpu_vm_lock_pd(struct amdgpu_vm *vm, struct drm_exec *exec, 369 unsigned int num_fences) 370 { 371 /* We need at least two fences for the VM PD/PT updates */ 372 return drm_exec_prepare_obj(exec, &vm->root.bo->tbo.base, 373 2 + num_fences); 374 } 375 376 /** 377 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 378 * 379 * @adev: amdgpu device pointer 380 * @vm: vm providing the BOs 381 * 382 * Move all BOs to the end of LRU and remember their positions to put them 383 * together. 384 */ 385 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 386 struct amdgpu_vm *vm) 387 { 388 spin_lock(&adev->mman.bdev.lru_lock); 389 ttm_lru_bulk_move_tail(&vm->lru_bulk_move); 390 spin_unlock(&adev->mman.bdev.lru_lock); 391 } 392 393 /* Create scheduler entities for page table updates */ 394 static int amdgpu_vm_init_entities(struct amdgpu_device *adev, 395 struct amdgpu_vm *vm) 396 { 397 int r; 398 399 r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL, 400 adev->vm_manager.vm_pte_scheds, 401 adev->vm_manager.vm_pte_num_scheds, NULL); 402 if (r) 403 goto error; 404 405 return drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL, 406 adev->vm_manager.vm_pte_scheds, 407 adev->vm_manager.vm_pte_num_scheds, NULL); 408 409 error: 410 drm_sched_entity_destroy(&vm->immediate); 411 return r; 412 } 413 414 /* Destroy the entities for page table updates again */ 415 static void amdgpu_vm_fini_entities(struct amdgpu_vm *vm) 416 { 417 drm_sched_entity_destroy(&vm->immediate); 418 drm_sched_entity_destroy(&vm->delayed); 419 } 420 421 /** 422 * amdgpu_vm_generation - return the page table re-generation counter 423 * @adev: the amdgpu_device 424 * @vm: optional VM to check, might be NULL 425 * 426 * Returns a page table re-generation token to allow checking if submissions 427 * are still valid to use this VM. The VM parameter might be NULL in which case 428 * just the VRAM lost counter will be used. 429 */ 430 uint64_t amdgpu_vm_generation(struct amdgpu_device *adev, struct amdgpu_vm *vm) 431 { 432 uint64_t result = (u64)atomic_read(&adev->vram_lost_counter) << 32; 433 434 if (!vm) 435 return result; 436 437 result += lower_32_bits(vm->generation); 438 /* Add one if the page tables will be re-generated on next CS */ 439 if (drm_sched_entity_error(&vm->delayed)) 440 ++result; 441 442 return result; 443 } 444 445 /** 446 * amdgpu_vm_validate - validate evicted BOs tracked in the VM 447 * 448 * @adev: amdgpu device pointer 449 * @vm: vm providing the BOs 450 * @ticket: optional reservation ticket used to reserve the VM 451 * @validate: callback to do the validation 452 * @param: parameter for the validation callback 453 * 454 * Validate the page table BOs and per-VM BOs on command submission if 455 * necessary. If a ticket is given, also try to validate evicted user queue 456 * BOs. They must already be reserved with the given ticket. 457 * 458 * Returns: 459 * Validation result. 460 */ 461 int amdgpu_vm_validate(struct amdgpu_device *adev, struct amdgpu_vm *vm, 462 struct ww_acquire_ctx *ticket, 463 int (*validate)(void *p, struct amdgpu_bo *bo), 464 void *param) 465 { 466 uint64_t new_vm_generation = amdgpu_vm_generation(adev, vm); 467 struct amdgpu_vm_bo_base *bo_base; 468 struct amdgpu_bo *bo; 469 int r; 470 471 if (vm->generation != new_vm_generation) { 472 vm->generation = new_vm_generation; 473 amdgpu_vm_bo_reset_state_machine(vm); 474 amdgpu_vm_fini_entities(vm); 475 r = amdgpu_vm_init_entities(adev, vm); 476 if (r) 477 return r; 478 } 479 480 spin_lock(&vm->status_lock); 481 while (!list_empty(&vm->evicted)) { 482 bo_base = list_first_entry(&vm->evicted, 483 struct amdgpu_vm_bo_base, 484 vm_status); 485 spin_unlock(&vm->status_lock); 486 487 bo = bo_base->bo; 488 489 r = validate(param, bo); 490 if (r) 491 return r; 492 493 if (bo->tbo.type != ttm_bo_type_kernel) { 494 amdgpu_vm_bo_moved(bo_base); 495 } else { 496 vm->update_funcs->map_table(to_amdgpu_bo_vm(bo)); 497 amdgpu_vm_bo_relocated(bo_base); 498 } 499 spin_lock(&vm->status_lock); 500 } 501 while (ticket && !list_empty(&vm->evicted_user)) { 502 bo_base = list_first_entry(&vm->evicted_user, 503 struct amdgpu_vm_bo_base, 504 vm_status); 505 spin_unlock(&vm->status_lock); 506 507 bo = bo_base->bo; 508 509 if (dma_resv_locking_ctx(bo->tbo.base.resv) != ticket) { 510 struct amdgpu_task_info *ti = amdgpu_vm_get_task_info_vm(vm); 511 512 pr_warn_ratelimited("Evicted user BO is not reserved\n"); 513 if (ti) { 514 pr_warn_ratelimited("pid %d\n", ti->pid); 515 amdgpu_vm_put_task_info(ti); 516 } 517 518 return -EINVAL; 519 } 520 521 r = validate(param, bo); 522 if (r) 523 return r; 524 525 amdgpu_vm_bo_invalidated(bo_base); 526 527 spin_lock(&vm->status_lock); 528 } 529 spin_unlock(&vm->status_lock); 530 531 amdgpu_vm_eviction_lock(vm); 532 vm->evicting = false; 533 amdgpu_vm_eviction_unlock(vm); 534 535 return 0; 536 } 537 538 /** 539 * amdgpu_vm_ready - check VM is ready for updates 540 * 541 * @vm: VM to check 542 * 543 * Check if all VM PDs/PTs are ready for updates 544 * 545 * Returns: 546 * True if VM is not evicting. 547 */ 548 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 549 { 550 bool empty; 551 bool ret; 552 553 amdgpu_vm_eviction_lock(vm); 554 ret = !vm->evicting; 555 amdgpu_vm_eviction_unlock(vm); 556 557 spin_lock(&vm->status_lock); 558 empty = list_empty(&vm->evicted); 559 spin_unlock(&vm->status_lock); 560 561 return ret && empty; 562 } 563 564 /** 565 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 566 * 567 * @adev: amdgpu_device pointer 568 */ 569 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 570 { 571 const struct amdgpu_ip_block *ip_block; 572 bool has_compute_vm_bug; 573 struct amdgpu_ring *ring; 574 int i; 575 576 has_compute_vm_bug = false; 577 578 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 579 if (ip_block) { 580 /* Compute has a VM bug for GFX version < 7. 581 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 582 if (ip_block->version->major <= 7) 583 has_compute_vm_bug = true; 584 else if (ip_block->version->major == 8) 585 if (adev->gfx.mec_fw_version < 673) 586 has_compute_vm_bug = true; 587 } 588 589 for (i = 0; i < adev->num_rings; i++) { 590 ring = adev->rings[i]; 591 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 592 /* only compute rings */ 593 ring->has_compute_vm_bug = has_compute_vm_bug; 594 else 595 ring->has_compute_vm_bug = false; 596 } 597 } 598 599 /** 600 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 601 * 602 * @ring: ring on which the job will be submitted 603 * @job: job to submit 604 * 605 * Returns: 606 * True if sync is needed. 607 */ 608 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 609 struct amdgpu_job *job) 610 { 611 struct amdgpu_device *adev = ring->adev; 612 unsigned vmhub = ring->vm_hub; 613 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 614 615 if (job->vmid == 0) 616 return false; 617 618 if (job->vm_needs_flush || ring->has_compute_vm_bug) 619 return true; 620 621 if (ring->funcs->emit_gds_switch && job->gds_switch_needed) 622 return true; 623 624 if (amdgpu_vmid_had_gpu_reset(adev, &id_mgr->ids[job->vmid])) 625 return true; 626 627 return false; 628 } 629 630 /** 631 * amdgpu_vm_flush - hardware flush the vm 632 * 633 * @ring: ring to use for flush 634 * @job: related job 635 * @need_pipe_sync: is pipe sync needed 636 * 637 * Emit a VM flush when it is necessary. 638 * 639 * Returns: 640 * 0 on success, errno otherwise. 641 */ 642 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, 643 bool need_pipe_sync) 644 { 645 struct amdgpu_device *adev = ring->adev; 646 unsigned vmhub = ring->vm_hub; 647 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 648 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 649 bool spm_update_needed = job->spm_update_needed; 650 bool gds_switch_needed = ring->funcs->emit_gds_switch && 651 job->gds_switch_needed; 652 bool vm_flush_needed = job->vm_needs_flush; 653 struct dma_fence *fence = NULL; 654 bool pasid_mapping_needed = false; 655 unsigned int patch; 656 int r; 657 658 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 659 gds_switch_needed = true; 660 vm_flush_needed = true; 661 pasid_mapping_needed = true; 662 spm_update_needed = true; 663 } 664 665 mutex_lock(&id_mgr->lock); 666 if (id->pasid != job->pasid || !id->pasid_mapping || 667 !dma_fence_is_signaled(id->pasid_mapping)) 668 pasid_mapping_needed = true; 669 mutex_unlock(&id_mgr->lock); 670 671 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 672 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 673 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 674 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 675 ring->funcs->emit_wreg; 676 677 if (adev->gfx.enable_cleaner_shader && 678 ring->funcs->emit_cleaner_shader && 679 job->enforce_isolation) 680 ring->funcs->emit_cleaner_shader(ring); 681 682 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 683 return 0; 684 685 amdgpu_ring_ib_begin(ring); 686 if (ring->funcs->init_cond_exec) 687 patch = amdgpu_ring_init_cond_exec(ring, 688 ring->cond_exe_gpu_addr); 689 690 if (need_pipe_sync) 691 amdgpu_ring_emit_pipeline_sync(ring); 692 693 if (vm_flush_needed) { 694 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 695 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 696 } 697 698 if (pasid_mapping_needed) 699 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 700 701 if (spm_update_needed && adev->gfx.rlc.funcs->update_spm_vmid) 702 adev->gfx.rlc.funcs->update_spm_vmid(adev, ring, job->vmid); 703 704 if (!ring->is_mes_queue && ring->funcs->emit_gds_switch && 705 gds_switch_needed) { 706 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 707 job->gds_size, job->gws_base, 708 job->gws_size, job->oa_base, 709 job->oa_size); 710 } 711 712 if (vm_flush_needed || pasid_mapping_needed) { 713 r = amdgpu_fence_emit(ring, &fence, NULL, 0); 714 if (r) 715 return r; 716 } 717 718 if (vm_flush_needed) { 719 mutex_lock(&id_mgr->lock); 720 dma_fence_put(id->last_flush); 721 id->last_flush = dma_fence_get(fence); 722 id->current_gpu_reset_count = 723 atomic_read(&adev->gpu_reset_counter); 724 mutex_unlock(&id_mgr->lock); 725 } 726 727 if (pasid_mapping_needed) { 728 mutex_lock(&id_mgr->lock); 729 id->pasid = job->pasid; 730 dma_fence_put(id->pasid_mapping); 731 id->pasid_mapping = dma_fence_get(fence); 732 mutex_unlock(&id_mgr->lock); 733 } 734 dma_fence_put(fence); 735 736 amdgpu_ring_patch_cond_exec(ring, patch); 737 738 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 739 if (ring->funcs->emit_switch_buffer) { 740 amdgpu_ring_emit_switch_buffer(ring); 741 amdgpu_ring_emit_switch_buffer(ring); 742 } 743 744 amdgpu_ring_ib_end(ring); 745 return 0; 746 } 747 748 /** 749 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 750 * 751 * @vm: requested vm 752 * @bo: requested buffer object 753 * 754 * Find @bo inside the requested vm. 755 * Search inside the @bos vm list for the requested vm 756 * Returns the found bo_va or NULL if none is found 757 * 758 * Object has to be reserved! 759 * 760 * Returns: 761 * Found bo_va or NULL. 762 */ 763 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 764 struct amdgpu_bo *bo) 765 { 766 struct amdgpu_vm_bo_base *base; 767 768 for (base = bo->vm_bo; base; base = base->next) { 769 if (base->vm != vm) 770 continue; 771 772 return container_of(base, struct amdgpu_bo_va, base); 773 } 774 return NULL; 775 } 776 777 /** 778 * amdgpu_vm_map_gart - Resolve gart mapping of addr 779 * 780 * @pages_addr: optional DMA address to use for lookup 781 * @addr: the unmapped addr 782 * 783 * Look up the physical address of the page that the pte resolves 784 * to. 785 * 786 * Returns: 787 * The pointer for the page table entry. 788 */ 789 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 790 { 791 uint64_t result; 792 793 /* page table offset */ 794 result = pages_addr[addr >> PAGE_SHIFT]; 795 796 /* in case cpu page size != gpu page size*/ 797 result |= addr & (~PAGE_MASK); 798 799 result &= 0xFFFFFFFFFFFFF000ULL; 800 801 return result; 802 } 803 804 /** 805 * amdgpu_vm_update_pdes - make sure that all directories are valid 806 * 807 * @adev: amdgpu_device pointer 808 * @vm: requested vm 809 * @immediate: submit immediately to the paging queue 810 * 811 * Makes sure all directories are up to date. 812 * 813 * Returns: 814 * 0 for success, error for failure. 815 */ 816 int amdgpu_vm_update_pdes(struct amdgpu_device *adev, 817 struct amdgpu_vm *vm, bool immediate) 818 { 819 struct amdgpu_vm_update_params params; 820 struct amdgpu_vm_bo_base *entry; 821 bool flush_tlb_needed = false; 822 LIST_HEAD(relocated); 823 int r, idx; 824 825 spin_lock(&vm->status_lock); 826 list_splice_init(&vm->relocated, &relocated); 827 spin_unlock(&vm->status_lock); 828 829 if (list_empty(&relocated)) 830 return 0; 831 832 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 833 return -ENODEV; 834 835 memset(¶ms, 0, sizeof(params)); 836 params.adev = adev; 837 params.vm = vm; 838 params.immediate = immediate; 839 840 r = vm->update_funcs->prepare(¶ms, NULL); 841 if (r) 842 goto error; 843 844 list_for_each_entry(entry, &relocated, vm_status) { 845 /* vm_flush_needed after updating moved PDEs */ 846 flush_tlb_needed |= entry->moved; 847 848 r = amdgpu_vm_pde_update(¶ms, entry); 849 if (r) 850 goto error; 851 } 852 853 r = vm->update_funcs->commit(¶ms, &vm->last_update); 854 if (r) 855 goto error; 856 857 if (flush_tlb_needed) 858 atomic64_inc(&vm->tlb_seq); 859 860 while (!list_empty(&relocated)) { 861 entry = list_first_entry(&relocated, struct amdgpu_vm_bo_base, 862 vm_status); 863 amdgpu_vm_bo_idle(entry); 864 } 865 866 error: 867 drm_dev_exit(idx); 868 return r; 869 } 870 871 /** 872 * amdgpu_vm_tlb_seq_cb - make sure to increment tlb sequence 873 * @fence: unused 874 * @cb: the callback structure 875 * 876 * Increments the tlb sequence to make sure that future CS execute a VM flush. 877 */ 878 static void amdgpu_vm_tlb_seq_cb(struct dma_fence *fence, 879 struct dma_fence_cb *cb) 880 { 881 struct amdgpu_vm_tlb_seq_struct *tlb_cb; 882 883 tlb_cb = container_of(cb, typeof(*tlb_cb), cb); 884 atomic64_inc(&tlb_cb->vm->tlb_seq); 885 kfree(tlb_cb); 886 } 887 888 /** 889 * amdgpu_vm_tlb_flush - prepare TLB flush 890 * 891 * @params: parameters for update 892 * @fence: input fence to sync TLB flush with 893 * @tlb_cb: the callback structure 894 * 895 * Increments the tlb sequence to make sure that future CS execute a VM flush. 896 */ 897 static void 898 amdgpu_vm_tlb_flush(struct amdgpu_vm_update_params *params, 899 struct dma_fence **fence, 900 struct amdgpu_vm_tlb_seq_struct *tlb_cb) 901 { 902 struct amdgpu_vm *vm = params->vm; 903 904 tlb_cb->vm = vm; 905 if (!fence || !*fence) { 906 amdgpu_vm_tlb_seq_cb(NULL, &tlb_cb->cb); 907 return; 908 } 909 910 if (!dma_fence_add_callback(*fence, &tlb_cb->cb, 911 amdgpu_vm_tlb_seq_cb)) { 912 dma_fence_put(vm->last_tlb_flush); 913 vm->last_tlb_flush = dma_fence_get(*fence); 914 } else { 915 amdgpu_vm_tlb_seq_cb(NULL, &tlb_cb->cb); 916 } 917 918 /* Prepare a TLB flush fence to be attached to PTs */ 919 if (!params->unlocked && vm->is_compute_context) { 920 amdgpu_vm_tlb_fence_create(params->adev, vm, fence); 921 922 /* Makes sure no PD/PT is freed before the flush */ 923 dma_resv_add_fence(vm->root.bo->tbo.base.resv, *fence, 924 DMA_RESV_USAGE_BOOKKEEP); 925 } 926 } 927 928 /** 929 * amdgpu_vm_update_range - update a range in the vm page table 930 * 931 * @adev: amdgpu_device pointer to use for commands 932 * @vm: the VM to update the range 933 * @immediate: immediate submission in a page fault 934 * @unlocked: unlocked invalidation during MM callback 935 * @flush_tlb: trigger tlb invalidation after update completed 936 * @allow_override: change MTYPE for local NUMA nodes 937 * @sync: fences we need to sync to 938 * @start: start of mapped range 939 * @last: last mapped entry 940 * @flags: flags for the entries 941 * @offset: offset into nodes and pages_addr 942 * @vram_base: base for vram mappings 943 * @res: ttm_resource to map 944 * @pages_addr: DMA addresses to use for mapping 945 * @fence: optional resulting fence 946 * 947 * Fill in the page table entries between @start and @last. 948 * 949 * Returns: 950 * 0 for success, negative erro code for failure. 951 */ 952 int amdgpu_vm_update_range(struct amdgpu_device *adev, struct amdgpu_vm *vm, 953 bool immediate, bool unlocked, bool flush_tlb, 954 bool allow_override, struct amdgpu_sync *sync, 955 uint64_t start, uint64_t last, uint64_t flags, 956 uint64_t offset, uint64_t vram_base, 957 struct ttm_resource *res, dma_addr_t *pages_addr, 958 struct dma_fence **fence) 959 { 960 struct amdgpu_vm_tlb_seq_struct *tlb_cb; 961 struct amdgpu_vm_update_params params; 962 struct amdgpu_res_cursor cursor; 963 int r, idx; 964 965 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 966 return -ENODEV; 967 968 tlb_cb = kmalloc(sizeof(*tlb_cb), GFP_KERNEL); 969 if (!tlb_cb) { 970 drm_dev_exit(idx); 971 return -ENOMEM; 972 } 973 974 /* Vega20+XGMI where PTEs get inadvertently cached in L2 texture cache, 975 * heavy-weight flush TLB unconditionally. 976 */ 977 flush_tlb |= adev->gmc.xgmi.num_physical_nodes && 978 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 0); 979 980 /* 981 * On GFX8 and older any 8 PTE block with a valid bit set enters the TLB 982 */ 983 flush_tlb |= amdgpu_ip_version(adev, GC_HWIP, 0) < IP_VERSION(9, 0, 0); 984 985 memset(¶ms, 0, sizeof(params)); 986 params.adev = adev; 987 params.vm = vm; 988 params.immediate = immediate; 989 params.pages_addr = pages_addr; 990 params.unlocked = unlocked; 991 params.needs_flush = flush_tlb; 992 params.allow_override = allow_override; 993 INIT_LIST_HEAD(¶ms.tlb_flush_waitlist); 994 995 amdgpu_vm_eviction_lock(vm); 996 if (vm->evicting) { 997 r = -EBUSY; 998 goto error_free; 999 } 1000 1001 if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) { 1002 struct dma_fence *tmp = dma_fence_get_stub(); 1003 1004 amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true); 1005 swap(vm->last_unlocked, tmp); 1006 dma_fence_put(tmp); 1007 } 1008 1009 r = vm->update_funcs->prepare(¶ms, sync); 1010 if (r) 1011 goto error_free; 1012 1013 amdgpu_res_first(pages_addr ? NULL : res, offset, 1014 (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor); 1015 while (cursor.remaining) { 1016 uint64_t tmp, num_entries, addr; 1017 1018 num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT; 1019 if (pages_addr) { 1020 bool contiguous = true; 1021 1022 if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) { 1023 uint64_t pfn = cursor.start >> PAGE_SHIFT; 1024 uint64_t count; 1025 1026 contiguous = pages_addr[pfn + 1] == 1027 pages_addr[pfn] + PAGE_SIZE; 1028 1029 tmp = num_entries / 1030 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1031 for (count = 2; count < tmp; ++count) { 1032 uint64_t idx = pfn + count; 1033 1034 if (contiguous != (pages_addr[idx] == 1035 pages_addr[idx - 1] + PAGE_SIZE)) 1036 break; 1037 } 1038 if (!contiguous) 1039 count--; 1040 num_entries = count * 1041 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1042 } 1043 1044 if (!contiguous) { 1045 addr = cursor.start; 1046 params.pages_addr = pages_addr; 1047 } else { 1048 addr = pages_addr[cursor.start >> PAGE_SHIFT]; 1049 params.pages_addr = NULL; 1050 } 1051 1052 } else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT_FLAG(adev))) { 1053 addr = vram_base + cursor.start; 1054 } else { 1055 addr = 0; 1056 } 1057 1058 tmp = start + num_entries; 1059 r = amdgpu_vm_ptes_update(¶ms, start, tmp, addr, flags); 1060 if (r) 1061 goto error_free; 1062 1063 amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE); 1064 start = tmp; 1065 } 1066 1067 r = vm->update_funcs->commit(¶ms, fence); 1068 if (r) 1069 goto error_free; 1070 1071 if (params.needs_flush) { 1072 amdgpu_vm_tlb_flush(¶ms, fence, tlb_cb); 1073 tlb_cb = NULL; 1074 } 1075 1076 amdgpu_vm_pt_free_list(adev, ¶ms); 1077 1078 error_free: 1079 kfree(tlb_cb); 1080 amdgpu_vm_eviction_unlock(vm); 1081 drm_dev_exit(idx); 1082 return r; 1083 } 1084 1085 static void amdgpu_vm_bo_get_memory(struct amdgpu_bo_va *bo_va, 1086 struct amdgpu_mem_stats *stats, 1087 unsigned int size) 1088 { 1089 struct amdgpu_vm *vm = bo_va->base.vm; 1090 struct amdgpu_bo *bo = bo_va->base.bo; 1091 1092 if (!bo) 1093 return; 1094 1095 /* 1096 * For now ignore BOs which are currently locked and potentially 1097 * changing their location. 1098 */ 1099 if (!amdgpu_vm_is_bo_always_valid(vm, bo) && 1100 !dma_resv_trylock(bo->tbo.base.resv)) 1101 return; 1102 1103 amdgpu_bo_get_memory(bo, stats, size); 1104 if (!amdgpu_vm_is_bo_always_valid(vm, bo)) 1105 dma_resv_unlock(bo->tbo.base.resv); 1106 } 1107 1108 void amdgpu_vm_get_memory(struct amdgpu_vm *vm, 1109 struct amdgpu_mem_stats *stats, 1110 unsigned int size) 1111 { 1112 struct amdgpu_bo_va *bo_va, *tmp; 1113 1114 spin_lock(&vm->status_lock); 1115 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) 1116 amdgpu_vm_bo_get_memory(bo_va, stats, size); 1117 1118 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) 1119 amdgpu_vm_bo_get_memory(bo_va, stats, size); 1120 1121 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) 1122 amdgpu_vm_bo_get_memory(bo_va, stats, size); 1123 1124 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) 1125 amdgpu_vm_bo_get_memory(bo_va, stats, size); 1126 1127 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) 1128 amdgpu_vm_bo_get_memory(bo_va, stats, size); 1129 1130 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) 1131 amdgpu_vm_bo_get_memory(bo_va, stats, size); 1132 spin_unlock(&vm->status_lock); 1133 } 1134 1135 /** 1136 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1137 * 1138 * @adev: amdgpu_device pointer 1139 * @bo_va: requested BO and VM object 1140 * @clear: if true clear the entries 1141 * 1142 * Fill in the page table entries for @bo_va. 1143 * 1144 * Returns: 1145 * 0 for success, -EINVAL for failure. 1146 */ 1147 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, 1148 bool clear) 1149 { 1150 struct amdgpu_bo *bo = bo_va->base.bo; 1151 struct amdgpu_vm *vm = bo_va->base.vm; 1152 struct amdgpu_bo_va_mapping *mapping; 1153 struct dma_fence **last_update; 1154 dma_addr_t *pages_addr = NULL; 1155 struct ttm_resource *mem; 1156 struct amdgpu_sync sync; 1157 bool flush_tlb = clear; 1158 uint64_t vram_base; 1159 uint64_t flags; 1160 bool uncached; 1161 int r; 1162 1163 amdgpu_sync_create(&sync); 1164 if (clear) { 1165 mem = NULL; 1166 1167 /* Implicitly sync to command submissions in the same VM before 1168 * unmapping. 1169 */ 1170 r = amdgpu_sync_resv(adev, &sync, vm->root.bo->tbo.base.resv, 1171 AMDGPU_SYNC_EQ_OWNER, vm); 1172 if (r) 1173 goto error_free; 1174 if (bo) { 1175 r = amdgpu_sync_kfd(&sync, bo->tbo.base.resv); 1176 if (r) 1177 goto error_free; 1178 } 1179 } else if (!bo) { 1180 mem = NULL; 1181 1182 /* PRT map operations don't need to sync to anything. */ 1183 1184 } else { 1185 struct drm_gem_object *obj = &bo->tbo.base; 1186 1187 if (obj->import_attach && bo_va->is_xgmi) { 1188 struct dma_buf *dma_buf = obj->import_attach->dmabuf; 1189 struct drm_gem_object *gobj = dma_buf->priv; 1190 struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj); 1191 1192 if (abo->tbo.resource && 1193 abo->tbo.resource->mem_type == TTM_PL_VRAM) 1194 bo = gem_to_amdgpu_bo(gobj); 1195 } 1196 mem = bo->tbo.resource; 1197 if (mem && (mem->mem_type == TTM_PL_TT || 1198 mem->mem_type == AMDGPU_PL_PREEMPT)) 1199 pages_addr = bo->tbo.ttm->dma_address; 1200 1201 /* Implicitly sync to moving fences before mapping anything */ 1202 r = amdgpu_sync_resv(adev, &sync, bo->tbo.base.resv, 1203 AMDGPU_SYNC_EXPLICIT, vm); 1204 if (r) 1205 goto error_free; 1206 } 1207 1208 if (bo) { 1209 struct amdgpu_device *bo_adev; 1210 1211 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1212 1213 if (amdgpu_bo_encrypted(bo)) 1214 flags |= AMDGPU_PTE_TMZ; 1215 1216 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev); 1217 vram_base = bo_adev->vm_manager.vram_base_offset; 1218 uncached = (bo->flags & AMDGPU_GEM_CREATE_UNCACHED) != 0; 1219 } else { 1220 flags = 0x0; 1221 vram_base = 0; 1222 uncached = false; 1223 } 1224 1225 if (clear || amdgpu_vm_is_bo_always_valid(vm, bo)) 1226 last_update = &vm->last_update; 1227 else 1228 last_update = &bo_va->last_pt_update; 1229 1230 if (!clear && bo_va->base.moved) { 1231 flush_tlb = true; 1232 list_splice_init(&bo_va->valids, &bo_va->invalids); 1233 1234 } else if (bo_va->cleared != clear) { 1235 list_splice_init(&bo_va->valids, &bo_va->invalids); 1236 } 1237 1238 list_for_each_entry(mapping, &bo_va->invalids, list) { 1239 uint64_t update_flags = flags; 1240 1241 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1242 * but in case of something, we filter the flags in first place 1243 */ 1244 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1245 update_flags &= ~AMDGPU_PTE_READABLE; 1246 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1247 update_flags &= ~AMDGPU_PTE_WRITEABLE; 1248 1249 /* Apply ASIC specific mapping flags */ 1250 amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags); 1251 1252 trace_amdgpu_vm_bo_update(mapping); 1253 1254 r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, 1255 !uncached, &sync, mapping->start, 1256 mapping->last, update_flags, 1257 mapping->offset, vram_base, mem, 1258 pages_addr, last_update); 1259 if (r) 1260 goto error_free; 1261 } 1262 1263 /* If the BO is not in its preferred location add it back to 1264 * the evicted list so that it gets validated again on the 1265 * next command submission. 1266 */ 1267 if (amdgpu_vm_is_bo_always_valid(vm, bo)) { 1268 uint32_t mem_type = bo->tbo.resource->mem_type; 1269 1270 if (!(bo->preferred_domains & 1271 amdgpu_mem_type_to_domain(mem_type))) 1272 amdgpu_vm_bo_evicted(&bo_va->base); 1273 else 1274 amdgpu_vm_bo_idle(&bo_va->base); 1275 } else { 1276 amdgpu_vm_bo_done(&bo_va->base); 1277 } 1278 1279 list_splice_init(&bo_va->invalids, &bo_va->valids); 1280 bo_va->cleared = clear; 1281 bo_va->base.moved = false; 1282 1283 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1284 list_for_each_entry(mapping, &bo_va->valids, list) 1285 trace_amdgpu_vm_bo_mapping(mapping); 1286 } 1287 1288 error_free: 1289 amdgpu_sync_free(&sync); 1290 return r; 1291 } 1292 1293 /** 1294 * amdgpu_vm_update_prt_state - update the global PRT state 1295 * 1296 * @adev: amdgpu_device pointer 1297 */ 1298 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1299 { 1300 unsigned long flags; 1301 bool enable; 1302 1303 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1304 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1305 adev->gmc.gmc_funcs->set_prt(adev, enable); 1306 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1307 } 1308 1309 /** 1310 * amdgpu_vm_prt_get - add a PRT user 1311 * 1312 * @adev: amdgpu_device pointer 1313 */ 1314 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1315 { 1316 if (!adev->gmc.gmc_funcs->set_prt) 1317 return; 1318 1319 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1320 amdgpu_vm_update_prt_state(adev); 1321 } 1322 1323 /** 1324 * amdgpu_vm_prt_put - drop a PRT user 1325 * 1326 * @adev: amdgpu_device pointer 1327 */ 1328 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1329 { 1330 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1331 amdgpu_vm_update_prt_state(adev); 1332 } 1333 1334 /** 1335 * amdgpu_vm_prt_cb - callback for updating the PRT status 1336 * 1337 * @fence: fence for the callback 1338 * @_cb: the callback function 1339 */ 1340 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1341 { 1342 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1343 1344 amdgpu_vm_prt_put(cb->adev); 1345 kfree(cb); 1346 } 1347 1348 /** 1349 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 1350 * 1351 * @adev: amdgpu_device pointer 1352 * @fence: fence for the callback 1353 */ 1354 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 1355 struct dma_fence *fence) 1356 { 1357 struct amdgpu_prt_cb *cb; 1358 1359 if (!adev->gmc.gmc_funcs->set_prt) 1360 return; 1361 1362 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 1363 if (!cb) { 1364 /* Last resort when we are OOM */ 1365 if (fence) 1366 dma_fence_wait(fence, false); 1367 1368 amdgpu_vm_prt_put(adev); 1369 } else { 1370 cb->adev = adev; 1371 if (!fence || dma_fence_add_callback(fence, &cb->cb, 1372 amdgpu_vm_prt_cb)) 1373 amdgpu_vm_prt_cb(fence, &cb->cb); 1374 } 1375 } 1376 1377 /** 1378 * amdgpu_vm_free_mapping - free a mapping 1379 * 1380 * @adev: amdgpu_device pointer 1381 * @vm: requested vm 1382 * @mapping: mapping to be freed 1383 * @fence: fence of the unmap operation 1384 * 1385 * Free a mapping and make sure we decrease the PRT usage count if applicable. 1386 */ 1387 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 1388 struct amdgpu_vm *vm, 1389 struct amdgpu_bo_va_mapping *mapping, 1390 struct dma_fence *fence) 1391 { 1392 if (mapping->flags & AMDGPU_PTE_PRT_FLAG(adev)) 1393 amdgpu_vm_add_prt_cb(adev, fence); 1394 kfree(mapping); 1395 } 1396 1397 /** 1398 * amdgpu_vm_prt_fini - finish all prt mappings 1399 * 1400 * @adev: amdgpu_device pointer 1401 * @vm: requested vm 1402 * 1403 * Register a cleanup callback to disable PRT support after VM dies. 1404 */ 1405 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1406 { 1407 struct dma_resv *resv = vm->root.bo->tbo.base.resv; 1408 struct dma_resv_iter cursor; 1409 struct dma_fence *fence; 1410 1411 dma_resv_for_each_fence(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP, fence) { 1412 /* Add a callback for each fence in the reservation object */ 1413 amdgpu_vm_prt_get(adev); 1414 amdgpu_vm_add_prt_cb(adev, fence); 1415 } 1416 } 1417 1418 /** 1419 * amdgpu_vm_clear_freed - clear freed BOs in the PT 1420 * 1421 * @adev: amdgpu_device pointer 1422 * @vm: requested vm 1423 * @fence: optional resulting fence (unchanged if no work needed to be done 1424 * or if an error occurred) 1425 * 1426 * Make sure all freed BOs are cleared in the PT. 1427 * PTs have to be reserved and mutex must be locked! 1428 * 1429 * Returns: 1430 * 0 for success. 1431 * 1432 */ 1433 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 1434 struct amdgpu_vm *vm, 1435 struct dma_fence **fence) 1436 { 1437 struct amdgpu_bo_va_mapping *mapping; 1438 struct dma_fence *f = NULL; 1439 struct amdgpu_sync sync; 1440 int r; 1441 1442 1443 /* 1444 * Implicitly sync to command submissions in the same VM before 1445 * unmapping. 1446 */ 1447 amdgpu_sync_create(&sync); 1448 r = amdgpu_sync_resv(adev, &sync, vm->root.bo->tbo.base.resv, 1449 AMDGPU_SYNC_EQ_OWNER, vm); 1450 if (r) 1451 goto error_free; 1452 1453 while (!list_empty(&vm->freed)) { 1454 mapping = list_first_entry(&vm->freed, 1455 struct amdgpu_bo_va_mapping, list); 1456 list_del(&mapping->list); 1457 1458 r = amdgpu_vm_update_range(adev, vm, false, false, true, false, 1459 &sync, mapping->start, mapping->last, 1460 0, 0, 0, NULL, NULL, &f); 1461 amdgpu_vm_free_mapping(adev, vm, mapping, f); 1462 if (r) { 1463 dma_fence_put(f); 1464 goto error_free; 1465 } 1466 } 1467 1468 if (fence && f) { 1469 dma_fence_put(*fence); 1470 *fence = f; 1471 } else { 1472 dma_fence_put(f); 1473 } 1474 1475 error_free: 1476 amdgpu_sync_free(&sync); 1477 return r; 1478 1479 } 1480 1481 /** 1482 * amdgpu_vm_handle_moved - handle moved BOs in the PT 1483 * 1484 * @adev: amdgpu_device pointer 1485 * @vm: requested vm 1486 * @ticket: optional reservation ticket used to reserve the VM 1487 * 1488 * Make sure all BOs which are moved are updated in the PTs. 1489 * 1490 * Returns: 1491 * 0 for success. 1492 * 1493 * PTs have to be reserved! 1494 */ 1495 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 1496 struct amdgpu_vm *vm, 1497 struct ww_acquire_ctx *ticket) 1498 { 1499 struct amdgpu_bo_va *bo_va; 1500 struct dma_resv *resv; 1501 bool clear, unlock; 1502 int r; 1503 1504 spin_lock(&vm->status_lock); 1505 while (!list_empty(&vm->moved)) { 1506 bo_va = list_first_entry(&vm->moved, struct amdgpu_bo_va, 1507 base.vm_status); 1508 spin_unlock(&vm->status_lock); 1509 1510 /* Per VM BOs never need to bo cleared in the page tables */ 1511 r = amdgpu_vm_bo_update(adev, bo_va, false); 1512 if (r) 1513 return r; 1514 spin_lock(&vm->status_lock); 1515 } 1516 1517 while (!list_empty(&vm->invalidated)) { 1518 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 1519 base.vm_status); 1520 resv = bo_va->base.bo->tbo.base.resv; 1521 spin_unlock(&vm->status_lock); 1522 1523 /* Try to reserve the BO to avoid clearing its ptes */ 1524 if (!adev->debug_vm && dma_resv_trylock(resv)) { 1525 clear = false; 1526 unlock = true; 1527 /* The caller is already holding the reservation lock */ 1528 } else if (ticket && dma_resv_locking_ctx(resv) == ticket) { 1529 clear = false; 1530 unlock = false; 1531 /* Somebody else is using the BO right now */ 1532 } else { 1533 clear = true; 1534 unlock = false; 1535 } 1536 1537 r = amdgpu_vm_bo_update(adev, bo_va, clear); 1538 1539 if (unlock) 1540 dma_resv_unlock(resv); 1541 if (r) 1542 return r; 1543 1544 /* Remember evicted DMABuf imports in compute VMs for later 1545 * validation 1546 */ 1547 if (vm->is_compute_context && 1548 bo_va->base.bo->tbo.base.import_attach && 1549 (!bo_va->base.bo->tbo.resource || 1550 bo_va->base.bo->tbo.resource->mem_type == TTM_PL_SYSTEM)) 1551 amdgpu_vm_bo_evicted_user(&bo_va->base); 1552 1553 spin_lock(&vm->status_lock); 1554 } 1555 spin_unlock(&vm->status_lock); 1556 1557 return 0; 1558 } 1559 1560 /** 1561 * amdgpu_vm_flush_compute_tlb - Flush TLB on compute VM 1562 * 1563 * @adev: amdgpu_device pointer 1564 * @vm: requested vm 1565 * @flush_type: flush type 1566 * @xcc_mask: mask of XCCs that belong to the compute partition in need of a TLB flush. 1567 * 1568 * Flush TLB if needed for a compute VM. 1569 * 1570 * Returns: 1571 * 0 for success. 1572 */ 1573 int amdgpu_vm_flush_compute_tlb(struct amdgpu_device *adev, 1574 struct amdgpu_vm *vm, 1575 uint32_t flush_type, 1576 uint32_t xcc_mask) 1577 { 1578 uint64_t tlb_seq = amdgpu_vm_tlb_seq(vm); 1579 bool all_hub = false; 1580 int xcc = 0, r = 0; 1581 1582 WARN_ON_ONCE(!vm->is_compute_context); 1583 1584 /* 1585 * It can be that we race and lose here, but that is extremely unlikely 1586 * and the worst thing which could happen is that we flush the changes 1587 * into the TLB once more which is harmless. 1588 */ 1589 if (atomic64_xchg(&vm->kfd_last_flushed_seq, tlb_seq) == tlb_seq) 1590 return 0; 1591 1592 if (adev->family == AMDGPU_FAMILY_AI || 1593 adev->family == AMDGPU_FAMILY_RV) 1594 all_hub = true; 1595 1596 for_each_inst(xcc, xcc_mask) { 1597 r = amdgpu_gmc_flush_gpu_tlb_pasid(adev, vm->pasid, flush_type, 1598 all_hub, xcc); 1599 if (r) 1600 break; 1601 } 1602 return r; 1603 } 1604 1605 /** 1606 * amdgpu_vm_bo_add - add a bo to a specific vm 1607 * 1608 * @adev: amdgpu_device pointer 1609 * @vm: requested vm 1610 * @bo: amdgpu buffer object 1611 * 1612 * Add @bo into the requested vm. 1613 * Add @bo to the list of bos associated with the vm 1614 * 1615 * Returns: 1616 * Newly added bo_va or NULL for failure 1617 * 1618 * Object has to be reserved! 1619 */ 1620 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 1621 struct amdgpu_vm *vm, 1622 struct amdgpu_bo *bo) 1623 { 1624 struct amdgpu_bo_va *bo_va; 1625 1626 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 1627 if (bo_va == NULL) { 1628 return NULL; 1629 } 1630 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 1631 1632 bo_va->ref_count = 1; 1633 bo_va->last_pt_update = dma_fence_get_stub(); 1634 INIT_LIST_HEAD(&bo_va->valids); 1635 INIT_LIST_HEAD(&bo_va->invalids); 1636 1637 if (!bo) 1638 return bo_va; 1639 1640 dma_resv_assert_held(bo->tbo.base.resv); 1641 if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) { 1642 bo_va->is_xgmi = true; 1643 /* Power up XGMI if it can be potentially used */ 1644 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20); 1645 } 1646 1647 return bo_va; 1648 } 1649 1650 1651 /** 1652 * amdgpu_vm_bo_insert_map - insert a new mapping 1653 * 1654 * @adev: amdgpu_device pointer 1655 * @bo_va: bo_va to store the address 1656 * @mapping: the mapping to insert 1657 * 1658 * Insert a new mapping into all structures. 1659 */ 1660 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 1661 struct amdgpu_bo_va *bo_va, 1662 struct amdgpu_bo_va_mapping *mapping) 1663 { 1664 struct amdgpu_vm *vm = bo_va->base.vm; 1665 struct amdgpu_bo *bo = bo_va->base.bo; 1666 1667 mapping->bo_va = bo_va; 1668 list_add(&mapping->list, &bo_va->invalids); 1669 amdgpu_vm_it_insert(mapping, &vm->va); 1670 1671 if (mapping->flags & AMDGPU_PTE_PRT_FLAG(adev)) 1672 amdgpu_vm_prt_get(adev); 1673 1674 if (amdgpu_vm_is_bo_always_valid(vm, bo) && !bo_va->base.moved) 1675 amdgpu_vm_bo_moved(&bo_va->base); 1676 1677 trace_amdgpu_vm_bo_map(bo_va, mapping); 1678 } 1679 1680 /* Validate operation parameters to prevent potential abuse */ 1681 static int amdgpu_vm_verify_parameters(struct amdgpu_device *adev, 1682 struct amdgpu_bo *bo, 1683 uint64_t saddr, 1684 uint64_t offset, 1685 uint64_t size) 1686 { 1687 uint64_t tmp, lpfn; 1688 1689 if (saddr & AMDGPU_GPU_PAGE_MASK 1690 || offset & AMDGPU_GPU_PAGE_MASK 1691 || size & AMDGPU_GPU_PAGE_MASK) 1692 return -EINVAL; 1693 1694 if (check_add_overflow(saddr, size, &tmp) 1695 || check_add_overflow(offset, size, &tmp) 1696 || size == 0 /* which also leads to end < begin */) 1697 return -EINVAL; 1698 1699 /* make sure object fit at this offset */ 1700 if (bo && offset + size > amdgpu_bo_size(bo)) 1701 return -EINVAL; 1702 1703 /* Ensure last pfn not exceed max_pfn */ 1704 lpfn = (saddr + size - 1) >> AMDGPU_GPU_PAGE_SHIFT; 1705 if (lpfn >= adev->vm_manager.max_pfn) 1706 return -EINVAL; 1707 1708 return 0; 1709 } 1710 1711 /** 1712 * amdgpu_vm_bo_map - map bo inside a vm 1713 * 1714 * @adev: amdgpu_device pointer 1715 * @bo_va: bo_va to store the address 1716 * @saddr: where to map the BO 1717 * @offset: requested offset in the BO 1718 * @size: BO size in bytes 1719 * @flags: attributes of pages (read/write/valid/etc.) 1720 * 1721 * Add a mapping of the BO at the specefied addr into the VM. 1722 * 1723 * Returns: 1724 * 0 for success, error for failure. 1725 * 1726 * Object has to be reserved and unreserved outside! 1727 */ 1728 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 1729 struct amdgpu_bo_va *bo_va, 1730 uint64_t saddr, uint64_t offset, 1731 uint64_t size, uint64_t flags) 1732 { 1733 struct amdgpu_bo_va_mapping *mapping, *tmp; 1734 struct amdgpu_bo *bo = bo_va->base.bo; 1735 struct amdgpu_vm *vm = bo_va->base.vm; 1736 uint64_t eaddr; 1737 int r; 1738 1739 r = amdgpu_vm_verify_parameters(adev, bo, saddr, offset, size); 1740 if (r) 1741 return r; 1742 1743 saddr /= AMDGPU_GPU_PAGE_SIZE; 1744 eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE; 1745 1746 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 1747 if (tmp) { 1748 /* bo and tmp overlap, invalid addr */ 1749 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 1750 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 1751 tmp->start, tmp->last + 1); 1752 return -EINVAL; 1753 } 1754 1755 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1756 if (!mapping) 1757 return -ENOMEM; 1758 1759 mapping->start = saddr; 1760 mapping->last = eaddr; 1761 mapping->offset = offset; 1762 mapping->flags = flags; 1763 1764 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 1765 1766 return 0; 1767 } 1768 1769 /** 1770 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 1771 * 1772 * @adev: amdgpu_device pointer 1773 * @bo_va: bo_va to store the address 1774 * @saddr: where to map the BO 1775 * @offset: requested offset in the BO 1776 * @size: BO size in bytes 1777 * @flags: attributes of pages (read/write/valid/etc.) 1778 * 1779 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 1780 * mappings as we do so. 1781 * 1782 * Returns: 1783 * 0 for success, error for failure. 1784 * 1785 * Object has to be reserved and unreserved outside! 1786 */ 1787 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 1788 struct amdgpu_bo_va *bo_va, 1789 uint64_t saddr, uint64_t offset, 1790 uint64_t size, uint64_t flags) 1791 { 1792 struct amdgpu_bo_va_mapping *mapping; 1793 struct amdgpu_bo *bo = bo_va->base.bo; 1794 uint64_t eaddr; 1795 int r; 1796 1797 r = amdgpu_vm_verify_parameters(adev, bo, saddr, offset, size); 1798 if (r) 1799 return r; 1800 1801 /* Allocate all the needed memory */ 1802 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1803 if (!mapping) 1804 return -ENOMEM; 1805 1806 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 1807 if (r) { 1808 kfree(mapping); 1809 return r; 1810 } 1811 1812 saddr /= AMDGPU_GPU_PAGE_SIZE; 1813 eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE; 1814 1815 mapping->start = saddr; 1816 mapping->last = eaddr; 1817 mapping->offset = offset; 1818 mapping->flags = flags; 1819 1820 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 1821 1822 return 0; 1823 } 1824 1825 /** 1826 * amdgpu_vm_bo_unmap - remove bo mapping from vm 1827 * 1828 * @adev: amdgpu_device pointer 1829 * @bo_va: bo_va to remove the address from 1830 * @saddr: where to the BO is mapped 1831 * 1832 * Remove a mapping of the BO at the specefied addr from the VM. 1833 * 1834 * Returns: 1835 * 0 for success, error for failure. 1836 * 1837 * Object has to be reserved and unreserved outside! 1838 */ 1839 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 1840 struct amdgpu_bo_va *bo_va, 1841 uint64_t saddr) 1842 { 1843 struct amdgpu_bo_va_mapping *mapping; 1844 struct amdgpu_vm *vm = bo_va->base.vm; 1845 bool valid = true; 1846 1847 saddr /= AMDGPU_GPU_PAGE_SIZE; 1848 1849 list_for_each_entry(mapping, &bo_va->valids, list) { 1850 if (mapping->start == saddr) 1851 break; 1852 } 1853 1854 if (&mapping->list == &bo_va->valids) { 1855 valid = false; 1856 1857 list_for_each_entry(mapping, &bo_va->invalids, list) { 1858 if (mapping->start == saddr) 1859 break; 1860 } 1861 1862 if (&mapping->list == &bo_va->invalids) 1863 return -ENOENT; 1864 } 1865 1866 list_del(&mapping->list); 1867 amdgpu_vm_it_remove(mapping, &vm->va); 1868 mapping->bo_va = NULL; 1869 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 1870 1871 if (valid) 1872 list_add(&mapping->list, &vm->freed); 1873 else 1874 amdgpu_vm_free_mapping(adev, vm, mapping, 1875 bo_va->last_pt_update); 1876 1877 return 0; 1878 } 1879 1880 /** 1881 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 1882 * 1883 * @adev: amdgpu_device pointer 1884 * @vm: VM structure to use 1885 * @saddr: start of the range 1886 * @size: size of the range 1887 * 1888 * Remove all mappings in a range, split them as appropriate. 1889 * 1890 * Returns: 1891 * 0 for success, error for failure. 1892 */ 1893 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 1894 struct amdgpu_vm *vm, 1895 uint64_t saddr, uint64_t size) 1896 { 1897 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 1898 LIST_HEAD(removed); 1899 uint64_t eaddr; 1900 int r; 1901 1902 r = amdgpu_vm_verify_parameters(adev, NULL, saddr, 0, size); 1903 if (r) 1904 return r; 1905 1906 saddr /= AMDGPU_GPU_PAGE_SIZE; 1907 eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE; 1908 1909 /* Allocate all the needed memory */ 1910 before = kzalloc(sizeof(*before), GFP_KERNEL); 1911 if (!before) 1912 return -ENOMEM; 1913 INIT_LIST_HEAD(&before->list); 1914 1915 after = kzalloc(sizeof(*after), GFP_KERNEL); 1916 if (!after) { 1917 kfree(before); 1918 return -ENOMEM; 1919 } 1920 INIT_LIST_HEAD(&after->list); 1921 1922 /* Now gather all removed mappings */ 1923 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 1924 while (tmp) { 1925 /* Remember mapping split at the start */ 1926 if (tmp->start < saddr) { 1927 before->start = tmp->start; 1928 before->last = saddr - 1; 1929 before->offset = tmp->offset; 1930 before->flags = tmp->flags; 1931 before->bo_va = tmp->bo_va; 1932 list_add(&before->list, &tmp->bo_va->invalids); 1933 } 1934 1935 /* Remember mapping split at the end */ 1936 if (tmp->last > eaddr) { 1937 after->start = eaddr + 1; 1938 after->last = tmp->last; 1939 after->offset = tmp->offset; 1940 after->offset += (after->start - tmp->start) << PAGE_SHIFT; 1941 after->flags = tmp->flags; 1942 after->bo_va = tmp->bo_va; 1943 list_add(&after->list, &tmp->bo_va->invalids); 1944 } 1945 1946 list_del(&tmp->list); 1947 list_add(&tmp->list, &removed); 1948 1949 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 1950 } 1951 1952 /* And free them up */ 1953 list_for_each_entry_safe(tmp, next, &removed, list) { 1954 amdgpu_vm_it_remove(tmp, &vm->va); 1955 list_del(&tmp->list); 1956 1957 if (tmp->start < saddr) 1958 tmp->start = saddr; 1959 if (tmp->last > eaddr) 1960 tmp->last = eaddr; 1961 1962 tmp->bo_va = NULL; 1963 list_add(&tmp->list, &vm->freed); 1964 trace_amdgpu_vm_bo_unmap(NULL, tmp); 1965 } 1966 1967 /* Insert partial mapping before the range */ 1968 if (!list_empty(&before->list)) { 1969 struct amdgpu_bo *bo = before->bo_va->base.bo; 1970 1971 amdgpu_vm_it_insert(before, &vm->va); 1972 if (before->flags & AMDGPU_PTE_PRT_FLAG(adev)) 1973 amdgpu_vm_prt_get(adev); 1974 1975 if (amdgpu_vm_is_bo_always_valid(vm, bo) && 1976 !before->bo_va->base.moved) 1977 amdgpu_vm_bo_moved(&before->bo_va->base); 1978 } else { 1979 kfree(before); 1980 } 1981 1982 /* Insert partial mapping after the range */ 1983 if (!list_empty(&after->list)) { 1984 struct amdgpu_bo *bo = after->bo_va->base.bo; 1985 1986 amdgpu_vm_it_insert(after, &vm->va); 1987 if (after->flags & AMDGPU_PTE_PRT_FLAG(adev)) 1988 amdgpu_vm_prt_get(adev); 1989 1990 if (amdgpu_vm_is_bo_always_valid(vm, bo) && 1991 !after->bo_va->base.moved) 1992 amdgpu_vm_bo_moved(&after->bo_va->base); 1993 } else { 1994 kfree(after); 1995 } 1996 1997 return 0; 1998 } 1999 2000 /** 2001 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2002 * 2003 * @vm: the requested VM 2004 * @addr: the address 2005 * 2006 * Find a mapping by it's address. 2007 * 2008 * Returns: 2009 * The amdgpu_bo_va_mapping matching for addr or NULL 2010 * 2011 */ 2012 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2013 uint64_t addr) 2014 { 2015 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2016 } 2017 2018 /** 2019 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2020 * 2021 * @vm: the requested vm 2022 * @ticket: CS ticket 2023 * 2024 * Trace all mappings of BOs reserved during a command submission. 2025 */ 2026 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2027 { 2028 struct amdgpu_bo_va_mapping *mapping; 2029 2030 if (!trace_amdgpu_vm_bo_cs_enabled()) 2031 return; 2032 2033 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2034 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2035 if (mapping->bo_va && mapping->bo_va->base.bo) { 2036 struct amdgpu_bo *bo; 2037 2038 bo = mapping->bo_va->base.bo; 2039 if (dma_resv_locking_ctx(bo->tbo.base.resv) != 2040 ticket) 2041 continue; 2042 } 2043 2044 trace_amdgpu_vm_bo_cs(mapping); 2045 } 2046 } 2047 2048 /** 2049 * amdgpu_vm_bo_del - remove a bo from a specific vm 2050 * 2051 * @adev: amdgpu_device pointer 2052 * @bo_va: requested bo_va 2053 * 2054 * Remove @bo_va->bo from the requested vm. 2055 * 2056 * Object have to be reserved! 2057 */ 2058 void amdgpu_vm_bo_del(struct amdgpu_device *adev, 2059 struct amdgpu_bo_va *bo_va) 2060 { 2061 struct amdgpu_bo_va_mapping *mapping, *next; 2062 struct amdgpu_bo *bo = bo_va->base.bo; 2063 struct amdgpu_vm *vm = bo_va->base.vm; 2064 struct amdgpu_vm_bo_base **base; 2065 2066 dma_resv_assert_held(vm->root.bo->tbo.base.resv); 2067 2068 if (bo) { 2069 dma_resv_assert_held(bo->tbo.base.resv); 2070 if (amdgpu_vm_is_bo_always_valid(vm, bo)) 2071 ttm_bo_set_bulk_move(&bo->tbo, NULL); 2072 2073 for (base = &bo_va->base.bo->vm_bo; *base; 2074 base = &(*base)->next) { 2075 if (*base != &bo_va->base) 2076 continue; 2077 2078 *base = bo_va->base.next; 2079 break; 2080 } 2081 } 2082 2083 spin_lock(&vm->status_lock); 2084 list_del(&bo_va->base.vm_status); 2085 spin_unlock(&vm->status_lock); 2086 2087 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2088 list_del(&mapping->list); 2089 amdgpu_vm_it_remove(mapping, &vm->va); 2090 mapping->bo_va = NULL; 2091 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2092 list_add(&mapping->list, &vm->freed); 2093 } 2094 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2095 list_del(&mapping->list); 2096 amdgpu_vm_it_remove(mapping, &vm->va); 2097 amdgpu_vm_free_mapping(adev, vm, mapping, 2098 bo_va->last_pt_update); 2099 } 2100 2101 dma_fence_put(bo_va->last_pt_update); 2102 2103 if (bo && bo_va->is_xgmi) 2104 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN); 2105 2106 kfree(bo_va); 2107 } 2108 2109 /** 2110 * amdgpu_vm_evictable - check if we can evict a VM 2111 * 2112 * @bo: A page table of the VM. 2113 * 2114 * Check if it is possible to evict a VM. 2115 */ 2116 bool amdgpu_vm_evictable(struct amdgpu_bo *bo) 2117 { 2118 struct amdgpu_vm_bo_base *bo_base = bo->vm_bo; 2119 2120 /* Page tables of a destroyed VM can go away immediately */ 2121 if (!bo_base || !bo_base->vm) 2122 return true; 2123 2124 /* Don't evict VM page tables while they are busy */ 2125 if (!dma_resv_test_signaled(bo->tbo.base.resv, DMA_RESV_USAGE_BOOKKEEP)) 2126 return false; 2127 2128 /* Try to block ongoing updates */ 2129 if (!amdgpu_vm_eviction_trylock(bo_base->vm)) 2130 return false; 2131 2132 /* Don't evict VM page tables while they are updated */ 2133 if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) { 2134 amdgpu_vm_eviction_unlock(bo_base->vm); 2135 return false; 2136 } 2137 2138 bo_base->vm->evicting = true; 2139 amdgpu_vm_eviction_unlock(bo_base->vm); 2140 return true; 2141 } 2142 2143 /** 2144 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2145 * 2146 * @adev: amdgpu_device pointer 2147 * @bo: amdgpu buffer object 2148 * @evicted: is the BO evicted 2149 * 2150 * Mark @bo as invalid. 2151 */ 2152 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2153 struct amdgpu_bo *bo, bool evicted) 2154 { 2155 struct amdgpu_vm_bo_base *bo_base; 2156 2157 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2158 struct amdgpu_vm *vm = bo_base->vm; 2159 2160 if (evicted && amdgpu_vm_is_bo_always_valid(vm, bo)) { 2161 amdgpu_vm_bo_evicted(bo_base); 2162 continue; 2163 } 2164 2165 if (bo_base->moved) 2166 continue; 2167 bo_base->moved = true; 2168 2169 if (bo->tbo.type == ttm_bo_type_kernel) 2170 amdgpu_vm_bo_relocated(bo_base); 2171 else if (amdgpu_vm_is_bo_always_valid(vm, bo)) 2172 amdgpu_vm_bo_moved(bo_base); 2173 else 2174 amdgpu_vm_bo_invalidated(bo_base); 2175 } 2176 } 2177 2178 /** 2179 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2180 * 2181 * @vm_size: VM size 2182 * 2183 * Returns: 2184 * VM page table as power of two 2185 */ 2186 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2187 { 2188 /* Total bits covered by PD + PTs */ 2189 unsigned bits = ilog2(vm_size) + 18; 2190 2191 /* Make sure the PD is 4K in size up to 8GB address space. 2192 Above that split equal between PD and PTs */ 2193 if (vm_size <= 8) 2194 return (bits - 9); 2195 else 2196 return ((bits + 3) / 2); 2197 } 2198 2199 /** 2200 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2201 * 2202 * @adev: amdgpu_device pointer 2203 * @min_vm_size: the minimum vm size in GB if it's set auto 2204 * @fragment_size_default: Default PTE fragment size 2205 * @max_level: max VMPT level 2206 * @max_bits: max address space size in bits 2207 * 2208 */ 2209 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2210 uint32_t fragment_size_default, unsigned max_level, 2211 unsigned max_bits) 2212 { 2213 unsigned int max_size = 1 << (max_bits - 30); 2214 unsigned int vm_size; 2215 uint64_t tmp; 2216 2217 /* adjust vm size first */ 2218 if (amdgpu_vm_size != -1) { 2219 vm_size = amdgpu_vm_size; 2220 if (vm_size > max_size) { 2221 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2222 amdgpu_vm_size, max_size); 2223 vm_size = max_size; 2224 } 2225 } else { 2226 struct sysinfo si; 2227 unsigned int phys_ram_gb; 2228 2229 /* Optimal VM size depends on the amount of physical 2230 * RAM available. Underlying requirements and 2231 * assumptions: 2232 * 2233 * - Need to map system memory and VRAM from all GPUs 2234 * - VRAM from other GPUs not known here 2235 * - Assume VRAM <= system memory 2236 * - On GFX8 and older, VM space can be segmented for 2237 * different MTYPEs 2238 * - Need to allow room for fragmentation, guard pages etc. 2239 * 2240 * This adds up to a rough guess of system memory x3. 2241 * Round up to power of two to maximize the available 2242 * VM size with the given page table size. 2243 */ 2244 si_meminfo(&si); 2245 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2246 (1 << 30) - 1) >> 30; 2247 vm_size = roundup_pow_of_two( 2248 clamp(phys_ram_gb * 3, min_vm_size, max_size)); 2249 } 2250 2251 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2252 2253 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2254 if (amdgpu_vm_block_size != -1) 2255 tmp >>= amdgpu_vm_block_size - 9; 2256 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2257 adev->vm_manager.num_level = min_t(unsigned int, max_level, tmp); 2258 switch (adev->vm_manager.num_level) { 2259 case 3: 2260 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2261 break; 2262 case 2: 2263 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2264 break; 2265 case 1: 2266 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2267 break; 2268 default: 2269 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2270 } 2271 /* block size depends on vm size and hw setup*/ 2272 if (amdgpu_vm_block_size != -1) 2273 adev->vm_manager.block_size = 2274 min((unsigned)amdgpu_vm_block_size, max_bits 2275 - AMDGPU_GPU_PAGE_SHIFT 2276 - 9 * adev->vm_manager.num_level); 2277 else if (adev->vm_manager.num_level > 1) 2278 adev->vm_manager.block_size = 9; 2279 else 2280 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2281 2282 if (amdgpu_vm_fragment_size == -1) 2283 adev->vm_manager.fragment_size = fragment_size_default; 2284 else 2285 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2286 2287 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2288 vm_size, adev->vm_manager.num_level + 1, 2289 adev->vm_manager.block_size, 2290 adev->vm_manager.fragment_size); 2291 } 2292 2293 /** 2294 * amdgpu_vm_wait_idle - wait for the VM to become idle 2295 * 2296 * @vm: VM object to wait for 2297 * @timeout: timeout to wait for VM to become idle 2298 */ 2299 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout) 2300 { 2301 timeout = dma_resv_wait_timeout(vm->root.bo->tbo.base.resv, 2302 DMA_RESV_USAGE_BOOKKEEP, 2303 true, timeout); 2304 if (timeout <= 0) 2305 return timeout; 2306 2307 return dma_fence_wait_timeout(vm->last_unlocked, true, timeout); 2308 } 2309 2310 static void amdgpu_vm_destroy_task_info(struct kref *kref) 2311 { 2312 struct amdgpu_task_info *ti = container_of(kref, struct amdgpu_task_info, refcount); 2313 2314 kfree(ti); 2315 } 2316 2317 static inline struct amdgpu_vm * 2318 amdgpu_vm_get_vm_from_pasid(struct amdgpu_device *adev, u32 pasid) 2319 { 2320 struct amdgpu_vm *vm; 2321 unsigned long flags; 2322 2323 xa_lock_irqsave(&adev->vm_manager.pasids, flags); 2324 vm = xa_load(&adev->vm_manager.pasids, pasid); 2325 xa_unlock_irqrestore(&adev->vm_manager.pasids, flags); 2326 2327 return vm; 2328 } 2329 2330 /** 2331 * amdgpu_vm_put_task_info - reference down the vm task_info ptr 2332 * 2333 * @task_info: task_info struct under discussion. 2334 * 2335 * frees the vm task_info ptr at the last put 2336 */ 2337 void amdgpu_vm_put_task_info(struct amdgpu_task_info *task_info) 2338 { 2339 kref_put(&task_info->refcount, amdgpu_vm_destroy_task_info); 2340 } 2341 2342 /** 2343 * amdgpu_vm_get_task_info_vm - Extracts task info for a vm. 2344 * 2345 * @vm: VM to get info from 2346 * 2347 * Returns the reference counted task_info structure, which must be 2348 * referenced down with amdgpu_vm_put_task_info. 2349 */ 2350 struct amdgpu_task_info * 2351 amdgpu_vm_get_task_info_vm(struct amdgpu_vm *vm) 2352 { 2353 struct amdgpu_task_info *ti = NULL; 2354 2355 if (vm) { 2356 ti = vm->task_info; 2357 kref_get(&vm->task_info->refcount); 2358 } 2359 2360 return ti; 2361 } 2362 2363 /** 2364 * amdgpu_vm_get_task_info_pasid - Extracts task info for a PASID. 2365 * 2366 * @adev: drm device pointer 2367 * @pasid: PASID identifier for VM 2368 * 2369 * Returns the reference counted task_info structure, which must be 2370 * referenced down with amdgpu_vm_put_task_info. 2371 */ 2372 struct amdgpu_task_info * 2373 amdgpu_vm_get_task_info_pasid(struct amdgpu_device *adev, u32 pasid) 2374 { 2375 return amdgpu_vm_get_task_info_vm( 2376 amdgpu_vm_get_vm_from_pasid(adev, pasid)); 2377 } 2378 2379 static int amdgpu_vm_create_task_info(struct amdgpu_vm *vm) 2380 { 2381 vm->task_info = kzalloc(sizeof(struct amdgpu_task_info), GFP_KERNEL); 2382 if (!vm->task_info) 2383 return -ENOMEM; 2384 2385 kref_init(&vm->task_info->refcount); 2386 return 0; 2387 } 2388 2389 /** 2390 * amdgpu_vm_set_task_info - Sets VMs task info. 2391 * 2392 * @vm: vm for which to set the info 2393 */ 2394 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 2395 { 2396 if (!vm->task_info) 2397 return; 2398 2399 if (vm->task_info->pid == current->pid) 2400 return; 2401 2402 vm->task_info->pid = current->pid; 2403 get_task_comm(vm->task_info->task_name, current); 2404 2405 if (current->group_leader->mm != current->mm) 2406 return; 2407 2408 vm->task_info->tgid = current->group_leader->pid; 2409 get_task_comm(vm->task_info->process_name, current->group_leader); 2410 } 2411 2412 /** 2413 * amdgpu_vm_init - initialize a vm instance 2414 * 2415 * @adev: amdgpu_device pointer 2416 * @vm: requested vm 2417 * @xcp_id: GPU partition selection id 2418 * 2419 * Init @vm fields. 2420 * 2421 * Returns: 2422 * 0 for success, error for failure. 2423 */ 2424 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2425 int32_t xcp_id) 2426 { 2427 struct amdgpu_bo *root_bo; 2428 struct amdgpu_bo_vm *root; 2429 int r, i; 2430 2431 vm->va = RB_ROOT_CACHED; 2432 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2433 vm->reserved_vmid[i] = NULL; 2434 INIT_LIST_HEAD(&vm->evicted); 2435 INIT_LIST_HEAD(&vm->evicted_user); 2436 INIT_LIST_HEAD(&vm->relocated); 2437 INIT_LIST_HEAD(&vm->moved); 2438 INIT_LIST_HEAD(&vm->idle); 2439 INIT_LIST_HEAD(&vm->invalidated); 2440 spin_lock_init(&vm->status_lock); 2441 INIT_LIST_HEAD(&vm->freed); 2442 INIT_LIST_HEAD(&vm->done); 2443 INIT_LIST_HEAD(&vm->pt_freed); 2444 INIT_WORK(&vm->pt_free_work, amdgpu_vm_pt_free_work); 2445 INIT_KFIFO(vm->faults); 2446 2447 r = amdgpu_vm_init_entities(adev, vm); 2448 if (r) 2449 return r; 2450 2451 ttm_lru_bulk_move_init(&vm->lru_bulk_move); 2452 2453 vm->is_compute_context = false; 2454 2455 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2456 AMDGPU_VM_USE_CPU_FOR_GFX); 2457 2458 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2459 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2460 WARN_ONCE((vm->use_cpu_for_update && 2461 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2462 "CPU update of VM recommended only for large BAR system\n"); 2463 2464 if (vm->use_cpu_for_update) 2465 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2466 else 2467 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2468 2469 vm->last_update = dma_fence_get_stub(); 2470 vm->last_unlocked = dma_fence_get_stub(); 2471 vm->last_tlb_flush = dma_fence_get_stub(); 2472 vm->generation = amdgpu_vm_generation(adev, NULL); 2473 2474 mutex_init(&vm->eviction_lock); 2475 vm->evicting = false; 2476 vm->tlb_fence_context = dma_fence_context_alloc(1); 2477 2478 r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level, 2479 false, &root, xcp_id); 2480 if (r) 2481 goto error_free_delayed; 2482 2483 root_bo = amdgpu_bo_ref(&root->bo); 2484 r = amdgpu_bo_reserve(root_bo, true); 2485 if (r) { 2486 amdgpu_bo_unref(&root_bo); 2487 goto error_free_delayed; 2488 } 2489 2490 amdgpu_vm_bo_base_init(&vm->root, vm, root_bo); 2491 r = dma_resv_reserve_fences(root_bo->tbo.base.resv, 1); 2492 if (r) 2493 goto error_free_root; 2494 2495 r = amdgpu_vm_pt_clear(adev, vm, root, false); 2496 if (r) 2497 goto error_free_root; 2498 2499 r = amdgpu_vm_create_task_info(vm); 2500 if (r) 2501 DRM_DEBUG("Failed to create task info for VM\n"); 2502 2503 amdgpu_bo_unreserve(vm->root.bo); 2504 amdgpu_bo_unref(&root_bo); 2505 2506 return 0; 2507 2508 error_free_root: 2509 amdgpu_vm_pt_free_root(adev, vm); 2510 amdgpu_bo_unreserve(vm->root.bo); 2511 amdgpu_bo_unref(&root_bo); 2512 2513 error_free_delayed: 2514 dma_fence_put(vm->last_tlb_flush); 2515 dma_fence_put(vm->last_unlocked); 2516 ttm_lru_bulk_move_fini(&adev->mman.bdev, &vm->lru_bulk_move); 2517 amdgpu_vm_fini_entities(vm); 2518 2519 return r; 2520 } 2521 2522 /** 2523 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 2524 * 2525 * @adev: amdgpu_device pointer 2526 * @vm: requested vm 2527 * 2528 * This only works on GFX VMs that don't have any BOs added and no 2529 * page tables allocated yet. 2530 * 2531 * Changes the following VM parameters: 2532 * - use_cpu_for_update 2533 * - pte_supports_ats 2534 * 2535 * Reinitializes the page directory to reflect the changed ATS 2536 * setting. 2537 * 2538 * Returns: 2539 * 0 for success, -errno for errors. 2540 */ 2541 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2542 { 2543 int r; 2544 2545 r = amdgpu_bo_reserve(vm->root.bo, true); 2546 if (r) 2547 return r; 2548 2549 /* Update VM state */ 2550 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2551 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2552 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2553 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2554 WARN_ONCE((vm->use_cpu_for_update && 2555 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2556 "CPU update of VM recommended only for large BAR system\n"); 2557 2558 if (vm->use_cpu_for_update) { 2559 /* Sync with last SDMA update/clear before switching to CPU */ 2560 r = amdgpu_bo_sync_wait(vm->root.bo, 2561 AMDGPU_FENCE_OWNER_UNDEFINED, true); 2562 if (r) 2563 goto unreserve_bo; 2564 2565 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2566 r = amdgpu_vm_pt_map_tables(adev, vm); 2567 if (r) 2568 goto unreserve_bo; 2569 2570 } else { 2571 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2572 } 2573 2574 dma_fence_put(vm->last_update); 2575 vm->last_update = dma_fence_get_stub(); 2576 vm->is_compute_context = true; 2577 2578 unreserve_bo: 2579 amdgpu_bo_unreserve(vm->root.bo); 2580 return r; 2581 } 2582 2583 /** 2584 * amdgpu_vm_release_compute - release a compute vm 2585 * @adev: amdgpu_device pointer 2586 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute 2587 * 2588 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute 2589 * pasid from vm. Compute should stop use of vm after this call. 2590 */ 2591 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2592 { 2593 amdgpu_vm_set_pasid(adev, vm, 0); 2594 vm->is_compute_context = false; 2595 } 2596 2597 /** 2598 * amdgpu_vm_fini - tear down a vm instance 2599 * 2600 * @adev: amdgpu_device pointer 2601 * @vm: requested vm 2602 * 2603 * Tear down @vm. 2604 * Unbind the VM and remove all bos from the vm bo list 2605 */ 2606 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2607 { 2608 struct amdgpu_bo_va_mapping *mapping, *tmp; 2609 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 2610 struct amdgpu_bo *root; 2611 unsigned long flags; 2612 int i; 2613 2614 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 2615 2616 flush_work(&vm->pt_free_work); 2617 2618 root = amdgpu_bo_ref(vm->root.bo); 2619 amdgpu_bo_reserve(root, true); 2620 amdgpu_vm_put_task_info(vm->task_info); 2621 amdgpu_vm_set_pasid(adev, vm, 0); 2622 dma_fence_wait(vm->last_unlocked, false); 2623 dma_fence_put(vm->last_unlocked); 2624 dma_fence_wait(vm->last_tlb_flush, false); 2625 /* Make sure that all fence callbacks have completed */ 2626 spin_lock_irqsave(vm->last_tlb_flush->lock, flags); 2627 spin_unlock_irqrestore(vm->last_tlb_flush->lock, flags); 2628 dma_fence_put(vm->last_tlb_flush); 2629 2630 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 2631 if (mapping->flags & AMDGPU_PTE_PRT_FLAG(adev) && prt_fini_needed) { 2632 amdgpu_vm_prt_fini(adev, vm); 2633 prt_fini_needed = false; 2634 } 2635 2636 list_del(&mapping->list); 2637 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 2638 } 2639 2640 amdgpu_vm_pt_free_root(adev, vm); 2641 amdgpu_bo_unreserve(root); 2642 amdgpu_bo_unref(&root); 2643 WARN_ON(vm->root.bo); 2644 2645 amdgpu_vm_fini_entities(vm); 2646 2647 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 2648 dev_err(adev->dev, "still active bo inside vm\n"); 2649 } 2650 rbtree_postorder_for_each_entry_safe(mapping, tmp, 2651 &vm->va.rb_root, rb) { 2652 /* Don't remove the mapping here, we don't want to trigger a 2653 * rebalance and the tree is about to be destroyed anyway. 2654 */ 2655 list_del(&mapping->list); 2656 kfree(mapping); 2657 } 2658 2659 dma_fence_put(vm->last_update); 2660 2661 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) { 2662 if (vm->reserved_vmid[i]) { 2663 amdgpu_vmid_free_reserved(adev, i); 2664 vm->reserved_vmid[i] = false; 2665 } 2666 } 2667 2668 ttm_lru_bulk_move_fini(&adev->mman.bdev, &vm->lru_bulk_move); 2669 } 2670 2671 /** 2672 * amdgpu_vm_manager_init - init the VM manager 2673 * 2674 * @adev: amdgpu_device pointer 2675 * 2676 * Initialize the VM manager structures 2677 */ 2678 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 2679 { 2680 unsigned i; 2681 2682 /* Concurrent flushes are only possible starting with Vega10 and 2683 * are broken on Navi10 and Navi14. 2684 */ 2685 adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 || 2686 adev->asic_type == CHIP_NAVI10 || 2687 adev->asic_type == CHIP_NAVI14); 2688 amdgpu_vmid_mgr_init(adev); 2689 2690 adev->vm_manager.fence_context = 2691 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 2692 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 2693 adev->vm_manager.seqno[i] = 0; 2694 2695 spin_lock_init(&adev->vm_manager.prt_lock); 2696 atomic_set(&adev->vm_manager.num_prt_users, 0); 2697 2698 /* If not overridden by the user, by default, only in large BAR systems 2699 * Compute VM tables will be updated by CPU 2700 */ 2701 #ifdef CONFIG_X86_64 2702 if (amdgpu_vm_update_mode == -1) { 2703 /* For asic with VF MMIO access protection 2704 * avoid using CPU for VM table updates 2705 */ 2706 if (amdgpu_gmc_vram_full_visible(&adev->gmc) && 2707 !amdgpu_sriov_vf_mmio_access_protection(adev)) 2708 adev->vm_manager.vm_update_mode = 2709 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 2710 else 2711 adev->vm_manager.vm_update_mode = 0; 2712 } else 2713 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 2714 #else 2715 adev->vm_manager.vm_update_mode = 0; 2716 #endif 2717 2718 xa_init_flags(&adev->vm_manager.pasids, XA_FLAGS_LOCK_IRQ); 2719 } 2720 2721 /** 2722 * amdgpu_vm_manager_fini - cleanup VM manager 2723 * 2724 * @adev: amdgpu_device pointer 2725 * 2726 * Cleanup the VM manager and free resources. 2727 */ 2728 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 2729 { 2730 WARN_ON(!xa_empty(&adev->vm_manager.pasids)); 2731 xa_destroy(&adev->vm_manager.pasids); 2732 2733 amdgpu_vmid_mgr_fini(adev); 2734 } 2735 2736 /** 2737 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 2738 * 2739 * @dev: drm device pointer 2740 * @data: drm_amdgpu_vm 2741 * @filp: drm file pointer 2742 * 2743 * Returns: 2744 * 0 for success, -errno for errors. 2745 */ 2746 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 2747 { 2748 union drm_amdgpu_vm *args = data; 2749 struct amdgpu_device *adev = drm_to_adev(dev); 2750 struct amdgpu_fpriv *fpriv = filp->driver_priv; 2751 2752 /* No valid flags defined yet */ 2753 if (args->in.flags) 2754 return -EINVAL; 2755 2756 switch (args->in.op) { 2757 case AMDGPU_VM_OP_RESERVE_VMID: 2758 /* We only have requirement to reserve vmid from gfxhub */ 2759 if (!fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) { 2760 amdgpu_vmid_alloc_reserved(adev, AMDGPU_GFXHUB(0)); 2761 fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = true; 2762 } 2763 2764 break; 2765 case AMDGPU_VM_OP_UNRESERVE_VMID: 2766 if (fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) { 2767 amdgpu_vmid_free_reserved(adev, AMDGPU_GFXHUB(0)); 2768 fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = false; 2769 } 2770 break; 2771 default: 2772 return -EINVAL; 2773 } 2774 2775 return 0; 2776 } 2777 2778 /** 2779 * amdgpu_vm_handle_fault - graceful handling of VM faults. 2780 * @adev: amdgpu device pointer 2781 * @pasid: PASID of the VM 2782 * @ts: Timestamp of the fault 2783 * @vmid: VMID, only used for GFX 9.4.3. 2784 * @node_id: Node_id received in IH cookie. Only applicable for 2785 * GFX 9.4.3. 2786 * @addr: Address of the fault 2787 * @write_fault: true is write fault, false is read fault 2788 * 2789 * Try to gracefully handle a VM fault. Return true if the fault was handled and 2790 * shouldn't be reported any more. 2791 */ 2792 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid, 2793 u32 vmid, u32 node_id, uint64_t addr, uint64_t ts, 2794 bool write_fault) 2795 { 2796 bool is_compute_context = false; 2797 struct amdgpu_bo *root; 2798 unsigned long irqflags; 2799 uint64_t value, flags; 2800 struct amdgpu_vm *vm; 2801 int r; 2802 2803 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 2804 vm = xa_load(&adev->vm_manager.pasids, pasid); 2805 if (vm) { 2806 root = amdgpu_bo_ref(vm->root.bo); 2807 is_compute_context = vm->is_compute_context; 2808 } else { 2809 root = NULL; 2810 } 2811 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 2812 2813 if (!root) 2814 return false; 2815 2816 addr /= AMDGPU_GPU_PAGE_SIZE; 2817 2818 if (is_compute_context && !svm_range_restore_pages(adev, pasid, vmid, 2819 node_id, addr, ts, write_fault)) { 2820 amdgpu_bo_unref(&root); 2821 return true; 2822 } 2823 2824 r = amdgpu_bo_reserve(root, true); 2825 if (r) 2826 goto error_unref; 2827 2828 /* Double check that the VM still exists */ 2829 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 2830 vm = xa_load(&adev->vm_manager.pasids, pasid); 2831 if (vm && vm->root.bo != root) 2832 vm = NULL; 2833 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 2834 if (!vm) 2835 goto error_unlock; 2836 2837 flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED | 2838 AMDGPU_PTE_SYSTEM; 2839 2840 if (is_compute_context) { 2841 /* Intentionally setting invalid PTE flag 2842 * combination to force a no-retry-fault 2843 */ 2844 flags = AMDGPU_VM_NORETRY_FLAGS; 2845 value = 0; 2846 } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) { 2847 /* Redirect the access to the dummy page */ 2848 value = adev->dummy_page_addr; 2849 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE | 2850 AMDGPU_PTE_WRITEABLE; 2851 2852 } else { 2853 /* Let the hw retry silently on the PTE */ 2854 value = 0; 2855 } 2856 2857 r = dma_resv_reserve_fences(root->tbo.base.resv, 1); 2858 if (r) { 2859 pr_debug("failed %d to reserve fence slot\n", r); 2860 goto error_unlock; 2861 } 2862 2863 r = amdgpu_vm_update_range(adev, vm, true, false, false, false, 2864 NULL, addr, addr, flags, value, 0, NULL, NULL, NULL); 2865 if (r) 2866 goto error_unlock; 2867 2868 r = amdgpu_vm_update_pdes(adev, vm, true); 2869 2870 error_unlock: 2871 amdgpu_bo_unreserve(root); 2872 if (r < 0) 2873 DRM_ERROR("Can't handle page fault (%d)\n", r); 2874 2875 error_unref: 2876 amdgpu_bo_unref(&root); 2877 2878 return false; 2879 } 2880 2881 #if defined(CONFIG_DEBUG_FS) 2882 /** 2883 * amdgpu_debugfs_vm_bo_info - print BO info for the VM 2884 * 2885 * @vm: Requested VM for printing BO info 2886 * @m: debugfs file 2887 * 2888 * Print BO information in debugfs file for the VM 2889 */ 2890 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m) 2891 { 2892 struct amdgpu_bo_va *bo_va, *tmp; 2893 u64 total_idle = 0; 2894 u64 total_evicted = 0; 2895 u64 total_relocated = 0; 2896 u64 total_moved = 0; 2897 u64 total_invalidated = 0; 2898 u64 total_done = 0; 2899 unsigned int total_idle_objs = 0; 2900 unsigned int total_evicted_objs = 0; 2901 unsigned int total_relocated_objs = 0; 2902 unsigned int total_moved_objs = 0; 2903 unsigned int total_invalidated_objs = 0; 2904 unsigned int total_done_objs = 0; 2905 unsigned int id = 0; 2906 2907 spin_lock(&vm->status_lock); 2908 seq_puts(m, "\tIdle BOs:\n"); 2909 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) { 2910 if (!bo_va->base.bo) 2911 continue; 2912 total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2913 } 2914 total_idle_objs = id; 2915 id = 0; 2916 2917 seq_puts(m, "\tEvicted BOs:\n"); 2918 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) { 2919 if (!bo_va->base.bo) 2920 continue; 2921 total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2922 } 2923 total_evicted_objs = id; 2924 id = 0; 2925 2926 seq_puts(m, "\tRelocated BOs:\n"); 2927 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) { 2928 if (!bo_va->base.bo) 2929 continue; 2930 total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2931 } 2932 total_relocated_objs = id; 2933 id = 0; 2934 2935 seq_puts(m, "\tMoved BOs:\n"); 2936 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 2937 if (!bo_va->base.bo) 2938 continue; 2939 total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2940 } 2941 total_moved_objs = id; 2942 id = 0; 2943 2944 seq_puts(m, "\tInvalidated BOs:\n"); 2945 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) { 2946 if (!bo_va->base.bo) 2947 continue; 2948 total_invalidated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2949 } 2950 total_invalidated_objs = id; 2951 id = 0; 2952 2953 seq_puts(m, "\tDone BOs:\n"); 2954 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) { 2955 if (!bo_va->base.bo) 2956 continue; 2957 total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2958 } 2959 spin_unlock(&vm->status_lock); 2960 total_done_objs = id; 2961 2962 seq_printf(m, "\tTotal idle size: %12lld\tobjs:\t%d\n", total_idle, 2963 total_idle_objs); 2964 seq_printf(m, "\tTotal evicted size: %12lld\tobjs:\t%d\n", total_evicted, 2965 total_evicted_objs); 2966 seq_printf(m, "\tTotal relocated size: %12lld\tobjs:\t%d\n", total_relocated, 2967 total_relocated_objs); 2968 seq_printf(m, "\tTotal moved size: %12lld\tobjs:\t%d\n", total_moved, 2969 total_moved_objs); 2970 seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated, 2971 total_invalidated_objs); 2972 seq_printf(m, "\tTotal done size: %12lld\tobjs:\t%d\n", total_done, 2973 total_done_objs); 2974 } 2975 #endif 2976 2977 /** 2978 * amdgpu_vm_update_fault_cache - update cached fault into. 2979 * @adev: amdgpu device pointer 2980 * @pasid: PASID of the VM 2981 * @addr: Address of the fault 2982 * @status: GPUVM fault status register 2983 * @vmhub: which vmhub got the fault 2984 * 2985 * Cache the fault info for later use by userspace in debugging. 2986 */ 2987 void amdgpu_vm_update_fault_cache(struct amdgpu_device *adev, 2988 unsigned int pasid, 2989 uint64_t addr, 2990 uint32_t status, 2991 unsigned int vmhub) 2992 { 2993 struct amdgpu_vm *vm; 2994 unsigned long flags; 2995 2996 xa_lock_irqsave(&adev->vm_manager.pasids, flags); 2997 2998 vm = xa_load(&adev->vm_manager.pasids, pasid); 2999 /* Don't update the fault cache if status is 0. In the multiple 3000 * fault case, subsequent faults will return a 0 status which is 3001 * useless for userspace and replaces the useful fault status, so 3002 * only update if status is non-0. 3003 */ 3004 if (vm && status) { 3005 vm->fault_info.addr = addr; 3006 vm->fault_info.status = status; 3007 /* 3008 * Update the fault information globally for later usage 3009 * when vm could be stale or freed. 3010 */ 3011 adev->vm_manager.fault_info.addr = addr; 3012 adev->vm_manager.fault_info.vmhub = vmhub; 3013 adev->vm_manager.fault_info.status = status; 3014 3015 if (AMDGPU_IS_GFXHUB(vmhub)) { 3016 vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_GFX; 3017 vm->fault_info.vmhub |= 3018 (vmhub - AMDGPU_GFXHUB_START) << AMDGPU_VMHUB_IDX_SHIFT; 3019 } else if (AMDGPU_IS_MMHUB0(vmhub)) { 3020 vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_MM0; 3021 vm->fault_info.vmhub |= 3022 (vmhub - AMDGPU_MMHUB0_START) << AMDGPU_VMHUB_IDX_SHIFT; 3023 } else if (AMDGPU_IS_MMHUB1(vmhub)) { 3024 vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_MM1; 3025 vm->fault_info.vmhub |= 3026 (vmhub - AMDGPU_MMHUB1_START) << AMDGPU_VMHUB_IDX_SHIFT; 3027 } else { 3028 WARN_ONCE(1, "Invalid vmhub %u\n", vmhub); 3029 } 3030 } 3031 xa_unlock_irqrestore(&adev->vm_manager.pasids, flags); 3032 } 3033 3034 /** 3035 * amdgpu_vm_is_bo_always_valid - check if the BO is VM always valid 3036 * 3037 * @vm: VM to test against. 3038 * @bo: BO to be tested. 3039 * 3040 * Returns true if the BO shares the dma_resv object with the root PD and is 3041 * always guaranteed to be valid inside the VM. 3042 */ 3043 bool amdgpu_vm_is_bo_always_valid(struct amdgpu_vm *vm, struct amdgpu_bo *bo) 3044 { 3045 return bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv; 3046 } 3047